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Abstract. Recently, 9-variable Boolean functions having nonlinearity 
241, which is strictly greater than the bent concatenation bound of 240, 
have been discovered in the class of Rotation Symmetric Boolean 
Functions (RSBFs) by Kavut, Maitra and Yücel. In this paper, we 
present several 9-variable Boolean functions having nonlinearity of 
242, which we obtain by suitably generalizing the classes of RSBFs and 
Dihedral Symmetric Boolean Functions (DSBFs).  

1 Introduction 

Boolean functions with very high nonlinearity is one of the most challenging 
problems in the area of cryptography and combinatorics. The problem is also 
related to the covering radius of the first order Reed-Muller code. The 
Boolean functions attaining maximum nonlinearity of 2n−1−2(n/2)−1 are called 
bent [22] which occur only for even number of input variables n. For odd 
number of variables n, the maximum nonlinearity (upper bound) can be at 
most 22n−2−2(n/2)−2 [10]. For odd n, one can get Boolean functions having 
nonlinearity 2n−1−2(n−1)/2 by concatenating two bent functions on (n−1) 
variables. That is the reason why the nonlinearity value 2n−1−2(n−1)/2 for odd n 
is known as the bent concatenation bound.  
    Recently, 9-variable Boolean functions having nonlinearity 241, which is 
greater than the bent concatenation bound, have been discovered [12] in the 
RSBF class. The question of whether it is possible to exceed the bent 
concatenation bound for n = 9, 11, 13 was open for almost three decades. It 
was known for odd n≤7, that the maximum nonlinearity is equal to the bent 
concatenation bound, 2n−1−2(n−1)/2; since the maximum nonlinearity of 5-
variable Boolean functions was found as 12 in 1972 [1], and that of 7-variable 



 2 

Boolean functions was computed as 56 in 1980 [18]. However, in 1983 [19], 
15-variable Boolean functions with nonlinearity 16276 which exceeded the 
bent concatenation bound were demonstrated and using this result, it became 
possible to get Boolean functions with nonlinearity 2n−1−2(n−1)/2 +20×2(n−15)/2 

for odd n≥15. Until 2006, there was a gap for n = 9, 11, 13 and the maximum 
nonlinearity known for these cases was 2n−1−2(n−1)/2. In 2006, 9-variable 
functions, which belong to the class of Rotation Symmetric Boolean functions 
(RSBFs), with nonlinearity 241 (=2n−1−2(n−1)/2 +1) were discovered [12]. Such 
functions were attained utilizing a steepest-descent based iterative heuristic 
that appeared in [14], which was suitably modified for a search in the class of 
RSBFs.  
    The class of RSBFs is important in terms of their cryptographic and 
combinatorial properties [2−7, 9, 13, 16, 17, 20, 23, 24]. The nonlinearity and 
correlation immunity of such functions have been studied in detail in [2, 9, 13, 
16, 17, 23, 24]. It is now clear that the RSBF class is quite rich in terms of 
these properties and the recently found 9-variable RSBFs having nonlinearity 
241 [12] support this fact. In [15], a subspace of RSBFs called Dihedral 
Symmetric Boolean Functions (DSBFs), which are invariant under the action 
of dihedral group are introduced. It has been shown that some of the 9-
variable RSBFs having nonlinearity 241 also belong to this subspace, 
confirming the richness of DSBFs. 

    Since the space of the RSBF class is much smaller (≈ 22n/n) than the total 

space of Boolean functions (22n
) on n variables, it is possible to exhaustively 

search the space of RSBFs up to a certain value of n. In [11], an exhaustive 
search is carried out for the whole space of 9-variable RSBFs exploiting some 
combinatorial results related to the Walsh spectra of RSBFs; and it has been 
shown that there is no RSBF having nonlinearity > 241. In order to find 
functions with higher nonlinearity, one needs to increase the search space. 
This motivated us to generalize the classes of RSBFs and DSBFs, and our 
search in the generalized DSBF and RSBF classes successfully ended up with 
9-variable functions having nonlinearity 242.  
    Considering a Boolean function f as a mapping from GF(2n)→GF(2), the 
functions for which f (α2) = f (α) for any α∈GF(2n), are referred to as 
idempotents [6, 7]. In [19], 15-variable Patterson-Wiedemann functions 
having nonlinearity 16276=2n−1−2(n−1)/2+20 are identified in the idempotent 
class. As pointed out in [6, 7], the idempotents can be seen as RSBFs with 
proper choice of basis. In the following section, we will define the generalized 

k-RSBFs, as functions which satisfy f (α2k
) = f (α), where 1< k | n and     

gcd(n, k) ≠ 1. Note that if gcd(n, k) = 1, the resulting functions are the same as 
idempotents. We then impose the condition of invariance under the action of 
dihedral group to obtain the class of generalized k-DSBFs as a subset of k-
RSBFs.   
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2 Generalized Rotation and Dihedral Symmetric 
Boolean Functions 

After briefly summarizing RSBFs, we propose the generalized classes of k-
RSBFs and k-DSBFs in Definition 2 and Definition 3 respectively. Letting 
(x0, x1, ..., xn−1) ∈ Vn, the (left) k-cyclic shift operator ρk

n on n-tuples is defined 
as ρk

n(x0, x1, ..., x n−1) = (x(0+k)mod n , ... , x(n−1+k)mod n), for 1 ≤ k ≤ n. 
 
Definition 1. A Boolean function f is called Rotation Symmetric if for each 
input (x0, ..., xn−1) ∈ {0, 1}n, f (ρ1

n(x0, ..., xn−1)) = f (x0, ..., xn−1). 
 
That is, RSBFs are invariant under all cyclic rotations of the inputs. The 
inputs of a rotation symmetric Boolean function can be divided into orbits so  
that each orbit consists of all cyclic shifts of one input. An orbit generated by 
(x0, x1, ..., xn−1) is Gn(x0, x1, ..., xn−1) = {ρk

n(x0, x1, ..., xn−1) | 1 ≤ k ≤ n} and the 

number of such orbits is denoted by gn (≈ 22n/n). More specifically, gn is equal 
to (1/n)∑

t|n
φ(t)2n/t is the number of rotation symmetric classes [23], where 

φ(t) is the Euler’s phi-function. The total number of n-variable RSBFs is 2
gn.  

 
    In the following, we define the generalized RSBFs as k-rotation symmetric 
Boolean functions (k-RSBFs). 
 
Definition 2. Let 1 < m < n such that gcd(n, m) = k ≠ 1. An n-variable 
Boolean function f is called k-rotation symmetric if for each input (x0, ..., xn−1) 
∈ {0, 1}n, f (ρk

n(x0, ..., xn−1)) = f (x0, ..., xn−1). 
 
As can be seen, the k-rotation symmetric Boolean functions are invariant 
under k-cyclic rotations of inputs. Therefore, an orbit of a k-RSBF generated 
by (x1, x2, ..., xn) is Gk

n(x1, x2, ..., xn) = {ρi
n(x1, x2, ..., xn) | i = k, 2k, 3k, ..., n}. 

For example, G3
9(001, 001, 111) = {(001, 001, 111), (001, 111, 001), (111, 

001, 001)}. 
 
If gn,k is the number of distinct orbits in the class of k-RSBFs of n variables, 
one can show that gn,k = (k/n) ∑

t | (n/k)
 φ(t)2n/t, where φ(t) is the Euler’s phi 

function. 
  
In [15], a subspace of RSBFs called Dihedral Symmetric Boolean Functions 
(DSBFs), which are invariant under the action of dihedral group Dn are 
introduced. In addition to the (left) k-cyclic shift operator ρk

n on n-tuples, 
which is defined as ρk

n(x0, x1, ..., x n−1) = (x(0+k)mod n , ... , x(n−1+k)mod n), the 
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dihedral group Dn also includes the reflection operator τn(x0, x1, ... , x n−1) = 
(xn−1, ... , x1, x0). So, 2n permutations of Dn are {ρ1

n, ρ2
n, ..., ρn−1

n, ρn
n, τnρ1

n, 
τnρ2

n, ..., τnρn−1
n, τnρn

n}. The dihedral group Dn generates equivalence classes 
in the set Vn [21]. Let dn be the number of such partitions. The following 
proposition gives the exact value of dn [8, page 184], [15]. 
 
Proposition 1. Let dn be the total number of orbits induced by the dihedral 
group Dn acting on Vn. Then dn = gn/2 + l, where, gn = 1/n ∑

t|n
 φ(t)2n/t is the 

number of rotation symmetric classes [23], φ(t) is the Euler’s phi-function and 
 
        (¾)2n/2   if n is even, 
l =  
         2(n−1)/2   if n is odd. 
 
Since there are 2

dn number of n-variable DSBFs, a reduction in the size of the 
search space over the size of RSBFs is provided.  
 
Definition 3. Let 1 < m < n such that gcd(n, m) = k ≠ 1. An n-variable 
Boolean function f is called k-dihedral symmetric if f is invariant under the 
group action Dk

n = {ρi
n, τnρi

n | i = k, 2k, 3k, ..., n }. 
 
As the class of DSBFs is a subspace of k-DSBFs, we call k-DSBFs 
generalized dihedral symmetric Boolean functions. One should observe that k-
DSBFs is a subspace of k-RSBFs. 
 
When Proposition 1 is applied to k-dihedral symmetric functions, we obtain 
the following corollary. 
 
Corollary 1. Let dn,k be the number of distinct orbits, in the class of k-DSBFs 
of n variables. Then, dn,k = gn,k/2 + l, where, gn,k = k/n ∑

t | n/k
 φ(t)2n/t is the 

number of k-rotation symmetric classes, φ(t) is the Euler’s phi-function and 
 
         2(n/2)−1         if n is even, k is even, 
l =     3·2(n/2)−2     if n is even, k is odd, 
         2(n−1)/2         if n is odd. 
 
 
    Table 1 compares the orbit counts of k-rotational classes, k-dihedral classes, 
RSBFs, and DSBFs. 
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Table 1. Comparison of the orbit counts gn, dn, gn,k and dn,k for n = 4, 6, ..., 15, and all 
integers k, which divide n. 
 

                                k  
 n 

2 3 4 5 6 7 

g4 = 6 g4,k 10 − − − − − 4 
d4 = 6 d4,k 7 − − − − − 
g6 = 14 g6,k 24 36 − − − − 6 
d6 = 13 d6,k 16 24 − − − − 
g8 = 36 g8,k 70 − 136 − − − 8 
d8 = 30 d8,k 43 − 76 − − − 
g9 = 60 g9,k − 176 − − − − 9 
d9 = 46 d9,k − 104 − − − − 
g10 = 108 g10,k 208 − − 528 − − 10 
d10 = 78 d10,k 120 − − 288 − − 
g12 = 352 g12,k 700 1044 1376 − 2080 − 12 
d12 = 224 d12,k 382 570 720 − 1072 − 
g14 = 1182 g14,k 2344 − − − − 8256 

14 
d14 = 687 d14,k 1236 − − − − 4224 
g15 = 2192 g15,k − 6560 − 10944 − − 15 
d15 = 1224 d15,k − 3408 − 5600 − − 

3 Search Strategy 

We present the basic description of our search strategy and for details we refer 
the reader to [12-14]. The search strategy uses a steepest-descent like iterative 
algorithm in the pre-chosen set of n-variable Boolean functions, where each 
iteration accepts the function f and outputs the function fmin. At each iteration 
step, a cost function is calculated within a pre-defined neighborhood of f and 
the function having the smallest cost is chosen as the iteration output fmin. In 
some rare cases, the cost of fmin may be larger than or equal to the cost of f. 
This is the crucial part of the search strategy, which provides the ability to 
escape from local minima and its distinction from the steepest-descent 
algorithm. Our steepest-descent based search technique minimizes the cost 
until a local minimum is attained, but then it takes a step in the direction of 
non-decreasing cost. That is, whenever possible, the cost is minimized; 
otherwise, a step in the reverse direction is taken. The deterministic step in the 
reverse direction corresponds to the smallest possible cost increase within the 
pre-defined neighborhood of the preceding Boolean function, which also 
makes it possible to escape from the local minima. 
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4 Results 

We apply our search strategy to 9-variable 3-DSBFs, where the size of search 
space is 2104(see Table 1). We have found several unbalanced Boolean 
functions having nonlinearity 242. Among them there are two different 
absolute indicator values, which are 32, 40.  
 
The following is the truth table of a 9-variable, 3-dihedral symmetric Boolean 
function having nonlinearity 242, absolute indicator value 40, and algebraic 
degree 7: 
 
68B7EF2DA03B0D3EA00DB6A96DD99AEAFDB9C842B6D5DC8C4526CE0DD29020DB
B75FE3314568344E73688FF0CB2482E065231869E1AA4583765CC491F8A8DB12 

 
And, the function below is another 9-variable 3-DSBF having nonlinearity 
242, absolute indicator value 32, and algebraic degree 7: 
 
125425D30A398F36508C06817BEE122E250D973314F976AED58A3EA9120DA4FE
0E4D4575C42DD0426365EBA7FC5F45BE9B2F336981B5E1863618F49474F6FE00 

 
    Using a computer system with Pentium IV 2.8 GHz processor and 256 MB 
RAM, and setting the iteration number to 60, 000, a typical run of the search 
algorithm takes 1 minute and 34 seconds. We have carried out 100 runs each 
with the iteration number N = 60,000. Out of 6 million 3-DSBFs, 152 
functions have the nonlinearity 241, and 36 many 3-DSBFs have the 
nonlinearity 242.  
    Additionally, we have applied the search strategy to 9-variable 3-RSBFs 
(the size of the search space is now 2176 as can be seen from Table 1), for 
which we initiate the search algorithm with a 9-variable 3-DSBF having 
nonlinearity 242. Then we have obtained some 9-variable 3-RSBFs having 
nonlinearity 242, absolute indicator 56, and algebraic degree 7. The following 
is the truth table of such a function:  
 
3740B6A118A1E19642A85E2B7E2F3C3CB65FA0D95EC9DB1EA92BDB3666185AE0
087F5FE6E0757106A12FC918754C40E8A1BCCB7A714032A8961456E066E8A801 

 
    It is clear that using one of the above 9-variable functions (say f ) and a 2-
variable bent function (say g), the 11-variable function g(y1, y2) ⊕ f (x1, ..., x9)  
with highest -till date- nonlinearity of 211−1 − 2(11−1)/2 + 4 = 996, can be 
obtained. Similarly h(y1, y2, y3, y4) ⊕ f(x1, ..., x9) is the most nonlinear 13-
variable function known to date, with nonlinearity 213−1 − 2(13−1)/2 + 8 = 4040 
where h is a 4-variable bent function and f is one of the above 9-variable 
functions with nonlinearity 242. We think this is a significant improvement on 
the results of [12]. 
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