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Abstract. Cache attacks on implementations of cryptographic algorithms have turned out to be very
powerful. Progress in processor design, e.g., like hyperthreading, requires to adapt models for tampering
or side-channel attacks to cover cache attacks as well. Hence, in this paper we present a rather general
model for cache attacks. Our model is stronger than recently used ones. We introduce the notions
of information leakage and so called resistance to analyze the security of several implementations of
AES. Furthermore, we analyze how to use random permutations to protect against cache attacks.
By providing a successful attack on an AES implementation protected by random permutations we
show that random permutations used in a straightforward manner are not enough to protect against
cache attacks. Hence, to improve upon the security provided by random permutations, we describe
the property a permutation must have in order to prevent the leakage of some key bits through cache
attacks. Using a permutation having this property forces an adversary to consider several rounds of
the cipher. This increases the complexity of any cache attack considerably. We also describe how to
implement our countermeasure efficiently. The method to do so is of independent interest, since it alone
can also be used to protect against cache attacks. Moreover, combining both countermeasures allows
for a trade-off between security and efficiency.
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1 Introduction

Since Kocher published his work about timing attacks [12] in 1996 it is well known that observing the
temporal behavior of an encryption algorithm may reveal information about the secret key. During the
selection process of AES Koeune and Quisquater [13] showed that a careless implementation of Rijndael is
susceptible to timing attacks. They used the fact that the time for the MixColumns operation depends on the
values of the intermediate results. At that time table lookups were regarded as constant time operations and
hence were not considered to be susceptible to timing attacks. However, due to the hierarchical organization
of memory into fast cache and slow main memory, the assumption that table lookups use constant time
required revision. In 2002 Page [19] presented a theoretical attack on DES that exploited timing information
to deduce information about cache hits and misses, which in turn reveal information about secret keys being
used. In the sequel we call attacks that exploit information about the cache behavior cache based attacks
or CBAs. Tsunoo et al. [23] published a practical cache based attack against DES1. Further publications of
Page [20], Percival [21], Bernstein [4], Osvik et al. [18] and Brickell et al. [8] disclosed the full power of cache
based attacks. See [7, 5, 14, 17, 1, 2] for further improvements of cache based attacks. In particular, the fast
AES implementation of Barreto [3] is susceptible to cache attacks. Note that Barreto’s implementation is
used in virtually all crypto libraries. It is susceptible to cache based attacks since it depends heavily on the
usage of 5 large sboxes each of the size of 1024 bytes.

As was pointed out by Bernstein in [4], the threat model that is often implicitly used for cache attacks may
not be strong enough. In particular, often it is assumed that the adversary A only can extract information
from the cache before and after the encryption. This assumption is wrong from the theoretical point of view
due to the process switching of the operating system. Moreover, it also has been practically disproved in [16].
Hence, several of the countermeasures proposed in the literature so far may not be effective. In this paper
we present a stronger model to analyze cache attacks. We take into account powerful adversaries A that are
able to obtain cache information even during the encryption. Within this model we show that using random
permutations to mitigate the leakage of information as proposed in [8] is not an effective countermeasure. On
one hand, we present a CBA that shows that random permutations do not increase the complexity of CBAs
as much as one might expect. On the other hand, the same attack shows that a random permutation does
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not prevent the leakage of the complete secret key. We also consider a modified countermeasure based on
random permutations. This countermeasure is quite general even though we present it in detail only for AES.
Although we use permutations, we do not use arbitrary permutations. Instead we only use permutations that
hedge a certain number of bits of the last round key in AES. By this we mean, that using our countermeasure
a cache attack on the last round of AES, say, will only reveal about half the bits of the last round key. As one
can see, this is the least amount of leaking information that can be provably protected by permutations. To
determine the remaining bits, an attacker has to combine the cache attack with another attack, for example
a cache attack on the next to last round. We give a mathematical precise description and analysis of the
property of permutations that we need for our countermeasure. This analysis also sheds some light on the
difference between the cache attack by Osvik et al. on the first two rounds of AES [18] and the attack of
Brickell et al. on the tenth round of AES [8].

Furthermore, we analyze the security of several implementations of AES against cache attacks. One of
these implementations is provably secure within our model. Suppose you want to compute a function like
the AES sbox S : {0, 1}8 → {0, 1}8 via table look-ups. Cache attacks become a threat if the complete table
for S does not fit into a single so called cache line. In this case, we simply break the function S into four
function S1, . . . , S4 : {0, 1}8 → {0, 1}2, say, such that S(x) = (S1(x), . . . , S4(x)). If the smaller tables for the
functions Si fit into a single cache line, cache attacks are impossible. Of course, this countermeasure can be
used with almost all tables by choosing suitable parameters for the size of the range of the Si. In particular,
this idea can also be used to protect the applications of permutations that are realized as table lookups. How
to apply permutations securely has not been considered before.

The paper is organized as follows. In Section 2 we provide the technical background. After that we
introduce our threat model in Section 3. In Section 4 we give our formal outline of a cache attack. We show
that our formal cache attack is quite general. I.e., it covers the cache attacks on the first round of [18] and
on the last round of [8]. In Section 5 we introduce our main security measures, information leakage and
resistance. We use our security measures to analyze the security of several different implementations of AES
in Section 6. In Section 7, first we consider random permutations as a countermeasure and describe a cache
attack on this countermeasure. Then, we present and discuss an improved countermeasure using so called
distinguished permutations. We finish with some extensions and remarks about future research.

2 Notation and technical preliminaries

In this section we give a short description of the technical background of cache based attacks, i.e., the memory
management of modern computers. The memory of a computer should have two properties. It should be
big and fast. However, with recent technologies these are contradictory properties. To achieve a fast data
management, commonly used computers have a hierarchy of different types of memory with different sizes
and different access times. They are separated into the main memory and different levels of cache memories
(level1 cache, level2 cache etc.). The difference between these kinds of memory is their size and their speed.
Generally speaking, smaller memory is faster. For a thorough treatment of computer architecture we refer
to [10]. For this paper we simplify the situation by assuming that we have a slow main memory and only a
single cache memory.

Cache memory is a fast but small memory that is placed between the processor and the main memory. It
constitutes a trade-off between speed and size. On one hand, it is much larger than processor registers but
much smaller than the main memory. On the other hand, it is much faster than main memory but slower
than processor registers. Every memory transfer from main memory to the processor is redirected through
the cache. Every time data is loaded from main memory it is checked whether the data is already in the
cache. If that is true the data is loaded directly from the cache into the processor, avoiding access to the
slow main memory. We call this a cache hit. If the data is not in the cache it is first loaded from the main
memory into the cache and then transferred into the processor. We call this a cache miss. Hence, if a process
wants to access the same data more than once within a short period of time, after the first access the data
can be quickly reloaded from the cache.

In order to keep the administration of the cache simple, it is organized in so called cache lines of fixed
size |CL| bits, e.g., 512 bits. The main memory is partitioned into pieces of |CL| bits. A simple function
maps each of these pieces to a certain cache line. Every time a single byte of the main memory is accessed,
the piece of main memory containing this byte is transferred to the cache. That means that data is always



mapped to the same cache line2. Since the cache is much smaller than the main memory data will be pushed
out of the cache from time to time.

In this paper we focus on exploiting the behavior of the cache mechanism for attacking cryptographic
algorithms such as AES that use sboxes for encryption. In fast implementations, applications of the sboxes
are realized via table lookups. However, one of the main security problems3 of using table lookups for
cryptographic purposes on common processors is that the processors cache is much faster than the main
memory. Therefore, an encryption of a plaintext that uses cached data more often should be faster than
an encryption of a plaintext that uses more accesses to the main memory. Hence, time measurements may
reveal cache contents which in turn may leak information about the secret key. The situation with modern
processors is even worse since the cache is shared between different processes. Although a process cannot read
cached data of another process, it is able to push that data out of the cache. In [18] the authors give a detailed
description of how these properties of modern processors can be exploited to attack fast implementations of
AES with the help of cache timings (see also below).

In this paper we deal with two different implementations of AES. The first one is the standard imple-
mentation as described in FIPS 197 [15] and [9] which only uses the so called standard sbox S having 256
entries each of size 8 bit. The other implementation is the fast implementation [9, 3] that uses 5 larger sboxes
T0, . . . ,T3 in rounds 1, . . . , 9 and the sbox T4 in round 10 of the encryption. Each Ti maps an element of
{0, 1}8 to an element of {0, 1}32 and hence has size 213 bits. See [3] for a detailed description.

3 Threat Model

We consider computers with a single processor, fast but small cache memory and large but slow main memory.
Every time a process wants to read a word from the main memory a portion of data in the size of a cache
line is transferred to the cache. An AES encryption or decryption process (AES process) is running on that
computer that takes as input a plaintext (or ciphertext) and computes the corresponding AES ciphertext (or
plaintext) with a fixed secret key k. To define our threat model we make several assumptions. We explain and
justify each assumption with regard to our focus on cache based attacks. We start with a general assumption
of cryptanalysis since it allows to simplify descriptions and analysis of attacks.

Assumption 1

1. A knows all technical details about the underlying cryptographic algorithm and its implementation.
2. A can feed the AES process with chosen plaintexts (or ciphertexts) and gets the corresponding ciphertexts

(or plaintexts).

In particular, since we focus on information leakage due to table lookups, we assume that A knows the
position of the sboxes in the memory and the possible cache lines they can be mapped to. Since variations
of implementations are rather limited, the security of the implementation should not rely on keeping imple-
mentational aspects secret. This is the natural extension of Kerckhoffs’ principle to implementation attacks.
In order to give simple descriptions of the attacks, we model the interaction of A with the AES process
such that A can use chosen plaintexts and chosen ciphertexts. However, every attack and countermeasure
presented in this paper also works if we restrict A to use only known plaintexts.

Assumption 2 A gets the indices of the cache lines that were accessed during the encryption (decryption)
( cache information).

Since A has access to the computer we assume that he can measure the timings of encryptions (decryptions)
with reasonable precision. He can use this information to determine the accessed cache lines in a similar way
as described in [11]. To build a strong model we simplify the determination of accessed cache lines in the
following way. We assume that A simply gets the correct partition of the set of all cache lines M into the sets
of accessed cache lines D0 and the set D1 of cache lines that were not accessed during the encryption. We
call this partition cache information. The plaintext / ciphertext pair together with the cache information is
called a measurement.

Assumption 3 A can restrict the cache information to certain rounds of the encryption.

2 Modern processors are able to map data to a fixed number of different cache lines. This property is called associa-
tivity

3 See Bernstein [4] for a thorough treatment of the technical problems.



This restriction is justified by the property of modern multitasking operating systems to change the active
process after a constant amount of running time4. Hence, it is possible that the encryption process is inter-
rupted by the attackers process, allowing A to access the cache during an encryption (decryption). In [4]
Bernstein already warned that this property may be exploitable and the authors of [8] managed to exploit
it to determine arbitrary cache information on a real PC with some reasonable precision.

Assumption 4 A cannot distinguish between the elements of a single cache line.

This assumption is justified because up to now it is not clear if it is technically possible to distinguish
access times of elements within the same cache line. None of our attacks requires this somewhat difficult and
unlikely ability of the adversary A. Obviously, the ability to distinguish elements within the same cache line
would allow more powerful cache attacks than the attacks published so far. Distinguishing elements that
reside in the same cache line implies that the adversary gets the value of an intermediate result. To counteract
such powerful attacks effectively requires expensive randomization techniques like the one proposed in [6].
All efficient countermeasures that were designed to counteract cache attacks so far rely essentially on this
assumption. Likewise, the countermeasures presented in this paper are effective only under this assumption.

4 Access driven CBAs on AES

Under the assumptions of our thread model we can give the formal outline of a cache based attack. An
attacker A who uses cache information to derive information about the secret key performs the following
two steps:

1. A gets n ∈ N measurements m(1), . . . , m(n) of encryptions of plaintexts p(1), . . . , p(n) with the secret
key k.

2. For each measurement m(j) the attacker A computes a set of possible values of an intermediate
result x(j) of the encryption that only depends on the plaintext (or ciphertext), the ith byte ki of
the key k, and the obtained cache information. Depending on this set of values A computes a set
bK(j)

i of candidates for ki. Finally, A combines the information of all measurements m(1), . . . , m(n) by
computing

bKi :=

n\

j=1

bK(j)
i .

Fig. 1. Formal outline of an access driven CBA

To illustrate the general structure of cache attacks let us briefly recall the CBAs on AES based on the
first round of [18] and on the last round of [8]. For simplicity we assume that a cache line has size |CL| = 512
bits. Hence, an sbox T0, . . . ,T4 fits into 16 cache lines.

4.1 CBA on the first round of AES

We describe the CBA of [18] based on intermediate results of the first round. To be more precise, A focus on
the result of the first application of an sbox in the first round. Since the involved sbox depends on the index
i of the key byte we only consider the output xi = T(i mod 4)[pi ⊕ ki] of the sbox T(i mod 4). To simplify
notation we simply write xi = T[pi ⊕ ki]. For 0 ≤ ℓ ≤ 15 the sbox is mapped into the cache lines CLℓ as
follows: CLℓ = {T[x]|x = ℓ · 16, . . . , ℓ · 16 + 15}. To derive information about the ith byte of the secret key
k an attacker performs the following operations according to the general structure shown in Figure 1:

1. A chooses n ∈ N plaintexts p(1), . . . , p(n) that are fixed in byte p
(j)
i and vary in the other bytes.

2. A obtains measurements m(j) = (D
(j)
0 , D

(j)
1 , p(j)) for 1 ≤ j ≤ n.

3. A concludes that

xi ∈ X̂(j) =
⋃

ℓ∈D
(j)
0

{ℓ · 16, . . . , ℓ · 16 + 15}

4 For further details see [22].



4. A computes the sets

K̂
(j)
i =

{
p
(j)
i ⊕ x̂

(j)
i | x̂

(j)
i ∈ X̂(j)

}

for all 1 ≤ j ≤ n.

5. A computes the set

K̂i =
n⋂

j=1

K̂
(j)
i

of candidates for ki.

In [18] the authors show that in this way, A is able to compute the 4 most significant bits of every key
byte. They also show, that one can combine this attack with an attack on the second round to compute the
complete key even if the cache information is taken over all 10 rounds.

4.2 CBA on the last round of AES

Next, we describe the CBA on the fast implementation of AES mentioned in [8] that is based on intermediate
results of the last round of the encryption. Basing the attack on the last round has advantages over the attack
on the first rounds of [18]. First, cache information of the last round is sufficient to determine all bits of
the secret key. So A does not need to attack different rounds. Another advantage occurs if the encryption
process uses the fast implementation of AES [3]. Here the sbox T4 of the last round is special and is only
used in that round. This helps the attacker because cache information is never perturbed by cache accesses
of other rounds. We show how an attacker can use cache information to determine bytes of the last round
key k10. Knowing all key bytes of the last round key allows to revert the key schedule and compute the
cipher key k. We denote the ℓ-th cache line used for the table look-ups for T4 by CLℓ, ℓ = 0, . . . , 15. Hence,
CLℓ contains the tuples {T4[x]|x = 16 · ℓ, . . . , 16 · ℓ + 15} . The structure of this CBA fits into the general
structure shown in Figure 1. To derive information about the ith byte of the last round key k10

i an attacker
performs the following operations:

1. A chooses n ∈ N plaintexts p(1), . . . , p(n) uniformly at random.

2. A obtains the ciphertexts and the measurements m(j) = (D
(j)
0 , D

(j)
1 , c(j)) for 1 ≤ j ≤ n.

3. A concludes that

x
(j)
i ∈ X̂

(j)
i =

⋃

ℓ∈D
(j)
0

{ℓ · 16, . . . , ℓ · 16 + 15}

4. A computes the sets

K̂
(j)
i =

{
c
(j)
i ⊕ S

[
x̂

(j)
i

]
| x̂

(j)
i ∈ X̂

(j)
i

}

for all 1 ≤ j ≤ n.

5. A computes the set

K̂i =

n⋂

j=1

K̂
(j)
i

of candidates for k
(10)
i .

If there is a single byte with this property, the adversary has determined k10
i . Now it is not hard to see that

the intersection of sets in step (5) eventually will contain only a single element iff for every δ ∈ {0, 1}8 \ {0}
the following property holds

∃j ∈ {0, . . . , 15}∃a ∈ CLj : a ⊕ δ 6∈ CLj . (1)

We verified that the cache lines CLj as defined above actually have this property. We will consider this
property more closely when we consider countermeasures based on permutations in Section 7. Moreover,
experiments show that on average approximately 15 pairs (pj , cj) together with the cache information Dj

0

suffice to determine the key byte k10
i uniquely.



5 Information leakage and resistance

CBAs are very powerful attacks. Although they seem to be unrealistic and hypothetical on first sight they
were proven to be a real threat for implementations of cryptographic algorithms on computers with cache.
Hence, a strong threat model is essential for a thorough security analysis. The threat model described above
is stronger than the threat models published so far. The adversary is more powerful because A can restrict
the cache information to a smaller interval of encryption operations. This reduces the number of accessed
cache lines per measurement and increases the efficiency of cache based attacks. The main questions when
analysing the security against CBAs are information leakage and complexity of a CBA. After giving a formal
definition of information leakage we introduce the notion of the so called resistance of an implementation as
a measure that allows to estimate the complexity of a CBA.

Information leakage The most important aspect of an implementation regarding the security against access
driven CBAs is to determine the maximal amount of information that leaks via access driven CBAs. As we
will see, the amount of leaking information about the secret key varies depending on the details of the CBA
and the implementation of the cryptographic algorithm. We make the following definition:

Definition 1 (information leakage). We consider an adversary who can mount a CBA using an arbitrary

number of measurements as described in Assumption 2. Let K̂i be the set of remaining key candidates for a

key byte k10
i at the end of the attack. Then the leaking information is 8 − log2

(
|K̂i|

)
bits.

The amount of leaking information allows to estimate the uncertainty of an attacker about the secret key
that remains after a successful access driven CBA. To quantify the maximal amount of information A can
obtain about the secret key by access driven CBAs, we define |CL| to be the size of a cache line in bits,
|S| the number of entries of the sbox and s the size of a single sbox element in bits. Hence, the number

of elements that fits into a cache line is |CL|
s and the cache information of a single measurement leaks at

most log2(|S|) − log2

(
|CL|

s

)
= log2

(
|S|
|CL| · s

)
bits. Depending on the exact nature of an attack, the sets

of measurements let the attacker reduce the number of remaining key candidates after the attack. The
information leakage varies between 0 and 8 bits of information per byte. For example, the attack on the first
round of [18] mounted on the fast implementation can determine at most 4 bits of every key byte regardless
of the number of measurements. In contrast, the attack of [8] based on the last round allows an adversary
to determine all key bits. Furthermore, in Section 6 we present an implementation that does not leak any
information in our model.

Complexity of a CBA The information leakage as defined above measures the maximal amount of information
a CBA can provide using an arbitrary number of measurements. Determining the expected number of
measurements an attacker needs to obtain the complete leaking information depends on the details of the
implementation and on details of the CBA. For simplification we introduce the notion of so called resistance.
The resistance focuses on the general structure of a CBA as shown in Figure 1 and does not consider details
of certain CBAs. It is a general measure to estimate the complexity of CBAs on different implementations.

Definition 2 (Resistance). The resistance of an implementation is the expected number Er of key candi-
dates that are proven to be wrong during a single measurement that is based on r rounds of the encryption.

The larger Er the more susceptible is the implementation to access driven CBAs. In particular, if an im-
plementation does not leak any information then an adversary cannot rule out key candidates and hence
the resistance is 0. To compute Er we assume that all sbox lookups are independently and uniformly dis-
tributed. This assumption is justified because an attacker A usually does not have any information about
the distribution of the sbox lookups. Hence, the best he can do in an attack is to choose the parts of the
plaintexts/ciphertexts that are not relevant for the attack uniformly at random.

Let m be the number of cache lines needed to store the complete sbox. Each cache line can store v
elements of an sbox. Furthermore, let w be the number of sbox lookups per round and let r be the number of
rounds the attack focuses on. In an access driven CBA a key candidate is proven to be incorrect if it causes
an access of a cache line that was not accessed during a measurement. Assuming that all sbox lookups are
uniformly distributed the probability that a cache line is not accessed in all r · w sbox lookups is

pmiss :=

(
m − 1

m

)r·w

.



Hence,

Er :=

(
m − 1

m

)r·w

· m · v (2)

is the expected number of key candidates that can be sorted out after a single measurement. However,
the maximal amount of information an arbitrary number of measurements can reveal is limited by the
information leakage. Further measurements will not reveal further information. We verified by experiments
that the number of measurements needed to achieve the full information leakage only depends on Er.

In the sequel, we focus on methods to counteract CBAs. In general, there are two approaches to counteract
such a side channel. The first approach is to use some kind of randomization to ensure that the leaking
information does not reveal information about the secret key. Using randomizing is a general strategy that
protects against several kinds of side channel attacks, see for example [6]. In Section 7 we analyze a more
efficient method based on random permutations. Before that, we consider the second approach that is to
reduce the bandwith of the side channel. We present several implementations of AES and examine their
information leakage and their resistance.

6 Countermeasure 1: Modify implementation

As Bernstein pointed out in [4] to thwart cache attacks it is not sufficient to load all sbox entries into the cache
before accessing the sbox in order to compute an intermediate result because A can get cache information
at all times. Hence, loading the complete sbox into the cache does not suffice to hide all cache information.
Therefore, he advises to avoid the usage of table lookups in cryptographic algorithms. Computing the AES
SubBytes operation according to its definition f : {0, 1}8 → {0, 1}8, x 7→ a · INV(x) ⊕ b would virtually
cause no cache accesses and hence seems to be secure against CBAs. However, implementing SubBytes like
this would result in a very inefficient implementation on a PC. To achieve a high level of efficiency people
prefer to use precomputed tables. In the sequel, we analyze the security of some well known and some novel
variations of implementations of AES. First, we explain the different implementations and after that examine
the information leakage and the resistance as defined in (2) against CBAs:

the standard implementation as described in [9].
the fast implementation of Barreto as described in [3, 9].
fastV1 is based on the fast implementation. The only difference is that the sbox T4 of round 10 is replaced

by the standard sbox as proposed in [8].
fastV2 is also based on the fast implementation but uses only sbox T0. The description of the fast imple-

mentation of AES shows that the ith entry of the sboxes T1, . . . ,T3 is equal to the ith entry of the
sbox T0 shifted by 1, 2 and 3 bytes to the right respectively (see [9, 3]). Hence, we propose to use only
sbox T0 in the encryption and shift the result as needed to compute the correct AES encryption. E.g.,
to compute the sbox lookup T1[i] using the sbox T0 we simply cyclically shift the value T0[i] by 1 byte
to the right.

small-n A simple but effective countermeasure to counteract cache attacks is to split the sbox S into n
smaller sboxes S0, . . . ,Sn−1 such that every small sbox Si fits completely into a single cache line5. An
application Si[x] of sbox Si yields di bits of the desired result S[x]. Hence, the correct result can be
calculated by computing all bits separately and shift them into the correct position.
We construct the small sboxes Si for 0 ≤ i ≤ n − 1 as follows:

Si : {0, 1}8 → {0, 1}di

mapping

x 7→ ⌊S[x]⌋(
Pi−1

j=0 dj,(
P

i
j=0 dj)−1)

where ⌊y⌋(b,e) are the bits yb . . . ye of the binary representation of y = (y0, . . . , y7). Instead of applying
the sbox S to x directly each Si is applied.
The result is computed as

S[x] =

n−1∑

i=0

Si[x] · 2
Pi−1

j=0 dj .

5 Each sbox should fit into a single cache line at every cache level.



In the sequel, we assume that the size of the sbox is a multiple of the size of a cache line and that all dj

are equal. Depending on the number n of required sboxes we call this implementation small-n. E.g., let
|CL| = 512 and for 0 ≤ i ≤ 3 let each Si store the bits 〈S[x]〉2i,2i+1. The result S[x] is then computed as

S[x] = S0[x] ⊕ S1[x] · 4 ⊕ S2[x] · 16 ⊕ S3[x] · 64.

We call this implementation small-4. Obviously, the performance depends on the number of involved
sboxes and shifts to move bits into the right position. To estimate the efficiency we used the small-n
variants in the last round of the fast implementation. Due to the inefficient bit manipulations on 32 bit
processors our ad hoc implementation of using small-4 only in the last round shows that the penalty
is about 60%. We expect that a more sophisticated implementation reduces this penalty significantly.
However, we stress that access driven CBAs are very powerful attacks. Hence, it is not astonishing that
secure implementations are not that efficient.

Table 1 in the appendix shows a summary of timing measurements of the implementations described above.
The measurements were done on a Pentium M (1400MHz) running linux kernel 2.6.18, gcc 4.1.1.

Next, we consider CBAs based on different sboxes and examine the information leakage and the resistance
of each of the implementations described above. The standard implementation uses only a single sbox. Hence,
a CBA as described above is based on that sbox. We verified by experiments that measurements taken over
≤ 3 rounds of the standard implementation leak all key bits. Although the small probability pmiss prevents
performing further experiments we assume that even more rounds will leak all key bits. The resistance for
all numbers of rounds is listed in column 1 of Table 2 in the appendix.

The second implementation is the fast implementation. The CBA on the first round of [18] on one of the
sboxes T0, . . . ,T3 shows that in this case the fast implementation will reveal half of the key bits, even with
an arbitrary number of measurements. The resistance of the fast implementation against such an attack is
shown in column 2 of Table 2. The CBA of [8] as described in Section 4.2 based on the sbox T4 show that
in this case the fast implementation leaks all key bits. Since this sbox is only used in the last round the
resistance as shown in column 3 of Table 2 does not change for a different number of rounds.

The implementation called fastV1 also leaks all key bits. The resistance against CBAs based on sboxes
T0, . . . ,T3 remains the same as listed in column 2 of Table 2. The resistance against CBAs based on the
standard sbox is shown in column 4 of Table 2. It remains constant over the number of rounds because the
standard sbox is only used in the last round.

Like the fast implementation, the variation called fastV2 also leaks all key bits. It uses only the large
sbox T0 in every round. The resistance for all possible numbers of rounds is listed in column 5 of Table 2.

Last, we consider the variants small-2, small-4 and small-8 that use smaller sboxes than the standard
sboxes. Computing S[x] using variant small-4 or small-8 leaks 0 bits of information having cache lines of size
512 bits because of two reasons:

1. Every Si fits completely into a single cache line.
2. For every x each Si is used exactly once to compute S[x].

Hence, the cache information remains constant for all inputs. The only assumption that is involved is that
A cannot distinguish between the accesses on different elements within the same cache line (Assumption 4).
The variant small-2 presumably leaks all key bits in our setting. As we have shown above, the variants small-4
and small-8 leak no key bit and hence have resistance 0 (see column 7 and 8 of Table 2). The resistance of
small-2 is listed in column 6 of Table 2.

Comparison of implementations As Table 2 shows, the standard implementation provides rather good re-
sistance against CBAs but only has low efficiency. The fast implementation provides the lowest resistance
against CBAs but is very efficient. Its variants fastV1 and fastV2 are almost as efficient on 32 bit platforms
but provide better resistance against CBAs. The variants using small sboxes provide the best resistance.
Especially small-4 and small-8 prevent the leakage of information. For high security applications we propose
to use one of the variants using small sboxes and adapt the number of sboxes to the actual size of cache lines
of the system.

7 Countermeasure 2: Random Permutation

Another class of countermeasure that was already proposed but not analyzed in [8] is to use secret random
permutations to randomize the accesses to the sbox. In this section we present a CBA against an imple-
mentation of AES secured by a random permutation that needs roughly 2300 measurements to reveal the



complete key. This shows that the increase of the complexity of CBAs induced by random permutations is
not as high as one would expect. In particular, the uncertainty of the permutation is not a good measure
to estimate the gain of security. A random permutation has uncertainty of log2(256!) ≈ 1684 bits and the
uncertainty of the induced partition on the cache lines is log2(256!/(16!)16) ≈ 976 bits.

On the other hand, we present a subset of permutations, so called distinguished permutations, that reduce
the information leakage from 8 bits to 4 bits per key byte. Hence, the remaining bits must be determined
by an additional attack thereby increasing the complexity. In our standard scenario this is the best one can
achieve.

We focus only on the protection of the last round of AES and we assume that the output x of the
9th round is randomized using some secret random permutation π. To be more precise, each byte xi of
the state x = x0, . . . , x15 is substituted by π(xi). To execute the last round of AES a modified sbox T′

4

that depends on π fulfilling T′
4[π(xi)] = T4[xi] is applied to every byte xi. This ensures that the resulting

ciphertext c = c0, . . . , c15 is correct. We denote the ℓ-th cache line used for the table look-ups for T′
4 by

CLℓ, ℓ = 0, . . . , 15. Hence, CLℓ contains the values {S[π−1(x)]|x = 16ℓ, . . . , 16ℓ + 15}. Using a permutation
π, information leaking through accessed cache lines does not depend directly on xi but only on the permuted
value π(xi). Since π is unknown to A the application of π prevents him to deduce information about the secret
key k10 = k10

0 , . . . , k10
15 directly. However, in the sequel we will show how to bypass random permutations by

using CBAs.

7.1 An access driven CBA on a permuted sbox

We assume that we have a fast implementation of AES that is protected by a random permutation π as
described above. We also assume that the adversary A has access to the AES decryption algorithm. This
assumption can be avoided. However, the exposition becomes easier if we allow A access to the decryption.
We show how an adversary A can compute the bytes k10

0 , . . . , k10
15 of the last round key.

Let k̂0 denote a candidate for byte k10
0 of the last round key. In a first step for each possible value k̂0 the

adversary A determines the assignment Pbk0
of bytes to cache lines induced by π under the assumption that

k̂0 = k10
0 . To be more precise A computes a function

Pbk0
: {0, 1}8 → {0, . . . , 15}

such that if k̂0 is correct then for all x:

π(x) ∈ {16Pbk0
(x), . . . , 16Pbk0

(x) + 15}.

I.e., if k̂0 is correct then Pbk0
is the correct partition of values π(x) into cache lines.

Let us fix some x and a candidate k̂0 for k10
0 . We set c0 = S[x]⊕ k̂0 and M̂0 = {0, . . . , 15}. The adversary

repeats the following steps for j = 1, 2, . . . , until M̂0 contains a single element.

1. A chooses a ciphertext cj , whose first byte is c0, while the remaining bytes of cj are chosen independently
and uniformly at random.

2. Using his access to the decryption algorithm, A computes the plaintext pj corresponding to the cj .

3. By encrypting pj , the adversary A determines the set Dj
0 of indices of cache lines accessed for the table

look-ups for T ′
4 during the encryption of pj .

4. A sets M̂0 := M̂0 ∩ Di
0.

If M̂0 = {y}, then A sets Pbk0
(x) = y. Repeating this process for all x yields the function Pbk0

which has the
desired property.

Under the assumption that the guess k̂0 was correct, the function Pbk0
is the correct partition of values

π(x) into cache lines. Moreover, it is not difficult to see that the information provided by Pbk0
enables the

adversary to mount an attack similar to the one described in Section 4.2. This attack can be used to determine
for each possible k̂0 a set of vectors k̂1, . . . , k̂15 of hypotheses for the other key bytes. For the time being,
we assume that π has the property that for each k̂0 there remains only a single vector of hypotheses for the
other key bytes. Hence, in the end there are only 256 AES keys left and a simple brute force attack reveals
the correct one. In general, a random permutation has this property. For a mathematical precise definition
and analysis of that property see Section 7.2.



Cost Analysis Experiments show that in the first step of the attack A needs on average 9 measurements
consisting of a pair (pi, ci) and the corresponding cache information Di

0 such that the intersection M̂0 :=
⋂

Di
0

contains only a single element y = Pbk0
(x). We need to determine the mapping Pbk0

(x) for every key candidate

k̂0 and every argument x ∈ {0, 1}8. Hence, a straightforward implementation of the attack needs roughly
256·256·9 measurements to determine the function Pbk0

(x) for all arguments x ∈ {0, 1}8 and all key candidates

k̂0 ∈ {0, 1}8. However, one can reuse measurements for different key candidates k̂0, k̂
′
0 to reduce the number

of measurements to roughly 256 · 9 = 2304. To determine the vector of hypothesis based on the candidate
k̂0 we can reuse the measurements obtained by determining the function Pbk0

. Hence, the expected number
of measurements of this attack is 2304.

7.2 Separability and distinguished permutations

From a security point of view, it is desirable to reduce the information leakage. E.g., a cache attack alone
should reveal as few information as possible, in particular it should not reveal the complete key. Then the
adversary is forced to either mount a refined and more complex CBA based on other intermediate results
or combine the cache attack with some other method to determine the key bytes uniquely. In this case, the
situation is similar to the attack of [18], where a cache attack on the first round only reveals 4 bits of each
key byte. Hence Osvik et al. combine cache attacks on the first and second round of AES.

First, we present the property a permutation applied to the result of the 9-th round should have such
that A cannot determine the key bytes uniquely using only a cache attack on the last round. We denote the

ℓth cache line by CLℓ and the elements of CLℓ by a
(ℓ)
0 , . . . , a

(ℓ)
15 . Hence, the underlying permutation used to

define this cache line is given by

π−1(16ℓ + j) = S−1[a
(ℓ)
j ]. (3)

We say that a key candidate k̂0 is separable from the first key byte k0 of the last round if there exists
a measurement that proves k̂0 to be wrong. Conversely, a key candidate k̂0 is inseparable from the key k0

if there does not exist a measurement that proves k̂0 to be wrong. More precisely, writing k̂0 = k0 ⊕ δ the
bytes k̂0 and k0 are inseparable if and only if

∀ℓ ∈ {0, . . . , 15}∀a ∈ CLℓ : a ⊕ δ ∈ CLℓ. (4)

Notice that this property only depends on the difference δ and not on the value of k0. Since there are 16
elements of the sbox in every cache line property (4) can only be satisfied by at most 16 differences. It turns
out that for |∆| = 16 the set

∆ := {δ | for all k0 ∈ {0, 1}8 the bytes k0 and k0 ⊕ δ are inseparable}

forms a 4 dimensional subspace of F28 viewed as a 8 dimensional vector space over F2. It is obvious that
the neutral element 0 is an element of ∆ and that every δ ∈ ∆ is its own inverse. It remains to show that
∆ is closed with respect to addition. Consider δ, δ′ ∈ ∆ and an arbitrary a ∈ CLℓ . Then a′ = a ⊕ δ ∈ CLℓ

implies that a′ ⊕ δ′ = a ⊕ δ ⊕ δ′ ∈ CLℓ because of (4) and δ ⊕ δ′ ∈ ∆ holds.

Hence, any partition that has the maximal number of inseparable key candidates must generate a subspace
of dimension 4. Using this observation we describe how to efficiently construct permutations such that the
set ∆ of inseparable differences has size 16. In the sequel, we will call any such permutation a distinguished
permutation.

Construction of the subspace We first construct a set ∆ of 16 differences that is closed with respect to
addition over F256. We can do this in the following way

1. set ∆ := {δ0 := 0}, choose δ1 uniformly at random from the set {1, . . . , 255}, set ∆ := ∆ ∪ {δ1}

2. choose δ2 uniformly at random from {1, . . . , 255} \ ∆, set ∆ := ∆ ∪ {δ2, δ3 := δ1 ⊕ δ2}

3. choose δ4 uniformly at random from {1, . . . , 255} \∆, set ∆ := ∆∪ {δ4, δ5 := δ4 ⊕ δ1, δ6 := δ4 ⊕ δ2, δ7 :=
δ4 ⊕ δ3}

4. choose δ8 uniformly at random from {1, . . . , 255}\∆, set ∆ := ∆∪{δ8, δ9 := δ8⊕δ1, δ10 := δ8⊕δ2, δ11 :=
δ8 ⊕ δ3, δ12 := δ8 ⊕ δ4, δ13 := δ8 ⊕ δ5, δ14 := δ8 ⊕ δ6, δ15 := δ8 ⊕ δ7}

This construction ensures that ∆ is closed with respect to addition and hence ∆ forms a subspace as desired.



Construction of the permutation Now we can compute the function P that maps S[x] ∈ F
8
2 to a cache line.

We use the fact that 16 proper translations of a 4 dimensional subspace form a partition of a 8 dimensional
vector space F

8
2. A basis {b0, . . . b3} of the subspace ∆ can be expanded by 4 vectors b4, . . . b7 to a basis of

F
8
2. The 16 translations of ∆ generated by linear combinations of b4, . . . , b7 form the quotient space F

8
2/∆

that is a partition of F
8
2 . To construct the function P we do the following:

1. for every cache line CLℓ do
2. choose a(ℓ) uniformly at random from F256/{a

(j) ⊕ δ | j < ℓ, δ ∈ ∆}
3. fill CLℓ with the values of the set {a(ℓ) ⊕ δ | δ ∈ ∆}

Using (3) this partition into cache lines defines the corresponding permutation.

Analysis of the countermeasure The security using a distinguished permutation as defined above rests on
two facts.

1. Using a distinguished permutation where the set ∆ of inseparable differences has size 16, a cache attack
on the last round of AES will reveal only four bits of each key byte k10

i . Overall 64 of the 128 bits of the
last round key remain unknown. Therefore, the adversary has to combine his cache attack on the last
round with some other method to determine the remaining 64 unknown bits. For example, he could try
a modified cache attack on the 9-th round exploiting his partial knowledge of the last round key. Or he
could use a brute force search to determine the last round key completely.

2. There are several distinguished permutations and each of these permutations leads to 16! different func-
tions mapping elements to 16 lines. If we choose randomly one of these functions, before an adversary
can mount a cache attack on the last round as described in Section 4.2, he first has to use some method
like the one described in Section 7.1 to determine the function P that is actually used.

We stress that we consider the first fact to be the more important security feature. We saw already in
Section 7.1 that determining a random permutation used for mapping elements to cache lines is not as secure
as one might expect. Since we are using permutations of a special form the attack described in Section 7.1
can be improved somewhat. In the remainder of this section we briefly describe this improvement. To do so,
first we have to determine the number of subspaces leading to distinguished permutations.

As before view F
n
2 := {0, 1}n as an n-dimensional F2 vector space. For 0 ≤ k ≤ n we define Dn,k to be

the number of k-dimensional subspaces of F
n
2 . To determine Dn,k for V an arbitrary m-dimensional subspace

of F
n
2 we define

Nm,k := |{(v1, . . . , vk)|vi ∈ V, v1, . . . vk are linearly independent}|.

The number Nm,k is independent of the particular m-dimensional subspace V , it only depends on the two
parameters m and k. Then

Dn,k =
Nn,k

Nk,k
.

Next we observe that

Nm,k =

k−1∏

j=0

(2m − 2j) = 2k(k−1)/2
k−1∏

j=0

(2m−j − 1).

Hence, we obtain that

Dn,k =

∏k−1
j=0 (2n−j − 1)

∏k−1
j=0 (2k−j − 1)

.

In our special case we have n = 8 and k = 4 and hence the number of 4 dimensional subspaces is

D8,4 =
255 · 127 · 63 · 31

15 · 7 · 3 · 1
= 200787.

As mentioned above, each subspace leads to 16! different distinguished permutations. Hence, overall we
have 200787·16! ≈ 260 distinguished permutations. On the other hand, because of the special structure of our
permutations, to determine the function P by cache attacks can be done more efficiently than determining an
arbitrary function mapping elements to cache lines (see Section 7.1). In particular, A only needs to observe
about 7 accesses of a single but arbitrary cache line. With high probability this will be enough to determine
a basis of the subspace being used. In addition, A needs at least one access for every other cache line in order
to determine the function P . The corresponding probability experiment follows the multinomial distribution.
We did not calculate the expected number of tries exactly. Experiments show that if we can determine the



accessed cache line exactly, on average 62 measurements suffice to compute the function P exactly. However,
a single measurement only yields a set of accessed cache lines. But arguments similar to the ones used for the
first part of the attack in Section 7.1 show that we need on average 9 measurements to uniquely determine
an accessed cache line. Therefore, on average we need 62 · 9 = 558 experiments to determine the function P .

Hence, compared to the results of Section 7.1 we have reduced the number of measurements used to
determine the function P by a factor of 3. However, we want to stress again, that the main security enhance-
ment of using distinguished permutations instead of arbitrary permutations is the fact, that distinguished
permutations have a lower information leakage. To improve the security, one can choose larger key sizes
such as 192 bits or 256 bits. Since distinguished permutations protect half of the key bits, the remaining
uncertainty about the secret key after cache attacks can be provably increased from 64 bits to 96 bits or 128
bits, respectively.

Separability and random permutations In our CBA on an implementation protected by a random permutation
(Section 7.1) we assumed that fixing a candidate k̂0 determines the candidates for all other key bytes. With

sufficiently many measurements for a fixed k̂0 we can determine the function Pbk0
as defined in Section 7.1.

Furthermore, we saw that the separability of candidates k̂, k̂′ depends only on their difference δ = k̂ ⊕ k̂′.
Hence, to be able to rule out all but one candidate k̂i at position i for a fixed k̂0 the permutation π must
have the following property:

∀δ 6= 0∃j ∈ {0, . . . , 15}∃a ∈ CLj : a ⊕ δ 6∈ CLj .

There are less than 2129 of the 256! ≈ 21684 permutations that do not have this property. Hence, a random

permutation satisfies this condition with probability 1 − 2129

21684 .

8 Summary of countermeasures and open problems

In this paper we presented and analyzed the security of several different implementations of AES. Moreover,
we analyzed countermeasures based on permutations: random permutations and distinguished permutations.
We give a short overview over the advantages and disadvantages of the countermeasures:

countermeasure # measurements information in bits /security efficiency
small-4 ∞ 0 / high slow

random permutation 2300 128 / low fast
distinguished permutations 560 64 / medium fast

The second column shows the expected number of measurements an attacker has to perform in order to get
the amount of information shown in the third column.

Small-4 (see Section 6) prevents information leakage in a cache attack. However, the efficiency depends
on the size of a cache line and is rather low. In contrast, random permutations (see Section 7) provide only
low security. About 2300 measurements are enough to reveal the complete 128 bit AES key. If realized via
table lookups, random permutations are fast. But to increase the security offered by random permutations
they have to be changed frequently. Changing a permutation may cause problems with respect to efficiency
and security. So far, we have no precise analysis of these issues.

Distinguished permutations (see Section 7.2) protect half of the key bits and hence provide a medium
level of security. Using distinguished permutations, no frequent changes of permutations are required to
achieve a medium level of security. Hence, they do not suffer from the above mentioned problems of random
permutations. Therefore, distinguished permutations provide a better ratio of efficiency and security as
random permutations but still leak half of the key bits.

Random permutations and distinguished permutations have to be realized as tables for efficiency reasons.
Hence, a straightforward implementation of the applications of a permutation would render the whole im-
plementation susceptible to cache attacks. A possible solution to this problem is to realize permutations via
small sboxes that completely fit into a cache line. Following the description of the small variant of Section
6, π is split into smaller tables π0, . . . , π3 each of which is applied to the input x. Obviously, this does not
make sense if the standard sbox S is used because both π and S map from {0, 1}8 to {0, 1}8. Hence, it takes
as many table lookups to apply π realized with small sboxes as it takes to apply S realized with small sbox
directly. Moreover, realizing S via small tables has the advantage of not leaking information via the cache
behavior.

The situation is different if the large sboxes of the fast implementation are used. Again π maps from
{0, 1}8 to {0, 1}8 but a large sbox maps from {0, 1}8 to {0, 1}32. Therefore, it takes 4 times as many table



lookups to realize the large sbox via small sboxes than to realize π via small tables. Hence, first applying π
to an input via small tables and then applying a large permuted sbox, as shown in Figure 2, makes sense
if this technique is faster than realizing the standard sbox S via small sboxes. Here, one has to take into
account the technical problem that on 32-bit platforms the byte oriented structure of the standard sbox S
leads to a time consuming post processing to incorporate the output of the sbox into the encryption state.

Note that realizing π via small tables does not leak any information in cache attacks. Only the application
of the permuted sbox leaks information about intermediate states. Hence, this scenario is exactly the scenario
of our attack in Section 7.1 where we assumed that only the application of the sbox leaks information.

As mentioned in Section 6 one can scale the sizes of the smaller tables to improve efficiency. But it
is essential to determine whether the amount of information that leaks with this method is acceptable or
not. Summing up, the analysis given above shows that permutations as a countermeasure to thwart cache
based attacks do not provide as much security as one would expect. However, we have shown that using
distinguished permutations one can reduce the information leakage via CBAs. That means that even with an
arbitrary number of measurements a CBA based on the last round cannot determine certain bits of the secret
key. Since we consider the reduction of information leakage as a preferred goal distinguished permutations
constitute an interesting way to improve the security gain of permutations.
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Masayuki Abe, editor, CT-RSA, volume 4377 of Lecture Notes in Computer Science, pages 271–286. Springer,
2007.

3. Paulo Barreto. The AES block cipher in C++, 2003. http://planeta.terra.com.br/informatica/
paulobarreto/EAX++.zip.

4. D. J. Bernstein. Cache-timing attacks on AES, 2005. http://cr.yp.to/papers.html#cachetiming, Document ID:
cd9faae9bd5308c440df50fc26a517b4.

5. Guido Bertoni, Vittorio Zaccaria, Luca Breveglieri, Matteo Monchiero, and Gianluca Palermo. AES power attack
based on induced cache miss and countermeasure. In ITCC (1), pages 586–591. IEEE Computer Society, 2005.
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A Appendix

# sboxes fast standard fastV1 fastV2 small-2 small-4 small-8

time factor 1 ∼ 3 ∼ 1 ∼ 1 1.32 1.6 1.95
Table 1. Timings for different implementations of AES

1 2 3 4 5 6 7 8

standard fast fast T4 fastV1 fastV2 small-2 small-4 small-8

S T0, . . . ,T3 T4 S T0 S0,S1 S0, . . . ,S3 S0, . . . ,S7

E1 2.57 198.0 91.2 2.57 91.2 3.91 · 10−3 0 0
E2 2.57 · 10−2 153.0 91.2 2.57 32.5 5.96 · 10−8 0 0
E3 2.58 · 10−4 118.0 91.2 2.57 11.6 9.09 · 10−13 0 0
E4 2.58 · 10−6 91.2 91.2 2.57 4.12 1.39 · 10−17 0 0
E5 2.59 · 10−8 70.4 91.2 2.57 1.47 2.12 · 10−22 0 0
E6 2.59 · 10−10 54.4 91.2 2.57 5.22 · 10−1 3.23 · 10−27 0 0
E7 2.60 · 10−12 42.0 91.2 2.57 1.86 · 10−1 4.93 · 10−32 0 0
E8 2.61 · 10−14 32.5 91.2 2.57 6.62 · 10−2 7.52 · 10−37 0 0
E9 2.61 · 10−16 25.1 91.2 2.57 2.36 · 10−2 1.15 · 10−41 0 0

E10 2.62 · 10−18 25.1 91.2 2.57 8.39 · 10−3 1.75 · 10−46 0 0

Table 2. The resistance Er of AES implementations as defined in (2)

π1

π2

π0

x0

π3
T

′

4[π(x0)]
= T4[x0]

π(x0)

Fig. 2. Combining small tables with permutation π


