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Abstract. Let C be a code of length n over an alphabet of size q. A word d is a descendant of a
pair of codewords x,y ∈ C if di ∈ {xi, yi} for 1 ≤ i ≤ n. A code C is an identifiable parent property
(IPP) code if the following property holds. Whenever we are given C and a descendant d of a pair
of codewords in C, it is possible to determine at least one of these codewords.

The paper introduces the notion of a prolific IPP code. An IPP code is prolific if all qn words
are descendants. It is shown that linear prolific IPP codes fall into three infinite (‘trivial’) families,
together with a single sporadic example which is ternary of length 4. There are no known examples
of prolific IPP codes which are not equivalent to a linear example: the paper shows that for most
parameters there are no prolific IPP codes, leaving a relatively small number of parameters unsolved.
In the process the paper obtains upper bounds on the size of a (not necessarily prolific) IPP code
which are better than previously known bounds.
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1. Introduction. Codes with the Identifiable Parent Property (IPP codes) were
first introduced by Hollmann, van Lint, Linnartz and Tolhiuzen [9] in 1998, motivated
by an application to prevent software piracy. IPP codes and various generalisations
have since been intensively studied: see, for example, papers of Alon, Cohen, Krivele-
vich and Litsyn [2], Alon, Fischer and Szegedy [3], Alon and Stav [4], Barg, Cohen,
Encheva, Kabatiansky and Zémor [5], Barg and Kabatiansky [6], Blackburn [7], Lind-
kvist, Löfvenberg and Svanström [11], Löfvenberg [10], Staddon, Stinson and Wei [12],
Tô and Safavi-Naini [13], van Trung and Martirosyan [14] and Yemane [15].

To define IPP codes we need the notion of a descendant, which is defined as fol-
lows. Let F be an alphabet of size q. Let x = x1x2 . . . xn ∈ Fn and y = y1y2 . . . yn ∈
Fn be q-ary words of length n. The set of descendants desc(x,y) of x and y is defined
to be

desc(x,y) = {d1d2 · · · dn ∈ Fn : di ∈ {xi, yi} for i = 1, 2, . . . , n}.

If d ∈ desc(x,y), we say that d is a descendant of x and y, and we say that {x,y}
is a set of parents of d. We say that the parent x contributes to the ith component
of d if xi = di. Clearly |desc(x,y)| = 2d(x,y), where d(x,y) is the Hamming distance
between x and y.

Let C be an (n, q,M)-code (so C is a q-ary code of length n, containing M code-
words). Informally, C has the Identifiable Parent Property (we say C is an IPP code,
or an (n, q,M)-IPP code) if whenever we are given a descendant d of two codewords,
we are able to identify one of the parents. More formally, C is an IPP code if the
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following holds. For d ∈ Fn, define

Pd = {{x,y} ⊆ C : d ∈ desc(x,y)}.

Then C is an IPP code if for all d ∈ F which are descendants of one or more pairs of
codewords ⋂

{x,y}∈Pd

{x,y} 6= ∅.

The following lemma, due to Hollmann et al. [9], gives simple criteria for a code
to have the Identifiable Parent Property.

Lemma 1.1. An (n, q,M) code C is an IPP code if and only if
IPP1 For any three distinct codewords x,y, z ∈ C there exists i ∈ {1, 2, . . . , n} such

that xi, yi and zi are distinct.
IPP2 For any four codewords x,y, z,v ∈ C such that {x,y} ∩ {z,v} = ∅, there

exists i ∈ {1, 2, . . . , n} such that {xi, yi} ∩ {zi, vi} = ∅.
Hollmann et al. [9] observed that the ternary Hamming code of length 4 is an

example of a (4, 3, 9)-IPP code:

C = {0000, 0111, 0222, 1012, 1120, 1201, 2021, 2102, 2210}.

To see why C is an IPP code, note that since all codewords are at distance 3 a
descendant d ∈ desc(x,y) is at distance at most 1 from exactly one of its parents
x,y. But the minimum distance of the code shows that d cannot be of distance at
most 1 from two distinct codewords. Thus C is an IPP code, with the identified parent
of a descendant d being the unique codeword at distance at most 1 from d.

This example has the beautiful property that every possible word is a descendant.
We say that a code is prolific if every word is a descendant of some pair of codewords.
The main question this paper asks is: what other examples of prolific IPP codes are
there? This question is motivated by an attempt to draw parallels between error
correcting codes and IPP codes. There are clear connections between the two areas:
at a most basic level, we observed above that the size of the set of descendants
is related to Hamming distance; moreover, error correcting codes of high minimum
distance provide good explicit constructions of IPP codes (see Hollmann et al. [9,
Theorem 4], for example). From this perspective, prolific IPP codes may be thought
of as analogues of perfect error correcting codes.

There are three trivial families of prolific IPP codes. Firstly the set F of all words
of length 1 is a prolific (1, q, q)-IPP code. Secondly, the repetition code of length 2
(with codewords of the form aa where a ∈ F ) is a prolific (2, q, q)-IPP code. Thirdly,
any binary word and its complement form a prolific (n, 2, 2)-IPP code. It is easy to
see that a prolific IPP code which has length 1 or 2, or which is a binary code, must be
equivalent to a member of one of these three families, and so from now on we assume
that n ≥ 3 and q ≥ 3.

All the examples above are linear codes. One main aim of the paper is to show
that the (4, 3, 9)-code above is the only non-trivial example of a linear prolific IPP
code (up to equivalence). In general, we conjecture that there are no more examples
of prolific IPP codes (linear or not). We do not know how to show this, but we are
able to prove that there are no more examples when n ≤ 5, and we rule out many
other parameters. As a side-benefit of our investigations, we are able to provide new
upper bounds on the size of a (not necessarily prolific) IPP code.
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For the rest of this paper, C will be a q-ary code of length n with M codewords.
We write words and subwords in a bold font, to distinguish them from components
of codewords. We write `(x) for the length of the (sub)word x.

The paper is structured as follows. In Section 2, we provide some simple upper
and lower bounds for the size of a prolific IPP code. Section 3 shows that there are
no non-trivial prolific IPP codes which are MDS codes (or even orthogonal arrays)
other than the (4, 3, 9)-code above. Section 4 then extends this result to general linear
codes. We then turn our attention away from the linear case. We provide new upper
bounds for (not necessarily prolific) IPP codes in Section 5. Sections 6, 7 and 8
show that there are no non-trivial examples of prolific IPP codes for lengths 3, 4 and
5 respectively, other than the (4, 3, 9)-example. Finally, Section 9 summarises the
parameters where it is unknown whether a prolific IPP code exists, and comments on
possibilities for future work.

2. General bounds for prolific IPP codes. Since prolific IPP codes have
many descendants, it seems intuitively plausible that they must be fairly large. This
is indeed the case, and this section makes this precise by establishing lower bounds
on the size of a prolific IPP code. For many parameters these lower bounds conflict
with known upper bounds on the size of an IPP code, and so the bounds rule out the
existence of a prolific IPP code for these parameters.

The simplest lower bound on the size of a prolific IPP code is stated in the
following theorem.

Theorem 2.1. If C is an (n, q,M) prolific IPP code then
(
M
2

)
2n ≥ qn.

Proof. There are at most
(
M
2

)
pairs of codewords from C. Each pair of codewords

can produce at most 2n descendants, since there are at most two possibilities for
each component of a descendant once the pair of parents is fixed. So C has at most(
M
2

)
2n descendants. The bound follows once we observe that all qn words must be

descendants since C is prolific.
The counting argument used above will tend to significantly overcount descen-

dants which are close to a codeword (in terms of Hamming distance). We can overcome
this problem by counting the descendants of the code in another way, giving us the
following improvement on Theorem 2.1.

Theorem 2.2. Let C be an (n, q,M) prolific IPP code and let k be a positive
integer. Then

M

(
k∑

i=0

(
n

i

)
(q − 1)i +

M − 1
2

n−k−1∑
i=k+1

(
n

i

))
≥ qn.

Proof. We count the descendants of C as follows. A sphere of radius k contains∑k
i=0

(
n
i

)
(q − 1)i words, and so there are at most M

(∑k
i=0

(
n
i

)
(q − 1)i

)
descendants

of C at distance at most k from the code. A descendant of a pair {c1, c2} ⊆ C
of codewords is formed by choosing i components from c1 and the remaining n − i
components from c2 for some i ∈ {0, 1, . . . , n}. But when 0 ≤ i ≤ k or n − k ≤
i ≤ n the resulting descendant is within distance k of the code. So each of the

(
M
2

)
pairs of codewords gives rise to at most

∑n−k−1
i=k+1

(
n
i

)
descendants of distance greater

than k from the code. Thus C has at most M
(∑k

i=0

(
n
i

)
(q − 1)i + M−1

2

∑n−k−1
i=k+1

(
n
i

))
descendants, and the theorem follows by the same argument as in Theorem 2.1.

The covering radius of an (n, q,M) code C is the smallest integer R such that any
word lies in the union of the spheres of radius R about the codewords. A prolific code
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cannot have a large covering radius, as the following theorem shows. We make use of
the key idea in the proof of Theorem 2.3 in several places in the sections that follow.

Theorem 2.3. The covering radius of an (n, q,M) prolific IPP code C is at most
bn

2 c.
Proof. A descendant d has at least dn

2 e positions in common with one of its
parents. Since C is prolific, every word is a descendant and so the covering radius of
C is at most bn

2 c.

3. MDS codes. The aim of this section is to prove Theorem 3.1, that there
are no non-trivial prolific IPP codes which are (n, q, qk)-codes of minimum distance
n− k + 1 other than the (4, 3, 9)-code from the introduction. We will use this result
twice. Firstly, in the next section, we use the result in our proof that the examples in
the introduction are the only linear prolific IPP codes. (Recall that an MDS code is
a linear-(n, q, qk) code of minimum distance n − k + 1: it is this case that we use in
the next section.) Secondly, in Section 8, we use the result to prove that there exist
no non-trivial examples of prolific IPP codes of length 5.

Throughout this section, we assume that the all-zero word is a codeword. This
is no loss of generality, as we may replace a code with an equivalent code containing
the all-zero word if necessary.

Note that an (n, q, qk)-code of minimum distance n − k + 1 meets the Singleton
bound. In particular, whenever we restrict all codewords to a set of k positions we find
that every word of length k appears exactly once as a restriction. We abuse notation
slightly and refer to this property as the MDS property of the code, even though we
are not assuming our code is linear.

We use the well known result that an (n, q, qk)-code C with minimum distance
n− k + 1 can only exist when q ≥ n− k + 1. To see this, note that we can construct
an (n − k + 2, q, q2) code C′ of minimum distance n − k + 1 by taking all codewords
in C ending in k− 2 zeros, and then removing these zeros to produce words of length
n − k + 2. But then C′ implies the existence of a set of n − k mutually orthogonal
Latin squares of order q (see Hill [8, Theorem 10.20]), and such a set can have size at
most q − 1 (see Hill [8, Theorem 10.18]).

Theorem 3.1. Let C be an (n, q, qk)-code of minimum distance n − k + 1. Let
n ≥ 3 and q ≥ 3. If C is a prolific IPP code, then n = 4, q = 3, and k = 2. In
particular, no MDS code of length strictly greater than 4 is a prolific IPP code.

Proof. Let C be an (n, q, qk) code which has minimum distance n−k+1. Assume
that we are not in the case when n = 4, q = 3 and k = 2. We need to show that C is
not a prolific IPP code. We deal with the length 3 and 4 cases first, and then go on
to consider the remaining cases.

Suppose that n = 3. When k = 0 or k = 1, we see that C is too small to be a
prolific code, by Theorem 2.1. When k = 2 or k = 3, we see that C is too large to
be an IPP code: a bound of Hollmann et al. [9, Theorem 1] states that an IPP code
of length 3 has at most 3q − 1 codewords. So we get a contradiction when n = 3, as
required.

Suppose that n = 4. Theorem 2.1 implies that k ≥ 2, and Theorem 4.3 implies
that k ≤ 2. So we may assume that k = 2, and thus q > 3 and C is a (4, q, q2) code
of minimum distance 3. The union of spheres of radius 1 about codewords contains
q2(1 + 4(q − 1)) words, and since q > 3 we have that q2(1 + 4(q − 1)) < q4. So
there exists a word d = d1d2d3d4 of distance at least 2 from any codeword. By the
MDS property of C, there exist codewords c1, c2, c3, c4 ∈ C of the form c1 = d1d2∗∗,
c2 = ∗∗d3d4, c3 = d1∗∗d4 and c4 = ∗d2d3∗. These codewords are distinct, since d
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has distance 2 from C. But then the sets {c1, c2} and {c3, c4} violate IPP2. (Recall
the definition of IPP2 from Lemma 1.1.) So we have a contradiction in this case.

It remains to consider the situation when n > 4. We distinguish between six
cases. In the first two cases we show that C is not an IPP code; in the remaining cases
we show that C cannot be prolific.

Case 1: n ≤ 3k − 3. Define integers n1, n2 and n3 by n1 = dn
3 e, n2 = bn

3 c
and n3 = n − dn

3 e − bn
3 c. We can write each codeword in the form x1x2x3, where

`(xi) = ni. We are assuming that the all-zero word c0 = 000 lies in C. Since n1 ≤ k,
there are exactly qk−n1 codewords of the form 0∗∗. Since n1 < k, we have that
qk−n1 > 1 and so there exists a codeword c1 ∈ C \{c0} of the form c1 = 0∗y for some
word y of length n3. Similarly, since n2 < k there exists a codeword c2 distinct from
c0 of the form c2 = ∗0∗, and since n3 < k there is a codeword c3 distinct from c1 of
the form ∗∗y. If y = 0, then the codewords c0, c1 and c2 violate IPP1; if y 6= 0 then
the sets {c0, c3} and {c1, c2} violate IPP2. So C is not an IPP code.

Case 2: n = 3k − 2. Note that since n > 4, we have that k ≥ 3. Define
n1 = n2 = k − 1 and n3 = k. As before, we can write any codeword in the form
x1x2x3, where `(xi) = ni. Let c0 ∈ C be the all-zero word. Since n1 < k, there
exists a codeword c1 ∈ C \ {c0} of the form 0∗y for some word y of length n3. Since
n2 = k − 1, there are q − 1 non-zero codewords of the form ∗0∗; moreover no two
distinct words of this form can agree anywhere in their last n3 positions as this would
contradict the MDS property of the code. This implies (since q ≥ 3 and n3 = k ≥ 3)
that we may choose a codeword c2 distinct from c0 of the form c2 = ∗0z where
d(y, z) ≥ 2. Let w be a word of length n3 such that w ∈ desc(y, z) \ {y, z}. Such a
word exists since d(y, z) ≥ 2. Let c3 be the (unique) codeword of the form ∗∗w. The
sets {c0, c3}, {c1, c2} violate IPP2. Hence the code is not an IPP code.

Case 3: n = 3k − 1 and k ≥ 4. We can write any word in the form xy where
`(x) = 2k− 2 and `(y) = k +1. Consider the set D of all words of the form 0y where
y has length k + 1, all entries in y are non-zero and y does not occur as a suffix of a
codeword. There are exactly (q− 1)k codewords that end in k non-zero symbols, and
so |D| ≥ (q − 1)k+1 − (q − 1)k = (q − 1)k(q − 2). We aim to show that C cannot be
prolific since it cannot have all the words in D as descendants.

Note that the all-zero word cannot be a parent of any word d ∈ D. To see this,
note that the all-zero word cannot contribute to any of the last k + 1 components of
d, and so these k + 1 components must come from the other parent. But this would
mean that the last k + 1 entries of d would be a suffix of a codeword, contradicting
the definition of D.

The MDS property of the code shows that any non-zero codeword in C has at
most k− 1 zero entries (for otherwise the codeword would be too close to the all-zero
codeword). Since any word d ∈ D begins with 2(k − 1) zeroes, any pair of parents
c1 and c2 for d must each have k − 1 zeroes in their first 2(k − 1) positions, and
the positions where the zeroes of c1 occur must be disjoint from the positions where
the zeroes of c2 occur. Without loss of generality, we may assume that c1 has a zero
in its first position. There are 1

2

(
2k−2
k−1

)
choices for the positions where c1 is zero;

the positions where c2 is zero are determined by this choice. By the MDS property,
there are exactly q− 1 choices for a non-zero codeword c1 with zeroes in the specified
positions; similarly, there are q − 1 choices for c2. Each pair of codewords {c1, c2}
gives rise to at most 2k+1 descendants which start with 2k − 2 zeroes. So the pair
{c1, c2} can have at most 2k+1−2 descendants in D, since no element of D ends with
the suffix of a codeword. Moreover, the MDS property shows that for every choice of
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c1, there is a unique choice for c2 that agrees with c1 in its last position. When c2 is
of this form, the pair gives rise to at most 2k − 2 descendants in D. Thus C can have
at most

1
2

(
2k − 2
k − 1

)
(q − 1)

(
(q − 2)(2k+1 − 2) + (2k − 2)

)
descendants in D. For C to be prolific, all words in D must be descendants, and so(

2k − 2
k − 1

)
(q − 1)

(
(q − 2)(2k − 1) + (2k−1 − 1)

)
≥ |D| ≥ (q − 1)k(q − 2).

Using the fact that q ≥ n − k + 1 = 2k, we find that there are no solutions k and q
to this inequality, since we are assuming that k ≥ 4. So there are no prolific codes in
this case, as required.

Case 4: n = 3k − 1 with k = 2. Note that (5, q, q2)-codes of minimum distance
5− 1 = 4 do not exist when q = 3, and so we may assume that q ≥ 4.

A descendant of C must agree with one of its parents in at least 3 positions, and
so is at distance 2 from this parent. So the set of descendants is contained in the
union of the spheres of radius 2 about codewords. We show that these spheres cannot
cover all words, and so C cannot be prolific.

We begin by counting the number of words d that are in spheres of radius 2 about
two codewords c1 and c2. Note that since all codewords are at distance at least 4,
the word d has distance exactly 2 from both c1 and c2, and the distance from c1 to
c2 is exactly 4. This implies that the positions where c1 and d differ must be disjoint
from the positions where c2 and d differ, and so no codeword d lies in more than
two spheres of radius 2 about codewords, since we cannot have three pairwise disjoint
2-subsets of a 5-set.

There are 5(q − 1) codewords at distance 4 from a fixed codeword and so the
number of pairs of codewords at distance 4 is 5q2(q − 1)/2. Each such pair gives rise
to exactly

(
4
2

)
= 6 words that lie in spheres of radius 2 about both codewords. So

the number of words that are in two spheres of radius 2 is exactly 15q2(q − 1) (and
no words lie in 3 or more spheres). Hence the number of words in spheres of radius 2
about C is

q2(1 + 5(q − 1) + 10(q − 1)2)− 15q2(q − 1) = q2(1− 10(q − 1) + 10(q − 1)2).

Since q ≥ 4, this expression is less than q5 and so there are words that are not
descendants of the code. Thus C is not a prolific IPP code as required.

Case 5: n = 3k − 1 and k = 3. We may assume that q ≥ n − k + 1 = 6.
Indeed, since there do not exist 5 mutually orthogonal Latin squares of order 6, no
(8, 6, 63)-code with minimum distance 6 exists and so we may assume that q ≥ 7. We
show the code cannot be prolific by showing that the number of descendants of the
code is less than q8.

There are q3(1 + 8(q − 1) +
(
8
2

)
(q − 1)2) words within spheres of radius 2 about

codewords. All these words are descendants, by the MDS property of the code. It
remains to count descendants of distance at least 3 from every codeword.

Let pi be the number of (unordered) pairs of codewords at distance i. So pi = 0
when 1 ≤ i ≤ 5. An upper bound for the number of descendants at distance at least
3 from the code is

p6

(
6
3

)
+ p7

((
7
3

)
+
(

7
4

))
+ p8

((
8
3

)
+
(

8
4

)
+
(

8
5

))
. (3.1)



PROLIFIC I.P.P. CODES 7

We count the number s6 of codewords x at distance 6 from a fixed codeword c as
follows. There are exactly

(
8
2

)
q pairs (x, I), where x is a codeword, I is a 2-subset of

{1, 2, . . . , 8}, and ci = xi for i ∈ I. The codeword c appears
(
8
2

)
times in a pair and

every codeword x at distance 6 appears exactly once, so

s6 +
(

8
2

)
=
(

8
2

)
q.

Write s7 for the number of codewords at distance 7 from c. Counting pairs as above,
but with |I| = 1 shows that

s7 + 2s6 +
(

8
1

)
=
(

8
1

)
q2.

Finally, writing s8 for the number of codewords at distance 8 from c we see that
s8 = q3 − s6 − s7 − 1. Solving these equations shows that

s6 = 28q − 28

s7 = 8q2 − 56q + 48

s8 = q3 − 8q2 + 28q − 21.

Now pi = q3si/2. Substituting these values into Equation 3.1 above, and adding the
term which counts descendants at distance at most 2 from the code, we can easily
check that the number of descendants is less than q8 whenever q ≥ 7 and so C cannot
be prolific in this case.

Case 6: n ≥ 3k. Consider the set D of words 0y, where `(y) = k + 1 and y is
not a suffix of a codeword and contains no zero entries. Note that |D| ≥ (q− 1)k+1 −
(q − 1)k = (q − 1)k(q − 2) > 0, and so D is non-empty. We show that no word in D
can be a descendant of C, and so C cannot be prolific.

Suppose, for a contradiction, that d ∈ D is a descendant of C. A descendant must
agree with one of its parents in at least k of its first 2k − 1 positions. Since d begins
with 2k− 1 zeroes, and so one of its parents must have k zero entries and so must be
the all-zero codeword. But the final k + 1 entries of d are non-zero, and so the other
parent must have contributed them. But this implies that the last k + 1 entries of d
is a suffix of this parent, contradicting the definition of D as required.

From all these six cases we deduce that there are no prolific IPP (n, q, qk)-codes
of minimum distance n − k + 1 when n ≥ 3, unless n = 4, q = 3 and k = 2. So the
theorem is established.

4. Linear IPP codes. Linear IPP codes were considered first in [5]. (An [n, k]
linear IPP code is an IPP code which is a k-dimensional subspace of the vector
space (Fq)n.) We begin this section with a classification of prolific linear IPP codes
(Theorem 4.1). We then prove a new upper bound on the size of a linear IPP code
(Theorem 4.4) which emerged from our investigations of the prolific case.

Theorem 4.1. The only linear non-binary prolific IPP code of length 3 or more
is the (4, 3, 9) IPP code.

Proof. Let C be a prolific [n, k] linear IPP code, where n ≥ 3. By Theorem 3.1
there are no prolific MDS IPP codes other than the (4, 3, 9) example, so we may assume
that C is not an MDS code. The theorem follows if we can derive a contradiction from
this assumption.
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Since C is not MDS, we may permute the columns of the code so that the last k
columns of the generator matrix G form a k × k matrix with rank k − 1.

We can write each codeword in the form xy where `(x) = n − k and `(y) = k.
Consider a word 0y where y has no zeroes and is not a suffix of any codeword. A
choice for y certainly exists, since there are at most (q − 1)k−1 suffixes of length k of
codewords with no zeroes, by our condition on the generator matrix G, and so there
are at least (q − 1)k − (q − 1)k−1 choices for y.

Since C is prolific it follows that 0y is a descendant, so there exist codewords
x1y1,x2y2 ∈ C such that 0y ∈ desc(x1y1,x2y2). Since y is not a suffix of a codeword
these parents are distinct; moreover, neither parent can be the all zero codeword.
Clearly, 0y1 ∈ desc(x1y1,x2y2). The suffix y1 appears in q codewords of C by our
condition on G, and hence there is a codeword x3y1 where x3 /∈ {x1,x2}. But then
we have that 0y1 ∈ desc(00,x3y1) which implies that C is not an IPP code. This
contradiction establishes the theorem, as required.

Hollmann et al. [9] proved several upper bounds on the size of IPP codes. One of
their results can be stated as follows:

Theorem 4.2. Let C be an IPP code of length 3, where position i, 1 ≤ i ≤ 3, of
a codeword is taken from an alphabet Qi. Then

|C| ≤ |Q1|+ |Q2|+ |Q3| − 1 . (4.1)

Hollmann et al. used Equation (4.1) to obtain the following bounds on the size of
IPP codes:

Theorem 4.3. Let C be an (n, q,M) IPP code.
(i) If n = 3`− 2 then M ≤ q` + 2q`−1 − 1.
(ii) If n = 3`− 1 then M ≤ 2q` + q`−1 − 1.
(iii) If n = 3` then M ≤ 3q` − 1.
Proof. Write n = k1 + k2 + k3, where ki ∈ {`− 1, `}. Define Qi = F ki . We may

write any codeword in C in the form x1x2x3 where `(xi) = ki. So C can be regarded
as a length 3 code, with symbols in position i taken from the alphabet Qi. It is easy
to verify that C is still an IPP code when thought of in this way, and so the bound
follows by Theorem 4.2.

Theorem 4.3 implies the following bounds on the dimension k of an [n, k] linear
IPP code when q > 3:

(i) if n ≡ 0 mod 3 then k ≤ n
3 .

(ii) if n ≡ 1 mod 3 then k ≤ n+2
3 .

(iii) if n ≡ 2 mod 3 then k ≤ n+1
3 .

The theorem below improves Theorem 4.3 when n ≡ 1 mod 3.
Theorem 4.4. Let C be an [n, k] linear IPP code, and suppose that k ≥ 3. Then

k ≤ bn+1
3 c.

The main part of the proof of Theorem 4.4 is contained in the following lemma:
Lemma 4.5. Let C be a non-binary [n, k] code, and let G be a generator matrix

for C. Let k1, k2 and k3 be positive integers such that n = k1 + k2 + k3, and suppose
that the following properties hold:

1. The first k1 columns of G have rank less than k;
2. The next k2 columns of G have rank less than k;
3. 1 ≤ k3 ≤ k;
4. When the final k3 columns of G have rank k, we have that k ≥ 3.
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Then C is not an IPP code.
Proof. Suppose that the final k3 columns of G have rank less than k. We show

that G is not an IPP code in this ‘small rank’ case.
We may write any codeword c ∈ C in the form c = xyz where `(x) = k1,

`(y) = k2, and `(z) = k3.
Let c1 be the all-zero codeword. By Property 1 there exists a non-zero codeword

c2 of the form c2 = 0∗z2. Similarly, by Property 2 there exists a non-zero codeword
c3 of the form c3 = ∗0z3. Indeed, there are at least q − 1 choices for c3. Since
q − 1 ≥ 3− 1 = 2, we may therefore choose c3 so that c3 6= c2.

If |{0, z2, z3}| < 3 then {c1, c2, c3} violates IPP1. Otherwise, let c4 ∈ C be of the
form c4 = ∗∗z2 where c4 6= c2. Such a codeword exists, since we are assuming the
rank of the last k3 columns of C is less than k. Then the pairs {c1, c4} and {c2, c3}
violate IPP2. So C is not an IPP code in this ‘small rank’ case.

Assume that we are not in the small rank case, so the final k3 columns of G have
rank k. This implies in particular that k3 = k. Moreover, Property 4 implies that
k ≥ 3.

Choose distinct codewords c1 = 000, c2 = 0∗z2 and c3 = ∗0z3 as above. If
|{0, z2, z3}| < 3 then {c1, c2, c3} violates IPP1. So it remains to deal with the case
when z2 6= z3 (and both z2 and z3 are non-zero).

We claim that we may assume d(z2, z3) > 1. For suppose that d(z2, z3) = 1. By
Property 1, there are at least q choices for a codeword starting with k1 zeroes, and so
there exists a codeword c4 of the form c4 = 0∗z4 where c4 6= c1 and c4 6= c2. Suppose
that z2 and z4 agree in some component (the ith say). Now, c2 and c4 are distinct
codewords which agree in their first k1 positions and their (k1 + k2 + i)-th position,
and so the first k1 columns of G together with the (k1+k2+i)-th column has rank less
than k. We may replace C by an equivalent code, moving the (k1 + k2 + i)-th column
of G to the left hand side of the generator matrix. This new code is not an IPP code,
by the small rank case using the partition k′1 = k1 + 1, k′2 = k2 and k′3 = k3 − 1 of
the columns of the generator matrix. So C is not an IPP code in this case. So we
may assume that d(z2, z4) = k. This implies, since d(z2, z3) = 1 and k ≥ 3, that
d(z4, z3) ≥ k−1 > 1. So our claim follows, since we may replace c2 by c4 if necessary.

By the previous paragraph, we may assume (without loss of generality) that
d(z2, z3) > 1. Let z5 ∈ desc(z2, z3} \ {z2, z3}; we may choose z5 of this form since
d(z2, z3) > 1. Since `(z3) = k3 and the last k3 columns of C are linearly independent
there exists a codeword c5 of the form c5 = ∗∗z5. But the two pairs {c1, c5}, {c2, c3}
violate IPP2. Hence C is not an IPP code, as required.

Proof of Theorem 4.4. Suppose that n ≤ 3k − 2. We can write n = k1 + k2 + k3

where k1 < k, k2 < k and k3 = k ≥ 3. But then C contradicts Lemma 4.5. Therefore
n ≥ 3k − 1 and so k ≤ n+1

3 . Since k is an integer, the theorem follows.
A further improvement for non-MDS codes is given in the following corollary to

Lemma 4.5.
Corollary 4.6. Let C be an [n, k] linear IPP code which is not an MDS code.

If k ≥ 3 then k ≤ bn
3 c.

Proof. By Theorem 4.4, no [n, k] linear IPP code exists when n ≤ 3k−2. Suppose,
for a contradiction, that n = 3k−1. As C is not an MDS code, we may (by permuting
the columns of C if necessary) assume that the first k columns of the generator matrix
for C are linearly dependent. But now Lemma 4.5 (in the case when k1 = k, k2 = k−1
and k3 = k) shows that C is not an IPP code and we have a contradiction. Therefore,
n ≥ 3k and so k ≤ n

3 . The corollary now follows since k is an integer.
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5. New upper bound on the size of IPP codes. This section establishes a
new upper bound on the size of an IPP code, which improves the leading coefficient
in the bound of Theorem 4.3. When the code has length 5, our techniques yield
especially good results (and we will need a good bound in Section 8). We begin by
considering this special case.

Lemma 5.1. Let C be a (5, q,M) IPP code, where M > q2. Then the minimum
distance d(C) of C is at least 3.

Proof. Assume, for a contradiction, that d(C) ≤ 2. Suppose c1 and c2 are
codewords at distance 1 or 2. Without loss of generality, assume that c1 and c2 agree
in their first 3 positions. Since M > q2, there exist distinct codewords c3 and c4 that
agree in their final two positions. If the sets {c1, c3} and {c2, c4} are disjoint, then
IPP2 is violated. Otherwise, the set {c1, c2, c3, c4} has size 3 and IPP1 is violated.
In either case, we have a contradiction, as required.

Theorem 4.3 implies that for a (5, q,M) IPP code we have M ≤ 2q2 + q− 1. The
theorem below significantly improves this bound.

Theorem 5.2. If C is a (5, q,M) IPP code then M < 5
4q2 + 5q.

Proof. If there is a symbol x ∈ F and a position i ∈ {1, 2, 3, 4, 5} such that
x occurs just once as the ith position of a codeword, we remove this codeword to
produce a smaller code. Repeating this process as often as is necessary, we eventually
obtain a code C′ in which no symbol appears exactly once in any fixed position. Note
that we have removed at most 5q codewords to obtain C′, and so C′ has M ′ codewords
where M − M ′ ≤ 5q. To prove the theorem, it suffices to show that M ′ < 5

4q2. The
theorem follows trivially when M ′ ≤ q2, and so we may assume that M ′ = q2 + µ for
some positive integer µ.

For integers i and j such that 1 ≤ i < j ≤ 5, define the subset Sij ⊆ C′ by

Sij = {x ∈ C′ : ∃y ∈ C′ \ {x} such that xi = yi and xj = yj}.

Note that |Sij | > µ.
We claim that Sij ∩ Si′j′ = ∅ whenever {i, j} and {i′, j′} are disjoint pairs of

positions. Without loss of generality, it is sufficient to show that S12 ∩ S34 = ∅.
Suppose, for a contradiction, that c1 ∈ S12 ∩ S34. Writing c1 = x1x2x3x4x5, there
exist codewords c2, c3 ∈ C′ \ {c1} of the form c2 = x1x2∗∗y and c3 = ∗∗x3x4z. Note
that c2 6= c3, by Lemma 5.1. If |{x5, y, z}| < 3 then {c1, c2, c3} violates IPP1. If x5,
y and z are distinct, let c4 ∈ C′ be another codeword ending in y (which exists by
our choice of C′). Then the sets {c1, c4}, {c2, c3} violate IPP2. This contradiction
establishes our claim.

For any given disjoint pairs {i1, j1}, {i2, j2} ⊆ {1, 2, 3, 4, 5} define Qi1j1i2j2 to be
the set of symbols that occur in the `th positions of codewords in Si1j1 , where ` is the
unique position not equal to any of i1, j1, i2, j2.

We claim that Qi1j1i2j2 ∩Qi2j2i1j1 = ∅ for any disjoint pairs {i1, j1} and {i2, j2}.
(In particular, since there are q symbols in total, this claim implies that |Qi1j1i2j2 |+
|Qi2j2i1j1 | ≤ q.) To see why our claim holds, we show (without loss of generality)
that Q1234 ∩ Q3412 = ∅. Assume, for a contradiction, that x ∈ Q1234 ∩ Q3412. Then
the following 4 codewords lie in C′: c1 = x1x2∗∗x, c2 = x1x2∗∗∗, c3 = ∗∗x3x4x and
c4 = ∗∗x3x4∗. (These codewords are distinct, since S12 ∩ S34 = ∅.) But then the
pairs {c1, c4} and {c2, c3} violate IPP2, and so our claim follows.

There are
(
5
2

)(
3
2

)
= 30 subsets Qi1j1i2j2 ⊆ F , and the previous paragraph shows

that at least half of them are ‘small’ in the sense of satisfying |Qi1j1i2j2 | ≤ 1
2q.
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The map from S12 to Q1235 ×Q1234 where x1x2x3x4x5 7→ x4x5 is injective, since
S12 ∩ S45 = ∅. Thus |S12| ≤ |Q1235||Q1234|. Arguing similarly, we find that

|S12| ≤ min{|Q1234||Q1235|, |Q1234||Q1245|, |Q1235||Q1245|}.

A similar inequality exists for any subset Sij . There are in total
(
5
2

)
= 10 such in-

equalities, each involving 3 subsets Qiji′j′ . Averaging over all pairs {i, j}, the expected
number the subsets Qiji′j′ in such an inequality which satisfy |Qiji′j′ | ≤ 1

2q is at least
3
2 . So we may find a pair {i, j} such that the inequality involves at least two sets
Qiji′j′ of size at most 1

2q. But then the inequality implies that |Sij | ≤ ( 1
2q)2 = 1

4q2.
Since 1

4q2 ≥ |Sij | > µ, we find that M ′ = q2 + µ < 5
4q2, as required.

We comment that, arguing more carefully, it is possible to reduce the term 5q in
the bound above. Indeed, we have the outline of a proof (with many special cases)
that the term can be eliminated. For the sake of simplicity, we content ourselves with
proving a bound that eliminates this term in the case of prolific IPP codes.

Theorem 5.3. If C is a (5, q,M) prolific IPP code, then M < 5
4q2.

Proof. Suppose that there is no symbol x that appears just once as ith position
of a codeword. The argument of Theorem 5.2 (where M = M ′ in our situation) now
shows that M < 5

4q2. So we may assume that there is a symbol x and a position i
such that x appears exactly once as the ith position of a codeword. Replacing C by an
equivalent code if necessary, we may assume (without loss of generality) that x = 0,
i = 1 and C contains the all-zero word 0. So no codeword starts with 0, other than
the all-zero codeword.

The word 01111 is a descendant, since C is prolific. Now, 0 is a parent, since no
other codeword can contribute to the first position of the descendant. But 0 cannot
contribute to any of the remaining positions, and so there exists a codeword c1 of
the form c1 = ∗1111. Similarly, considering the descendant 01112, there exists a
codeword of the form c2 = ∗1112. But then d(c1, c2) ≤ 2, and so Lemma 5.1 implies
that M ≤ q2 < 5

4q2, as required.
We do not see how to generalise the bound of Theorem 5.2, as it is not clear what

the analogue of the final paragraph of the proof should be. However, we are able to
establish the following theorem.

Theorem 5.4. Let C be an (n, q,M) IPP code where n = 3k − 1. Then M <
3
2qk + 3qk−1.

Proof. We begin by proving the weaker bound

M <
3
2
qk +

(
n

k − 1

)
qk−1, (5.1)

and we will then show how our argument can be modified to give the bound of the
theorem.

If there are any codewords c that are uniquely defined by a set of k− 1 positions
(so there exists a (k−1)-set X of positions such that {u ∈ C : ci = ui ∀i ∈ X} = {u})
we remove them. Repeating this process as often as is necessary, we obtain a code C′
with the property that for all c ∈ C′ and for all (k− 1)-sets X ⊆ {1, 2, . . . , n} we have
that

|{u ∈ C′ : ci = ui ∀i ∈ X}| ≥ 2.

Note that C′ is an (n, q,M ′)-code with M − M ′ <
(

n
k−1

)
qk−1. If M ′ ≤ qk then

bound (5.1) holds trivially, and so we may assume that M ′ > qk. Let µ be the
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positive integer such that M ′ = qk + µ. To show (5.1) holds, it suffices to show that
µ ≤ 1

2q2.
For a subset T ⊆ {1, 2, . . . , n} of k positions, define a subset ST ⊆ C′ by

ST = {x ∈ C′ : ∃y ∈ C′ \ {x} such that xi = yi for i ∈ T}.

Note that |ST | > µ. We claim that ST1 ∩ ST2 = ∅ whenever T1 and T2 are disjoint.
To see this, assume (without loss of generality) that T1 = {1, 2, . . . , k} and T2 =
{k + 1, k + 2, . . . , 2k} and suppose (for a contradiction) that c ∈ ST1 ∩ ST2 . We may
write c = xyz where `(x) = `(y) = k and `(z) = k − 1. Since c ∈ ST1 ∩ ST2 , there
exist codewords c2, c3 ∈ C′ \ {c1} of the form c2 = x∗w and c3 = ∗yu. Suppose that
|{z,w,u}| < 3. Then we find that IPP1 is violated. For if c2 6= c3 then {c1, c2, c3}
violates IPP1. Moreover, if c2 = c3 (which implies z 6= w), then {c1, c2, c4} violates
IPP1, where c4 ∈ C has w as a suffix and is distinct from c2. (Our construction of C′
guarantees that c4 exists.) Now suppose that |{z,w,u}| = 3. We find that IPP2 is
violated by the sets {c1, c4} and {c2, c3}, where c4 is defined as before. So we have
a contradiction, and therefore our claim follows.

Define S1 = S{1,2,...,k} and S2 = S{k+1,k+2,...,2k}. For i = 1, 2, let Pi be the set
of length k − 1 suffixes of codewords in Si. We claim that P1 ∩ P2 = ∅. To see this,
suppose (for a contradiction) that there exists a suffix z ∈ P1 ∩ P2. Since z ∈ P1,
there exist distinct codewords of the form c1 = x∗z and c2 = x∗∗. Since z ∈ P2, there
exist distinct codewords of the form c3 = ∗yz and c4 = ∗y∗. Since {c1, c2} ⊆ S1

and {c3, c4} ⊆ S2, and since S1 ∩ S2 = ∅, we find that the codewords ci are pairwise
distinct. But then the sets {c1, c4} and {c2, c3} violate IPP2. This contradiction
shows that P1 ∩ P2 = ∅, as required.

Since P1 and P2 are disjoint subsets of a set of the qk−1 possible suffixes of length
k−1, we find that |Pi| ≤ 1

2qk−1 for some i. Suppose that |P1| ≤ 1
2qk−1, so the number

of length k − 1 suffixes of codewords in S1 is at most 1
2qk−1. The number of suffixes

of length k of codewords in S1 is therefore at most 1
2qk, and the length k suffixes of

any two codewords in S1 are distinct, since S1 ∩ S{2k,2k+1,...,3k−1} = ∅. Thus 1
2qk ≥

|S1| > µ, and so (5.1) holds in this case. In the case when |P2| ≤ 1
2qk−1, a similar

argument establishes (5.1): instead of suffixes, we consider sub-words consisting of
the first component and the last k− 1 components of a word and we use the fact that
S2 ∩ S{1,2k+1,2k+2,...,3k−1} = ∅.

It remains to show that the above argument can be tightened in order to establish
the theorem.

The argument above uses the fact that ST1 ∩ ST2 = ∅ for a limited range of
sets T1 and T2. (Indeed, it uses this equality when T1 = {1, 2, . . . , k} and T2 =
{k + 1, k + 2, . . . , . . . , 2k}, when T1 = {1, 2, . . . , k} and T2 = {2k, 2k + 1, . . . , 3k − 1}
and when T1 = {k+1, k+2, . . . , 2k} and T2 = {1, 2k+1, 2k+2, . . . , 3k−1}.) Because
of this, we see that the argument still works when C′ is defined to be a larger subcode,
where less than 3qk−1 codewords have been removed: we remove codewords that are
uniquely defined by their positions in X, where X = {2k + 1, 2k + 2, . . . , 3k − 1},
X = {k + 1, k + 2, . . . , 2k− 1} or X = {2, 3, . . . , k}. This modification establishes the
theorem, as required.

6. Prolific IPP codes of length 3. The aim of this section is to prove Theo-
rem 6.7, which states that there are no non-trivial prolific IPP codes of length 3.

Lemma 6.1. Let C be a non-binary prolific IPP code of length 3. Then |C| > q,
and the minimum distance d(C) of C is at least 2.
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Proof. If C contains q or fewer codewords, then the bound of Theorem 2.1 is
violated. So |C| > q.

Suppose C contains codewords x and y at distance 1. There exist distinct code-
words u,v ∈ C that agree at the position where x and y disagree, since |C| > q. If
the codewords x,y,u,v are not distinct (and so they form a set of size 3) then IPP1
is violated; if the codewords are distinct then IPP2 is violated. This contradiction
shows that d(C) ≥ 2.

Lemma 6.2. There are no non-trivial prolific IPP codes of length 3 when q ≥ 6.
Proof. Let C be a (3, q,M) prolific IPP code. Every symbol must occur at least

once at the start of a codeword, since if there are no codewords of the form x∗∗ then
there are no descendants of the form x∗∗, contradicting the fact that C is prolific.
Since M ≤ 3q − 1 by Theorem 4.3, there is a symbol that occurs (A) exactly once
or (B) exactly twice as the first position of a codeword. Without loss of generality,
suppose this value is 0.

Case (A): Without loss of generality, we may assume that 000 ∈ C and that
no other codeword starts with 0. There are (q − 1)2 words d of the form 0ab where
a, b 6= 0, and all of these must occur as descendants. Now 000 must be a parent of d
(since no other codeword starts with 0), but cannot contribute to the remaining two
positions of d (since a, b 6= 0). So the other parent must be a codeword of the form
∗ab. Thus there are at least (q−1)2 codewords not equal to 000. But |C| ≥ (q−1)2+1
contradicts Theorem 4.3 since q /∈ {3, 4}.

Case (B): We may assume that 000, 0xy ∈ C for some x, y ∈ {0, 1, . . . , q − 1}
that are not both zero. A similar argument to (A), with the codewords d of the form
0ab where a 6∈ {0, x} and b 6∈ {0, y}, shows that there are at least (q − 2)2 other
codewords, and so |C| ≥ (q− 2)2 + 2 in this case. This contradicts Theorem 4.3 when
q ≥ 6.

Thus, no (3, q,M) prolific IPP codes exist if q ≥ 6.
The following lemma is a special case of a result of Tô and Safavi-Naini [13,

Theorem 34].
Lemma 6.3. A 3-ary IPP code C of length 3 must have |C| ≤ 4.
Proof. Consider codewords of the form 0∗∗. Suppose (for a contradiction) there

are 3 such codewords. Since d(C) ≥ 2 (by Lemma 6.1) we may assume, without loss
of generality, that the codewords are 000, 011, 022. There exists another codeword,
and it cannot start with 0 (again since d(C) ≥ 2), so without loss of generality it is
of the form 1ab for some a, b ∈ {0, 1, 2}. The minimum distance of the code implies
that a 6= b, and so we may assume, without loss of generality, that a = 0 and b = 1
and so 101 is a codeword. But this gives a contradiction, since the set {000, 011, 101}
violates IPP1. So we may assume that any symbol is the first component of 0, 1 or 2
codewords.

Suppose (again for a contradiction) that there are two symbols, 0 and 1 say, each
being the first component of exactly 2 codewords. Without loss of generality, we may
assume that 000, 011 ∈ C. Let 1ab, 1cd be the two codewords starting with 1. Now
{a, b} ⊆ {0, 1} leads to a contradiction, since then {000, 011, 1ab} violates IPP1. So
ab ∈ {02, 20, 12, 21, 22}; similarly for cd. Since d(C) ≥ 2 we cannot have ab = 22 or
cd = 22 (since otherwise 1ab and 1cd would be too close). Indeed, without loss of
generality we must have ab = 02 and cd = 20, or ab = 02 and cd = 21. But in the
first case, IPP1 is violated and in the second case IPP2 is violated.

So at most one symbol starts 2 codewords, the remaining symbols start at most
one codeword each. Since there are three possibilities for the first symbol of a code-
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word, there are at most 2 + 1 + 1 = 4 codewords in total.
Corollary 6.4. There is no 3-ary prolific IPP code of length 3.
Proof. Suppose a 3-ary prolific IPP code C of length 3 exists. All symbols must

occur as the start of a codeword, since C is prolific. Since |C| ≤ 4, there is a symbol
that starts a unique codeword. So we are in Case (A) of Lemma 6.2. The argument
there shows that |C| ≥ 1 + (q − 1)2 = 5, and this contradicts Lemma 6.3, as required.

Lemma 6.5. There is no 4-ary prolific IPP code of length 3.
Proof. Suppose, for a contradiction, that a symbol occurs exactly once as the

start of a codeword. Without loss of generality 000 ∈ C and no other codeword starts
with 0. Considering parents of the 9 descendants of the form 0xy where x, y 6= 0, we
see that there are codewords of the form ∗xy for all x, y; moreover these codewords
cannot start with 0, since 0 starts a unique codeword. But these 9 codewords now
form a 3-ary IPP code: this contradicts Lemma 6.3.

Using the argument above on the second and third positions of C, we may assume
all symbols occur at least twice in every position in the code.

Choose a codeword x. Choose a codeword y 6= x such that x1 = y1. Choose a
codeword z 6= y such that y2 = z2. Choose a codeword w 6= z such that z3 = w3.
Since C has minimum distance 2, we find that x 6= z and y 6= w. There are two cases:
if x 6= w, then the pairs {x, z}, and {y,w} violate IPP2. If x = w then {x,y, z}
violates IPP1. We have produced a contradiction, and so the lemma follows.

Lemma 6.6. There is no 5-ary prolific IPP code of length 3.
Proof. If such code C exists then we cannot be in Case (A) in Lemma 6.2 (as

1+(q−1)2 ≥ 3q, contradicting Theorem 4.3. So we may assume that for all positions
i and symbols a there are at least 2 codewords equal to a in position i. But now the
argument in the final paragraph of Lemma 6.5 shows that C cannot be an IPP code.
This contradiction establishes the lemma.

The above results together show:
Theorem 6.7. There are no non-binary prolific codes of length 3.

7. Prolific IPP codes of length 4. This section aims to prove Theorem 7.5,
which states that there are no non-trivial examples of prolific codes of length 4.

Lemma 7.1. Let C be a non-binary prolific IPP code of length 4. Then the
minimum distance d(C) of C is at least 3.

Proof. Suppose C has M codewords. Theorem 2.1 shows that
(
M
2

)
24 ≥ q4. If

M ≤ q we have that q223 ≥ q4, which implies that q ≤ 23/2 < 3, a contradiction. So
we may assume that M > q.

Suppose, for a contradiction, that d(C) = 1. Without loss of generality, we may
assume that 0000, 0001 ∈ C. If there is another codeword whose final symbol is 0 or 1,
then IPP1 is violated. If this is not the case, choose distinct codewords c1 and c2 that
agree in their final position. (Such codewords exist since |C| > q.) Then {0000, c1}
and {0001, c2} violate IPP2. This contradiction shows that d(C) ≥ 2.

We claim that every symbol must occur at least twice in any position of the code.
(The prolific property shows that every symbol must occur at least once.) For assume
that a symbol, 0 say, occurs exactly once as the start of a codeword. Without loss of
generality, we may assume that 0000 ∈ C. For x, y, z ∈ F \ {0}, the descendant 0xyz
must have 0000 and ∗xyz as parents. So there are at least (q − 1)3 codewords of the
form ∗xyz where x, y and z are non-zero. None of these codewords can start with 0,
and so we have a collection C′ of (q − 1)3 codewords over an alphabet of size q − 1.
Since (q−1)3 > (q−1)2, we can find distinct codewords c1, c2 ∈ C′ that agree in their
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first two positions. There are q − 2 codewords in C′ \ {c2} that agree with c2 in its
last two positions: pick c3 of this form. Then c1 and c3 have c2 as their descendant.
This contradiction establishes our claim.

Now suppose, for a contradiction, that we can find two distinct codewords c1, c2

that are at distance 2. Without loss of generality, we may take c1 = 0000, c2 = 0011.
Let c3 ∈ C \ {c1} be of the form ∗∗0∗. Similarly let c4 ∈ C \ {c2} be a codeword of
the form ∗∗∗1. If c3 = c4 then the set {c1, c2, c3} violates IPP1. But if c3 6= c4 then
{c1, c4} and {c2, c3} violates IPP2. This contradiction shows that there are no pairs
of codewords at distance less than 3, and so the lemma follows.

Lemma 7.2. Let C be a q-ary prolific IPP code of length 4, and let i ∈ {1, 2, 3, 4}.
Then every symbol occurs in the ith position of either q − 1 or q codewords.

Proof. Without loss of generality, we may assume that i = 1.
Since d(C) ≥ 3, the first two positions of a codeword uniquely determine that

codeword. So each symbol occurs at most q times as the start of a codeword (as there
are q pairs starting with this symbol).

Suppose a symbol, 0 say, occurs less than q times as the start of a codeword.
Then there exist symbols x, y, z ∈ F such that there are no codewords of the form
0x∗∗, 0∗y∗ or 0∗∗z. Without loss of generality, assume that x = y = z = 0.

Consider the descendant 0000. One parent must start with 0, but this codeword
cannot contribute to any of the remaining positions in the descendant. So there is a
codeword of the form w000 for some w (and w is clearly non-zero). Since d(C) = 3,
we see that w000 is the unique codeword of the form ∗00∗.

Now consider the descendant 000a where a 6= 0. One parent starts with 0 and
this parent cannot contribute to the middle two positions. Hence w000 is the other
parent. But w000 cannot contribute to the last position, and so there must be a
codeword of the form 0∗∗a. Since we have q− 1 choices for a, the symbol 0 occurs at
least q − 1 times as the start of a codeword. This proves the lemma.

Lemma 7.3. There is no q-ary prolific IPP code of length 4 when q > 4.
Proof. Let C be a q-ary prolific IPP code of length 4. Consider the words starting

with 0. By Lemma 7.2 there are at least q − 1 such words and no two of these words
can agree in any position other than the first (since d(C) = 3). So, without loss of
generality, we may assume the codewords starting with 0 are 0111, 0222, . . . , 0(q −
1)(q − 1)(q − 1), and possibly 0000.

Fix a symbol ` ∈ F . Choose m ∈ F such that ` 6= m and there exists a codeword
of the form ∗`m∗. Such a choice for m exists: indeed, by Lemma 7.2 there are at
least (q − 1)− 1 choices for m. Choose n ∈ F such that ` 6= n, m 6= n, there exists a
codeword of the form ∗∗mn but there does not exist a codeword of the form ∗`mn.
There are at least q− 1 choices for n such that there is a codeword of the form ∗∗mn,
and at most 3 of these choices are ruled out by the other conditions we place on n.
Since q − 1− 3 ≥ 1, there exists at least one choice for n.

Consider the descendant 0`mn. This is a descendant of 0``` and the codeword
∗∗mn, and of 0nnn and ∗`m∗. Our choice of `,m, n means that these sets of parents
are disjoint. So we get a contradiction to IPP2, as required.

Lemma 7.4. There is no 4-ary prolific IPP code of length 4.
Proof. The proof of Lemma 7.3 works (with q−1 replaced by q at various points)

when every symbol occurs 4 times in every position of a codeword. So we know that
if a 4-ary prolific IPP code C of length 4 exists then 12 = q(q − 1) ≤ |C| < q2 = 16.
We now argue that no such code can exist.

Let M = |C|. There are M(1+4× 3) = 13M words at distance at most 1 from C.
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All the remaining words must be descendants, and indeed they must be descendants
of a unique pair of codewords at distance 4. (Codewords at distance 3 can never
produce descendants of distance more than 1 from the code.)

A pair of codewords at distance 4 produce exactly 6 descendants at distance 2
from the code. So 44 = 6M4 + 13M , where M4 is the number of pairs of codewords
at distance 4. Therefore

M4 =
256− 13M

6
,

and so 256 − 13M ≡ 0 mod 6 and so M ≡ 4 mod 6. But this cannot happen, as
no number M such that 12 ≤ M ≤ 15 is such that M ≡ 4 mod 6. This proves the
theorem.

Theorem 7.5. If C is a non-binary prolific IPP code of length 4, then C is
equivalent to the (4, 3, 9)-code given in the introduction.

Proof. Let C be a q-ary prolific IPP code of length 4, where q > 2. Lemmas 7.3
and 7.4 show that we must, in fact, have that q = 3.

Lemma 7.1 shows that d(C) ≥ 3 and so the Singleton bound shows that |C| ≤ 9.
Moreover, we know from Lemma 7.2 that every symbol occurs at least twice in each
position of the code.

We claim that |C| = 9. Suppose, for a contradiction, that |C| ≤ 8 and so some
symbol occurs twice at the start of a codeword. Without loss of generality, we may
assume that 0 occurs just twice at the start of a codeword, and that 0000, 0111 ∈ C.
Since 0222 is a descendant of the code, we must have a codeword of the form x222
where x ∈ {1, 2}.

The descendant 0012 must either have parents 0000 and ∗∗12, or 0111 and ∗0∗2.
Since d(C) ≥ 3, any word of the form ∗∗12 or ∗0∗2 must in fact be of the form ∗012
(for otherwise there would be a codeword too close to 0000, 0111 or x222), and so we
may deduce that C contains a codeword of the form ∗012. Indeed, if a, b, c ∈ F are
distinct we may argue in the same way (using the descendant 0abc) that there exists
a codeword of the form ∗abc. These 6 codewords, together with the codewords 0000,
0111 and x222 show that |C| ≥ 9, contradicting our assumption that |C| < 9.

So we may assume that |C| = 9. But this implies that C is an MDS code, and so
is equivalent to the (4, 3, 9)-code from the introduction.

8. Prolific IPP codes of length 5. This section establishes the following the-
orem, which follows from Lemmas 8.6, 8.13 and 8.15 below.

Theorem 8.1. There are no non-binary prolific IPP codes of length 5.
Lemma 8.2. Let C be a non-binary prolific IPP code of length 5. Then each

symbol appears at least twice in every co-ordinate.
Proof. Every symbol occurs at least once in every position, since C is prolific.

Suppose, for a contradiction, that a symbol (0, say) occurs exactly once in some
position. Without loss of generality, we may suppose that 0 occurs once in the first
position of a codeword, and that 00000 ∈ C.

Any descendant 0abcd where a, b, c, d are non-zero must have 00000 as one of
its parents. But 00000 cannot contribute to any of the last four positions of this
descendant, and so there is a codeword of the form ∗abcd. So the number of codewords
is at least (q − 1)4 + 1. But this contradicts the upper bound of Theorem 5.3, and so
the lemma follows.

Lemma 8.3. Let C be a non-binary prolific IPP code of length 5. Then d(C) = 3.
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Proof. Suppose, for a contradiction, that d(C) = 1. Without loss of generality,
we may assume that 00000, 00001 ∈ C. By Lemma 8.2, there exists another codeword
c ∈ C \ {00001} that ends with a 1. Then {00000, 00001, c} violates IPP1, and so we
have a contradiction.

Suppose, for a contradiction, that d(C) = 2. Without loss of generality, we may
assume that 00000, 00011 ∈ C. By Lemma 8.2, there exist codewords c1 ∈ C \{00000}
of the form c1 = ∗∗∗0∗ and a codeword c2 ∈ C \ {00001} ending in a 1. If c1 = c2 we
find that IPP1 is violated; otherwise we find that IPP2 is violated by these codewords.
So again we have a contradiction.

Suppose that d(C) = 5. We may assume, without loss of generality, that every
codeword is of the form aaaaa for some symbol a ∈ F . But then no word containing
3 or more distinct symbols can be a descendant of C and so C is not prolific. Thus
d(C) 6= 5.

Suppose that d(C) = 4. The Singleton bound shows that |C| ≤ q2. We aim to
show that C is a (5, q, q2)-code.

Let c ∈ C have the form c = x1x2x3x4x5. Let a, b ∈ F be such that a 6= x1 and
b 6= x2. Consider the descendant abx3x4x5. A parent must contribute two or more
of the last 3 components, and so must be equal to c since d(C) = 4. But c cannot
contribute to the first two positions, and so there must be a codeword of the form
ab∗∗∗.

Assume, without loss of generality, that 00000 ∈ C. The previous paragraph
shows that there are codewords of the form ab∗∗∗ for any non-zero a, b ∈ F . Applying
the previous paragraph to the codeword of the form 11∗∗∗, and then to the codeword
of the form 22∗∗∗ shows that all possible prefixes of length 2 occur in codewords.
Thus C is a (5, q, q2)-code. But then C cannot be a prolific IPP code, by Theorem 3.1.
This contradiction shows that d(C) 6= 4, as required.

Lemma 8.4. Let C be a non-binary prolific IPP code of length 5. Let c ∈ C agree
in positions i and j with another codeword. Let k, ` ∈ {1, 2, 3, 4, 5} \ {i, j} be distinct
positions. Then c does not agree with another codeword in positions k and `.

Proof. Without loss of generality, we may assume that i = 1, j = 2, k = 3 and
` = 4, and that c = 00000. So there is a codeword c1 that agrees with c in its
first two positions. Since d(C) = 3 by Lemma 8.3, we may assume without loss of
generality that c1 = 00111. Suppose, for a contradiction, that there exists codeword
c2 ∈ C \ {c} of the form c2 = ∗∗00∗. If c2 ends with a 1, IPP1 is violated. Otherwise,
by Lemma 8.2 there exists a codeword c3 ∈ C \{c1} ending in a 1 and the sets {c, c3},
{c1, c2} violate IPP2. This contradiction establishes the lemma.

Lemma 8.5. Let C be a non-binary prolific IPP code of length 5. Suppose that
there exist codewords c1, c2, c3, c4 of the form c1 = x1x2a∗∗, c2 = x1x2∗∗∗, c3 =
∗∗bx4x5 and c4 = ∗∗∗x4x5. Suppose that c1 6= c2 and c3 6= c4. Then a 6= b.

Proof. Note that the codewords c1, c2, c3 and c4 are distinct, by Lemma 8.4. If
a = b, it is easy to see that IPP2 is violated, and so a 6= b.

Lemma 8.6. No 3-ary prolific IPP code of length 5 exists.
Proof. Suppose that C is a 3-ary prolific IPP code of length 5. Since d(C) = 3, we

may assume (without loss of generality) that there exist codewords c1, c2 ∈ C where
c1 = 00000 and c2 = 00111. If there exist two codewords c3 and c4 that agree in
their last two positions, we claim that we have a contradiction. To see this, firstly
note that c3 and c4 cannot agree in their third position, since d(C) = 3. Since q = 3,
we cannot have two disjoint pairs of symbols in the 3rd position, and so (swapping
over c1 and c2, or c3 and c4, if necessary) we have a contradiction to Lemma 8.5.
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So our claim follows, and we may assume that no codewords agree in their last two
positions. In particular, we find that |C| ≤ 32 = 9.

The argument above shows that no codewords agree in positions 4 and 5. The
argument equally works (using the appropriate analogue of Lemma 8.5) to show that
no codewords agree in any pair of positions in the set {3, 4, 5}. Because of this, a
descendant of the form ab000 must have 00000 as a parent. When a 6= 0 and b 6= 0,
this means that there is a codeword of the form ab∗∗∗, since 00000 cannot contribute
to the first two positions of the descendant. Let c ∈ C have the form 11cde. The above
argument, using the descendant abcde, shows that codewords exist of the form ab∗∗∗
whenever a 6= 1 and b 6= 1. Repeating the argument with a codeword of the form
22cde, we see that all 9 words of length 2 are prefixes of codewords. Since there are
two codewords of the form 00∗∗∗, this implies that C contains at least 10 codewords.
But we have already shown that |C| ≤ 9, and so we have a contradiction, as required.

The argument in the last paragraph of the proof above is also useful when q > 3,
as the following two lemmas show.

Lemma 8.7. Let C be a non-binary prolific IPP code of length 5. Suppose (without
loss of generality) that 00000, 00111 ∈ C. Then there exists a pair of codewords which
agree in positions i and j, where {i, j} ⊆ {3, 4, 5}.

Proof. Assume, for a contradiction, that no pair of codewords agree in two of their
final three positions. In particular, since the final two positions of any two codewords
are distinct, we have that |C| ≤ q2.

The argument in the final paragraph of the proof of Lemma 8.6 just uses the fact
that q ≥ 3 and that any two of the final three positions of a codeword determines that
codeword uniquely. So the argument implies that there is a codeword of the form
ab∗∗∗ for any symbols a, b ∈ F . But since there are two codewords of the form 00∗∗∗,
we see that |C| ≥ q2 + 1. This contradiction establishes the lemma.

Lemma 8.8. Let C be a non-binary prolific IPP code of length 5. Suppose there
are two codewords c, c′ ∈ C that agree in positions i and j. Then for all a, b ∈ F with
a 6= ci, b 6= cj there exists a codeword whose ith and jth positions are equal to a and
b respectively.

Proof. Without loss of generality, assume that i = 1, j = 2, c = 00000 and
c′ = 00111. Let a, b ∈ F be non-zero: we must show there exists a codeword of the
form ab∗∗∗.

By Lemma 8.4, no non-zero codeword has two or more zeroes in its final three
positions. But then the descendant ab000 must have 00000 as a parent, and so the
other parent is a codeword of the form ab∗∗∗.

Lemma 8.9. Let C be a q-ary prolific IPP code of length 5, where q 6= 2. No set
of q − 1 codewords can pairwise agree in any fixed set of two positions.

Proof. Suppose a set of q− 1 codewords agree in a pair of positions, say (without
loss of generality) their first two positions. The third positions of these codewords
must all be distinct (by Lemma 8.3). Thus if there exist two codewords that agree
in their final two positions, we obtain a contradiction by Lemma 8.5. A similar
argument shows that no two codewords can agree in their ith and jth positions,
where {i, j} ⊆ {3, 4, 5}. But this contradicts Lemma 8.7.

Lemma 8.10. Let C be a q-ary prolific IPP code of length 5, where q 6= 2. Then
every symbol occurs at least q times in each co-ordinate of the code.

Proof. Assume, for a contradiction, that there is a symbol that occurs fewer than
q times in some position. Without loss of generality, we may assume that at most
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q − 1 codewords are of the form 0∗∗∗∗.
Let a, b, c, d ∈ F be symbols such that there are no codewords of the form 0a∗∗∗,

0∗b∗∗, 0∗∗c∗ or 0∗∗∗d. By considering the descendant 0abcd we see that there is a
codeword c of the form c = ∗abcd. Let z ∈ F \ {d}. The word 0abcz has parents c1

and c2 where c1 = 0∗∗∗∗ and c2 = ∗abc∗. But since d(C) = 3 we find that c2 = c
and so c1 must contribute to the final component of the descendant 0abcz. Thus
c1 = 0∗∗∗z. Since there are at most q − 1 codewords starting with 0, and since there
are q − 1 choices for z, we find that there are exactly q − 1 codewords starting with
0, and all their last co-ordinates differ.

By Lemma 8.9, there are at most q − 2 codewords of the form ∗ab∗∗, and so we
may find distinct symbols u, v ∈ F such that there are no codewords of the form
∗abu∗ or ∗abv∗. Let w ∈ F be such that there are no codewords of the form ∗ab∗w.
Considering the parents of 0abuw and 0abvw, we see that there must be codewords
of the form 0∗∗uw and 0∗∗vw. But these are distinct codewords starting with 0, and
their last co-ordinates are equal. This contradicts the previous paragraph, and so the
lemma follows.

Lemma 8.11. Let C be a non-binary prolific IPP code of length 5. Assume
that 00000, 00111 ∈ C and that there are two codewords that agree in their last two
positions. Then the non-zero codewords of the form ∗∗0∗∗ must be of the form ∗∗01a
or ∗∗0a1 for some a ∈ F \ {0, 1}.

Proof. Note that a non-zero codeword of the form ∗∗0xy cannot have x, y ∈ {0, 1},
for otherwise IPP1 is violated. Moreover, a non-zero codeword of the form ∗∗00a or
∗∗0a0 would contradict Lemma 8.4. So to prove the lemma, it suffices to show that
there are no codewords of the form ∗∗0xy where x /∈ {0, 1} and y /∈ {0, 1}.

Suppose, for a contradiction, that there exists a codeword c ∈ C of the form
∗∗0xy, where x /∈ {0, 1} and y /∈ {0, 1}. Without loss of generality, we may assume
that x = y = 2. By Lemma 8.5, c is the unique codeword of the form ∗∗∗22. By
Lemma 8.4, the only codeword of the form ∗∗∗11 is the codeword 00111. Since we
are assuming that there exist two codewords that agree in their final two positions,
Lemma 8.8 implies that there exists c′ ∈ C of the form c′ = ∗∗∗12 or c′ = ∗∗∗21.
In either case, the sets {00111, c} and {00000, c′} violate IPP2. This contradiction
establishes the lemma, as required.

Lemma 8.12. Let C be a non-binary prolific IPP code of length 5. Let i, j ∈
{1, 2, . . . , 5} be a pair of positions. Then there cannot exist a set of three codewords
that pairwise agree in position i and position j.

Proof. Suppose, for a contradiction, that such a set of three codewords exists.
Without loss of generality, we may assume i = 1 and j = 2 and the positions
where the three codewords agree are both 0. Since d(C) = 3, we may assume that
00000, 00111, 00222 ∈ C. By Lemma 8.7, we may assume (without loss of generality)
that there is a pair of codewords that agrees in their final two positions.

By Lemma 8.11, the non-zero codewords of the form ∗∗0∗∗ must have the form
∗∗01a or ∗∗0a1 for some a ∈ F \ {0, 1}. But replacing the symbol 1 by the symbol 2
throughout Lemma 8.11, since 00222 ∈ C we deduce that these codewords must have
the form ∗∗02b or ∗∗0b2 where b ∈ F \ {0, 2}. So a codeword of the form ∗∗0∗∗ must
have one of the forms 00000, ∗∗012 or ∗∗021. Since d(C) = 3, there is at most one
codeword of each of the forms ∗∗012 and ∗∗021, and so 0 occurs at most 3 times in
the third position of a codeword. By Lemma 8.6 we have that q > 3, and so we have
a contradiction by Lemma 8.10.

Lemma 8.13. No q-ary length 5 prolific IPP code exists when q ≥ 5.
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Proof. Lemmas 8.11 and 8.12 imply that there are at most 5 codewords which are
zero in their third position. Indeed, without loss of generality, we may assume these
codewords have one of the forms 00000, ∗∗012, ∗∗013, ∗∗021 and ∗∗031.

In order to obtain descendants of the form ∗∗044, we must have a codeword of
the form ∗∗∗44. By Lemma 8.12, there are at most two codewords of the form ∗∗∗44,
and so there are at least (q − 2)2 choices for symbols a, b ∈ F such that there are
no codewords of the form a∗∗44 or ∗b∗44. Since q ≥ 5, we have that (q − 2)2 > 5
and so we may in addition choose a and b to have the property that there are no
codewords of the form ab0∗∗. But then ab044 is not a descendant of C, and so we
have a contradiction as required.

Lemma 8.14. A 4-ary prolific IPP code C of length 5 has exactly 16 codewords.
Proof. By Lemma 8.10, each symbol must occur at least 4 times at the start of a

codeword, and so |C| ≥ 16. So it suffices to show that |C| ≤ 16.
If no pair of codewords agree on some fixed pair of positions {i, j}, we have that

|C| ≤ 16 and the lemma follows trivially. So we may assume that for all positions i
and j we may find distinct codewords c, c′ ∈ C such that ci = c′i and cj = c′j .

Without loss of generality, assume that 00000, 00111 ∈ C.
Suppose another pair of symbols is the prefix of distinct codewords, so aby3y4y5 ∈

C and abz3z4z5 ∈ C where a and b are not both zero. If y3, y4, y5 ∈ {0, 1} then
{00000, 00111, aby3y4y5} violates IPP1. So, without loss of generality, we may assume
that y3 = 2. Note that y3 6= z3, since d(C) = 3. Let c3 and c4 agree in their final
two positions. Since q = 4, we find that Lemma 8.5 is violated, in the case when
c1 = 00000, c2 = 00111 or in the case when c1 = aby3y4y5 and c2 = abz3z4z5. This
contradiction shows that at most one pair of symbols is the prefix of two or more
codewords. Indeed, more generally, we find that for any pair {i, j} of positions at
most one pair of symbols occurs twice as the ith and jth positions of a codeword.
Since, by Lemma 8.12, no pair of symbols occurs more than twice in any two positions
of the code, we see that |C| ≤ 17, and if |C| = 17 then every pair of symbols occurs in
any two positions of the code, with exactly one pair occurring twice.

Suppose that |C| = 17. Then the previous paragraph shows that there are code-
words of the form ∗∗0∗2 and ∗∗0∗3. By Lemma 8.11, these codewords must be of the
form ∗∗012 and ∗∗013. Similarly, there exist codewords of the form ∗∗∗02 and ∗∗∗03,
and Lemma 8.11 implies that these codewords are actually of the form ∗∗102 and
∗∗103. But then both 01 and 10 repeat in the third and forth positions of codewords.
This contradicts the previous paragraph. Hence |C| ≤ 16, as required.

Lemma 8.15. No 4-ary prolific IPP code of length 5 exists.
Proof. Let C be a 4-ary prolific IPP code of length 5. By Lemma 8.14, we have

that |C| = 16 and so, by Lemma 8.10, every symbol occurs exactly 4 times in any
position.

Since d(C) = 3, we may assume that 00000, 00111 ∈ C. Since 0 occurs exactly
4 times in the third position of the code, Lemma 8.11 implies that (without loss of
generality) there exist codewords of the form ∗∗012, ∗∗021 and ∗∗013. In particular,
two codewords agree in their third and fourth positions. So we may apply Lemma 8.11
to deduce that the non-zero codewords ending in 0 are, without loss of generality, of
the form ∗∗210, ∗∗120 and ∗∗130. (Note that we cannot have both a codeword of
the form ∗∗210 and a codeword of the form ∗∗310, for then 1 would occur too many
times in the fourth position of the code.) Arguing similarly, we find that (without
loss of generality) the non-zero codewords with 0 in their fourth position are of the
form ∗∗102, ∗∗201 and ∗∗301. So to summarise, we may assume that C consists of 16
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0 0 0 0 0
0 0 1 1 1
∗ ∗ 0 1 2
∗ ∗ 0 2 1
∗ ∗ 0 1 3
∗ ∗ 2 1 0
∗ ∗ 1 2 0
∗ ∗ 1 3 0
∗ ∗ 1 0 2
∗ ∗ 2 0 1
∗ ∗ 3 0 1
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


Table 8.1

Structure of the 4-ary code

codewords of the forms given in Table 8.1, where the last three positions of the final
5 codewords do not involve 0 or 1.

Since there are two codewords of the form 00∗∗∗, and 0 occurs exactly 4 times
in any position, there are symbols x and y such that there are no codewords of the
form 0x∗∗∗ or y0∗∗∗. Without loss of generality, we may assume x = y = 3, and so
there are no codewords of the form 30∗∗∗ or 03∗∗∗. There are at most two codewords
of the form 33∗∗∗ by Lemma 8.12. Let c be a codeword of one of the forms ∗∗021,
∗∗210, ∗∗102 which is not of the form 33∗∗∗. Lemma 8.12, together with the fact
that 00000, 00111 ∈ C, implies that c is not of the form 00∗∗∗. Write c = c1c2c3c4c5.
Note that there is no codeword c′ ∈ C \{c} that agrees with c in two of its final three
positions, and so any descendant of the form ∗∗c3c4c5 must have c as a parent. Since
c is not of the form 33∗∗∗ or 00∗∗∗, one of the words 03c3c4c5 and 30c3c4c5 cannot
be a descendant and so we have a contradiction as required.

9. Conclusion and open problems. As we stated in the introduction, we
conjecture that there are no examples of prolific IPP codes other than those listed in
the introduction. We begin this section by discussing how close we are to proving this
conjecture.

When n ≥ 3 but n 6= 4, the lower bound of Theorem 2.2 and the upper bound
of due to Hollmann et al. (Theorem 4.3) together imply that for any fixed length
n, there are no q-ary prolific IPP codes of length n provided that q is sufficiently
large. When n = 4, the same is true if an improved, but less explicit, bound due
to Alon, Fischer and Szegedy [3] is used; or we may deduce this from Theorem 7.5.
Sadly, we are not able to bring the number of open parameters n and q (where it
is not known whether a prolific q-ary IPP code of length n exists) down to a finite
number. In particular, when q is fixed and 3 ≤ q ≤ 8, all the parameters n and q are
open for n ≥ 6. Table 9.1 lists the parameters for which the existence of a prolific
(n, q,M) IPP code is as yet undetermined. For the values of n listed in the table, a
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n qmax n qmax n qmax

6 11 7 34 8 13
9 10 10 18 11 12
12 10 13 14 14 11
15 10 16 13 17 10
18 9 19 12 20 10
21 9 22 11 23 10
24 9 25 10 26 9
27 9 28 10 29 9
30 9 31 10 32 9
33 9 34 10 35 9
36 9 37 9 38 9
39 8 40 9 41 9
42 8 43 9 44 9
45 8 46 9 47 9
48 8 49 9 50 8
51 8 52 9 53 8
54 8 55 9 56 8
57 8 58 9 59 8
60 8 61 9 62 8
63 8 64 9 65 8
66 8 67 8 68 8

Table 9.1
Open parameters for prolific IPP codes

non-binary prolific (n, q,M)-IPP code might exist for 3 ≤ q ≤ qmax, and for n > 68,
a non-binary prolific (n, q,M)-IPP code might exist for 3 ≤ q ≤ 8. We used the lower
bound of Theorem 2.2 with k = dn

3 e. We used the upper bound of Theorem 5.4 when
n ≡ 2 mod 3, and the upper bound of Theorem 4.3 otherwise.

As a step towards proving the conjecture, is it possible to show that no q-ary
prolific IPP code of length n exists for all sufficiently large n, where q is a fixed
integer with 3 ≤ q ≤ 8?

We remark that the notion of a prolific code makes sense for any class of code
which has a natural notion of a descendant. In particular, are there non-trivial ex-
amples of prolific k-IPP codes where k > 2? (See Staddon, Stinson and Wei [12] or
Blackburn [7] for the definition of a k-IPP code).

Is it possible to improve our upper bounds on IPP codes (Theorems 5.2 and 5.4)
significantly? We believe that the constants in the leading terms of these upper bounds
can be reduced. Indeed, it might be possible to prove more than this. Let n be fixed,
and suppose that 3 does not divide n. Let ε be a positive constant. Is it the case that
a q-ary IPP code C of length n must satisfy |C| ≤ εqdn/3e when q is sufficiently large?
This is true when n = 4, by a bound of Alon, Fischer and Szegedy [3, Theorem 2.5].

Is it possible to generalise the techniques of Theorems 5.2 and 5.4, to provide
better upper bounds for k-IPP codes when k > 2? We have established new bounds
on 3-IPP codes using these techniques. We hope that these bounds will form the
subject of a future paper; but we also hope that our techniques can be stretched
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further.

Acknowledgments. The authors would like to thank Noga Alon for some help-
ful remarks.

REFERENCES

[1] R. Ahlswede and L. H. Khachatrian, The complete intersection theorem for systems of
finite sets, European Journal Combinatorics, 18 (1997), pp. 125–136.

[2] N. Alon, G. Cohen, M. Krivelevich, and S. Litsyn, Generalised hashing and parent iden-
tifying codes, J. Combinatorial Theory, Series A, 104 (2003), pp. 207–115.

[3] N. Alon, E. Fischer, and M. Szegedy, Parent-identifying codes, Journal of Combinatorial
Theory, Series A, 95 (2001), pp. 349–359.

[4] N. Alon and U. Stav, New bounds on parent-identifying codes: the case of multiple parents,
Combinatorics, Probability and Computing, 13 (2004), pp. 795–807.

[5] A. Barg, G. Cohen, S. Encheva, G. Kabatiansky, and G. Zemor, A hypergraph approach
to the identifying parent property: the case of multiple parents, SIAM Journal on Discrete
Mathematics, 14 (2001), pp. 423–431.

[6] A. Barg and G. Kabatiansky, A class of IPP codes with efficient identification, J. Complex-
ity, 20 (2004), pp. 137–147.

[7] S. R. Blackburn, An upper bound on the size of a code with the k-identifiable parent property,
Journal of Combinatorial Theory, Series A, 102 (2003), pp. 179–185.

[8] R. Hill, A First Course in Coding Theory Oxford University Press, Oxford, 1986.
[9] H. D. L. Hollmann, J. H. van Lint, J.-P. Linnartz, and L. M. G. M. Tolhuizen, On codes

with the identifiable parent property, Journal of Combinatorial Theory, Series A, 82 (1998),
pp. 121–133.
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