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Abstract. We propose a new trust metric for a network of public key certificates, e.g. as

in PKI, which allows a user to buy insurance at a fair price on the possibility of failure

of the certifications provided while transacting with an arbitrary party in the network. Our

metric builds on a metric and model of insurance provided by Reiter and Stubblebine [9],

while addressing various limitations and drawbacks of the latter. It conserves all the beneficial

properties of the latter over other schemes, including protecting the user from unintentional or

malicious dependencies in the network of certifications. Our metric is built on top of a simple

and intuitive model of trust and risk based on “utility sampling”, which maybe of interest for

non-monetary applications as well.
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1 Introduction

In any networked situation, trust in entities, especially business entities with which a user may have

monetary transactions, is a challenging issue. Consider the case of PKI (public key infrastructure),

where a reputed entity called certificate authority (CA) authenticates (usually via a chain of public

key authentications [3]) a target entity’s public key and other information about the target entity.

This however, requires an implicit (user’s) trust in the CA’s ability to associate the “other informa-

tion” with the target public key. As the authentication of the target public key is done via a chain

of authentications, a similar trust in the ability of intermediaries in associating information about

the next entity in the chain with the public key of the next entity is required. On top of this, the
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user must trust CA’s public key. Although, this last trust may be justified, hinted by the fact that

the CA is a reputed entity, the trust in other entities in the chain of authentications is never perfect.

Thus, a user is inevitably led to determine the net trust it can place in the full chain of au-

thentications, usually by various algebras on trust metrics. Moreover, this net trust, or the utility

of this trust, also depends on the kind of information that was authenticated. For example, if the

information in a certificate authenticates a public key with a business name and its web address,

then the user’s net trust determined by such algebras is only about the public key being associated

with the business name. The user must independently determine how much it trusts the business

name being a bona-fide business. On the other hand, if the certificate also authenticates, along with

the above information, that the business has a five star service quality, then the user is more inclined

to trust the business.

Although various trust metrics and algebras for networks of links have been studied [13, 7,

2, 10, 5], our focus is on trust metrics for networks of authentications as in PKI. Even in the

context of PKI, various trust metrics have been proposed. Of particular importance is the work of

Reiter and Stubblebine [9], who proposed a set of eight principles which a good trust metric must

follow. They also proposed a metric which claimed to follow these principles. As one of the more

important principles they had required that the metric’s output should be intuitive and relevant to

the authentication decision. Following this principle, in their solution a metric can be computed

which represents the amount for which the information bound to the target public key is insured

for. Another important principle states that the metric should be resilient to modifications of the

model by misbehaving parties. Since their metric computes a minimum insured value regardless of

misbehaviour of all parties (except the root), this principle is satisfied.

Although, this metric is of great relevance to the user, and also remedies many other problems

with earlier metrics, it has a few major drawbacks: (a) it does not tell the user what the premium

for the insurance is, (b) it does not model how the insurance amounts were determined, and (c) it

forces the user to deal with all entities in the network for insurance claims. Although, the drawbacks

(b) and (c) may really be implementation issues, we believe the drawback (a) is of real concern,

and actually violates one of their principles, namely “the metric should take into account as much

information as possible that is relevant to the authentication decision that the user is trying to make”.

In our solution, which builds on Reiter and Stubblebine’s insurance metric, not only does the

final metric allow the user to determine the insurance premium, it also allows the user to insure

any an amount to his or her choice, upto a limit. Further, this limit is part of the metric. Thus,

rather than the insurance amount, our metric reflects the cost of insurance per dollar amount, and

an upper limit on the applicability of this rate. We will show that this corresponds to the mean and

variance of the trust value viewed as a belief function [6]. Thus, our new metric, while satisfying all

the principles of Reiter and Stubblebine, further addresses the issues raised by proponents of “trust

as belief functions”, where a belief function is not just a single probability value, but one which also
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incorporates uncertainty [6].

We model our trust metrics on a simple and intuitive theory of “utility sampling”, which maybe

of independent interest. We also mention that insurance amount can be alternatively represented by

reputation. In many contexts, including Internet commerce, reputation has become an alternative

currency. In this viewpoint, an end-user never buys insurance, but a failure to deliver results in a loss

of reputation of that agent. The trust metric (which in our system is an insurance rate, and an upper

limit) then becomes a reputation rating along with a variance (or confidence value). It is paramount

that a loss of reputation lead to an appropriate adjustment of these metrics (see e.g. [12], where an

updating reputation system is discussed), and our model based on “utility sampling” enables exactly

that, while satisfying the Reiter-Stubblebine properties.

1.1 Examples Involving the New Metric

Our scheme is best illustrated with a sequence of examples, each more complicated than the previous.

A sequence of authentications starting with a CA (say, with public key KS), and ending with a

target public key KT , is represented by a line graph, with nodes being the public keys of the entities

involved, and the directed edges representing signatures. Each edge, say from KA to KB, is also

labelled with information which is associated with KB, and signed with secret key corresponding to

KA. For example, this information may include the name B of the business associated with key KB.

The information also includes a pair of values p(KA,KB) and c(KA,KB), called the probability

of accuracy, and the confidence respectively. We will drop KA and KB, when they are clear from

context. The value p represents the probability, according2 to A, that the information about KB is

reliable, including KB’s owner’s ability to recommend other entities and its ability to protect the key

KB etc. In absence of any other information then, conditioned on the fact that owner A ofKA is fully

reliable, p(KA,KB) represents the best estimate about the probability of accuracy of information

associated with KB. If the line graph has an edge from KS to KA, then it can be formally shown

that p(KS ,KA)p(KA,KB) is the probability (according to S) of B being reliable (in absence of any

other paths of edges between S and B). In this manner, S can calculate, the probability (according

to S itself) that the target T associated with KT , and its information is reliable. This probability

being a reliability indicator, it can be used to calculate the premium S will charge to insure a certain

amount of transaction with T . More details about this calculation and the underlying model will be

given later.

However, S cannot insure an unlimited amount using this probability information, as the prob-

ability as estimated has a certain uncertainty attached to it, and here is where the confidence c

2 When we say that the probability is according to A, it means that A has determined an underlying

probability space, and it is in this space that A has estimated the probability. We will address these issues

later in more detail.



4

comes in. As we will see later, the probability p(KA,KB) is estimated by A, using what we call

utility sampling. In simple terms, c(KA,KB) is the total dollar amount of transactions which have

been involved using that edge. Hence, we require that this edge can only be used in an insurance

of upto that amount (or possibly, a certain function of it). In a line graph, the minimum c value on

the edges of the line graph determines the maximum amount that can be insured. For example, in

the line graph in fig 1, represented by nodes KS, KA, KB and KT , the maximum amount insurable

is 100.

More formally, the probability value p is estimated as the mean of a second order probability.

A second order probability density function is a density on first order probabilities, and this is the

underpinning of belief functions [6]. As an example, a p value of 1/2 could reflect both a case of no

information, or a case of highly accurate information that the party being adjudged is only reliable

half the time. In the former case, the variance of the second order probability is very high, whereas

in the second case the variance is low. We will develop the theory later in section 4, but for now we

continue with a more complicated example.
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Fig. 1. The New Metric

The situation gets more interesting when we have multiple paths from S to the target entity

T . As an example, again consider fig 1. Any path Pi from S to T can be treated as a line graph,

and the min value of c on Pi, denoted ci, is the limit on the amount insurable using that path.

For instance, using the middle path KS ,KA,KB,KT , the maximum insurable value is 100, and the

corresponding probability is (1∗0.98∗0.99). On the other hand, using the top path KS,KC ,KD,KT ,

the maximum insurable value is 200, with a corresponding probability of (0.99 ∗ 0.99 ∗ 0.90). Now, if

a user is interested in a transaction of amount only 100 with T , then he could be offered insurance

based on any of these paths used to calculate the premium (or the average premium – such more

complicated strategies are considered and modeled later in the paper). On the other hand, if he is



5

10
3

10
4

10
5

200

100

100

100

600

200

600

KS
KTKA KB

KC KD

KE

Fig. 2. The Reiter-Stubblebine Metric

interested in a transaction worth 300, the first 200 can be filled using the top path and the premium

determined using the corresponding probability, and the remaining 100 filled using the middle path

(or some other path). In general, the total insurable amount equals the max flow in the graph (using

the c labels), and this corresponds to the metric developed in [9] by the famous max-flow min-cut

theorem [4, 8].

One potential problem with various other metrics (e.g. as in PGP [13]) is that some of the paths

and trust values may be dependent. For example, in fig 1, owner of KC (owner of KD) may be same

as KA (same as KB resp.), maliciously or otherwise. In our model, the end user does not care, as

it gets its insurance at a fair premium (the premium is fair as there may be several CA’s providing

a market). It is upto S to determine that the owners of KA and KC (say, A and C) are same or

different. Even if it does determine that they are same, as we will see later, our model incorporates the

fact that S has assessed both A and C separately while obtaining the values (p(KS ,KA), c(KS ,KA))

and (p(KS ,KC), c(KS ,KC)).

The rest of the paper is orgnaized as follows. We first describe the Reiter-Stubblebine Insurance

model and metric, along with its advantages over other metrics. We also discuss its drawbacks. In

section 3 we describe our model and the new metric. The section also describes the algorithms for

calculating the metrics. In section 4 we describe the underlying probability model, and the notion

of utility sampling which is used to justify our metric.

2 The Reiter-Stubblebine Model and Metric

We first describe the Reiter Stubblebine (RS-) metric [9]. The metric operates on a directed (acyclic)

graph. The nodes in the graph are public keys, and the edge KA→KB exists in the graph if the

user is in possession of a certificate that assigns attributes (including an owner) to KB, and whose
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signature can be verified usingKA. Each edge is labeled with the attributes included in the certificate

that the edge represents. It is assumed that the attributes in a certificate are consistent.

Each edge KA→KB also has a numeric label that represents the amount of money for which the

owner of KA insures the attributes and integrity of KB. In other words, it is the value for which the

owner of KA will be liable to the user if the attributes bound to KB in the certificate are incorrect,

or if the private key (corresponding to KB) is used to mislead the user, intentionally or otherwise.

It is also natural to assume that the numeric label is part of the certificate.

The metric is best described using the example in fig 2. If the attributes bound to KT (the target

public key) turn out to be false, the owners of KD, KB, and KE are each liable to the user for the

amount of 200, 600 and 100 respectively. It is also possible that when the user goes to, say owner of

KB, the owner (or its attributes as certified) turns out to be delinquent, and hence the user now is

owed by owners of KA and KC , for the amount of 100 each.

Reiter and Stubblebine show that, in case of a false binding for the target key, the minimum

insured amount is equal to the minimum capacity cut in the graph from KS to KT . For example, in

fig 2, the minimum cut as shown has value 500, and that is the minimum insured value.

Some of the salient qualities of this metric and model (following the principles enunciated in [9])

are:

1. the user is not required to ascertain name to key bindings to construct the model, except for the

root CA, whose name to key binding is reputed,

2. the final metric computed is intuitive,

3. the final metric lets the user ascertain the risk involved in using KT (although this is what we

improve on further in this paper),

4. the final metric is computed easily using the Ford-Fulkerson algorithm [4] (or see [8]),

5. the metric can be computed with partial information, and still give meaningful results,

6. the insurance metric allows the user to be protected from dependencies in the graph, whether

they are intentional or malicious. This is an important differentiator from other metrics, e.g.

the metric used in PGP [13]. In PGP, a target key binding is deemed reliable if two marginally

reliable keys are authenticating it. However, those two keys may belong to the same marginally

reliable person (i.e. the edges are highly dependent). In Reiter Stubblebine, if there were two

such authentications from the same person, the person is liable for both edges in case of a failure.

Before we look at the drawbacks of this model and metric, we point out that [9] does mention

that the metric could also include trust values, and then use only those edges which transcend a

certain trust value. However, no specifics are given. The authors also mention that their metric

does not address some real world issue, e.g. the insurance premium, determining liable parties, and
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recovery of funds. Indeed, these are some of the major drawbacks of this metric. In fact, since the

metric just computes a total insured value, regardless of the value of the transaction, the user is left

to ascertain the risk involved in undertaking this transaction. One could argue that the user should

not undertake the transaction if it is of value a certain multiple of the insured value, and should

go ahead and do the transaction if the value is less than this threshold. Clearly in such a situation,

the insurance premium for the different valued transactions has to be different. For example, if the

minimum insured value turns out to be a $10,000, then if the user is only doing a transaction worth

$1000, he should need to pay a much lower premium.

Thus, it is the rate of insurance which a user needs to know to assess risk, rather than the total

amount insurable, and the Reiter-Stubblebine model does not provide that The solution we provide

actually resolves these problems, while providing a sound and intuitive underlying model of trust.

3 The New Model and Metric

Our model shares many properties with the Reiter-Stubblebine model, and can in fact be seen as an

extension, although there are fundamental differences. As in the RS-model, the metric operates on a

directed acyclic graph, with the nodes in the graph being public keys. An edge KA→KB exists in the

graph if the user is in possession of a certificate that assigns attributes (including exclusive owner(s))

to KB, and whose signature can be verified using KA. Each edge is labeled by the attributes included

in the certificate that the edge represents. Each edge is also labeled with two numeric values p and

c (whose significance will be pointed out later).

There maybe multiple source nodes in the graph, and we will only be interested in those source

nodes in which the user has complete trust, including the binding of information to the source public

key. Modeling limited trust in source nodes is beyond the scope of this paper. The various source

nodes can be seen as providing alternative metrics of use to the end user, and possibly a market for

the metrics.

In the graph, there is a target node, say KT , and the end user is interested in a transaction with

the owner of KT . The ultimate goal of the metric calculation is for the end user to determine the

risk involved in the transaction, or alternatively in the trust to place in the transaction.

We assume that all the attributes in any certificate are consistent. For simplicity, we assume that

for each node, the information attributed to it (other than p and c) by various incoming edges is the

same. This is not a limitation of our model, but is there only to simplify the exposition. Thus we can

assume that the attributes are labeled on the nodes, whereas the p and c values are labels on the

edges. Moreover, we assume that at the end of each transaction it can be determined (unambiguously

for the end user and the source node) whether any of the attributes in the certificates involved were

falsified. Here are a few examples of attributes in certificates:
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– Web Address = www.xxx.com,

– Name and Physical Address = N and A,

– Dun and Bradstreet Solvency Rating = A (i.e. third party rating value),

– The business associated with this public key WILL deliver.

For each transaction with owner of KT , and each source node KS , the metric provides a limit

l on the amount of insurance that owner of KS is willing to provide to the end user, and for each

amount m less than l, the metric provides a premium for which the owner of KS is willing to sell

insurance to the end-user for an amount of m.

Note that, even if the end user is not interested in buying the insurance, or even if KS is not in

the business of selling insurance, the metric can be calculated by all parties regardless, and hence

provides a good metric of the risk involved in the transaction. Of course, as we will see later, it can

be argued that the values p and c reflect actual values more accurately, if monetary transactions or

reputations were involved.

3.1 The Metric Calculation Algorithm

We start by describing the algorithm to compute the upper limit on the amount insurable. This value

is calculated based solely on the c labels of the edges. This upper limit is the maximum KS-KT

flow in the directed graph [4, 8], with the capacity on each edge being the c value of the edge. By

the famous max-flow min cut theorem [4], this maximum flow is equal to the minimum capacity KS

to KT cut of the c-labeled graph. For example in fig 1, the min cut is as depicted by the curved

line, and its value is 500, which is also the max flow in the graph. These values can be computed

efficiently using the Ford-Fulkerson max-flow algorithm [4, 8]. There can be variations on this limit

calculating algorithm, where the maximum amount insurable is some function of the max flow, as

the model on which this algorithm is based is intuitive, and there is no hard reality on which it can

be based.

As for the intuition behind this algorithm, we first describe what the c values on the edges are

supposed to represent. The c value on each edge KA→KB is the total dollar amount of transactions

that have ever been insured involving this edge. We will discuss the “involvement” aspect later in

more detail. We will also relate 1/c to the variance in the probability estimates made by owner of

KA about the attributes of KB in section 4. In effect, if the c value is too low, the variance in the

probability estimate is so high that it is not practical to determine a good premium for insurance.

So, a natural upper bound on the insurance amount is c, or some multiple of it. Hence, for any path

from KS to KT , the maximum amount insurable should be the minimum c value on that path. By

the same reasoning, the maximum amount insurable using the whole directed graph should be the

maximum flow in the graph (with capacity bound on each edge being its c label).
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Note that if the amount to be insured is much smaller than the maximum amount insurable, one

may choose a variation of the algorithm, where not all paths are considered, and a rough estimate

on the premium suffices, usually with the benefit of the doubt going to the end user. This will

become more apparent when we describe the premium calculation algorithm, which comes next. In

general, the premium calculation algorithm can become a complex optimization problem. But, for

most purposes simplicity in the algorithm maybe more of a determining choice than the optimal

premium value (whether it is optimal from the end user’s perspective or KS’s perspective).

So a simple variation of the premium calculating algorithm does the following. Assume that

the maximum flow f has been determined (based on the c labels), and all the paths with non-zero

flow are determined. For each such path Pi, lets say the flow attributed to the path is fi, with

the sum being f . For each path Pi, calculate the probability of accuracy pi to be the product of

the p labels on edges on the path. For example, in fig 1, if the path is KS,KA,KB,KT , then the

probability of accuracy of this path is 1 ∗ 0.98 ∗ 0.99. Let’s assume that for each dollar amount to be

insured using this path Pi, there is a formula for calculating the premium based on the probability

pi. For example, let si be the price (selling price) of the premium, and ai be the amount owner of

KS (say S) pays to the owner of KA (say A) for insuring δi fraction of the amount. Also, assume

that S expects a γ fraction expected profit per transaction. Then,

(si − ai)(1− pi)− (1 − δi)pi = γ

The value ai is determined inductively, and in fact towards the bottom end of the chain of au-

thentication edges, the δi value could be zero. For instance in our example, A may not buy further

insurance from B, and B may just be in a service contract with A. In case of failure of B or some

node below B, the reputation of B goes down and he/she risks losing the service contract. There

are various other ways the calculation of the premium si can be done based on pi and the path Pi,

and these methods are not the main focus of this paper.

Thus, for each path Pi, we have the maximum amount insurable, i.e. fi, and the rate of insurance

premium si. The rest of the algorithm is straightforward. First, the paths are sorted in increasing

order of rate si. If the user wants to insure an amount u (< f), then the first f1 dollars out of u are

insured according to P1 using rate s1, and the next f2 dollars are insured using path P2 using rate

s2, and so forth till all the u dollars are filled.

Alternatively, the first f1 dollars could be insured at the average premium rate (over all i),

and the next f2 dollars can be insured at the average premium rate (excluding s1), and so forth.

This alternative represents the estimates of risk more accurately, especially if there are negative

recommendations (e.g. p values less than 1/2).
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3.2 Updating the p and c Values

The way the paths Pi are used to calculate the requisite premiums, provides a way for the entities

to improve their estimates on the probability of accuracy p, as well as c. This will become more

apparent in section 4 where we model these probabilities. Thus, if a path Pi was indeed used to

provide insurance for amount fi, each edge in the path can use this as a sample of size fi for its

probability estimation. Note that there is no hard and fast rule, and the entities may have their own

way of weighting positive and negative samples. In fact, the entities may have their own completely

different estimation mechanism, and we provide the mechanism only as a guide.

While the node attesting the target node, maybe estimating the probability of binary hypothesis,

the intermediate nodes are attesting the probability of success itself of the next node. For example,

in fig 1, the node KA is estimating the accuracy of B to be 0.98. This accuracy of B includes its

attestation that owner of KT is reliable with probability 0.99. However, the estimation of p(KA, kB)

can be done as follows. Let KT1, ...,KTn be the list of all public keys (and their attributes) that B

is attesting, and let the (p, c) values estimated by B about KTi be (pi, ci). Then after a time period,

where for each i, A attested Ti via B using ∆ci additional samples (dollar amounts), and ∆ri of the

samples showed positive behaviour by Ti, the new value of p(KA,KB) (in short pnewA ) is given by

pnewA =
poldA +

∑

i∆ci · (1− |1− ∆ripi

∆ci
|)

coldA +
∑

i∆ci

3.3 Boot-Strapping

One may ask, how the initial values pA and cA are arrived at. If we follow the model strictly, the pA

value can be set to 1/2, however the cA value also gets set to zero, as there has been no transaction

ever with agent A. This may preclude A, in our scheme, from getting any business. However, there

can be a simple engineering approximation to this, by setting cA to a minimal value, say 100. In

a more intelligent system, profiling can be used to initially (and even later) inherit p and c values

from one agent to another.

4 Utility Sampling

We start by describing second order probabilities. Let h be a binary hypothesis that is true with

probability p ∈ [0, 1]. A second order probability (SOP) density function f is a function such that

f(p) ≥ 0

∫ 1

0

f(p)dp = 1
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Thus a second order probability density function is a density on the first order probability p. SOP

density functions are used in modeling situations where the first order probability p is not known

precisely.

Assume that to start with, an agent A does not have any experience with the hypothesis h. We

can model this by assuming that for the agent A the a priori distribution, ψ0(p) on p is uniform.

If the agent A then makes r1 positive and s1 negative observations of the hypothesis h, then the

posteriori probability density of p is given by (see Appendix A)

ψ1(p = θ|r1, s1) =
Γ (r1 + s1 + 2)

Γ (r1 + 1)Γ (s1 + 1)
θr1(1− θ)s1 (1)

where r1, s1 ≥ 0 and Γ is the gamma function. It is not difficult to derive (see Appendix A) that

if the agent subsequently makes ri positive and si negative observations of the hypothesis h in the

time epoch i, then the posteriori probability density of p is given by

ψi(p = θ|rj , sj , 1 ≤ j ≤ i)

=
Γ (r + s+ 2)

Γ (r + 1)Γ (s+ 1)
θr(1− θ)s (2)

where r =
∑i

j=1 rj and s =
∑i

j=1 sj. We make several observations here. First, the posteriori

probability densities ψi()̇ are beta densities [1]. Second, the total number of observations r+ s, and

the fraction r
r+s

form a sufficient statistics for estimating the parameter p. And finally, the mean of

p is given by

E[p|rj , sj , 1 ≤ j ≤ i]

=

∫ 1

0

θψi(θ|rj , sj , 1 ≤ j ≤ i)dθ (3)

=
r + 1

r + s+ 2
(4)

while the variance of p is given by

V [p|rj , sj , 1 ≤ j ≤ i]

=
(r + 1)(s+ 1)

(r + s+ 2)2(r + s+ 3)

In our model of network of authentications, we annotate each edge of the graph by the pair

(p, c) = ( r+1
r+s+2 , r + s). It is easy to verify that (p, c) together form sufficient statistics to specify

the posteriori density of p. This notation has an intuitive appeal—the first element of the pair

denotes the mean of the SOP density function, and the second element denotes the total number

of experiences, positive or negative. Note that as c = (r + s) increases the variance goes down, and

hence better is our confidence in the first element of the pair. We also note that for large values of

r and s, the first parameter can be approximated by r/(r + s).
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These two parameters can be readily estimated in different circumstances. For example, if two

agents are engaged in monetary transactions, then the second parameter can be put equal to the

total amount of money involved in these transactions, while the first parameter can be put equal

to the fraction of money involved in transactions whose outcome was positive (as defined by the

concerned agent), and hence the name utility sampling.

5 Conclusion

In this paper we seamlessly combine two approaches to Trust Metrics; one based on belief functions,

as proposed by Josang [6], and another proposed by Reiter and Stubblebine which addresses various

practical aspects of trust algebras. The former is based on Dempster-Shafer Theory [11], and while

addressing the notion of trust as a second order probability, suffers from problems with its compo-

sition algebras, especially with malicious agents manipulating the model. The latter addresses these

security concerns of manipulation, but did not yield the more informative risk assessment metric as

can be obtained with second order probabilities. Our metric, while providing an intuitive and sound

underlying model, shows how the two approaches can be combined to give a better trust estimator

for the end user.

Our metric can be used in a reputation system as well, where the reputation of the agents is

viewed as a currency in lieu of monetary amounts involved in insurance based systems. The advantage

of this reputation system over existing systems is that it continues to enjoy the properties based on

Reiter and Stubblebine’s principles.
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A Beta Distributions and Their Properties

The following integral plays a crucial part in deriving many properties of the beta distribution.

∫ 1

0

xr(1 − x)sdx

=
s

r + 1

∫ 1

0

x(r+1)(1− x)(s−1)dx

=
s!

(r + 1)(r + 2) . . . (r + s)

∫ 1

0

x(r+s)dx

=
s! r!

(s+ r + 1)!

=
Γ (s+ 1)Γ (r + 1)

Γ (s+ r + 2)
(5)

In the above derivation, second step follows from integration by parts by making a substitution

u = (1− p)s and v = pr+1

r+1 .

Using (5), we can derive mean and variance of beta densities. Specifically, the mean of the SOP

density function ψ(p|r, s) is given by

E[p] =

∫ 1

0

θ ψ(θ|r, s)dθ

=

∫ 1

0

θ
Γ (r + s+ 2)

Γ (r + 1)Γ (s+ 1)
θr(1− θ)sdθ

=
Γ (r + s+ 2)

Γ (r + 1)Γ (s+ 1)

∫ 1

0

θr+1(1− θ)sdθ
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=
Γ (r + s+ 2)

Γ (r + 1)Γ (s+ 1)

Γ (s+ 1)Γ (r + 2)

Γ (s+ r + 3)

=
r + 1

r + s+ 2

Similarly, we can derive that the variance of a beta distribution is given by

V [p|rj , sj, 1 ≤ j ≤ i]

=

∫ 1

0

(θ − E[p|rj , sj , 1 ≤ j ≤ i])2ψi(θ|rj , sj, 1 ≤ j ≤ i)dθ

=
(r + 1)(s+ 1)

(r + s+ 2)2(r + s+ 3)

By Bayesian rule of probabilities, we have

ψi(p = θ|Aj , 1 ≤ j ≤ i)

=
ψi−1(θ|Aj ≤ j ≤ (i− 1)) Pr(Ai|p = θ)

Pr(Ai)

=

(

ri+si
ri

)

θri(1− θ)si
∫ 1

0

(

ri+si
ri

)

xri(1− x)sidx

=

(

ri+si
ri

)

ri + si + 1
θri(1 − θ)si

=
Γ (ri + si + 2)

Γ (ri + 1)Γ (si + 1)
θri(1 − θ)si

This article was processed using the LATEX macro package with LLNCS style


