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Abstract. MicroArchitectural Attacks (MA), which can be considered as a special form of Side-
Channel Analysis, exploit microarchitectural functionalities of processor implementations and
can compromise the security of computational environments even in the presence of sophisticated
protection mechanisms like virtualization and sandboxing. This newly evolving research area
has attracted significant interest due to the broad application range and the potentials of these
attacks. Cache Analysis and Branch Prediction Analysis were the only types of MA that had
been known publicly. In this paper, we introduce Instruction Cache (I-Cache) as yet another
source of MA and present our experimental results which clearly prove the practicality and
danger of I-Cache Attacks.
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1 Introduction

Side-channel cryptanalysis exploit the information leakage from execution time, power con-
sumption or any such side-channels during the computation of cryptographic operations, c.f.
[19, 20]. Cryptographic implementations leak sensitive information because of the physical
properties and requirements of the cryptographic implementations and computational envi-
ronments. Classical cryptography analyzes the cryptosystems as perfect mathematical models
and ignores such physical requirements, thus fails to identify side-channel leakages. Therefore
it is inevitable to utilize both classical cryptography and side-channel cryptanalysis in order
to develop and implement secure systems and security architectures.

The initial focus of side-channel research was on smart card security. We discuss the
reasons of this situation in the next section. For now, we just want to mention that side-
channel analysis of computer systems started to attract more attention after Brumley and
Boneh demonstrated a successful and practical remote timing attack on real applications
over a local network [14]. Since then, we have seen increased research efforts on the security
analysis of the daily life PC platforms from side-channel point of view. The most important
recent advance in the field is the realization of MicroArchitectural Analysis.

MicroArchitectural Analysis (MA), which is a newly evolving area of side-channel crypt-
analysis, studies the effects of common processor components and their functionalities on
the security of software cryptosystems, c.f. [11, 2, 4, 3, 7, 29, 32]. As a natural consequence



of strictly throughput, performance, and “performance per watt” oriented goals of modern
processor designs and also highly “time-to-market” driven business philosophy, the result-
ing products, i.e. commodity processor architectures in the market, lack a thorough security
analysis. The main element that gave birth to MicroArchitectural Analysis area is indeed
this particular gap between the current processor architectures and the ideal secure comput-
ing environment. The advances in MicroArchitectural Analysis field initiated a new research
vector to identify, analyze, and mitigate the security vulnerabilities that are caused by the
design and implementation of processor components.

All of these cited pure software MicroArchitectural attacks, including the one presented
in this paper, can compromise security systems despite of sophisticated partitioning methods
such as memory protection, sandboxing or even virtualization. The reason for the failure
of these trust mechanisms is because these new attacks “simply exploit deeper processor in-
gredients below the trust architecture boundary” as stated in [2, 4]. The new security and
virtualization technologies such as Intel’s LT and VT, AMD’s Pacifica, ARM’s Trustzone,
software based virtualization mechanisms like those from VMWare are all potentially sus-
ceptible to MA attacks. We want to emphasize that so far there had not been any publicly
known MA attack incidents on these systems. But we believe it is only a matter of time until
they are shown to be compromised via MA.

It is crucial to identify every possible MicroArchitectural vulnerability in order to under-
stand the real potential of MicroArchitectural Analysis and to develop more secure systems
by employing appropriate software countermeasures and making required hardware changes
to future architectures.

In this paper, we identify a new MicroArchitectural attack source, in other words, another
processor component that causes security vulnerabilities. We show that Instruction Cache,
which is used to reduce the average time to read instruction codes from main memory, can
be exploited to extract sensitive information regarding the execution of a cryptosystem. Our
results clearly show the practicality and danger of I-cache attacks and put I-cache into the
list of known MicroArchitectural attack sources.

In the next section, we give an overview of MicroArchitectural Analysis including a brief
history. We explain what an instruction cache is and how it works in Section 3. The basics
of RSA cryptosystem and the details of OpenSSL’s RSA implementation are presented in
Section 4. Sections 5 and 6 outline the underlying idea of instruction cache attacks and detail
a sample attack on sliding window exponentiation of RSA implemented in OpenSSL. We also
present our experimental results, which prove the practicality of instruction cache analysis
concept, in Section 6. Then we point out a protected RSA implementation and conclude our
paper in the last section.

2 Overview and Brief History of MicroArchitectural Analysis

The initial focus of side-channel research was on smart card security. Smart cards store
secret values and they are designed to protect and process these secrets. Therefore, there
is a serious financial gain involved in cracking smart cards, as well as, analyzing them and



developing more secure smart card technologies, and this is one of the main reasons why
smart cards had the initial focus of side-channel research. However, the recent advances
and trends in microprocessor market, especially the development of microprocessor based
security features (e.g. Intel’s LT and VT Technologies, AMD Pacifica), and also the recent
promises from the Trusted Computing community indicate the security assurance of storing
and processing secret values, establishing virtually separate execution environments, etc. on
computer platforms. As an eventual result, the side-channel analysis of computer platforms
has become a necessity.

Another reason of the high attention to side-channel analysis of smart cards is due to the
ease of applying such attacks on smart cards. The measurements of side-channel information
on smart cards are almost “noiseless”, which makes such attacks very practical. On the
other hand, there are so many factors that affect such measurements on real commodity
computer systems. These factors make it much more difficult to perform successful side-
channel attacks on “real” computers within our daily life. Thus, the side-channel vulnerability
of computer systems was not seriously considered to be harmful until 2003. This was changed
when Brumley and Boneh demonstrated a successful and practical remote timing attack
on real applications over a local network [14]. They simply adapted the attack principle
introduced by Schindler in [34] and applied it to a real web server to show that side-channel
attacks are a real danger not only to smart cards but also to widely used computer systems.
Their work was significantly improved by Acıiçmez et. al. in 2005 [9].

We have seen increased research efforts on the side-channel analysis of commodity PC
platforms for the last few years. Soon, it was realized that the functionality of some micro-
processor components cause serious side-channel leakage. These efforts led to the development
of MicroArchitectural Analysis area.

MicroArchitectural Attacks exploit the microarchitectural components of a processor to
reveal cryptographic keys. The functionality of some processor components generates data
dependent variations in execution time and power consumption during the execution of cryp-
tosystems. These variations either directly gives the key value out during a single cipher
execution (c.f. [2]) or leaks information which can be gathered during many executions and
analyzed to compromise the system (c.f. [29, 11, 24]).

The actual roots of MA goes a long way back to [18, 36]. Although the security risks of
processor components like cache were implicitly pointed out in these publications, concrete
and widely applicable security attacks based upon processor functionalities have recently
been worked out and immediately attracted significant public interest. There are currently
two types of MA in the literature1: Cache Analysis and Branch Prediction Analysis.

A cache-based attack, abbreviated to “cache attack” from here on, exploits the cache
behavior of a cryptosystem by obtaining the execution time and/or power consumption vari-
ations generated via cache hits and misses. The cache vulnerability of computer systems

1 There is, in fact, a new paper describing a recently discovered MA type [6]. The details of it were not
publicly available by the time we wrote this current paper. Therefore we omit this attack here and prefer
not to disclose the details.



has been known for a long time, c.f. [18, 19, 21], however actual realistic and practical cache
attacks were not developed until recent years.

Cache analysis techniques enable an unprivileged process to attack another process, e.g., a
cipher process, running in parallel on the same processor as done in [29, 24, 32]. Furthermore,
some of the cache attacks can even be carried out remotely, e.g., over a local network [7].

The previous cache attacks are data-path attacks, i.e., exploit the data access patterns of
a cipher. The memory accesses of software cryptosystems, especially S-box based ciphers like
DES and AES, employ key-dependent table lookups, indices of which are simple functions
of the key and the plaintext. Revealing these memory access patterns, i.e. lookup indices,
via cache statistics and the knowledge of the processed message, e.g. in a known-text attack,
make it relatively easy to break these ciphers.

A new group of MA attacks, called Branch Prediction Analysis (BPA), on the other hand,
exploit instruction path of a cipher [2, 1, 4, 3]. In other words, an adversary can reveal the
execution flow of a cipher using BPA, and if this execution flow is key dependent as in the
case of RSA and ECC, then he can compromise the system. The most powerful BPA, which is
called Simple Branch Prediction Analysis (SBPA), was shown to extract almost all of the RSA
key bits during a single RSA operation. Immediately after it became public around the end of
2006, SBPA attracted very significant attention due to its implications. Acıiçmez et. al. briefly
outlined why SBPA endangers most of the current systems and detailed some techniques to
show how SBPA can be used to break even “thought-to-be-side-channel-immune” systems in
[2, 1, 5].

In this paper, we combine these two concepts: exploiting cache architecture and revealing
instruction paths. We present several attacks that rely on instruction cache (I-cache) archi-
tecture of CPUs. All of the previous cache attacks exploit the side-channel leakage through
data cache of a CPU. To the best of our knowledge, this is the first approach to exploit side-
channel leakage due to I-cache architectures. Our experimental results indicate that I-cache
analysis is as efficient as SBPA.

3 Instruction Cache

Our software I-cache timing attack exploits the functionality of I-cache implemented in micro-
processors. A high-frequency processor needs to retrieve data at a very high speed in order to
utilize its functional resources. The latency of a main memory is not short enough to match
this demand of high-speed data delivery. The gap between the memory and the processor
speed has been continuously increasing for the last 3 decades as Moore’s Law holds. Common
to all processors, the attempt to overcome the drawbacks of this gap is the employment of a
special buffer called cache.

A cache is a small and fast storage area used by a CPU to reduce the average memory
access time. It acts as a buffer between the main memory and the processor core and provides
the processor fast and easy access to the most frequently used data (including instructions)
without frequent external bus accesses.



Cache stores the copies of the most frequently used data. When the processor needs to
read a location in main memory, it first checks to see if the data is already in the cache. If the
data is already in the cache (a cache hit), the processor immediately uses this data instead of
accessing the main memory, which has a significantly longer latency than a cache. Otherwise
(a cache miss), the data is read from the memory and a copy of it is stored in the cache. This
copy is expected to be used in the near future due to the temporal locality property.

A cache is partitioned into a number of non-overlapping fixed size blocks, called cache
blocks or cache lines. The minimum amount of data that can be read from the main memory
into a cache at once is called cache line or cache block size, i.e., each cache miss causes a
cache block to be retrieved from a higher level memory. The reason why a block of data is
transferred from the main memory to the cache instead of transfering only the data that is
currently needed lies in spatial locality property. Since a cache is limited in size, storing new
data in a cache mandates eviction of some of the previously stored data.

Before moving on to the next section, we want to mention two very important concepts
that affect the functional behavior of a cache: the mapping strategy and the replacement
policy. We will only give very brief information on these concepts in this paper.For further
discussion on cache architectures and locality properties see [16, 33, 15].

Cache mapping strategy is the method of deciding where to store, and thus to search for,
a data in a cache. Three main cache mapping strategies are direct, fully associative and set
associative mapping. In a direct mapped cache, a particular data block can only be stored
in a single certain location in the cache. On the contrary, a data block can be placed in
potentially any location in a fully associative cache. The location of a particular placement
is determined by the replacement policy. Set associative mapping is a blend of these two
mapping strategies. Set associative caches are divided into a number of same size sets, called
cache sets, and each set contains the same fixed number of cache lines. A data block can
be stored only in a certain cache set (just like in a direct mapped cache), however it can be
placed in any location inside this set (like in a fully associative cache). Again, the particular
location of a data inside its cache set is determined by the replacement policy.

The replacement policy is the method of deciding which data block to evict from the
cache in order to place the new one in. The ultimate goal is to choose the data that is most
unlikely to be used in the near future. There are several cache replacement policies proposed
in the literature (c.f. [16, 33]). In this document, we focus on a specific one: least-recently-used
(LRU). It is the most commonly used policy and it picks the data that is least recently used
among all of the candidate data blocks that can be evicted from the cache.

Many processors employ different caches for data and code segments of a process. The
instruction cache is responsible for storing recently used instructions from the code segment
and quickly delivering them to the processor core when the accessed instructions are in the
I-cache. When a process starts executing a code block that is not in the cache, i.e., in case of
a cache miss, the processor loads these instructions from main memory into the cache. This
situation happens either at the initial execution of a function (i.e., a cold miss), or after a
cache conflict (i.e., conflict miss). Since a cache is limited in size, several different code blocks
share the same cache sets/lines. A cache conflict or collision is the situation that occurs when



an attempt is made to store two or more different data/code items at a cache location that
can hold only one of them. In case of a cache conflict between different code blocks, they
evict each other from the instruction cache when their executions are interleaved. In our I-
cache attacks, we exploit this particular consequence of cache conflicts by creating intentional
conflicts between the instructions of RSA cipher and a spy code and forcing the processor to
evict the RSA instructions out of I-cache.

4 The concept of I-cache Attacks

Cryptosystems have data-dependent memory access patterns, which can be revealed by ob-
serving cache hit/miss statistics through side channels. Cache attacks rely on the cache hits
and misses that occur during the encryption / decryption process of a cryptosystem. Even if
the same instructions are executed for any particular (plaintext, cipherkey) pair, the cache
behavior during the execution was shown to cause variations in the program execution time
and power consumption. Cache attacks try to exploit such variations to narrow the exhaustive
search space of cryptographic keys, c.f. [31, 39, 40, 7, 8, 29, 30, 11, 25, 22, 24, 32, 12, 13].

The previous studies in MicroArchitectural Analysis area, such as [29, 32, 24, 2, 4], initi-
ated a new attack paradigm, which relies on simultaneous multi-threading / multi-tasking
functionality of modern processors. Simultaneous multithreaded (SMT) processors have the
capability of executing more than one execution thread simultaneously on the same physical
processor. Multi-core processors also have the same capability. The main difference between
multi-core and SMT is that expensive resources of a processor core ( e.g., functional units,
data and instruction cache, BTB) are shared between different threads in a SMT processor.
The basic and simple resources are explicitly doubled to give the sense of two logical proces-
sors on a single physical processor core. Thus, this design technique enables the simultaneous
execution of more than one process on the same physical processor core by taking advantage
of thread-level parallelism, as if there were more than one processor [35, 37].

Single-threaded processor cores, on the other hand, execute only a single process/thread
at any given time. However, the operating systems manage to distribute the processor time
among all the active processes and give the users the feeling of a parallel, multi-threading
execution. The OS basically decomposes the execution of each process into a series of short
threads and schedules the execution of these threads with respect to each other.

Irrespectively of single-threaded or hardware-assisted multi-threaded, some processor re-
sources are always shared among the active threads on the system, which enables one process
to spy on another process, c.f. [29, 32, 24, 2, 4]. Although the memory protection mechanisms
prevents a process to directly read other processes’ data, the functionality of shared resources
leak the so-called metadata, c.f. [29], and (e.g.) causes disclosure of the secret / private keys
used in security systems.

In our I-cache attacks, we rely on the concept of executing a spy code, which keeps track
of the changes in the state of I-cache, i.e., metadata, during the execution of a cipher process.
A spy code / process can run simultaneously or quasi-parallel with the cipher process and



determine which instructions are executed by the cipher. It achieves this goal by spying on
the cipher execution via observing the I-cache state transitions.

Assume that an adversary tries to understand whether a certain I-cache set is “touched”
by the cipher, i.e., modified, during the execution of a part of cipher code. The spy allows
the cipher to run and takes over the processor shortly before the execution of the “spied-on”
part of cipher code. This task of pausing the cipher execution at a determined point, even
though it sounds nice, is very tricky and requires very fine-crafted spy code. However, it is
feasible and was successfully used in earlier studies on cache attacks by Neve et. al. in [24] to
devise an attack on the last AES round, which is composed of a relatively small number of
instructions. A similar idea is also presented in a recent paper [38]. Although [38] proposes
to exploit OS scheduling mechanism to steal CPU cycles unfairly, the cheating idea and the
source code can easily be adapted to MicroArchitectural Analysis attacks.

After the spy takes over, it ensures that this particular I-cache set does not contain any
instructions from the cipher by executing a set of “dummy” instructions. These dummy
instructions are not intended to perform any calculations or tasks other than filling some
I-cache space. These dummy instructions shall fill completely and precisely this I-cache set,
no more no less. During the execution of dummy instructions, the processor has to store
them into the cache, which inevitably causes the eviction of the previous entries in that I-
cache location. That way, the spy sets the state of this particular I-cache set to a known
predetermined state and then it lets the cipher run the “spied-on” part of code.

The spy takes control of the processor after the execution of a relatively small number of
cipher instructions. If the executed cipher instructions touch the I-cache set under observation,
this will cause the eviction of some of these spy-owned dummy instructions from the I-cache.
When the spy takes control of the processor, it re-executes the same dummy instructions but
this time also measures their total execution time. If some of these dummy instructions are
not in I-cache, which indicates the modification of this I-cache set due to cipher execution,
then the measured execution time will take longer simply because the evicted instructions
must be retrieved from the memory which has a significantly larger latency compared to the
cache.

During the quasi-parallel execution of spy and cipher processes, a malicious spy routine
can continuously interrupt the cipher execution with short intervals and apply the above
basic technique to every single I-cache set each time it takes the control. On simultaneous
multi-threading systems, the spy routine does not even need to interrupt the cipher execution
and can observe it “on-the-fly” as done in [32, 1]. If the adversary can get measurements with
high enough resolution , i.e., if he can estimate which cache sets are modified during the
execution of which part of the cipher code, this will reveal the execution flow of the cipher.
Therefore, such a spy routine has the potential of revealing the entire execution flow of the
cipher on almost any processor architecture as long as there is an I-cache and its metadata
is preserved during the transfer of processor time between different processes.

In the next section, we will outline a sample cache attack on OpenSSL’s sliding window
exponentiation. We want to mention that we use OpenSSL’s SWE just as a case study to
prove the concept of I-cache analysis. The actual application range of I-cache attacks is much



more broader than this simple case study. Our results from this case study show that an
adversary can easily get a measurement resolution high enough to compromise very critical
security systems.

5 A Case Study: Attack on OpenSSL’s Sliding Window

OpenSSL takes advantage of the difference between multiprecision multiplication and square
operations to improve the performance of its RSA implementation. During a montgomery
operation, OpenSSL first calls either multiplication or square functions from BIGNUM li-
brary and then reduces the result to the modulus via montgomery reduction function. In
case of sliding window exponentiation, this technique causes key-dependent sequence of mul-
tiplication and square function calls. The current version of OpenSSL employs either sliding
window or fixed window exponentiation depending on the user’s choice.

A practical method to reveal the multiplication/square operation sequence is the following.
The spy function can evict the instructions of multiplication function (or square function,
resp.) and measure the execution time of its own dummy instructions as described in the
previous section. The higher execution time in spy measurements indicate the execution of
this multiplication (square, resp.) function. Therefore, the spy can determine when the cipher
calls this particular function, which also directly reveals the multiplication/square operation
sequence. The spy function can perform the attack either “on-the-fly” on simultaneous multi-
threading systems (c.f. [32, 1])or via exploiting OS-scheduling (c.f. [24]).

Our attack scenario is the following. A “protected” crypto process executes the RSA
signing/decryption process and also a spy process is executed simultaneously or quasi-parallel
with the cipher and it continuously does the following:

1. continuously executes a number of dummy instructions, and
2. measures the overall execution time of all of these instructions

in such a way that these dummy instructions precisely evicts the instructions of BIGNUM
multiprecison multiplication function from I-cache.

Assume that the multiplication function instructions span from logical address A to B.
Due to the properties of cache architectures, an instruction block, i.e., continuous consecutive
instructions, must span from logical address A1 to B1 to map to the same I-cache sets with
the multiplication function, where the least significant parts of A and A1 and also B and B1

must be equal. To completely evict the multiplication function from I-cache, the spy routine
has to execute a number of different such instruction blocks and this number needs to be
equal or greater than the number of associativity of the I-cache. Clearly, implementing this
spy routine requires the knowledge of logical address space of the multiplication function and
the details of the I-cache. We want to mention that it is easy to learn the properties of an
I-cache either from the manufacturer specs or by using simple benchmarks as explained in
[41].

To validate our aforementioned I-cache analysis strategy, we performed some practical
experiments. We compiled the RSA decryption function of OpenSSL (version 0.9.8d) with



Fig. 1. Experimental Results

the choice of SWE Exponentiation. We disassembled the executable file to see the logical
addresses of BIGNUM multiprecision multiplication function instructions. GNU Project de-
bugger (i.e. gdb) has two functions, “info line” and “disas”, that we used for this task. Then
we implemented our spy routine based on these logical addresses and the parameters of the
I-cache architecture on our platform. Then we carried out our attack by letting the spy rou-
tine run and make measurements with relatively short intervals during the execution of RSA
signing operation.

After analyzing the spy measurements, we ended up with the results shown in Figure 1.
These timing measurements are taken during a single RSA operation under a random 1024-
bit key. It is clear in the figure that one can observe the operation sequence of RSA via I-cache
analysis. These results clearly indicate that such I-cache attacks are feasible and as dangerous
and serious as Simple Branch Prediction Analysis, which attracted very significant attention
immediately after its publication because of the several very serious security vulnerabilities
it implied. The same vulnerabilities sketched out in [2, 1] can also be exploited via I-cache
analysis.

6 Discussions

Looking closely to this graph, one can also distinguish different phases of sliding window
exponentiation:

A table initialization phase of the first exponentiation
B the first exponentiation phase
C table initialization phase of the second exponentiation
D the second exponentiation phase



E the remaining RSA operations including CRT combination

If an adversary runs a stand-alone spy process on a machine, he also needs to ensure that the
measurement results from the spy indeed correspond to the cipher process. Since there are
possibly many other processes running on the same machine, he needs to distinguish when
the spy process is measuring the cipher execution but not another process. In an experimental
setup, we can set the system to ensure this synchronization by (e.g.) assigning high priorities
to spy and cipher processes. However, in a real attack, where the adversary does not have
privileges to configure such parameters, this synchronization issue becomes problematic. As
seen in our results, different RSA phases are distinguishable, which can enable an adversary
to understand whether the spy process is spying on a cipher or another process and thus
overcome the synchronization problem.

We could reveal the operation sequence of sliding window exponentiation almost com-
pletely during a single RSA operation via I-cache analysis. Revealing the multiplication /
square sequence of an RSA with binary exponentiation algorithm, which was the case in [1],
would directly give the value of d out. In our ”proof-of-concept” attack on sliding window
exponentiation, the multiplication / square sequence reveals around 200 ”scattered” bits of
each 512-bit exponents, c.f., [32]. It is not clear today whether the knowledge of 200 bits scat-
tered over 512-bit exponent is sufficient to break RSA. In other words, we do not know any
methods that can directly leverage this information to factorize the public modulus. However,
the application range of I-cache analysis is definitely not limited to SWE. [1] and [5] discuss
several situations that are potentially vulnerable to SBPA, which are also valid for I-cache
analysis. For example, leakage of just a few secret bits of the respective ephemeral keys leads
to a total break of (EC)DSA, c.f., [17, 26, 27].

Unfortunately, the discussions in [1] and [5] are not comprehensive in terms of covering
the potential threats due to MicroArchitectural analysis. We have discovered a vulnerability,
which is not mentioned in [1, 5], in OpenSSL library that can be exploited via I-cache analysis.
A new patch was already prepared by OpenSSL team to fix this vulnerability and it will
be available in future version of OpenSSL soon. Our objective in this paper is to describe
and prove only the concept of I-cache analysis. Our results and details on this OpenSSL
vulnerability will follow in subsequent publications.

Comparison of I-cache Analysis to Data Cache and Branch Prediction Analysis
Data cache attacks try to reveal the data-access patterns of cryptosystems. On the other
hand, we reveal the instruction flow of cryptosystems in I-cache analysis. The cryptosystem
implementations with fixed instruction flow, which is usually the case for block ciphers like
AES, are not vulnerable to I-cache and Branch prediction analysis whilst data cache attacks
can exploit the table lookups of such ciphers. It is also possible to determine the execution
flow of a cipher (e.g. RSA) by analyzing the data access patterns as done in [32]. However,
implementations can avoid this threat by carefully handling the data structures. For example,
OpenSSL changed to way it handles the RSA structures to avoid data cache attacks like [32].
Even when the data structures are handled in a special way, I-cache analysis can compromise



the implementations if the execution flow remains key-dependent. Similarly, data cache at-
tacks can be applied on implementations with fixed execution flow if the data access patterns
are key-dependent. Therefore, both data and instruction cache analysis must be considered
during the design and implementation of security critical systems.

The basic difference between I-cache and Branch prediction analysis is the following.
Branch prediction analysis presented in [1, 3] specifically targets conditional branches. A
conditional branch controls the execution of different instruction paths. Thus, the outcome
of a conditional branch, which can be observed via BPA, leaks the instruction path to an
adversary. However, using conditional branch is only one way to implement execution flow
control. There are other techniques, which may be protected against BPA, to conditionally
alter the execution flow without the use of conditional branches. In this sense, I-cache analysis
is broader than BPA because it reveals the execution flow regardless of how execution flow
control is implemented. For example, [10] proposes to use indirect jumps instead of conditional
branches as a countermeasure to BPA, which is still vulnerable to I-cache analysis.

7 Conclusions

We have showed that a major processor component, Instruction Cache (I-cache), causes seri-
ous security vulnerabilities and can be used in a side-channel attack as a source of information
leakage. The special side-channel area that exploits processor components is called MicroAr-
chitectural Analysis (MA) and there are currently two types of MA in the literature: Cache
Analysis and Branch Prediction Analysis. Our contribution in this paper is to introduce
I-cache Analysis as yet another MA type.

We have presented a simple pure software-based I-cache attack on OpenSSL’s RSA imple-
mentation as a “proof of concept” to show that I-cache attacks have the potential to reveal
the execution flow of cryptosystems like RSA, which can lead to a complete break if the
cryptosystem is implemented with key-dependent execution flow. I-cache analysis, just like
cache and branch prediction analysis, can compromise security systems even in the presence
of security mechanisms like sandboxing and virtualization because all of these attacks ex-
ploit deep processor functionalities which are below the trust architecture boundary of these
security mechanisms.

I-cache attacks are instruction-path attacks unlike the previous cache attacks, which ex-
ploit the data-path of a cipher execution. Branch Prediction Analysis is the first instance
of MA that reveals the instruction paths of the cryptosystems. Similar to Simple Branch
Prediction Analysis, which is the most powerful Branch Prediction Analysis variant, I-cache
analysis has the potential to reveal the complete operation sequence of a cryptosystem dur-
ing a single execution. Simple Branch Prediction Analysis attracted very significant attention
immediately after its publication because of the several very serious security vulnerabilities
it implied. The same vulnerabilities pointed out in [2, 1] can also be exploited via I-cache
analysis.

It is extremely important and urgent to identify every possible MicroArchitectural vulner-
ability in order to understand the real potential of MicroArchitectural Analysis and to develop



more secure systems by developing and employing appropriate software countermeasures and
possibly making required hardware changes to future processors. It is advisable to avoid key-
dependent instruction paths in cryptographic software implementations as much as possible.
A method was already outlined in [5] to protect RSA against instruction path attacks like
Branch Prediction and I-cache Analysis. We believe, such techniques and countermeasures
shall be developed for other cryptosystems and employed in cryptographic applications /
libraries.
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6. O. Acıiçmez and J.-P. Seifert. Cheap Hardware Parallelism Implies Cheap Security. 4th Workshop on Fault
Diagnosis and Tolerance in Cryptography — FDTC 2007, Austria, September 10, 2007, to appear.
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8. O. Acıiçmez and Ç. K. Koç. Trace-Driven Cache Attacks on AES. Cryptology ePrint Archive, Report
2006/138, April 2006.
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