
Retraction: Important note from the authors

In 2014, Mridul Nandi gave chosen plaintext and ciphertext attack against the XLS scheme,
invalidating Theorem 2, which is the main result of this paper. It appears our case analysis contains
a bug (specifically the proof of Claim 7). This also means Theorem 3, Theorem 9, and Theorem 11
are wrong.

We are leaving the paper as it was written in 2007 for historical purposes, but please do not
rely on XLS as it does not provide the level of security expected of ciphers. See Nandi’s paper for
more details regarding the attack:

M. Nandi. XLS is Not a Secure Strong Pseudorandom Permutation. Advances in
Cryptology –ASIACRYPT 2014, LNCS vol. 8873, Springer, pp. 478–490, 2014.

Thomas Ristenpart
Phillip Rogaway

A preliminary version of this paper appears in Fast Software Encryption - FSE 2007, Lecture Notes
in Computer Science Vol. 4593, pp. 101–118, A. Biryukov ed., Springer-Verlag, 2007. This is the
full version.

How to Enrich the Message Space of a Cipher

Thomas Ristenpart∗ Phillip Rogaway†

March 2007

Abstract

Given (deterministic) ciphers E and E that can encipher messages of l and n bits, respectively,
we construct a cipher E∗ = XLS[E , E] that can encipher messages of l + s bits for any s < n.
Enciphering such a string will take one call to E and two calls to E. We prove that E∗ is a
strong pseudorandom permutation as long as E and E are. Our construction works even in
the tweakable and VIL (variable-input-length) settings. It makes use of a multipermutation (a
pair of orthogonal Latin squares), a combinatorial object not previously used to get a provable-
security result.

Key words: Deterministic encryption, enciphering scheme, symmetric encryption, length-
preserving encryption, multipermutation.

∗Dept. of Computer Science & Engineering 0404, University of California San Diego, 9500 Gilman Drive, La
Jolla, CA 92093-0404, USA. Email: tristenp@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/tristenp.
Supported in part by NSF grant CNS-0524765 and a gift from Intel Corporation.

†Dept. of Computer Science, University of California Davis, One Shields Avenue, Davis, CA 95616, USA. Email:
rogaway@cs.ucdavis.edu. URL: http://www.cs.ucdavis.edu/~rogaway/. Supported in part by NSF grant CCR-
0208842 and a gift from Intel Corporation.

1

Contents

1 Introduction 3

2 Preliminaries 5

3 The XLS Construction 6

4 The Mixing Function 6

5 The Bit Flips 10

6 Security of XLS 10

7 Proof of Lemma 2 14

8 Supporting Tweaks 20

9 XLS with Ordinary PRPs 22

2

1 Introduction

Domain extension. Consider a cryptographic scheme with a message space M =
⋃
l∈L {0, 1}

l

for some set L of permissible message lengths. The scheme can handle any message of l ∈ L bits
but it can’t handle messages of l∗ 6∈ L bits. Often the set of permissible message lengths L is what
worked out well for the scheme’s designers—it made the scheme simple, natural, or amenable to
analysis—but it might not be ideal for the scheme’s users who, all other things being equal, might
prefer a scheme that works across arbitrary-length messages. To address this issue, one may wish to
extend the scheme to handle more message lengths. Examples are extending CBC encryption using
ciphertext stealing [21] and extending a pseudorandom function F with message space ({0, 1}n)+

by appropriately padding the message and calling F .
Our work is about extending the domain of a cipher. When we speak of a cipher in this

paper we mean a deterministic map E : K × M → M where M =
⋃
l∈L {0, 1}

l and EK(·) =
E(K, ·) is a length-preserving permutation. Such an object is also called an enciphering scheme,
a pseudorandom permutation, an arbitrary-input-length blockcipher, or a deterministic cipher /
encryption scheme. Our goal is to extend a cipher E : K ×M → M with permissible message
lengths L to a cipher E∗: K∗ ×M∗ → M∗ with an enlarged set L∗ ⊇ L of permissible message
lengths. Being an extension of E , what E∗ does on a string of length l ∈ L and key 〈K,K ′〉 must
be identical to what E would do on key K. Note that padding-based methods will not work: even
if there is a point in the message space of E that one can pad a plaintext to, padding M to M∗

and then applying E would be length-increasing, and so not a cipher. Unlike signatures, MACs,
pseudorandom functions, and semantically secure encryption, there is no obvious way to extend a
cipher’s domain.

Our contribution. We show how, with the help of an n-bit blockcipher E, to extend a cipher’s
set of permissible message lengths from L ⊆ [n ..∞) to L∗ = L+ [0 .. n− 1] = {`+ i | ` ∈ L and i ∈
[0 .. n − 1]}. In other words, we enlarge the message space from M to M∗ =M || {0, 1}<n where
M⊆ {0, 1}≥n.

We call our construction XLS (eXtension by Latin Squares). Its overhead is two blockcipher
calls, eight xor instructions, and two one-bit rotations. This is the work beyond enciphering (or
deciphering) a single l-bit string that is needed to encipher (or decipher) an l + s bit one, where
s ∈ [1 .. n − 1]. If the message is in the original domain there is no overhead beyond determining
this. As an example, if E = E is an n-bit blockcipher then it will take three blockcipher calls to
encipher a 2n− 1 bit string.

The XLS method is described in Figure 1. For a message M already in the domain of E ,
just apply it. Otherwise, suppose that M has length l + s where l ∈ L and s ∈ [1 .. n − 1]. To
encipher M : apply the blockcipher E to the last full n-bit block of M ; mix together the last 2s-bits;
flip the immediately preceding bit; encipher under E the first l bits; mix together the last 2s-bits;
flip the immediately preceding bit; then apply E to the last full n-bit block. Our recommended
instantiation of the mixing step uses three xors and a single one-bit circular rotation.

We prove that XLS works. More specifically, if E is secure in the sense of a strong pseudorandom
permutation (a strong PRP) [17] then E∗ inherits this property. This assumes that the blockcipher E
is likewise a strong PRP. The result holds even in the variable-input-length (VIL) setting [3]: if
E is VIL-secure then so is E∗. See Theorem 3. It also holds in the tweakable-enciphering-scheme
setting [16]: if E is tweakable then E∗ inherits this. See Section 8. If one makes the weaker
assumption that E and E are ordinary (not necessarily strong) PRPs, then one can conclude that
E∗ is a PRP. See Section 9.

While XLS is relatively simple, it is surprisingly delicate. We show that natural alternative

3

ways of mixing do not work. We show that omitting the bit flip does not work. And attempting
to get by without any mixing—say by enciphering the last n bits, the first l bits, then the last n
bits—doesn’t work even if one demands that the “overlap” in what is enciphered is n/2 bits: there
is an attack of complexity 2n/4.

All that said, we develop sufficient conditions on the mixing function that are enough to guaran-
tee security, and we provide a mixing function based on multipermutations (also called orthogonal
Latin squares [7]). Though conceptually elegant, implementing multipermutations in this setting
is slightly complicated, so we provide an alternate mixing function that approximates multipermu-
tations via bit rotations. This comes at the (insignificant) cost of a slightly larger constant in the
security reduction. XLS is the first mode of operation to employ multipermutations or approximate
multipermutations to yield a provable-security guarantee. Indeed, such mixing functions may prove
to be useful in further provable-security contexts.

We comment that we cannot handle messages of length less than n bits (the blocklength of
the blockcipher that we use)—for example, we don’t know how to encipher a 32-bit string using
AES (in an efficient way and with a known and desirable security bound). This is a long open
problem [6,12].

Related work. There are several known methods for turning a blockcipher with message space
M = {0, 1}n into a cipher with some message space {0, 1}≥n. Halevi does this in his EME∗ and
TET constructions [12, 13]; Fluhrer and McGrew do it (without a provable-security guarantee)
with XCB [20]; Wang, Feng, and Wu do it in HCTR [29]; and Chakraborty and Sarkar do it in
HCH [9]. All of these constructions are somewhat complex, and their methods for dealing with
“inconvenient-length” strings are non-generic. Constructions of ciphers from n-bit blockciphers that
result in a message space like ({0, 1}n)+ are offered by Zheng, Matsumoto, and Imai [30], Naor and
Reingold [22], Halevi and Rogaway [14, 15], Patel, Ramzan, and Sundaram [24], and Chakraborty
and Sarkar [8]. One can even view Luby and Rackoff [17] in this light.

Anderson and Biham [2] and Lucks [18,19] make a wide-blocksize cipher out of a stream cipher
and a hash function, and Schroeppel provides a cipher [27] that works on an arbitrary message
space de novo.

When E = E is an n-bit blockcipher, the XLS construction solves the elastic blockcipher problem
of Cook, Yung, and Keromytis [10, 11], where one wants to extend a blockcipher from n bits to
[n .. 2n− 1] bits. The Cook et. al solution is heuristic—there is no proof of security—but with XLS
we have, for example, an “elastic AES” that provably preserves the security of AES.

When a cipher like CMC or EME [14, 15] plays the role of E in XLS, one gets a cipher with
efficiency comparable to that of a mode like EME∗ [12].

Bellare and Rogaway first defined VIL ciphers [3] and built one (although it is not secure as
a strong PRP). An and Bellare [1] offer the viewpoint that cryptographic constructions are often
aimed at adjusting the domain of a primitive. This viewpoint is implicit in our work.

Applications. While primarily interested in the “theoretical” question of how to accomplish do-
main extension for ciphers, arbitrary-input-length enciphering is a problem with many applications.
A well-known application is disk-sector encryption, the problem being addressed by the IEEE Secu-
rity in Storage Work Group P1619. Another application is saving bandwidth in network protocols:
if one has a 53-byte payload to be enciphered, and no IV or sequence number to do it, the best
that can be done without increasing the size of the datagram is to encipher this 53-byte string. A
related application is the security-retrofitting of legacy communications protocols, where there is a
mandated and immutable allocation of bytes in a datagram, this value not necessarily a multiple
of, say, 16 bytes. Another application is in a database setting where it should be manifest when

4

two confidential database records are identical, these records having arbitrary length that should
not be changed, but nothing else about the records should be leaked. Arbitrary-length enciphering
enables bandwidth-efficient use of the encode-then-encipher paradigm of Bellare and Rogaway [4],
where one gets authenticity by enciphering strings encoded with redundancy and semantic security
by enciphering strings that rarely collide.

2 Preliminaries

Basics and notation. For strings X,Y ∈ {0, 1}∗, we use X || Y or X Y to denote concatenation.
We write X[i] for i ∈ [1 .. |X|] to represent the ith bit of X (thus X = X[1]X[2] · · ·X[s]). The

complement of a bit b is flip(b). For a set C and element X we write C ∪←X for C ← C ∪{X}. We

require that for any set of bit strings S ⊆ {0, 1}∗, if X ∈ S then {0, 1}|X| ⊆ S.
A cipher is a map E : K ×M → M where K is a nonempty set, M ⊆ {0, 1}∗ is a nonempty

set, and EK(·) = E(K, ·) is a length-preserving permutation. The set K is called the key space
and the set M is called the message space. We can view the message space as ∪l∈L{0, 1}l where
L = {l | ∃X ∈ M s.t. |X| = l}. Let D be the cipher with the same signature as E and defined
by DK(Y) = X iff EK(X) = Y . A blockcipher is a cipher with message space M = {0, 1}n for
some n ≥ 1 (the blocksize). For M ⊆ {0, 1}∗ let Perm(M) be the set of all length-preserving
permutations on M. By selecting K = Perm(M) we have a cipher for which a uniformly chosen
permutation on {0, 1}l is selected for each l ∈ L. Let Func(M) be the set of all length-preserving
functions on M. Write Perm(`) and Func(`) for Perm({0, 1}`) and Func({0, 1}`), respectively.

Let S ⊆ {0, 1}≥1. Then define S2 = {XY |X,Y ∈ S ∧ |X| = |Y |}. Let f : S2 → S2 be a length-
preserving function. We define the left projection of f as the function fL: S2 → S where fL(X) is
equal to the first |X|/2 bits of f(X). We define the right projection of f as the function fR: S2 → S
where fR(X) is equal to the last |X|/2 bits of f(X). Of course f(X) = fL(X) || fR(X).

When we say “Replace the last ` bits of M , Last, by F (Last)” we mean (1) parse M into
X || Last where |X| = |M | − ` and |Last| = `; (2) let Z be F (Last); and (3) replace M by X || Z.
We define the semantics of similar uses of “Replace . . .” in the natural way.

The notation “XY Z ← M of lengths x, y, z” for any string M with |M | = x + y + z means
parse M into three strings of length x, y, and z and assign these values to X, Y , and Z, respectively.
The notation is extended to the case of parsing M into two halves in the natural way.

Finally, an involution is a permutation g which is its own inverse: g(g(x)) = x.

Security notions. When an adversary A is run with an oracle O we let AO⇒ 1 denote the
event that A outputs the bit 1. Let E : K ×M → M be a cipher. Then we define the following
advantages for an adversary A:

Adv±prpE (A) = Pr
[
K

$←K : AEK ,DK ⇒ 1
]
− Pr

[
π

$← Perm(M) : Aπ, π
−1 ⇒ 1

]
Adv±prfE (A) = Pr

[
K

$←K : AEK ,DK ⇒ 1
]
− Pr

[
ρ, σ

$← Func(M) : Aρ, σ⇒ 1
]

where the probabilities are over the choice of K or choice of π (resp. ρ, σ) and the coins used by A.
The first experiment represents distinguishing E and its inverse from a random length-preserving
permutation and its inverse and the second experiment represents distinguishing E and its inverse
from two random length-preserving functions. In both settings, we demand that the adversary A,
given oracles f, g, does not repeat any query, does not ask g(Y) after receiving Y in response to
some query f(X), and does not ask f(X) after receiving X in response to some query g(Y). Such
forbidden queries are termed pointless.

5

While the above formalization allows variable input length (VIL) adversaries, we can also restrict
adversaries to only query messages of a single length. We call such adversaries fixed input length
(FIL) adversaries.

Informally, a cipher is called a “strong pseudorandom permutation” if no reasonable adversaryA
can distinguish the enciphering and deciphering functions, randomly keyed, from a randomly se-
lected permutation and its inverse: Adv±prpE (A) is small. Our theorems make concrete statements
about this and so we will not have to formalize “reasonable” or “small.” Resources we pay at-
tention to are the adversary’s maximum running time (which, by convention, includes the length
of the program); the number of queries it asks; and the lengths of the queries. For any cipher E
with inverse D, define TimeE(µ) = max{Tkey , TE , TD} where Tkey is the maximum time required to
generate a key L for the scheme, TE is the maximum time to run EL on a message of at most µ
bits, and TD is the maximum time to run DL on a ciphertext of at most µ bits.

3 The XLS Construction

Fix a blocksize n. Let E : KE ×M→M be a cipher withM⊆ {0, 1}≥n and let E: KE×{0, 1}n →
{0, 1}n be a blockcipher. Finally, define a length-preserving permutation mix: S2 → S2 where
S ⊇ ∪n−1i=1 {0, 1}

i. Then we define a cipher E∗ = XLS[mix, E , E] with key space K∗ = KE ×KE and
message spaceM∗ =M || {0, 1}<n. For keys L ∈ KE and K ∈ KE we have E∗L,K(·) = E∗((L,K), ·).
See Figure 1 for the definition.

Enciphering a message M with E∗ = XLS[mix, E , E] is straightforward. If M ∈M, then simply
apply E . Otherwise, apply E to the last full n-bit block of M and replace those bits with the
result. Then ‘mix together’ the last 2s bits, again replacing the appropriate bits with the resulting
mixture. Flip bit |M | − 2s, which is the first bit from the right not affected by mix. Apply E to
as many bits as possible, starting from the left. Finally, just repeat the first three steps in reverse
order. Deciphering is equally simple, and in fact, if one implements mix with an involution, as we
suggest, then the inverse of E∗ is just D∗ = XLS[mix,D, D].

Why, intuitively, should XLS work? “Working” entails that each output bit strongly depends
on each input bit. Since E presumably already does a good job of this we need only worry about
mixing in the “leftover” s bits for M /∈M. We mix in these bits utilizing the mixing function mix.
But since mix will be a simple combinatorial object—it is unkeyed and will have no “crypto-
graphic” property—we need to “protect” its input with the blockcipher. The “symmetrizing” of
the protocol—repeating the blockcipher call and the mixing step in the reverse order so that lines
03 → 09 are identical to lines 09 → 03—helps achieve strong PRP-security: each input bit must
strongly depend on each output bit, as queries can be made in the forward or backward direction.
Finally, the bit-flipping step is just a symmetry-breaking technique to ensure that different-length
messages are treated differently.

If mix does a “good” job of mixing, then XLS will in fact be secure, as we prove in Section 6.
But what is the meaning of “good,” and how do we make a mixing function that is simultaneously
good, efficient, and easy to implement? We now turn towards answering these questions.

4 The Mixing Function

We now look at several possible ways of implementing mix, to build intuition on what properties
are needed for the security of XLS. In the end we formally define, quantitatively, the sufficient
condition of interest. For ease of exposition we will often silently parse the input to mix into its two

6

Algorithm E∗L,K(M)
00 If M ∈M then return EL(M)
01 Let l < |M | be largest number such that {0, 1}l ⊆M; s← |M | − l
02 If s ≥ n or l < n then Return ⊥
03 Replace the last full n-bit block of M , LastFull, with EK(LastFull)
04 Replace the last 2s bits of M , Last, with mix(Last)
05 Replace the (|M | − 2s)’th bit of M , b, with flip(b)
06 Replace the first l bits of M , First, with EL(First)
07 Replace the (|M | − 2s)’th bit of M , b, with flip(b)
08 Replace the last 2s bits of M , Last, with mix(Last)
09 Replace the last full n-bit block of M , LastFull, with EK(LastFull)
10 Return M

M5

EK

M2

M6

C6

C5C4

C2

flip

M4!

C4!

n bits

l bits

n bits
EK

M3M4

flip
2s bits

M7

mix

C1

C1

C1 C3

C3

M7

mix

EL

M3

M1

M1

M1

2s bits

Figure 1: Top: Enciphering algorithm E∗ = XLS[mix, E , E]. Bottom: Enciphering M = M1 ||M2 ||M3

under E∗ whereM is not inM; l < |M | is the largest value such that {0, 1}l ⊆M; s = |M |−l; M1 ∈ {0, 1}l−n
;

M2 ∈ {0, 1}n; and M3 ∈ {0, 1}s.

halves, i.e., mix(AB) means that A || B ∈ S2 and that |A| = |B|. Also we interchangeably write
mix(AB) and mix(A,B), which are equivalent.

A naive approach. Let’s start with a natural construction that, perhaps surprisingly, does
not lead to a secure construction. Suppose we define mixWrong by saying that mixWrong(AB) =
A ⊕ B || B for equal-length A,B: the mixing function xors the right half of the input into the
left half, outputting the result and the original right half. Clearly mixWrong is a length-preserving
permutation. Furthermore, it might seem sufficient for XLS because it will mix the “leftover” bits
into those handled by E . But this intuition is flawed: E∗ = XLS[mixWrong, E , E] is easily distin-
guished from a length-preserving permutation on M∗. An adversary can simply query 0n || 0n−1
and 1n || 0n−1. As one can easily verify, both E∗(0n || 0n−1) and E∗(1n || 0n−1) will have output

7

with the last n−1 bits equal to 0n−1. This would be true of a random permutation with probability
at most 1/2n−1, and so the adversary’s advantage is close to one. In fact mixWrong does not do a
good job of mixing: the right half of the output is only a function of the right half of the input.
One can try various fixes, but ultimately it appears that using just xors is inherently inadequate.

Using orthogonal latin squares. The failure above suggests that what is needed is a mixing
function with symmetry, in the sense that both the left and right halves of the output are dependent
on both the left and right halves of the input. To achieve such a goal we can turn to the classical
combinatorial objects known as a pair of orthogonal Latin squares [7], also called a multipermuta-
tion [26]. This is a permutation mix: S2 → S2 such that, for any C ∈ S, mixL(C, ·), mixL(·, C),
mixL(C, ·), and mixR(·, C) are all permutations, where mixL and mixR denote the projection of mix
onto its first and second component. Let us describe a concrete realization. Fix a finite field F2s for
each s and view each s-bit string as an element of this field. Then we can build a mixing function
mix1 by saying that

mix1(AB) = (3A+ 2B) || (2A+ 3B) = (A+ 2(A+B), B + 2(A+B))

for equal-length strings A and B (we will assume the length to be at least 2). Here addition and
multiplication are over F2s and 2 = 0s−210 = x and 3 = 0s−211 = x+1. Addition is bitwise xor and
multiplication by 2, which we also denote dbl, can be implemented by a shift and a conditional
xor. The mixing function mix1 has several nice properties. First, it is a permutation and, in fact,
an involution (meaning mix = mix−1). Moreover, for any C ∈ {0, 1}s we have that mix1L(C, ·),
mix1R(C, ·), mix1L(·, C), and mix1R(·, C) are all permutations on {0, 1}s.

We show later that, when used in XLS, mixing function mix1 leads to a secure construction.
Moreover, it is fast and relatively simple. But implementing it in XLS requires a table of constants
corresponding to irreducible polynomials, one for each s ≤ n−1. As it turns out, we can do better.

The simplified mixing function. We now simplify the mixing function mix1. Let rol(X) repre-
sent left circular bit-rotation, that is, for any stringX of length s let rol(X) = X[2]X[3] · · ·X[s]X[1].
Then define mix2 by

mix2(AB) = (A⊕ rol(A⊕B)) || (B⊕ rol(A⊕B))

where A and B are equal-length strings. See Figure 2. Notice the similarity with mix1: we replaced
multiplication by two with a left circular rotation. The bit rotation “approximates” a proper
multiplication, eliminating, in an implementation, the conditional xor and the table of constants.
As before, mix2 is an involution.

Quantifying the quality of mixing functions. We now formalize the properties of a mixing
function that are needed in the proof of XLS.

Definition 1 Fix a set S ⊆ {0, 1}≥1, let mix: S2 → S2 be a length-preserving permutation, and let
ε: N→ [0, 1]. We say that mix is an ε(s)-good mixing function if, for all s such that {0, 1}s ⊆ S,
we have that

(1) mixL(A, ·) is a permutation for all A ∈ {0, 1}s,
(2) mixR(·, B) is a permutation for all B ∈ {0, 1}s,
(3) Pr[R

$←{0, 1}s : C = mixL(R,B)] ≤ ε(s) for all B,C ∈ {0, 1}s, and
(4) Pr[R

$←{0, 1}s : C = mixR(A,R)] ≤ ε(s) for all A,C ∈ {0, 1}s . �

8

YX

BA

dbl

YX

BA

rol

Figure 2: The mixing functions mix1 (left) and mix2 (right). Here A,B ∈ {0, 1}<n
with s = |A| = |B|. The

operation dbl is a multiplication by 2 = 0s−210 = x in the finite field F2s and rol is a circular left rotation
by one bit.

The best one can hope for is a 2−s-good mixing function. In fact mix1 is such a function, while the
mix2 function is just a factor of two off.

Lemma 1 The mixing function mix1 is a 2−s-good mixing function. The mixing function mix2 is
a 2−s+1-good mixing function. �

Proof: Since for any s ∈ [1 .. n − 1] and any C ∈ {0, 1}s we have that mix1L(C, ·), mix1R(C, ·),
mix1L(·, C), and mix1R(·, C) are all permutations, the first half of the lemma is clear.

That mix2 meets parts 1 and 2 of the definition is clear. For the third part, we have that

mix2L(R,B) = R⊕ rol(R⊕B) = R⊕ rol(R)⊕ rol(B)

and so we bound the number of values R such that C ⊕ rol(B) = R⊕ rol(R). Let C ′ =
C ⊕ rol(B), which is a constant. Then we have that

R[1]⊕R[s] = C ′[1]

R[2]⊕R[1] = C ′[2]

...

R[s− 1]⊕R[s− 2] = C ′[s− 1]

R[s]⊕R[s− 1] = C ′[s]

There only exists a string R that satisfies the above equalities if C ′[1]⊕C ′[2]⊕ · · · ⊕C ′[s] = 0. If
there exists a solution, then pick a value for R[1]. That choice and the equations above combine
to specify R[2], . . . , R[s]. This means that there are at most two possible values of R and so the
probability that C = mix2L(R,B) is at most 2/2s. The proof of the fourth part is symmetric.

We point out that the properties of circular rotations combined with xors as utilized in mix2
have been used before in different settings, such as [23].

We have introduced two mixing functions for the following reason: mix1 is conceptually more
elegant, while mix2 is operationally more elegant. In addition, mix2 is in effect an approximation
of mix1, making the latter an important conceptual building block. Such mixing functions might
prove useful in future provable-security results.

Note that our definition of an ε(s)-good mixing function is general, but XLS requires a mixing
function for which S ⊇ ∪n−1i=1 {0, 1}

i. This is clearly the case for mix1 and mix2. For the rest of the
paper when we refer to an ε(s)-good mixing function, we implicitly require that this function is
well-defined for such an S.

9

5 The Bit Flips

In steps 05 and 07 of XLS (see Figure 1) we flip a single bit. Flipping bits in this manner is
unintuitive and might seem unimportant for the security of XLS. However, the bit flips are actually
crucial for the security of the scheme when in the VIL setting. Let E† be the cipher defined by
running the algorithm of Figure 1 except with lines 05 and 07 omitted. Then the following VIL
adversary A easily distinguishes E† from a family of random permutations. The adversary A
makes two enciphering queries on M = 0n+1 and M ′ = 0n+2, getting return values C and C ′

respectively. If the first n bits of C and C ′ are equal, then A outputs 1 (the oracles are likely
the construction) and otherwise outputs 0 (the oracles are likely a random permutation). We have

that Pr[K
$←K∗ : AE†(·),D†(·) ⇒ 1] = 1. This is so because for both queries the inputs to E are

necessarily the same (as one can verify quickly by following along in the diagram in Figure 1;

remember to omit the flip steps). Clearly Pr[π
$← Perm(M∗) : Aπ(·),π−1(·) ⇒ 1] = 2−n and so A has

large advantage.

6 Security of XLS

We are now ready to prove the security of XLS. The proof is broken into two parts: first we show
that XLS is secure in an information-theoretic setting (i.e., using actual random permutations as
components). Afterwards we pass to a complexity-theoretic setting to get our main result.

Theorem 2 Fix n and an ε(s)-good mixing function mix. Let E∗ = XLS[mix,Perm(M),Perm(n)]

forM⊆ {0, 1}≥n Then for any adversary A that asks at most q queries we have that Adv±prfE∗ (A) ≤
5q2 ε(s)/2n−s + 3q2/2n for any s ∈ [1 .. n− 1], and so, by Lemma 1,

Adv±prfE∗ (A) ≤ 8q2

2n
and Adv±prfE∗ (A) ≤ 13q2

2n

for mix = mix1 and mix = mix2, respectively. �

Proof: We first present a self-contained chunk of the proof, and sketch the intuition of how to prove
the other portion. The full proof of the latter is deferred to Section 7. Fix n and let mix: S2 → S2
be an ε(s)-good mixing permutation. Let E : Perm(M)×M→M be a cipher with message space
M and let E: Perm(n) × {0, 1}n → {0, 1}n be a blockcipher. Note that these last two simply
implement a family of random length-preserving permutations on M and a random permutation
on {0, 1}n, respectively. Let A be a ±prf adversary against E∗ = XLS[mix, E , E]. We therefore
must bound

Adv±prfE∗ (A) = Pr
[
K

$←K∗ : AE
∗
K ,D

∗
K ⇒ 1

]
− Pr

[
ρ, σ

$← Func(M∗) : Aρ, σ⇒ 1
]
.

Recall that we disallow A from making pointless queries. We utilize a game-playing argument [5]
and the first two games are G0 and G1, shown in Figure 3.

In G0 we build E and E lazily using the appropriate Choose procedures, and so E and E are
partial functions in this context. Note that DE ,RE , DE,RE are initially empty and the functions
E ,D, E,D are everywhere undefined. As usual, D and D represent the inverses of E and E.
While game G0, which includes the boxed statements, enforces that E and E be length-preserving
permutations, game G1 dispenses with that requirement (the boxed statements are not included in
G1). A flag bad is initially false and set to true when, in the course of building E and E, a duplicate

10

procedure ChooseE(X)

Y
$←{0, 1}|X|

If Y ∈ RE then bad← true , Y
$←RE

If X ∈ DE then bad← true , Y ← E(X)

E(X)← Y ; D(Y)← X

RE ∪← Y ; DE ∪←X; Return Y

procedure ChooseD(Y) G0 G1

X
$←{0, 1}|Y |

If X ∈ DE then bad← true , Y
$←DE

If Y ∈ RE then bad← true , X ← D(Y)

E(X)← Y ; D(Y)← X

RE ∪← Y ; DE ∪←X; Return X

procedure ChooseE(X)

Y
$←{0, 1}|X|

If Y ∈ RE then bad← true , Y
$←RE

If X ∈ DE then bad← true , Y ← E(X)

E(X)← Y ; D(Y)← X

RE ∪← Y ; DE ∪←X; Return Y

procedure ChooseD(Y)

X
$←{0, 1}|Y |

If X ∈ DE then bad← true , Y
$←DE

If Y ∈ RE then bad← true , X ← D(Y)

E(X)← Y ; D(Y)← X

RE ∪← Y ; DE ∪←X; Return X

procedure Enc(M)
j ← j + 1; M j ←M ; If M j ∈M then Return Cj ← ChooseE(M j)

Let s be smallest number s.t. {0, 1}|M
j |−s ∈M

m← |M j | − n− s; M j
1 M j

2 M j
3 ←M j of lengths m, n, s

Let i ∈ [1 .. j] be smallest index s.t. M j
2 = M i

2

If i < j then M j
4 ←M i

4; M
j
5 ←M i

5

Else M j
4 M j

5 ← ChooseE(M j
2) of lengths n− s, s

M j
6 M j

7 ← mix(M j
4 ,M

j
3) of lengths s, s

Cj
1 Cj

4! C
j
6 ← ChooseE(M j

1 || flip1(M
j
4) ||M

j
6) of lengths m, n− s, s

Cj
5 Cj

3 ← mix(Cj
6 ,M

j
7) of lengths s, s

Cj
2 ← ChooseE(flip1(Cj

4!) || C
j
5)

Return Cj
1 Cj

2 Cj
3

procedure Dec(C)
j ← j + 1; Cj ← C; If Cj ∈M then Return M j ← ChooseD(Cj)

Let s be smallest number s.t. {0, 1}|C
j |−s ∈M

m← |Cj | − n− s; Cj
1 Cj

2 Cj
3 ← Cj of lengths m, n, s

Let i ∈ [1 .. j] be smallest index s.t. Cj
2 = Ci

2

If i < j then Cj
4 ← Ci

4, C
j
5 ← Ci

5

Else Cj
4 Cj

5 ← ChooseD(Cj
2) of lengths n− s, s

Cj
6 M j

7 ← mix(Cj
4 , C

j
3) of lengths s, s

M j
1 M j

4! M
j
6 ← ChooseD(Cj

1 || flip1(C
j
4) || C

j
5) of lengths m, n− s, s

M j
5 M j

3 ← mix(M j
6 M j

7) of lengths s, s
M j

2 ← ChooseD(flip1(M j
4!) ||M

j
5)

Return M j
1 M j

2 M j
3

Figure 3: Games G0 (boxed statements included) and G1 (boxed statements dropped) used in the proof
of Theorem 2. Initially, j = 0 and DE ,RE , DE,RE are empty sets and the partial functions E ,D, E,D are
everywhere undefined. The function flip1(X), for any bit string X = X[1] · · ·X[s], outputs the string with
last bit complemented: X[1] · · ·X[s− 1]flip(X[s]).

11

domain or range point is initially selected. In G0 these points are not used (enforcing that the
functions are permutations), but in G1 we use them and thus duplicate points can be added to DE ,
RE , DE, and RE. A collision is just a pair of equal strings in one of the sets. Note that for DE
and RE , only strings of the same length can collide.

Game G0 exactly simulates E∗ and its inverse while G1 always returns random bits. This second
statement needs to be justified for the case of a query M /∈ M (or C /∈ M). Particularly, if
the jth query is to encipher M j /∈ M, then the last s bits returned are Cj3 = mixR(Cj6 ,M

j
7).

Here Cj6 is uniformly selected, and by the definition of an ε(s)-good mixing function, we have that

mixR(Cj6 ,M
j
7) is a permutation of Cj6 . So Cj3 inherits its distribution. The same reasoning justifies

the distribution of deciphering queries C /∈M. We can therefore replace the oracles A queries with
the two described games and apply the fundamental lemma of game playing [5] to get

Adv±prfE∗ (A) = Pr
[
AG0 ⇒ 1

]
− Pr

[
AG1 ⇒ 1

]
≤ Pr

[
AG1 sets bad

]
. (1)

The following lemma captures the bound on the ability of A to set bad.

Lemma 2 Pr
[
AG1 sets bad

]
≤ 5q2 ε(s)/2n−s + 3q2/2n for any s ∈ [1 .. n− 1]. �

Combining Lemma 2 with Equation 1 implies the theorem statement, and a full proof of the lemma
is deferred to Section 7. Here we informally sketch one of the more interesting cases for proving
the lemma above. In particular, we reason about the probability that A can set bad by causing
a collision in the set DE , which represents the domain of E . Note that in the full proof we go
through several game transitions before reasoning about this case—here we do it in the context
of game G1 and thus end up being a bit informal. For simplicity we’ll just focus on enciphering
queries. Suppose that the ith and jth (with i < j) enciphering queries result in applying E to the
same domain point. That is, if we let Xi and Xj be the bit strings added to DE during queries i
and j, then a collision in DE occurs if Xi = Xj and l ≡ |Xi| = |Xj |. If such a collision occurs with
high probability, then A would be able to distinguish easily. There are two main cases to consider,
based on the lengths of the queried messages M i and M j . The cases are marked by triangles.

B Suppose that |M i| /∈M and |M j | /∈M. The two domain points are Xi = M i
1 || flip1(M i

4) ||M i
6

and Xj = M j
1 || flip1(M j

4) ||M j
6 . Let si = |M i

6| and sj = |M j
6 | (necessarily we have that |M i| −

si = |M j | − sj). We break down the analysis into two subcases:

• If M i
2 6= M j

2 then M j
4 ||M

j
5 are selected uniformly and independently from any random choices

made during query i. We have then that flip1(M j
4) consists of n−sj randomly selected bits,

which will collide with the appropriate n−sj bits of Xi with probability 2−n+s. Furthermore,
M j

6 = mixL(M j
5 ,M

j
3) where M j

5 is a string of sj random bits. We can apply the definition

of an ε(s)-good mixing function to get that the probability that M j
6 collides with some other

value is at most ε(s). Combining the two probabilities, we see that the probability that
Xi = M j

1 || flip1(M j
4) ||M j

6 is at most ε(s)/2n−s.

• If M i
2 = M j

2 then we can show that the probability that Xi = Xj is zero. First consider

if s ≡ si = sj . Then we have that M i
4 = M j

4 and M i
5 = M j

5 . For a collision to occur it

must be that M i
1 = M j

1 and M i
6 = M j

6 . But because of the permutivity of mixL(A, ·), as

given by Definition 1 part 1, this last equivalence implies that M i
3 = M j

3 . In turn this means
that M i = M j , which would make query j pointless. But since we disallow A from making
pointless queries, we have a contradiction. Second consider, without loss of generality, that

12

si < sj . Then we have that Xi can not equal Xj (recall that |Xi| = |Xj | = l) because flip1

ensures that Xi
[
l − sj

]
6= Xj

[
l − sj

]
. Thus, in either situation, the probability of a collision

is zero.

B Now suppose that |M i| ∈ M and |M j | /∈ M. The two domain points are M i and Xj =
M j

1 || flip1(M j
4) ||M j

6 . Let sj = |M j
6 |. We have that M j

4 and M j
5 are uniformly selected after the

adversary has specified M i (since i < j). Thus, flip1(M j
4) will collide with the appropriate bits

of M i with probability 2−n+s. Since M j
6 = mixL(M j

5 ,M
j
3) we can apply the definition of a good

mixing function. This gives that the probability of M j
6 colliding with the appropriate sj bits of M i

is at most ε(s). Therefore the probability that M i = Xj is at most ε(s)/2n−s.

If on the other hand |M i| /∈ M while |M j | ∈ M, then we can only apply similar reasoning if we
show that A learns nothing about certain random choices made in the course of answering query i.
We do just that rigorously in the full proof.

So in the cases above the probability of a collision is no greater than ε(s)/2n−s, where s ∈ [1 .. n−1].
Because each query adds one string to DE , we have that |DE| = q. Thus, the total probability of
bad being set due to a collision in the domain of E is at most(

q

2

)
ε(s)

2n−s
≤ q2 ε(s)

2n−s+1
.

Combining this (via a union bound) with analyses of the other ways in which bad can be set yields
a sketch of the lemma.

The next theorem captures the security of XLS in a complexity-theoretic setting. It’s proof is
by a standard hybrid argument, which utilizes as one step Theorem 2.

Theorem 3 Fix n and an ε(s)-good mixing function mix. Let E : KE × M → M be a cipher
and E: KE × {0, 1}n → {0, 1}n be a blockcipher. Let E∗ = XLS[mix, E , E] and let A be an
adversary that runs in time t and asks at most q queries, each of at most µ bits. Then there
exists adversaries B and C and an absolute constant c such that Adv±prpE∗ (A) ≤ Adv±prpE (B) +

Adv±prpE (C) + 5q2 ε(s)/2n−s + 4q2/2n for any s ∈ [1 .. n− 1], and so, by Lemma 1

Adv±prpE∗ (A) ≤ Adv±prpE (B) + Adv±prpE (C) +
9q2

2n

when mix = mix1, and the same expression, but with the 9 replaced by 14, when mix = mix2. Here
B runs in time tB = t+ cµq log q and asks qB = q queries, each of length at most µ, and C runs in
time tC ≤ t+ (q + 1) · TimeE(µ) + cµq and asks qC ≤ 2q queries, each of length at most n. �

Proof: Fix a blocklength n and an ε(s)-good mixing function mix: S2 → S2. Let E: KE×{0, 1}n →
{0, 1}n be a blockcipher and E : KE ×M → M be an enciphering scheme for message space M.
Let A be a ±prp adversary attacking E∗ = XLS[mix, E , E] running in at most time t and making q
queries each of which is of length no more than µ. We use a hybrid argument consisting of five
distinct settings. Imagine randomly instantiating the oracles F and G that A has access to with a
random instance of one of the following pairs:

(1) F = XLS[mix, E , E] and G = F−1

(2) F = XLS[mix, E ,Perm(n)] and G = F−1.

(3) F = XLS[mix,Perm(M),Perm(n)] and G = F−1

13

(4) F = Func(M∗) and G = Func(M∗)
(5) F = Perm(M∗) and G = F−1

Let pi be the probability that A returns 1 when given the ith pair of oracles above. Also, let
pij ≡ pi − pj . We therefore have that p15 = Adv±prpE∗ (A). Further,

p15 = p12 + p23 + p34 + p45 . (2)

We can bound p15 by bounding each of these terms:

• p12 ≤ Adv±prpE (C). Consider an adversary C with access to oracles f, g that behaves as
follows. Adversary C begins by choosing a random L from KE . Then it runs adversary A.
When A makes a query F (X), adversary C answers this query by executing the algorithm
specified by XLS[mix, E , f] on input X: running E with the chosen key L and utilizing its
oracle f where appropriate. When A makes a query G(Y), adversary C similarly answers this
query by executing the algorithm specified by XLS[mix,D, g]. Adversary C returns whatever is
returned by A. Adversary C runs in time t′ ≤ t+(q+1) ·TimeE(l)+cµq where c is an absolute
constant. Adversary C asks q′ ≤ 2q oracle queries. The advantage of C is Adv±prpE (C) = p12.

• p23 ≤ Adv±prpE (B). We consider an adversary B with oracles f, g that behaves as follows.
Adversary B will lazily grow a random permutation π in the conventional way. It runs A
and answers any query F (X) by running the algorithm specified by XLS[mix, f, π]. Similarly,
when A queries G(Y), adversary B answers the query by running the algorithm specified by
XLS[mix, g, π−1] Adversary B returns whatever A returns. It runs in time t′ = t + cµq log q
where c is an absolute constant and B asks q oracle queries. (The log q factor accommodates
the sampling of the random permutation in the worst-case time.) The advantage of B is
Adv±prpE (B) = p23.

• p34 ≤ (5q2 ε(s)/2n−s) + (3q2/2n). Theorem 2 gives us this result.

• p45 ≤ 0.5 q(q−1)/2n ≤ q2/2n. This is standard; see for example the proof of Lemma 6 in [15].

Combining the different portions of the hybrid argument we get that

Adv±prpE∗ (A) = p15

≤ p12 + p23 + p34 + p45

≤ Adv±prpE (C) + Adv±prpE (B) +
5q2 ε(s)

2n−s
+

3q2

2n
+
q2

2n

≤ Adv±prpE (C) + Adv±prpE (B) +
5q2 ε(s)

2n−s
+

4q2

2n

which proves Theorem 3.

7 Proof of Lemma 2

We want to bound the probability that A forces bad to be set in game G1 (refer to Figure 3). We
proceed through a sequence of game transitions, and then conduct a case analysis of the probability
of setting bad in the final game.

14

procedure Enc(M)
j ← j + 1; M j ←M
If M j ∈M then
Cj $←{0, 1}|M

j |; DE ∪← (j,EM,M j)

RE ∪← (j,EC, Cj); Return Cj

Let s be smallest number s.t. {0, 1}|M
j |−s ∈M

m← |M j | − n− s
M j

1 M j
2 M j

3 ←M j of lengths m, n, s
Let i ∈ [1 .. j] be smallest index s.t. M j

2 = M i
2

If i < j then M j
4 ←M i

4; M
j
5 ←M i

5

Else M j
4 M j

5
$←{0, 1}n of lengths n− s, s

DE ∪← (j,EM2,M
j
2)

RE ∪← (j,EM45,M
j
4 ||M

j
5)

M j
6 M j

7 ← mix(M j
5 ,M

j
3) of lengths s, s

Cj
1 Cj

4! C
j
6

$←{0, 1}m+n of lengths m, n− s, s

DE ∪← (j,EM146,M
j
1 || flip1(M

j
4) ||M

j
6)

RE ∪← (j,EC146, C
j
1 || C

j
4! || C

j
6)

Cj
5 Cj

3 ← mix(Cj
6 ,M

j
7) of lengths s, s

Cj
2

$←{0, 1}n

DE ∪← (j,EC45, flip1(C
j
4!) || C

j
5)

RE ∪← (j,EC2, C
j
2)

Return Cj
1 Cj

2 Cj
3

procedure Dec(C) G2
j ← j + 1; Cj ← C
If Cj ∈M then
M j $←{0, 1}|C

j |; DE ∪← (j,DM,M j)

RE ∪← (j,DC, Cj); Return M j

Let s be smallest number s.t. {0, 1}|C
j |−s ∈M

m← |Cj | − n− s
Cj

1 Cj
2 Cj

3 ← Cj of lengths m, n, s
Let i ∈ [1 .. j] be smallest index s.t. Cj

2 = Ci
2

If i < j then Cj
4 ← Ci

4; C
j
5 ← Ci

5

Else Cj
4 Cj

5
$←{0, 1}n of lengths n− s, s

DE ∪← (j,DC45, C
j
4 || C

j
5)

RE ∪← (j,DC2, C
j
2)

Cj
6 M j

7 ← mix(Cj
5 , C

j
3) of lengths s, s

M j
1 M j

4! M
j
6

$←{0, 1}m+n of lengths m, n− s, s

DE ∪← (j,DM146,M
j
1 ||M

j
4! ||M

j
6)

RE ∪← (j,DC146, C
j
1 || flip1(C

j
4) || C

j
6)

M j
5 M j

3 ← mix(M j
6 ,M

j
7) of lengths s, s

M j
2

$←{0, 1}n

DE ∪← (j,DM2,M
j
2)

RE ∪← (j,DM45, flip1(M
j
4!) ||M

j
5)

Return M j
1 M j

2 M j
3

procedure Finalize

bad← (a collision occurs in DE or in RE or in DE or in RE)

Figure 4: Game G2 used in the proof of Lemma 2. Initially the sets DE ,RE , DE,RE are empty and j = 0.
In this game the setting of bad is deferred to the Finalize procedure, and the sets DE ,RE , DE,RE record
information about strings that would have been defined for the range and domain of E and E in Game G1.

(Game G2; Fig. 4) We modify game G1 in several ways to create game G2. We dispense with the
Choose procedures. Instead, we directly sample uniformly where appropriate, and we add to the
sets DE ,RE , DE,RE tuples that record information about the bit strings that would have been
added to the domain and range of E and E in game G1. Each tuple added to these sets is of the form
(j, L, S) where j ∈ [1 .. q] is the query responsible for adding the tuple; L ∈ {EM2,DM2,EC45,DC45}
(for tuples in DE), L ∈ {EC2,DC45,EM45,DM2} (for tuples in RE), L ∈ {EM,DM,EM146,DM146}
(for tuples in DE), or L ∈ {EC,DC,EC146,DC146} (for tuples in RE) is a label representing where
in the game the tuple was added — we distinguish between enciphering and deciphering queries
by the ‘E’ and ‘D’; and finally S is the bit string actually being added to the domain or range
of E or E. Note that all tuples in each of the sets are distinct. Finally, we defer the setting of the
flag bad until after all the queries have been handled.

We define a collision to be any pair of tuples (i, L, S) and (j, L′, S′) for which S = S′ and both
tuples are in one of DE, RE, DE , or RE . Anytime bad would have been set in G1 we have that a
tuple is added to one of the sets that collides with a tuple already in the set. Additionally, every
query still returns a sequence of random bits. Therefore

Pr
[
AG1 sets bad

]
= Pr

[
AG2 sets bad

]
(3)

The rest of the proof is dedicated to showing that collisions in these sets can only occur with low
probability regardless of the adversary’s choices.

We go ahead and bound the probability of some types of collisions occurring in game G2, and
wait to reason about the others in a later game. Particularly, we first focus on trivial collisions. A

15

trivial collision is a pair of tuples

(1) (i, L, S), (j, L′, S′) ∈ DE for L′ ∈ {DM2,DC45},
(2) (i, L, S), (j, L′, S′) ∈ RE for L′ ∈ {EC2,EM45},
(3) (i, L, S), (j,EC45, S

′) ∈ DE,

(4) (i, L, S), (j,DM45, S
′) ∈ RE,

(5) (i, L, S), (j, L′, S′) ∈ DE for L′ ∈ {DM,DM146}, or

(6) (i, L, S), (j, L′, S′) in RE for L′ ∈ {EC,EC146}
where i < j and S = S′. Trivial collisions correspond to a collision between a previously added bit
string and a fresh, uniformly chosen bit string By fresh we mean that the adversary has received no
information about the random choice (which is clear in these cases since the random choice occurs
in the later of the two queries).

The following claim bounds the probability that A causes a trivial collision.

Claim 4 Pr
[
AG2 causes trivial collision

]
≤ (4q2 ε(s)/2n−s) + q2/2n . �

Proof: We first show that the probability of any category of trivial collision is low, and then count
the total number of potential trivial collisions in each set to prove the claim. For categories (1),
(2), (5), and (6) the probability of a collision is clearly at most 2−n because S′ is always freshly
chosen at random and |S′| ≥ n. For category (3) we have that S′ = flip1(Cj4!) || C

j
5 . Here Cj4!

is a uniform string of n − s bits and Cj5 = mixL(Cj6 ,M
j
7) where Cj6 is a uniform s-bit string. We

apply the definition of a good mixing permutation to get that the probability of Cj5 equaling the
corresponding portion of S is at most ε(s). Thus the probability of S′ equaling S is at most
ε(s)/2n−s. For category (4) a symmetric argument gives us the same bound.

Since |DE| ≤ 2q |RE| ≤ 2q, and |DE| ≤ q and |RE| ≤ q and using the union bound we have

Pr
[
AG2 causes trivial collision

]
≤
(

2q

2

)
ε(s)

2n−s
+

(
2q

2

)
ε(s)

2n−s
+

(
q

2

)
1

2n
+

(
q

2

)
1

2n
≤ 4q2 ε(s)

2n−s
+
q2

2n
.

Now we define non-trivial collisions, which encompass all other possible collisions in the game.
Formally, a non-trivial collision is between a pair of tuples

(1) (i, L, S), (j,EM2, S
′) ∈ DE,

(2) (i, L, S), (j,DC2, S
′) ∈ RE,

(3) (i, L, S), (j, L′, S′) ∈ DE for L′ ∈ {EM,EM146}, or

(4) (i, L, S), (j, L′, S′) ∈ RE for L′ ∈ {DC,DC146}
where i < j and S = S′. Since trivial and non-trivial collisions represent all the ways in which bad
can be set we have that

Pr
[
AG2 sets bad

]
≤ Pr

[
AG2 causes trivial collision

]
+ Pr

[
AG2 causes non-trivial collision

]
≤ 4q2 ε(s)

2n−s
+
q2

2n
+ Pr

[
AG2 causes non-trivial collision

]
. (4)

(Game G3; Fig. 5) We modify game G2 to form game G3, which only sets bad in response to
non-trivial collisions. We also change the order of many random choices. A query is immediately
responded with by random bits. During the finalization phase G3 revisits each query and determines
the values of each internal variable. To do so, G3 must compute Cj6 from M j

7 and Cj3 (for encryption

queries) and M j
6 from M j

7 and M j
3 (for decryption queries). This is because Cj3 and M j

3 have
already been specified before Finalize is executed. This can be done easily since mix is a good

16

procedure Enc(M)
k ← k + 1; Mk ←M

tyk ← Enc; Ck $←{0, 1}|M
k|; Return Ck

procedure Dec(C) G3
k ← k + 1; Ck ← C

tyk ← Dec; Mk $←{0, 1}|C
k|; Return Mk

procedure Finalize
For j ← 1 to k do
If tyj = Enc and M j ∈M then

DE ∪← (j,EM,M j)

RE ∪← (j,EC, Cj)
Else If tyj = Enc and M j /∈M then

Let s be smallest number s.t. {0, 1}|M
j |−s ∈M

m← |M j | − n− s
M j

1 M j
2 M j

3 ←M j of lengths m, n, s
Cj

1 Cj
2 Cj

3 ← Cj of lengths m, n, s
Let i ∈ [1 .. j] be smallest index s.t. M j

2 = M i
2

If i < j then M j
4 ←M i

4; M
j
5 ←M i

5

Else M j
4 M j

5
$←{0, 1}n of lengths n− s, s

DE ∪← (j,EM2,M
j
2)

RE ∪← (j,EM45,M
j
4 ||M

j
5)

M j
6 M j

7 ← mix(M j
5 ,M

j
3) of lengths s, s

Cj
4!

$←{0, 1}n−s; Cj
6 ← mix−1

R
(Cj

3 ,M
j
7)

DE ∪← (j,EM146,M
j
1 || flip1(M

j
4) ||M

j
6)

RE ∪← (j,EC146, C
j
1 || C

j
4! || C

j
6)

Cj
5 ← mixL(C

j
6 ,M

j
7)

DE ∪← (j,EC45, flip1(C
j
4!) || C

j
5)

RE ∪← (j,EC2, C
j
2)

If tyj = Dec and Cj ∈M then

DE ∪← (j,DM,M j)

RE ∪← (j,DC, Cj)
Else If tyj = Dec and Cj /∈M then

Let s be smallest number s.t. {0, 1}|C
j |−s ∈M

m← |Cj | − n− s
M j

1 M j
2 M j

3 ←M j of lengths m, n, s
Cj

1 Cj
2 Cj

3 ← Cj of lengths m, n, s
Let i ∈ [1 .. j] be smallest index s.t. Cj

2 = Ci
2

If i < j then Cj
4 ← Ci

4; C
j
5 ← Ci

5

Else Cj
4 Cj

5
$←{0, 1}n of lengths n− s, s

DE ∪← (j,DC45, C
j
4 || C

j
5)

RE ∪← (j,DC2, C
j
2)

Cj
6 M j

7 ← mix(Cj
5 , C

j
3) of lengths s, s

M j
4!

$←{0, 1}n−s; M j
6 ← mix−1

R
(M j

3 ,M
j
7)

DE ∪← (j,DM146,M
j
1 ||M

j
4! ||M

j
6)

RE ∪← (j,DC146, C
j
1 || flip1(C

j
4) || C

j
6)

M j
5 ← mixL(M

j
6 ,M

j
7)

DE ∪← (j,DM2,M
j
2)

RE ∪← (j,DM45, flip1(M
j
4!) ||M

j
5)

bad← (a nontrivial collision occurs in DE or in RE or in DE or in RE)

Figure 5: Game G3. Lemma 2. Initially, DE ,RE , DE,RE are empty and k = 0. Enciphering and
deciphering queries are answered by random bits. After all queries have been asked the internal variables are
determined for each query and the flag bad is set if any of DE ,RE , DE,RE contains a nontrivial collision.

mixing permutation, in particular because mixR(·, B) is a permutation for any appropriate value B.
We use the inverse of mixR(·, B), which we write as mix−1

R
(·, B), to calculate the values as needed.

(For example, we have that mix2−1
R

(A,B) = B⊕ ror(B⊕A) where ror is right circular rotation by

one bit.) The values Cj6 and M j
6 therefore also inherit the distributions of Cj3 and M j

3 , respectively.
All the variables in G3 are distributed just like they were in G2, justifying that

Pr
[
AG2 causes non-trivial collision

]
= Pr

[
AG3 sets bad

]
. (5)

(Game G4; Fig. 6) In the last game, G4, we move to a non-interactive setting in which the
adversary specifies a transcript τ = (M,C, ty) where M = {M1, M2, . . . , Mq}, C = {C1, C2, . . . , Cq},
and ty = {ty1, ty2, . . . , tyq}. (Recall that A is not allowed to specify pointless queries.) Otherwise,
the game G4 is identical to the finalization portion of game G3. From now on we assume that A
utilizes a fixed transcript τ that maximizes the probability of the flag bad being set. Thus

Pr
[
AG3 sets bad

]
≤ Pr

[
AG4 sets bad

]
. (6)

Now we bound the probability of bad being set in G4 using a union bound and bounds on the
probability of nontrivial collisions occurring in each of the sets DE,RE,DE ,RE :

Pr
[
AG4 sets flag bad

]
≤ Pr[nontrivial collision in DE] + Pr[nontrivial collision in RE] +

Pr[nontrivial collision in DE] + Pr[nontrivial collision in RE] . (7)

17

procedure Finalize G4
For j ← 1 to q do

If tyj = Enc and Mj ∈M then

DE ∪← (j,EM, Mj)

RE ∪← (j,EC, Cj)
Else If tyj = Enc and Mj /∈M then

Let s be smallest number s.t. {0, 1}|M
j |−s ∈M

m← |Mj | − n− s
M
j
1 M

j
2 M

j
3 ← Mj of lengths m, n, s

C
j
1 C

j
2 C

j
3 ← Cj of lengths m, n, s

Let i ∈ [1 .. j] be smallest index s.t. Mj2 = Mi2
If i < j then M j

4 ←M i
4; M

j
5 ←M i

5

Else M j
4 M j

5
$←{0, 1}n of lengths n− s, s

DE ∪← (j,EM2, M
j
2)

RE ∪← (j,EM45,M
j
4 ||M

j
5)

M j
6 M j

7 ← mix(M j
5 , M

j
3) of lengths s, s

Cj
4!

$←{0, 1}n−s; Cj
6 ← mix−1

R
(Cj3,M

j
7)

DE ∪← (j,EM146, M
j
1 || flip1(M

j
4) ||M

j
6)

RE ∪← (j,EC146, C
j
1 || C

j
4! || C

j
6)

Cj
5 ← mixL(C

j
6 ,M

j
7)

DE ∪← (j,EC45, flip1(C
j
4!) || C

j
5)

RE ∪← (j,EC2, C
j
2)

If tyj = Dec and Cj ∈M then

DE ∪← (j,DM, Mj)

RE ∪← (j,DC, Cj)
Else If tyj = Dec and Cj /∈M then

Let s be smallest number s.t. {0, 1}|C
j |−s ∈M

m← |Cj | − n− s
M
j
1 M

j
2 M

j
3 ← Mj of lengths m, n, s

C
j
1 C

j
2 C

j
3 ← Cj of lengths m, n, s

Let i ∈ [1 .. j] be smallest index s.t. Cj2 = Ci2
If i < j then Cj

4 ← Ci
4; C

j
5 ← Ci

5

Else Cj
4 Cj

5
$←{0, 1}n of lengths n− s, s

DE ∪← (j,DC45, C
j
4 || C

j
5)

RE ∪← (j,DC2, C
j
2)

Cj
6 M j

7 ← mix(Cj
5 , C

j
3) of lengths s, s

M j
4!

$←{0, 1}n−s; M j
6 ← mix−1

R
(Mj3,M

j
7)

DE ∪← (j,DM146, M
j
1 ||M

j
4! ||M

j
6)

RE ∪← (j,DC146, C
j
1 || flip1(C

j
4) || C

j
6)

M j
5 ← mixL(M

j
6 ,M

j
7)

DE ∪← (j,DM2, M
j
2)

RE ∪← (j,DM45, flip1(M
j
4!) ||M

j
5)

bad← (a nontrivial collision occurs in DE or in RE or in DE or in RE)

Figure 6: Game G4 used in the proof of Lemma 2. Initially the sets DE ,RE , DE,RE are empty. This
game is non-interactive: the adversary specifies a fixed transcript τ = (M,C, ty) and the game determines
whether the flag bad should be set for the transcript.

We handle each term by a separate claim. In proving the following claims we use the fact that the
adversary A has no knowledge of the random choices made in game G4 — they are all made after
the transcript has been specified.

Claim 5 Pr[nontrivial collision in DE] ≤ q2/2n. �

Proof: Nontrivial collisions within DE are pairs of tuples (i, L, S), (j,EM2, M
j
2) where L is neces-

sarily either EC45 or DC45 (L can not be EM2 or DM2 because the structure of the game would not
allow the second tuple to then be added.) We handle each case in turn, marking the arguments for
each with a triangle.
B Let (i,EC45, S) and (j,EM2, M

j
2) be tuples in DE and let s = |Mi3|. Then S = flip1(Ci4!) || Ci5.

Here Ci4! is uniformly selected from {0, 1}n−s and (as we show in a moment) Ci5 is uniformly selected

from {0, 1}s. Thus, the probability that S = M
j
2 is at most 1/2n. Now to show that Ci5 is uniform.

We have that
Ci5 = mixL(Ci6,M

i
7) = mixL(Ci6,mixR(M i

5, M
i
3))

In the right hand side of these equivalences, we have that M i
5 is uniformly chosen, and thus by

Definition 1 part 2 (mixR(·, B) is a permutation) the output of mixR(M i
5, M

i
3) is uniform. In turn,

mixL(Ci6,mixR(M i
5, M

i
3)) = Ci5 is uniform, by Definition 1 part 1 (mixL(A, ·) is a permutation).

B Let (i,DC45, S) and (j,EM2, M
j
2) be tuples in DE. Then S = Ci4 || Ci5 which is a string of n

random bits. The probability that S = M
j
2 is therefore 1/2n.

Since there are at most q tuples (i, L, S) with L ∈ {EC45,DC45} and at most q tuples of the
form (j,EM2, M

j
2), the total probability of a nontrivial collision in DE is at most q2/2n.

18

Claim 6 Pr[nontrivial collision in RE] ≤ q2/2n. �

Proof: Let (i, L, S), (j,DC2, C
j
2) ∈ RE where necessarily L ∈ {EM45,DM45} (as in the previous

claim, the game would not allow the tuples to both be added to RE if L = {EC2,DC2}).
B Let (i,EM45, S) and (j,DC2, C

j
2) be tuples in RE. Then S = M i

4 ||M i
5 which is a string of n

random bits and equals C
j
2 with probability at most 1/2n.

B Let (i,DM45, S) and (j,DC2, C
j
2) be tuples inRE and let s = |Mi3|. Then S = flip1(M i

4!) ||M i
5.

Here M i
4! is uniformly selected from {0, 1}n−s and (as we justify in a moment) M i

5 is uniformly

selected from {0, 1}s. The probability that S = C
j
2 is therefore at most 1/2n. Now to show that

M i
5 is uniform. We have that

M i
5 = mixL(M i

6,mixR(Ci5, C
i
3)) .

In the right hand side of these equivalences, we have that Ci5 is uniformly chosen, and thus by
Definition 1 part 2 (mixR(·, B) is a permutation) the output of mixR(Ci5, C

i
3) is uniform. In turn,

mixL(M i
6,mixR(Ci5, C

i
3)) = Ci5 is uniform, by Definition 1 part 1 (mixL(A, ·) is a permutation).

Since there are at most q tuples (i, L, S) with L ∈ {EM45,DM45} and at most q tuples of the
form (j,DC2, C

j
2), the total probability of a nontrivial collision in RE is at most q2/2n.

Claim 7 Pr[nontrivial collision in DE] ≤ q2 ε(s)/2n−s+1 for any s ∈ [1 .. n− 1]. �

Proof: A nontrivial collision in DE can occur between two tuples (i, L, S) and (j, L′, S′) where
L ∈ {EM,DM,EM146,DM146} and L′ ∈ {EM,EM146}. There are actually only six cases to consider,
since if L′ = EM, a collision with L ∈ {EM,DM} would actually imply a pointless query. We now
look at the six cases in turn.
B Let (i,EM, Mi) and (j,EM146, S

′) be in DE and let s = |Mj3| and for ease of exposition let Mi =

M1 || M2 || C where |M1| = |Mi|−n, |M2| = n−s, and |C| = s. We have that S′ = M j
1 || flip1(M j

4) ||M j
6 .

Here M j
4 is uniformly selected from {0, 1}n−s and thus the probability that flip1(M j

4) = M2 is

at most 1/2n−s. We also have that M j
6 = mixL(M j

5 ,M
j
7) where M j

5 is selected uniformly. By

Definition 1 part 3, we have that the probability of C = mixL(M j
5 ,M

j
7) = M j

6 is at most ε(s), where

s = |M j
6 |. Since M j

4 and M j
5 are independently chosen, we have that the probability that S′ = Mi

is at most ε(s)/2n−s.
B Let (i,DM, Mi) and (j,EM146, S

′) be in DE . This case is the same as the previous case, and
so bound by ε(s)/2n−s.
B Let (i,EM146, S) and (j,EM146, S

′) be in DE . and let si = |Mi3| and let sj = |Mj3|. For a
collision to occur we clearly must have |Mi| − si = |Mj | − sj and so we assume this to be the case.
We break down the argument down further:

• First consider when M i
2 6= M j

2 . Then we note that M i
4, M

i
5, M

j
4 , and M j

5 are all independently

and uniformly chosen at random. Let S′ = M
j
1 || flip1(M j

4) ||M j
6 . Let S = Mi1 || M2 || C where

|Mi1| = |Mi|−n, |M2| = n−sj , and |C| = sj (that is, we parse the last n bits of S according to the
way it will line up against flip1(M j

4) and M j
6). Now the probability that M2 = flip1(M j

4)

is 1/2n−s
j

and the probability that C = M j
6 = mixL(M j

5 , M
j
3) is at most ε(sj) as given by

Definition 1 part 3. The probabilities are independent and so a collision in this situation
happens with probability no greater than ε(sj)/2n−s

j
.

• Now consider when M j
2 = M j

2 . We show that the probability of a collision in this situation

is zero. First consider if s ≡ si = sj . Then we have that M i
4 = M j

4 and M i
5 = M j

5 . For a

collision to occur it must be that Mi1 = M
j
1 and M i

6 = M j
6 . But because of the permutivity

of mixL(A, ·) (Definition 1 part 1) this last equivalence implies that Mi3 = M
j
3. In turn this means

19

that Mi = Mj , which would make query j pointless and therefore we have a contradiction and
this can not occur. Second, without loss of generality, assume si < sj . Then we note that S
can not equal S′ because flip1 ensures that S

[
|Mi| − si − sj − 1

]
6= S′

[
|Mj | − 2sj − 1

]
.

So the probability of a collision between these types of tuples is at most ε(sj)/2n−s
j
.

B Let (i,DM146, S) and (j,EM146, S
′) be in DE . Let sj = |Mj3|. Then S′ = M

j
1 || flip1(M j

4) ||M j
6 .

where M j
6 = mixL(M j

5 , M
j
3). Both M j

4 and M j
5 are uniformly selected from {0, 1}n−s

j

and {0, 1}s
j

,

respectively. Thus the probability that S = S′ is at most ε(sj)/2n−s
j
, where we apply Definition 1

part 3 in the usual way.
B Let (i,EM146, S) and (j,EM, Mj) be in DE . The probability that S = Mj is at most ε(s)/2n−s

for s = |Mj |. the usual application of Definition 1 part 3.
B Let (i,DM146, S) and (j,EM, Mj) be in DE . Let s = |Mi3|. We have that S = Mi1 ||M i

4! ||M i
6

where M i
4! is uniformly selected from {0, 1}n−s and M i

6 = mix−1
R

(M i
7, M

i
3) = mix−1

R
(mixL(Ci5, C

i
3), M

i
3)

where Ci5 is uniformly selected from {0, 1}s. By Definition 1 parts 1 and 2, we have that M i
6 is also

distributed uniformly over {0, 1}s. Thus the probability of S = S′ is at most 1/2n.
In all cases the probability of a collision is at most ε(s)/2n−s where s ∈ [1 .. n− 1] (necessarily

ε(s)/2n−s ≥ 1/2n, for any s). As |DE| = q the probability of a collision in DE is at most(
q

2

)
ε(s)

2n−s
≤ q2 ε(s)

2n−s+1
.

Claim 8 Pr[nontrivial collision in RE] ≤ q2 ε(s)/2n−s+1 for any s ∈ [1 .. n− 1]. �

Proof: The proof is symmetric to the proof of Lemma 7.

Combining Claims 5, 6, 7, and 8 with Equation 7 yields that

Pr
[
AG4 sets bad

]
≤ q2 ε(s)

2n−s
+

2q2

2n

and combining this with Equations 3, 4, 5 and 6 we get that

Pr
[
AG1 sets bad

]
= Pr

[
AG2 sets bad

]
≤ Pr

[
AG2 causes trivial collision

]
+

Pr
[
AG2 causes nontrivial collision

]
≤ 4q2 ε(s)

2n−s
+ q22−n + Pr

[
AG3 sets bad

]
=

4q2 ε(s)

2n−s
+ q22−n + Pr

[
AG4 sets bad

]
≤ 5q2 ε(s)

2n−s
+ 3q22−n

which completes our proof of Lemma 2.

8 Supporting Tweaks

A tweakable cipher [15, 16] is a function Ẽ : KE × T ×M → M where KE 6= ∅ is the key space,
T 6= ∅ is the tweak space, andM is the message space. We require that ẼTK(·) is a length-preserving

permutation for all K ∈ KE and T ∈ T . We write the inverse of Ẽ as D̃. A tweakable blockcipher
is a tweakable cipher with M = {0, 1}n for some fixed n. Tweakable ciphers are useful tools for
building higher-level protocols. The tweak of a cipher can be used as, for example, a sector index.

20

The security of a tweakable cipher is based on indistinguishability of the scheme and a tweakable
random permutation. More formally, we define the following advantages

Adv±p̃rp
Ẽ

(A) = Pr
[
K

$←KE : AẼK ,D̃K ⇒ 1
]
− Pr

[
π̃

$← PermT (M) : Aπ̃,π̃−1⇒ 1
]

Adv±p̃rf
Ẽ

(A) = Pr
[
K

$←KE : AẼK ,D̃K ⇒ 1
]
− Pr

[
ρ, σ

$← FuncT (M) : Aρ,σ ⇒ 1
]

where the probabilities are over the choice of K or π̃ (resp. ρ, σ) and the coins used by A. Here
PermT (M) is the set of all functions π̃: T ×M→M where π̃(T, ·) is a length-preserving permu-
tation and FuncT (M) is the set of all functions ρ: T ×M→M where ρ(T, ·) is length-preserving.

XLS and tweaks. The XLS construction works for tweaks. By this we mean that if the cipher E
utilized in XLS is tweakable, then the resulting cipher with the enlarged message space is also
tweakable. More specifically, fix an ε(s)-good mixing function. If we construct Ẽ∗ = XLS[mix, Ẽ , E]
where Ẽ : KE ×T ×M→M is a tweakable cipher and E: KE ×{0, 1}n → {0, 1}n is a conventional
blockcipher then the resulting scheme Ẽ∗ is tweakable with tweak space T and enlarged message
spaceM∗ =M || {0, 1}<n. Here XLS is implicitly changed by adding the tweak T as a superscript
to E on lines 00 and 06 of Figure 1. The following theorem statements, which are analogous to
Theorem 2 and Theorem 3, establish the security of XLS with tweaks.

Theorem 9 Fix n and an ε(s)-good mixing function mix. LetM⊂ {0, 1}≥n, let T be a nonempty
set, and let Ẽ∗ = XLS[mix,PermT (M),Perm(n)]. Then for any adversary A that asks at most q

queries we have that Adv±p̃rf
Ẽ∗

(A) ≤ 5q2 ε(s)/2n−s + 3q2/2n for any s ∈ [1 .. n − 1], and so, by
Lemma 1

Adv±prfE∗ (A) ≤ 8q2

2n
and Adv±prfE∗ (A) ≤ 13q2

2n

for mix = mix1 and mix = mix2, respectively. �

To prove the theorem, we can modify the proofs of Theorem 2 and Lemma 2 as follows. Replace E
with Ẽ throughout. Modify all the games in both proofs so that enciphering and deciphering queries
take a tweak. In games G0 and G1 lazily build separate random length-preserving functions Ẽ for
each tweak queried (in G0 they are permutations while in G1 they are just functions). In games
G2, G3, and G4, use distinct sets DE and RE for each tweak; collisions can then only occur within
a set (i.e., for the same tweak). The rest of the proof proceeds in the natural way. The case analysis
bounds the probability of collisions in any of the specified sets, and the size of the sets DE and RE
will be maximized if all queries utilize the same tweak. Combining Theorem 2 with a standard
hybrid argument proves the next theorem.

Theorem 10 Fix n and an ε(s)-good mixing functionmix. Let Ẽ : KE×T ×M→M be a tweakable
cipher and E: KE × {0, 1}n → {0, 1}n be a blockcipher. Let E∗ = XLS[mix, Ẽ , E] and let A be an
adversary that runs in time t and asks at most q queries, with maximal query length being µ
bits Then there exists adversaries B and C and an absolute constant c such that Adv±p̃rp

Ẽ∗
(A) ≤

Adv±p̃rp
Ẽ

(B) + Adv±prpE (C) + 5q2 ε(s)/2n−s + 4q2/2n where s ∈ [0 .. n− 1], and so, by Lemma 1

Adv±p̃rpE∗ (A) ≤ Adv±p̃rp
Ẽ

(B) + Adv±prpE (C) +
9q2

2n

when mix = mix1, and the same expression, but with the 9 replaced by 14, when mix = mix2.
Here B runs in time tB = t + cµq log q and asks qB = q queries, none longer than µ, and where C
runs in time tC ≤ t+ (q + 1) · TimeẼ(µ) + cµq and asks qC ≤ 2q queries, each of length at most n.
�

21

The proof is a straightforward modification of the proof of Theorem 3. Replace E with a tweakable
enciphering scheme Ẽ throughout the proof. Replace the intermediate values of the hybrid argument
with: (1) F = XLS[mix, Ẽ , E] and G = F−1; (2) F = XLS[mix, Ẽ ,Perm(n)] and G = F−1; (3) F =
XLS[mix,PermT (M),Perm(n)] and G = F−1; (4) F = FuncT (M∗) and G = FuncT (M∗); and

(5) F = PermT (M∗) and G = F−1 The bound of p23 is changed to Adv±p̃rp
Ẽ

(B) and justified in
the straightforward way, while the bound of p34 is given by Theorem 9.

Note that the concrete security bounds are the same in both the tweaked and untweaked settings.
Intuitively this is because having a tweakable family of permutations is a stronger primitive than
a normal family of permutations, and the adversary might as well just focus its attack on a single
tweak.

9 XLS with Ordinary PRPs

If we apply the XLS construction to cipher Ẽ and blockcipher E that are both secure as (ordinary)
pseudorandom permutations (i.e., adversaries are restricted to chosen-plaintext attacks), then the
resulting cipher with expanded message space is also secure as a PRP. More formally, we define the
following advantage

Advp̃rp

Ẽ
(A) = Pr

[
K

$←KE : AẼK ⇒ 1
]
− Pr

[
π̃

$← PermT (M) : Aπ̃⇒ 1
]

where the probability is over the random choice of K or π and the random coins used by A. While
the theorems from Section 8 do not imply the security of XLS using ordinary (tweaked) PRPs,
their proofs can be (simplified) in a straightforward manner to derive the PRP security of XLS as
captured by the next theorem statement. We omit the details.

Theorem 11 Fix n and an ε(s)-good mixing functionmix. Let Ẽ : KE×T ×M→M be a tweakable
cipher and E: KE × {0, 1}n → {0, 1}n be a blockcipher. Let E∗ = XLS[mix, E , E] and let A be an
adversary that runs in time t and asks at most q queries, with maximal query length being µ
bits Then there exists adversaries B and C and an absolute constant c such that Advp̃rp

Ẽ∗
(A) ≤

Advp̃rp

Ẽ
(B) + Advprp

E (C) + 5q2 ε(s)/2n−s + 4q2/2n where s ∈ [0 .. n− 1], and so, by Lemma 1

Advp̃rp
E∗ (A) ≤ Advp̃rp

E (B) + Advprp
E (C) +

9q2

2n

when mix = mix1, and the same expression, but with the 9 replaced by 14, when mix = mix2.
Here B runs in time tB = t + cµq log q and asks qB = q queries, none longer than µ, and where C
runs in time tC ≤ t+ (q + 1) · TimeẼ(µ) + cµq and asks qC ≤ 2q queries, each of length at most n.
�

An immediate corollary of the theorem is security of XLS for ordinary, untweaked PRPs (just set
the tweak space T to a single value).

Acknowledgments

We thank Mihir Bellare, Jesse Walker, and the anonymous referees. This work was supported in
part by NSF grants CCR-0208842, CNS-0524765, and a gift from Intel Corp; thanks to the NSF
and Intel for their kind support.

22

References

[1] J. An and M. Bellare. Constructing VIL-MACs from FIL-MACs: Message authentication
under weakened assumptions. Advances in Cryptology – CRYPTO 1999, LNCS vol. 1666,
Springer, pp. 252–269, 1999.

[2] R. Anderson and E. Biham. Two practical and provably secure block ciphers: BEAR and
LION. Fast Software Encryption 1996, LNCS vol. 1039, Springer, pp. 113–120, 1996.

[3] M. Bellare, and P. Rogaway. On the construction of variable-input-length ciphers. Fast Soft-
ware Encryption 1999, LNCS vol. 1636, Springer, pp. 231–244, 1999.

[4] M. Bellare and P. Rogaway. Encode-then-encipher encryption: How to exploit nonces or
redundancy in plaintexts for efficient cryptography. Advances in Cryptology – ASIACRYPT
2000, LNCS vol. 1976, Springer, pp. 317–330, 2000.

[5] M. Bellare, and P. Rogaway. The security of triple encryption and a framework for code-
based game-playing proofs. Advances in Cryptology – EUROCRYPT 2006, LNCS vol. 4004,
Springer, pp. 409–426, 2006.

[6] J. Black and P. Rogaway. Ciphers with arbitrary finite domains. Topics in Cryptology –
CT-RSA 2002, LNCS vol. 2271, Springer, pp. 114–130, 2002.

[7] A. Cayley. On Latin squares. Oxford Cambridge Dublin Messenger Math., vol. 19, pp. 135–137,
1890.

[8] D. Chakraborty and P. Sarkar. A new mode of encryption providing a strong tweakable
pseudo-random permutation. Fast Software Encryption – FSE 2006, LNCS vol. 4047, Springer,
pp. 293–309, 2006.

[9] D. Chakraborty and P. Sarkar. HCH: A new tweakable enciphering scheme using the Hash-
Encrypt-Hash approach. Advances in Cryptology – INDOCRYPT 2006, LNCS vol. 4329,
Springer, pp. 287–302, 2006.

[10] D. Cook, M. Yung, and A. Keromytis. Elastic AES. Cryptology ePrint archive, report
2004/141, 2004.

[11] D. Cook, M. Yung, and A. Keromytis. Elastic block ciphers. Cryptology ePrint archive, report
2004/128, 2004.

[12] S. Halevi. EME∗: Extending EME to handle arbitrary-length messages with associated data.
Advances in Cryptology – INDOCRYPT 2004, LNCS vol. 3348, Springer, pp. 315–327, 2004.

[13] S. Halevi. TET: A wide-block tweakable mode based on Naor-Reingold. Cryptology ePrint
archive, report 20007/14, 2007.

[14] S. Halevi and P. Rogaway. A parallelizable enciphering mode. Topics in Cryptology – CT-RSA
2004, LNCS vol. 2964, Springer, pp. 292–304, 2004.

[15] S. Halevi and P. Rogaway. A tweakable enciphering mode. Advances in Cryptology – CRYPTO
2003, LNCS vol. 2729, Springer, pp. 482–499, 2003.

[16] M. Liskov, R. Rivest, and D. Wagner. Tweakable block ciphers. Advances in Cryptology –
CRYPTO 2002, LNCS vol. 2442, Springer, pp. 31–46, 2002.

[17] M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom
functions. SIAM Journal of Computing, vol. 17, no. 2, pp. 373–386, 1988.

[18] S. Lucks. BEAST: A fast block cipher for arbitrary blocksizes. Communications and Multime-
dia Security, IFIP vol. 70, Chapman & Hill, pp. 144–153, 1996.

[19] S. Lucks. Faster Luby-Rackoff ciphers. Fast Software Encryption 1996, LNCS vol. 1039,
Springer, pp. 189–203, 1996.

[20] D. McGrew and S. Fluhrer. The extended codebook (XCB) mode of operation. Cryptology
ePrint archive, report 2004/278, 2004.

[21] C. Meyer and M. Matyas. Cryptography: A New Dimension in Data Security. John Wiley &

23

Sons, New York, 1982.
[22] M. Naor and O. Reingold. On the construction of pseudorandom permutations: Luby-Rackoff

revisited. Journal of Cryptology, vol. 12, no. 1, pp. 29–66, 1999.
[23] J. Patarin. How to construct pseudorandom and super pseudorandom permutations from one

single pseudorandom function. Advances in Cryptology – EUROCRYPT 1992, LNCS vol. 658,
pp. 256–266, 1992.

[24] S. Patel, Z. Ramzan, and G. Sundaram. Efficient constructions of variable-input-length block
ciphers. Selected Areas in Cryptography 2004, LNCS vol. 3357, pp. 326–340, 2004.

[25] B. Schneier and J. Kelsey. Unbalanced Feistel networks and block cipher design. Fast Software
Encryption 1996, LNCS vol. 1039, Springer, pp. 121–144, 1996.

[26] C. Schnorr and S. Vaudenay. Black box cryptanalysis of hash networks based on multipermu-
tations. Advances in Cryptology – EUROCRYPT 1994, LNCS vol. 950, Springer, pp. 47–57,
1995.

[27] R. Schroeppel. Hasty pudding cipher specification. First AES Candidate Workshop, 1998.
[28] S. Vaudenay. On the need for multipermutations: cryptanalysis of MD4 and SAFER. Fast

Software Encryption 1994, LNCS vol. 1008, Springer, pp. 286–297, 1995.
[29] P. Wang, D. Feng, and W. Wu. HCTR: a variable-input-length enciphering mode. Information

Security and Cryptography, CISC 2005, LNCS vol. 3822, Springer, pp. 175–188, 2005.
[30] Y. Zheng, T. Matsumoto, and H. Imai. On the construction of block ciphers provably secure

and not relying on any unproved hypotheses. Advances in Cryptology – CRYPTO 1989, LNCS
vol. 435, Springer, pp. 461–480, 1990.

24

