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Abstract

In a proxy re-encryption scheme a semi-trusted proxy converts a ciphertext for Alice into a ciphertext
for Bob without seeing the underlying plaintext. A number of solutions have been proposed in the
public-key setting. In this paper, we address the problem of Identity-Based proxy re-encryption, where
ciphertexts are transformed from one identity to another. Our schemes are compatible with current IBE
deployments and do not require any extra work from the IBE trusted-party key generator. In addition,
they are non-interactive and one of them permits multiple re-encryptions. Their security is based on a
standard assumption (DBDH) in the random oracle model.
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1 Introduction

In a proxy re-encryption scheme, a proxy can convert an encryption computed under Alice’s public-key into
an encryption intended for Bob. Such a scheme can be used by Alice to temporarily forward encrypted
messages to Bob without giving him her secret key. The fundamental property of proxy re-encryption
schemes is that the proxy is not fully trusted, i.e., it does not know the secret keys of Alice or Bob and does
not learn the plaintext during the conversion. The proxy and Bob, however, are not allowed to collude, thus
it is usually assumed that at least one of the two is honest or that their collusion is preventable or detectable
via other means.

A number of proxy re-encryption protocols have been proposed in the context of public-key encryp-
tion [16, 3, 1, 15, 12]. In this work we extend the notion of proxy re-encryption to the area of Identity-Based
Encryption (IBE), in which senders encrypt messages using the recipient’s identity (a string) as the public
key. For instance, Charles could encrypt a message for Alice by just using her email address. First intro-
duced by Shamir in 1984 and then realized by Boneh-Franklin [7] and by Cocks [11] several years later,
identity-based encryption has proven useful in solving several key-distribution issues, and has permitted the
development of a variety of novel cryptographic protocols, e.g., secret handshakes [2], public-key searchable
encryption [5, 19], CCA2-secure public-key encryption [10], and digital signatures [6]. The Boneh-Franklin
scheme is particularly efficient, and has been practically deployed [17].

Our identity-based proxy re-encryption (IB-PRE) schemes allow a proxy to translate an encryption under
Alice’s identity into one computed under Bob’s identity. The proxy uses proxy keys, or re-encryption keys,
to perform the translation without being able to learn the plaintext. Moreover, no information on the secret
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keys of Alice and Bob can be deduced from the proxy keys. Our constructions are compatible with existing
Boneh-Franklin IBE deployments, and can be implemented using existing secrets and parameters.

Remember that users in an Identity-Based Encryption scheme request keys from a trusted party known
as a Private Key Generator (PKG). Thus, in principle, it is possible that proxy keys could be generated
by the PKG directly. However, we categorically exclude this possibility and we focus only on schemes
where individual users delegate their own decryption rights, without the involvement of the Private Key
Generator. This is for theoretical and practical reasons: (1) From a theoretical point of view, having the
PKG, or any other trusted party, generating the proxy keys makes the problem of finding IB-PRE schemes
quite unchallenging given prior art, (2) from a practical point of view, it is clearly undesirable to have
the PKG involved in the generation of proxy keys. It would constitute a considerable bottleneck in many
applications, it would force the PKG to be on-line and available even during the generation of proxy keys
(other than IBE keys), and, in certain applications, it would make the PKG liable for creating (potentially
unwanted) decryption rights.

Previous Work. Mambo and Okamoto proposed a technique for delegating decryption rights in [16]. Blaze,
Bleumer and Strauss [3] later presented the first secure “atomic” primitive: an Elgamal-based approach
in which the proxy could not learn the message being processed. Unfortunately, the approach in [3] is
inherent bidirectional: a corrupted proxy can re-encrypt ciphertexts not only from Alice to Bob, but also
from Bob to Alice. Even worse, collusion between the Proxy and “delegator” Alice could reveal the secret
key of “delegatee” Bob. Jakobsson [15], and Zhou, Mars, Schneider and Redz [21] partially addressed these
concerns by proposing a quorum-based protocol which divided the proxy into many components.

More recent works have focused on the development of unidirectional proxy re-encryption schemes,
where collusion between a delegator and the proxy does not compromise the delegatee. Dodis and Ivan [12]
realized a form of unidirectional proxy encryption by using double-encryption (or by splitting a single
decryption key into two parts). Their approach permits a form of single-delegation proxy re-encryption
when parties hold pre-shared keys. Ateniese, Fu, Green and Hohenberger [1] proposed an improved, non-
interactive unidirectional scheme which removed the need for pre-shared keys and permitted arbitrary dele-
gations.

Dodis and Ivan [12] also proposed a very different identity-based proxy encryption scheme in which the
PKG delegates decryption rights for all identities in the system (e.g., to provide key escrow for law enforce-
ment). Such delegation is non-divisible, i.e., the PKG cannot delegate decryption rights for only a subset
of identities in the system. This approach differs conceptually from our non-interactive approach, where
individual users delegate their decryption rights. Finally, the Dodis/Ivan system has significant security im-
plications: collusion between the proxy and delegatee results in a system-wide compromise, allowing the
colluders to reconstruct the IBE master secret.

Recently, Boneh, Goh and Matsuo [8] presented a hybrid form of proxy re-encryption based on IBE. In
such schemes, the PKG performs all delegations; thus users are unable to perform offline (“non-interactive”)
delegations and each delegation requires a costly online request to the PKG. Furthermore, the Boneh-Goh-
Matsuo approach specifies a new private-key generation algorithm and it seems therefore incompatible with
existing IBE deployments.

Paper Outline. The outline of the rest of this paper is as follows. In section 3 we present definitions for
Identity-Based Proxy Re-encryption and for the hardness assumptions used in our proofs. In section 4 we
introduce our constructions. In section 5 we discuss several applications for the new primitives. Finally,
section 6 lists open research problems and provides our conclusions.
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2 Properties of Our Schemes

Ateniese et. al. [1] propose a series of properties by which to compare proxy re-encryption schemes. We
briefly reiterate some of these properties, in particular those that our scheme provides and that, we believe,
are relevant for practical instantiations of Identity-Based Proxy Re-encryption.

- Unidirectionality. A unidirectional scheme permits user A to delegate to user B, without permitting A
to decrypt user B’s ciphertexts.

- Non-Interactivity. Non-interactive schemes permit user A to construct a re-encryption key rkidA→idB

while offline, (i.e.,without the participation of B or the Private Key Generator).
- Multi-use. A multi-use scheme permits the proxy (or proxies) to perform multiple re-encryptions on

a single ciphertext, e.g., re-encrypt from A to B, then re-encrypt the result from B to C, etc..
- Non-transitivity. In a non-transitive scheme, the proxy is not authorized to re-delegate decryption

rights. In particular, the proxy cannot combine re-encryption keys to create new delegations. For
example, the proxy cannot construct a re-encryption key rkidA→idC from the two keys rkidA→idB and
rkidB→idC .

- Space-optimal. Many existing schemes (e.g., [12, 8, 1]) incur additional communication costs in order
to support re-encryption. This inefficiency takes several common forms, including: (a) ciphertext ex-
pansion upon re-encryption (see the practical implementations of [1]), (b) a required pre-distribution
stage in which secrets are shared with delegatees (as in [12]), or (c) the inclusion of “extra” ciphertext
material used solely to support proxy re-encryption (see [8]).

In this paper we focus on unidirectional schemes only. A unidirectional IB-PRE allows Alice to delegate
decryption rights to Bob without requiring Bob to do the same. Unidirectional IB-PRE is clearly a more
powerful primitive than a bidirectional one but also harder to devise. Notice, also, that a bidirectional
scheme can always be achieved by running a unidirectional one in both directions, i.e., from Alice to Bob
and viceversa.

In addition, we believe that non-interactivity is a fundamental property and our schemes provide it. In a
non-interactive scheme, Alice can generate the re-encryption key from Bob’s identity, without ever involving
Bob. In the identity-based setting, this property provides an interesting twist: Alice can delegate decryption
rights to delegatees that do not exist yet or will join the system later. Moreover, as noted by Boneh and
Franklin [7], identities can be seen as credentials and express conditions. For instance, an encryption under
“Alice || security-clearance || time period” can be opened by Alice only if she has security clearance and
within the time period specified in the string. Analogously, in our schemes, Alice can specify the conditions
under which the delegation of decryption rights has to happen. We will explore applications of this feature
in section 5.

Finally, one of our schemes is multi-use in the sense that once a re-encryption from Alice to Bob is
computed, the resulting ciphertext can be re-encrypted again from Bob to Charles, etc., multiple times.
Finding an unidirectional and multi-use scheme was left as an open problem in prior art for the public-key
case. We show how to achieve this property for our IB-PRE but at the cost of allowing the ciphertext to
expand linearly with respect to the number of re-encryptions (but this seems to be inevitable for a non-
interactive scheme).
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3 Definitions

We begin by describing the setting and computational problems used within this work. We then formally
define an Identity-Based Proxy Re-encryption scheme and propose a new, generalized security definition.

Definition 3.1 (Bilinear Map) We say a map e : G1×G1→GT is a bilinear map if:

1. G1, GT are groups of the same prime order q.
2. For all a,b ∈ Z∗q, g ∈G1, e(ga,gb) = e(g,g)ab.
3. The map is non-degenerate (i.e., if G1 = 〈g〉, then GT = 〈e(g,g)〉).
4. e is efficiently computable.

For simplicity our constructions are defined in the symmetric setting, however they also work in the asym-
metric one with a bilinear map of the form: ê : G1×G2→GT .

Definition 3.2 (Decisional Bilinear Diffie Hellman Assumption (DBDH)) Our schemes are based on the
assumed intractability of the Decisional Bilinear Diffie-Hellman problem (DBDH) in G1,GT . This assump-
tion is believed to hold in certain groups, and used as the basis of several Identity-Based Encryption schemes,
e.g., [4, 18].

We define the DBDH problem as follows: Let (G1,GT ) be a pair of bilinear groups with an efficiently
computable pairing e : G1×G1 → GT , and let g be a random generator of G1. The DBDH problem is to
decide, given a tuple of values (g,ga,gb,gc,T ) ∈ G4

1×GT (where a,b,c ∈R Z∗q), whether T = e(g,g)abc or
if T is a random element of GT .

Let k be a security parameter of sufficient size. Formally, we say that the DBDH assumption holds in
(G1,GT ) if for all probabilistic polynomial time algorithms A , the following condition is true:∣∣∣∣∣∣ Pr

[
a,b,c $← Z∗q; 1← A(g,ga,gb,gc,e(g,g)abc).

]
−

Pr
[

a,b,c $← Z∗q; T $←GT ; 1← A(g,ga,gb,gc,T ).
]

∣∣∣∣∣∣≤ ν(k)

Where ν(·) is defined as a negligible function, i.e., for all polynomial functions p(·), ν(k) < 1/p(k).

3.1 Identity-Based Proxy Re-Encryption

An Identity-Based Proxy Re-encryption (IB-PRE) scheme is an extended Identity Based Encryption scheme.
The first extension is an algorithm that generates re-encryption keys that can be given to the proxy. The proxy
uses the second algorithm to apply these re-encryption keys to ciphertexts and “atomically” re-encrypt them
from one identity to another. In a non-interactive scheme, re-encryption keys may be generated by the
delegator using only her IBE secret key— the IBE master secret is not required.

Encryption Levels. Our definitions refer to the notion of an “encryption level” as an implicit property of
a ciphertext. A ciphertext generated directly using the Encrypt algorithm is termed a “level-1” ciphertext.
Applying the re-encryption algorithm to a level-` ciphertext results in a level-(`+ 1) ciphertext. Specific
constructions may optionally place bounds on the number of consecutive re-encryptions; for instance, non-
“multi-use” schemes such as [12, 8, 1] are limited to a single re-encryption. In our definitions below, we
define MaxLevels as the highest-possible encryption level (for a single-use scheme, this value is 2).
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Definition 3.3 (Non-interactive Identity-Based Proxy Re-encryption (IB-PRE)) A non-interactive
identity-based proxy re-encryption scheme is tuple of algorithms (Setup, KeyGen, Encrypt, Decrypt,
RKGen, Reencrypt):

- Setup(1k,MaxLevels) accepts a security parameter and a value indicating the maximum number of
consecutive re-encryptions permitted by the scheme. The algorithm outputs both the master public
parameters (params) which are distributed to users, and the master secret key (msk) which is kept
private.

- KeyGen(params,msk, id) on input an identity id ∈ {0,1}∗ and the master secret key, outputs a de-
cryption key skid corresponding to that identity.

- Encrypt(params, id,m) on input a set of public parameters, an identity id ∈ {0,1}∗, and a plaintext
m ∈M , output cid , the encryption of m under the specified identity.

- RKGen(params,skid1 , id1, id2) on input a secret key skid1 (derived via the KeyGen algorithm) and
identities (id1, id2) ∈ {0,1}∗, outputs a re-encryption key rkid1→id2 .

- Reencrypt(params,rkid1→id2 ,cid1) on input a ciphertext cid1 under identity id1, and a re-encryption key
rkid1→id2 (generated by the RKGen routine), outputs a re-encrypted ciphertext cid2 .

- Decrypt(params,skid ,cid) decrypts the ciphertext cid using the secret key skid , and outputs m or ⊥.

Correctness. Intuitively, an IB-PRE scheme is correct if the Decrypt algorithm always outputs the expected
decryption of a properly-generated ciphertext (when supplied with the appropriate decryption key). We
define “proper generation” as the process of (1) encrypting a plaintext using Encrypt, and subsequently (2)
iteratively applying the Reencrypt algorithm up to MaxLevels−1 times using valid re-encryption keys.

Slightly more formally, let cid1 ← Reencryptn(· · · ,Encrypt(params, ·,m)) be a properly-generated cipher-
text. Then ∀m ∈ M ,∀id1, id2 ∈ {0,1}∗,∀n < MaxLevels− 1, where skid1 = KeyGen(msk, id1), skid2 =
KeyGen(msk, id2), rkid1→id2 ← RKGen(params,skid1 , id1, id2), the following propositions hold:

- Decrypt(params,skid1 ,cid1) = m
- Decrypt(params,skid2 ,Reencrypt(params,rkid1→id2 ,cid1)) = m

Security. Security definitions for Identity-Based Encryption (see [7]) ensure that no reasonable set of col-
luding keyholders will obtain an advantage against non-colluding users. Identity-Based Proxy re-encryption
requires a further extension of this collusion guarantee, to model the presence of a semi-trusted proxy that
possesses re-encryption keys, and may behave maliciously or fall under an adversary’s control. Previous
security definitions for proxy re-encryption (e.g., [3, 12, 1]) have treated this issue by specifying a separate
definitional game to model security against a malicious proxy. We eliminate the need for separate games by
granting the adversary access to a “re-encryption key” extraction oracle, which returns re-encryption (proxy)
keys for arbitrary pairs (idi→ id j).

Definition 3.4 (Security of Non-Interactive Identity Based Proxy Re-Encryption (IND-PrID-ATK))
Let S be an IB-PRE scheme defined as a tuple of algorithms (Setup, KeyGen, Encrypt, Decrypt,
RKGen, Reencrypt). Security is defined according to the following game ExpA , IND-PrID-ATK, i, where
ATK ∈ (CPA,CCA).

1. SELECT. Choose i $←{0,1}.
2. SETUP. Run Setup(1k) to get (params,msk), and give params to A .
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3. FIND PHASE. A makes the following queries. At the conclusion of this phase A will select id∗ ∈
{0,1}∗ and (m0,m1) ∈M 2.

(a) For A’s queries of the form (extract, id), return skid = KeyGen(params,msk, id) to A .
(b) For A’s queries of the form (rkextract, id1, id2), where id1 6= id2, return rkid1→id2 =

RKGen(params,KeyGen(params,msk, id1), id1, id2) to A .
(c) For A’s queries of the form (decrypt, id,c), if ATK = CCA then return

m = Decrypt(params,RKGen(params,msk, id),c) to A . Otherwise if ATK = CPA, return ⊥ to
A .

(d) For A’s queries of the form (reencrypt, id1, id2,c), if ATK = CCA then derive a re-
encryption key rkid1→id2 = RKGen(params,KeyGen(params,msk, id1), id1, id2), and return
c′ = Reencrypt(params,rkid1→id2 , id1, id2,c) to A . If ATK = CPA, return ⊥ to A .

Note that A is not permitted to choose id∗ such that trivial decryption is possible using keys extracted
during this phase (e.g., by using extracted re-encryption keys to translate from id∗ to some identity for
which A holds a decryption key).

4. CHOICE AND CHALLENGE. When A presents (choice, id∗,m0,m1), compute c∗=Encrypt(params, id∗,mi)
and give c∗ to A .

5. GUESS STAGE. A continues to make queries as in the FIND stage, with the following restrictions. Let
C be a set of ciphertext/identity pairs, initially containing the single pair 〈c∗, id∗〉. For all c ∈ C and
for all rk given to A , let C ′ be the set of all possible values derived via (one or more) consecutive calls
to Reencrypt:

(a) A is not permitted to issue any query of the form (decrypt, id,c) where 〈c, id〉 ∈ (C ∩C ′).
(b) A is not permitted to issue any queries (extract, id) or (rkextract, id1, id2) that would permit

trivial decryption of any ciphertext in (C ∩C ′).
(c) A is not permitted to issue any query of the form (reencrypt, id1, id2,c) where A possesses the

keys to trivially decrypt ciphertexts under id2 and 〈c, id1〉 ∈ (C ∩C ′). On successful execution
of any re-encrypt query, let c′ be the result and add the pair 〈c′, id2〉 to the set C .

At the conclusion of this stage, A outputs i′, where i′ ∈ {0,1}.

The outcome of the game is determined as follows: If i′ = i then A wins the game. Let (ext,rk,dec,renc)
be the oracles for the FIND phase of the game, and (ext′,rk′,dec′renc′) be the same oracles modified for
the GUESS stage. A’s advantage in the above game, AdvIND-PrID-ATK

A is defined as:∣∣∣∣∣∣∣∣∣∣
Pr

i′ = i

∣∣∣∣∣∣∣∣∣∣
i $←{0,1}; (params,msk)← Setup(1k);

(id∗,m0,m1, t)← Aext(·),rk(·),dec(·),renc(·)(params);
c∗← Encrypt(params, id∗,mi);

i′← Aext′(·),rk′(·),dec′(·),renc′(·)(params,c∗, t);

−1/2

∣∣∣∣∣∣∣∣∣∣
We say that the Identity-Based Proxy Re-encryption scheme S is IND-Pr-ID-CPA-secure if for all prob-
abilistic polynomial time algorithms A , AdvIND-Pr-ID-CPA

A ≤ ν(k). We say that the Identity-Based Proxy
Re-encryption scheme S is IND-PrID-CCA-secure if for all probabilistic polynomial time algorithms A ,
AdvIND-PrID-CCA

A ≤ ν(k).

Comparison to IBE Security. Observe that the security experiments we present are equivalent to an execu-
tion of the experiments defined by Boneh/Franklin security model (IND-ID-CPA/IND-ID-CCA) [7], provided
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that A makes no queries of the form (rkextract, . . .) or (reencrypt, . . .). Therefore, when re-encryption
keys are not deployed, it is easy to see that any IB-PRE secure in the IND-PrID-ATK remains secure in the
IND-ID-ATK sense.

4 Non-interactive Unidirectional Proxy Re-encryption Schemes

The first schemes we present are based on Boneh and Franklin’s IBE scheme [7], and are secure under the
Decisional Bilinear Diffie-Hellman Assumption (DBDH) in the random oracle model. While ciphertexts in
the proposed schemes have a different form from those in the standard Boneh-Franklin scheme, the master
parameters and secret keys remain unchanged. As a result, it is possible to implement proxy re-encryption
within an existing Boneh-Franklin deployment (i.e., using pre-existing parameters and keys).

4.1 A First Attempt (IBP1)

Consider a bilinear map e : G1×G1 → GT , where G1 = 〈g〉. Let H1 and H2 be two independent hash
functions1 such that: H1 : {0,1}∗→ G1 and H2 : GT → G1. Finally, let s and gs be the master secret and
public key of the PKG, respectively. For some r ∈R Z∗q, an encryption of m ∈GT under Alice’s identity can
be computed as:

IBEAlice(m) = (gr,m · e(gs,H1(Alice))r)

Suppose Alice wants to delegate her decryption rights to Bob. She must generate a re-encryption key to give
to the proxy. Let IBEBob(·) be a standard identity-based encryption under Bob’s identity. Alice selects a

random X $←GT and generates the re-encryption key as:

rkAlice→Bob = H1(Alice)−s ·H2(X), IBEBob(X),

Given an encryption for Alice, IBEAlice(m) = (c1,c2) the proxy can transform it into an encryption for Bob
by releasing: (c′1 = c1,c′2 = c2 · e(gr,rkAlice→Bob),c′3 = IBEBob(X)). Indeed, notice that:

c′1 = gr

c′2 = m · e(gr,H2(X)),
c′3 = IBEBob(X).

Bob can recover X from c′3 and then m by computing c′2/e(c′1,H2(X)).

In practice, the scheme presented above can be seen as a variant of the efficient Dodis/Ivan [12] key-splitting
approach applied to settings where the decryption process makes use of a bilinear map. Note that (1) The
scheme is unidirectional since the key rkAlice→Bob can be used to convert ciphertexts from Alice to Bob but
not vice versa. (2) It is non-interactive since Bob is not involved during the generation of the re-encryption
key. (3) It provides non-transitivity since the proxy is not allowed to create new re-encryption keys from
the existing ones. (4) Finally, we observe that the scheme is multi-use since the proxy can re-encrypt the
result of a re-encryption and do it multiple times. To see this, consider the re-encryption ciphertext above:
(c′1,c

′
2,c
′
3). Notice that c′3 is just a standard IBE encryption for Bob! A proxy equipped with a re-encryption

1Both H1(·) and H2(·) are more properly “hash-and-encode” functions (see Boneh-Franklin [7] for a detailed definition). Each
function consist of a standard hash function which maps inputs to elements of the finite field of order q and then uses an admissible
encoding function, MapToPoint, to map those elements into points in G1.
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key rkBob→Charles could just apply the re-encryption algorithm recursively to c′3 and allow Charles to recover
X which in turn allows him to recover the original message m.

Scheme Description. We now provide a formal description of the scheme (IBP1).

- Setup. Let e : G1×G1→ GT be a bilinear map, where G1 = 〈g〉 and GT have order q. Let H1,H2
be independent full-domain hash functions H1 : {0,1}∗ → G1 and H2 : GT → G1. To generate the

scheme parameters, select s $← Z∗q, and output params = (G1,H1,H2,g,gs), msk = s.
- KeyGen(params,msk, id). To extract a decryption key for identity id ∈ {0,1}∗, return skid = H1(id)s.

- Encrypt(params, id,m). To encrypt m under identity id, select r $← Z∗q and output cid = (gr,m ·
e(gs,H1(id))r).

- RKGen(params,skid1 , id2). Select X $←GT and compute 〈R1,R2〉 = Encrypt(params, id2, X). Return
rkid1→id2 = 〈R1,R2,sk−1

id1
·H2(X)〉.

- Reencrypt(params,rkid1→id2 ,cid1). To re-encrypt a level-` ciphertext from id1 to id2, first parse cid1 as
(C1, . . . ,C2`) and rkid1→id2 as (R1,R2,R3). Next:

1. If ` = 1, output cid2 = 〈C1,C2 · e(C1,R3)),R1,R2〉.
2. If ` > 1, treat the elements 〈C2`−1,C2`〉 as a first-level ciphertext δ. Compute 〈C′1,C′2,C′3,C′4〉 =

Reencrypt(rkid1→id2 ,δ). Output the ciphertext cid2 = 〈C1, · · · ,C2`−2,C′1,C
′
2,C
′
3,C
′
4〉.

- Decrypt(params,skid ,cid). Parse the level-` ciphertext cid as (C1, . . . ,C2`). Next:

1. If ` = 1 output m = C2/e(C1,skid).
2. If `> 1, treat the pair 〈C2`−1,C2`〉 as a first-level ciphertext c′id , and compute X` =Decrypt(skid ,c′id).

For i = (`−1) descending to 1, compute Xi = C2i/e(C2i−1,H2(Xi+1)). Finally, output X1 as the
plaintext.

Each level-` ciphertext in the above scheme contain 2` elements. In principle, the scheme permits an
arbitrary number of re-encryptions on a ciphertext, with a two-element ciphertext expansion on each re-
encryption.

Correctness. We first show correctness for first-level ciphertexts (i.e., those produced by Encrypt). Let
cid1 = (gr,m · e(gs,H1(id1))r) be the first-level encryption of m under id1, and sk1 = H1(id1)s be the corre-
sponding decryption key. The decryption process produces the following result:

(m · e(gs,H1(id1))r)/e(gr,H1(id1)s) = m

The correctness under re-encryption is shown as follows. Given a first-level ciphertext cid1 = (gr,C2) and
a correctly-formed re-encryption key rkid1→id2 = (〈R1,R2〉 = Encrypt(params, id2,X),R3), we obtain the
“second-level” ciphertext cid2 = (gr,C′2 = C2 · e(gr,R3),R1,R2) where C′2 is:

C′2 = C2 · e(gr,R3)
= m · e(gs,H1(id1))r) · e(gr,H1(id1)−s ·H2(X))

= m · e(g,H2(X))r

Given skid2 = H1(id2)s we decrypt cid2 = (gr,C′2,R1,R2) as follows. Begin by decrypting the first-level
ciphertext ĉid2 = 〈R1,R2〉 under skid2 : X = Decrypt(params,skid2 , ĉid2). Then compute C′2/e(gr,H2(X)) to
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obtain m. Having shown correctness for a single re-encryption, the correctness for multiple re-encryptions
follows. Given level-` ciphertext cidi and skidi , strip the the final two elements and treat them as a first-level
ciphertext under idi, decrypting to reveal X`. Use the value X` as a decryption secret for the previous two
elements, and repeat until the final two elements remain. The final value in this chain contains the original
message m.

Security. We next show that IBP1 scheme defined above meets the IND-Pr-ID-CPA definition if the Deci-
sional Bilinear Diffie-Hellman assumption holds in (G1,GT ). Our proof is in the random oracle model, and
is an extension of the original proof of Boneh/Franklin [7].

Theorem 4.1 If there exists a p.p.t. adversary A that wins the IND-Pr-ID-CPA game on IBP1 with non-
negligible advantage, then there exists an adversary B that solves the DBDH problem over G1,GT with
non-negligible advantage.

A proof of Theorem 4.1 is presented in Appendix A.

4.2 An Optimization

Ciphertexts in scheme section 4.1 expand upon re-encryption. This is caused by the inclusion (within the
re-encrypted ciphertext) of a portion of the re-encryption key. There are scenarios where Bob knows that
the original ciphertext was intended for Alice (this information can even be appended to the ciphertext)
and there is no need for multiple re-encryptions. In such cases we could simplify our scheme by noticing
that, in the Boneh-Franklin IBE symmetric setting, Alice and Bob inherently share a secret key KAB =
e(H1(Alice),H1(Bob))s. Alice can use this value to compute the re-encryption key as follows:

rkAlice→Bob = H1(Alice)−s ·H3({KAB}||Alice→ Bob).

Where {KAB} denotes binary representation, and H3 : {0,1}∗→G1 is an independent full domain hash func-
tion. The string “Alice→ Bob” is added to ensure that a re-encryption key from Bob to Alice is computed
under a distinct secret (bidirectional re-encryption). Note that the resulting scheme permits only a single
re-encryption for each ciphertext. A primary advantage of this construction is the absence of ciphertext
expansion during re-encryption.

4.3 A Chosen Ciphertext Secure Scheme (IBP2)

The scheme presented above is secure under chosen plaintext attack. While this is the level of security
provided by many IBE and proxy re-encryption schemes (e.g., [1, 18] and the practical proxy encryption
constructions of Dodis/Ivan [12]), it is important to consider stronger definitions such as security under
adaptive chosen ciphertext attack.

Background. A common approach to building CCA-secure Identity-Based Encryption schemes is to be-
gin with a CPA-secure construction, and then apply the generic Fujisaki-Okamoto conversion [13] (see
e.g., [7, 20]). It is tempting to believe that this approach is by itself sufficient to construct CCA-secure IB-
PRE schemes. Unfortunately, this does not appear to be the case. Notice that a re-encryption proxy grants
adversaries an alternative means by which adversaries may decrypt ciphertexts: a malicious delegatee B
may decrypt A’s ciphertexts by first using the proxy to re-encrypt from idA→ idB, and then decrypting the
result under his own secret key. When a malicious delegatee uses the proxy to “alternatively decrypt” in this

9



manner, he need not follow the specified F-O decryption algorithm, and can ignore the critical ciphertext va-
lidity checks. Unfortunately, the validity checks of the F-O approach cannot be moved into the re-encryption
process, as they fundamentally require access to the decryption secret.

Intuition. In order to surmount the issues raised above, we propose an approach that provides the proxy
with the means to verify ciphertext validity and reject improperly-formed ciphertexts. As a result of this
check, a malicious delegatee no longer gains any advantage by using the re-encryption proxy as an oracle.
The building block of our construction is a Hierarchical Identity-Based Proxy Re-encryption scheme, which
we implement using a modified form of the Gentry-Silverberg HIBE [14] (this scheme is in turn based on the
Boneh/Franklin scheme). To achieve IND-PrID-CCA-secure IB-PRE, we make use of the Canetti, Halevi and
Katz (CHK) [10] technique, which allows us to transform a CPA-secure HIBE into a CCA-secure scheme
with a type of publicly-verifiable ciphertext validity check. In order to present a more efficient construction,
we re-use randomness and implement the CHK transform using a Boneh/Lynn/Shacham short signature [9].

The Construction. We now present a single-use, non-interactive CCA-secure IB-PRE construction (IBP2).

- Setup. Let n be polynomial in the security parameter k. Let e : G1×G1 → GT be a bilinear map,

where G1,GT have order q and G1 = 〈g〉. To generate the scheme parameters, select s $←Z∗q and output
params = (H1,H2,H3,H4,H5,H6,g,gs), msk = s, with independent hash functions H1−6 defined as
below:

H1 : {0,1}∗→G1,H2 : {0,1}∗→G1

H3 : {0,1}∗→G1,H4 : GT ×{0,1}n→ Z∗q
H5 : GT →{0,1}n

- KeyGen(params,msk, id). To extract a decryption key for identity id ∈ {0,1}∗, return skid = H1(id)s.

- Encrypt(params, id,m ∈ {0,1}n). To encrypt m under identity id ∈ {0,1}∗, first:

1. Select σ
$←GT , and set r = H4(σ,m).

2. Compute c′ = (gr,σ · e(gs,H1(id)r),m⊕H5(σ)).
3. Compute S = H3(id||c′)r.
4. Output the ciphertext c = 〈S,c′〉.

- RKGen(params,skid1 , id1, id2). To compute a re-encryption key from id1→ id2:

1. Select N $←{0,1}n, and compute K = e(skid1 ,H1(id2)).
2. Output rkid1→id2 = 〈N,H2(K||id1||id2||N) · skid1〉.

- Reencrypt(params,rkid1→id2 ,cid1). To re-encrypt a first-level ciphertext, first parse cid1 as (S,A,B,C),
and parse rkid1→id2 as 〈N,R〉. Next:

1. Let h = H3(id1||〈A,B,C〉).
2. Check if e(g,S) = e(h,A). If not, return ⊥.

3. Otherwise, select t $← Z∗q and compute B′ = B/ e(A,R·ht)
e(gt ,S) .

4. Output the re-encrypted ciphertext cid2 = (A,B′,C, id1,N).
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- Decrypt(params,skid ,cid). To decrypt a first-level (non re-encrypted) ciphertext, first parse cid as
(S,A,B,C). Next:

1. Let h = H3(id,〈A,B,C〉).
2. Select t $← Z∗q, and compute σ′ = B/ e(A,skid ·ht)

e(gt ,S) .
3. Compute m′ = C⊕H5(σ′), and r′ = H4(σ′,m′).
4. Verify that S = hr′ and A = gr′ . If either check fails, return ⊥, otherwise output m′.

To decrypt a second-level (re-encrypted) ciphertext, first parse cid as (A,B,C, idsrc,N). Next:

1. Compute K = e(H1(idsrc),skid).
2. Compute σ′ = B · e(A,H2(K||idsrc||id||N)).
3. Compute m′ = C⊕H5(σ′), and r′ = H4(σ′,m′).
4. Verify that A = gr′ . If this check fails, return ⊥, otherwise output m′.

Correctness. We first show correctness for first-level ciphertexts (i.e., those produced by Encrypt). Let
cid1 = 〈S,A,B,C〉 = 〈hr,gr,σ · e(gs,H1(id)r),m⊕H5(σ)〉 be the first-level encryption of m under id1, with
h = H3(id1||〈A,B,C〉). Let sk1 = H1(id1)s be the corresponding decryption key. For a random t ∈ Z∗q, the
decryption process proceeds as follows:

(σ · e(gs,H1(id1))r)/
e(gr,H1(id1)s ·ht)

e(gt ,hr)
= σ

H5(σ)⊕ (m⊕H5(σ)) = m

gH4(σ,m) ?= gr

hH4(σ,m) ?= hr

The correctness under re-encryption is shown as follows. Given a first-level ciphertext cid1 = 〈S,A,B,C〉=
〈hr,gr,σ · e(gs,H1(id)r),m⊕H5(σ)〉 (where h = H3(id||〈A,B,C〉)) and a correctly-formed re-encryption
key rkid1→id2 = 〈N,R〉, we compute the ciphertext validity check as:

e(g,hr) ?= e(h,gr)

Recall that R = skid1 ·W where W = H2(e(H1(id1)s,H1(id2))||id1||id2||N). To generate the “second-level”
ciphertext cid2 = (A,B′,C, id1,N), for some t ∈R Z∗q we obtain:

B′ = (σ · e(gs,H1(id1))r))/
e(gr,R ·ht)

e(gt ,hr)
= σ/e(gr,W )

Given skid2 = H1(id2)s we decrypt cid2 = (A,B′,C, id1,N) = (gr,σ/e(gr,W ),m⊕H5(σ),N) as follows:

H2(e(H1(id1),H1(id2)s)||id1||id2||N) = W

(σ/e(gr,W )) · e(gr,W ) = σ

H5(σ)⊕ (m⊕H5(σ)) = m

gH4(σ,m) ?= gr
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Security. We next show that IBP2 meets the IND-PrID-CCA definition if the Decisional Bilinear Diffie-
Hellman assumption holds in (G1,GT ). Our proof is in the random oracle model.

Theorem 4.2 If there exists a p.p.t. adversary A that wins the IND-PrID-CCA game against IBP2 with non-
negligible advantage, then there exists an adversary B that solves the DBDH problem over G1,GT with
non-negligible advantage.

A proof of Theorem 4.2 is presented in Appendix B.

5 Applications of Identity-Based Proxy Re-encryption

Proxy Re-encryption has a number of practical applications, which have been detailed in previous works.
All of these applications translate directly to the Identity-Based setting but with some additional features.

Secure Email with IBE. The most natural application of proxy re-encryption is to allow Bob to read Al-
ice’s encrypted emails while she is on vacation. Messages are encrypted under the email address ”al-
ice@company.com” and are translated by the proxy into encryptions under ”bob@company.com”. The
proxy does not learn the content of the messages being translated.

Attribute-based Delegations. As noted by Boneh and Franklin [7], identities can be created to include
attributes or to express conditions. For instance, a message encrypted under ”alice ‖ lawyer ‖ from
01/01/2008” can be read by Alice only if she is a lawyer and not before the beginning of year 2008.
This idea applies directly to our IBE-PRE scheme and it allows Alice to specify under which conditions
the proxy is allowed to translate her ciphertexts into Bob’s. For instance, consider the case of temporary
delegations [1] where the time is divided in time intervals t1, t2, . . ., tk and Alice can specify that the proxy
can translate her ciphertexts for Bob only during ti. With our scheme, Alice could just create the proxy key:

rkAlice‖ti→Bob,

so that any encryption under Alice ‖ti can be converted into an encryption for Bob but not during other
time periods. This eliminates the need for designing a separate and specialized scheme as it was done in [1].

Even more interestingly, Alice could specify the conditions under which Bob can read her messages.
For instance, a re-encryption key of this form:

rkAlice→Bob‖a f ter Nov 2007‖security−clearance,

would specify that encryptions under Alice’s identity can be converted into encryptions for Bob but that
Bob can read the messages only in the future, after Nov 2007, and under the condition that he is able to
obtain a security clearance.

Bridging IBE and PKE. Hybrid proxy re-encryption is a concept put forward by Boneh, Goh and Mat-
suo [8] to create a bridge between IBE and public-key based encryption (PKE). Our scheme can also be
used to translate from IBE to PKE. Indeed, consider the ciphertext after the re-encryption, which has the
form:

c′1 = gr, c′2 = m · e(gr,H2(K)), c′3 = IBEBob(K).

Notice that c′3 is a standard (semantically-secure) id-based encryption of a key K. This encryption can
be substituted with a public-key based one (or even a semantically-secure symmetric one). In this way, an
encryption under Alice’s identity is converted into an encryption under Bob’s public-key. Our approach
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provides some advantages over the one in [8]. Indeed, no TTP is involved in creating re-encryption keys
and parameters in our scheme are compatible with those of the standard Boneh-Franklin IBE.

Travel Key. Boneh and Franklin [7] suggested to use an IBE system to store temporary keys into the laptop
during travel so that, if the laptop is lost or stolen, only those keys get exposed. The idea is to let Bob act
as a PKG that generates his own master secret and public keys. Alice could use Bob’s master public-key to
encrypt messages for Bob under identities day1, day2, ... etc., for all days in which Bob is traveling. Bob
can store into his laptop just the keys corresponding to those days while leaving his master secret key safely
stored elsewhere.

This solution, however, requires Bob to inform of his travels any of his potential correspondents and
have them act according to the encryption scheme (that is, they have to encrypt under day1, day2, etc.).
An alternative solution is to set up a proxy (Bob’s mail server, for instance) with a re-encryption key of the
form:

rkBob→Bob′s−Travel−Key.

Every encryption intended for Bob will be encrypted under Bob’s travel key, which is the only secret
key stored into his laptop. Notice that the proxy does not have to be trusted and can be set-up by a system
administrator who won’t be able to read Bob’s messages.

Access Control in Networked File Storage. In [1], the authors describe an application of proxy re-
encryption to the distribution of key material within a cryptographic filesystem. Each file stored on an
untrusted file server is encrypted using a symmetric key; these keys are encrypted under a public master
key which is stored alongside the encrypted material. When a user wishes to decrypt a file, the semi-trusted
keyserver re-encrypts these encapsulated symmetric keys from the master key to the keys of individual users
who can then decrypt. The key server provides access control for the encrypted material, but does not itself
possess the ability to decrypt files.

This application translates naturally to the Identity Based setting with the additional benefit of allowing
the holder of the master key to specify access control policies directly within the identity strings of the users.
A re-encryption key can even be generated before an individual has joined the system.

6 Conclusions and Future Work

In this work we introduced new constructions enabling non-interactive, unidirectional proxy re-encryption
in the IBE setting. Our schemes are very efficient and can be deployed within standard IBE frameworks.
New compelling applications can be realized thanks to our schemes, most notably attribute-based delegation
and access control.

An interesting open problem is to find efficient constructions for multi-use CCA-secure IBE-PRE
schemes. Another important open problem is to find efficient IBE-PRE secure in the standard model (rather
than in the RO model).
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A Security Proof of IBP1

Proof. Let A be a p.p.t. algorithm that has non-negligible advantage ε in attacking the scheme of §4.1. We
use A in order to construct a second algorithm B which has non-negligible advantage at solving the DBDH
problem in G1,GT . Algorithm B accepts as input a properly-distributed tuple 〈G1 = 〈g〉,ga,gb,gc,T 〉 ∈
G4

1×GT and outputs 1 if T = e(g,g)abc. We now describe the algorithm B , which interacts with algorithm
A via the IND-Pr-ID-CPA interface.

Oracle Queries. B simulates the random oracle H1 : {0,1}∗→ G1 as follows: On receipt of a query for id

(on which it has not previously been queried), select z $← Z∗q and randomly flip a weighted coin to set α← 1
with probability γ (defined below), and α← 0 otherwise. If α = 0 then compute h← (gc)z, else compute
h← gz. Record the tuple (id,h,z,α). Finally, return h as the result of the query (if id has previously been
queried, simply locate the existing tuple and return the previously-computed h). Note that the distribution of
the values h returned by the simulated oracle is random, regardless of the choice of α. B simulates (initial)
queries to the random oracle H2 : GT →G1 by simply returning elements ∈R G1.

Our simulation proceeds as follows:

1. SELECT. Choose i $←{0,1}.

2. SETUP. B generates the scheme’s master parameters params = (G1,H1,H2,g,ga) and gives this tuple
to A .

3. FIND. When A submits (extract, id), B evaluates H (id) as described above, to obtain (id,h,z,α). B
outputs skid = (ga)z to A .

When A submits (rkextract, id1, id2), B selects r $← Z∗q, x $←G1 and X $←GT , then evaluates H1(id1)
and H1(id2) to obtain the values (α1,z1),(α2,z2) (for id1, id2 respectively). Now:
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(a) If α1 = 0 then B returns rkid1→id2 =
(
(gb)r,T rz2 ·X ,x

)
to A (note that this key is incorrectly

formed, see section below).
(b) If α1 = 1 then B returns the correctly-formed rkid1→id2 =

(〈R1,R2〉= Encrypt(X),(ga)−z1 ·H2(X)).

4. CHOICE AND CHALLENGE. At the conclusion of the FIND phase, A outputs (id∗,m0,m1) with the
condition that A’s choice of id∗ is not trivial.2 B evaluates H1(id∗) and recovers (id∗,h,z,α) from the
H1 table, and returns c∗ = 〈gb,T z ·mi〉 to A .

5. GUESS. A makes queries (extract, . . .) and (rkextract, . . .) as in the FIND stage, except that A is
restricted from making any query that would result in a trivial situation (a valid decryption path from
id∗ to an identity for which the adversary possesses a secret key). At the conclusion of this phase, A
outputs its guess i′ ∈ {0,1}.

Conditions for Abort. Let αi represent the value α generated by H1(idi). Prior to outputting a value,
B verifies several conditions:

(a) The value α corresponding to id∗ is 0.
(b) For each of A’s queries (extract, idi), αi = 1.
(c) For each of A’s queries (rkextract, idi, id j), where idi→ id j lies along a path leading from id∗,

α j = 0.
(d) For each of A’s queries (rkextract, idi, id j), where idi → id j does not lie along a path leading

from id∗, αi = 1.

If any of the above conditions are false, B aborts the simulation. Otherwise, if i′ = i, B outputs 1, or
0 otherwise.

Claim. If B does not abort during the game, then A’s view is identical to the real attack, with the exception of
re-encryption keys of the form rkid∗→·. We address this case below by showing that A cannot distinguish the
simulation from the real attack. Hence, when the input to B is a DBDH tuple, then the challenge ciphertext
c∗ is a correct encryption of mi under id∗ and hence (subject to the definition of A and the argument above)∣∣Pr [ i = i′ ]− 1

2

∣∣ ≥ ε. When the input to B is random, c∗ represents the encryption of a random element.
Since A is unable to distinguish between the simulation and a real attack, it must hold that Pr [ i = i′ ] > 1

2 +ε

for a non-negligible ε. Hence, B succeeds with non-negligible advantage.

Invalid Re-encryption keys. In the simulation above, every re-encryption key that lies along a path from
id∗ is incorrectly formed. At the same time, it is easy to see that all other re-encryption keys are correctly
formed. Unfortunately, this condition is unavoidable, as the simulator does not possess the knowledge
required in order generate a valid re-encryption key from the challenge identity id∗. To complete our proof,
therefore, we make a separate argument that no adversary A can distinguish our simulation from a “real-
world” interaction in which all values have the correct form. The heuristic argument for security is simple:
each correctly-formed re-encryption key rkid1→id2 consists of a semantically secure encryption (R1,R2) of
some element X ∈R GT , along with the value R3 = (H1(id2)−s ·H2(X)) ∈ G1. An incorrectly-formed re-
encryption key replaces R3 with some value x ∈R G1; this x can naturally be expressed as (H1(id2)−s · y)
for some unknown y ∈ G1. Intuitively, an adversary who can distinguish malformed re-encryption keys

2We reject a choice of id∗ when A has previously extracted a series of re-encryption keys, and a decryption key skid′ such that
A can consecutively re-encrypt ciphertexts from id∗ to id′.
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in our simulation must therefore be able to determine that (R1,R2) do not encrypt some value Y ∈ GT s.t.
H2(Y ) = y. We formalize the statement via the following Lemma.

Lemma A.1 (Indistinguishability of simulations) If there exists a p.p.t. algorithm A ′ with non-negligible
advantage ε′ at distinguishing the simulation above from a “correct” simulation (in which all values are
correctly-formed), then we can construct an algorithm B ′ that solves the DBDH problem in (G1,GT ) with
non-negligible advantage.

Probability of abort. A variety of conditions in the above simulation can lead the simulator to abort. Boneh
and Franklin [7] provide a technique for computing the value γ used in simulating the random oracle H1, and
for placing bounds on the abort probability. We refer the reader to this discussion, and provide a detailed
argument in the full version. 2

B Security Proof of IBP2

Below we sketch a proof of Theorem 4.2. The full version of this paper includes a more detailed proof with
specifics on the reduction.

Proof. Let A be a p.p.t. algorithm that has non-negligible advantage ε in attacking the scheme of §4.3. We
use A in order to construct a second algorithm B which has non-negligible advantage at solving the DBDH
problem in G1,GT . Algorithm B accepts as input a properly-distributed tuple 〈G1 = 〈g〉,ga,gb,gc,T 〉 ∈
G4

1×GT and outputs 1 if T = e(g,g)abc. We now describe the algorithm B , which interacts with algorithm
A via the IND-Pr-ID-CPA interface.

Oracle Queries. B simulates the random oracles H1,H2,H3,H4,H5 as follows.

• H1 : {0,1}∗→G1. On receipt of a new query for id, select y,z $←Z∗q and randomly set α∈ {0,1} such
that Pr [α = 0 ] = γ (defined below). If α = 0 compute h← (gc)z; if α = 1 compute h← gz. Record
the tuple (id,h,y,z,α) and return h. Notice that h is correctly distributed.

• H2 : {0,1}∗→G1. On a new query X ∈ {0,1}∗, return x $←G1 and record (X ,x).

• H3 : {0,1}∗→ G1. On receipt of a new query s ∈ {0,1}∗ of the form (id||〈A,B,C〉), select z $← Z∗q
and randomly set α ∈ {0,1} such that Pr [α = 0 ] = γ (defined below). Compute H1(id) to obtain the
tuple (id,h1,y1,z1,α1). If α = α1 then set h = gz; if α = 0 and α1 = 1 then set h = (gc)z; if α = 1 and
α1 = 0 then set h = gz/(gc)y−1

1 z1 . Record the tuple (s,h,z,α) and return h. Notice that h is correctly
distributed.

• H4 : GT ×{0,1}n→ Z∗q. On receipt of a new query (σ,m), return r $← Z∗q and record (σ,m,r,gr).

• H5 : GT →{0,1}n. On receipt of a new query σ, return p $←{0,1}n and record (σ, p).

Our simulation proceeds as follows:

1. SELECT. Choose i $←{0,1}.

2. SETUP. B generates the scheme’s master parameters params = (G1,H1,H2,H3,H4,H5,g,ga) and
gives params to A .
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3. FIND/GUESS. During the FIND stage, there are no restrictions on which queries A may issue. The
scheme permits only a single consecutive re-encryption, therefore (per definition 3.4), during the
GUESS stage, A is restricted from issuing the following queries:

• (extract, id∗) where id∗ is the challenge identity.
• (decrypt, id∗,c∗) where c∗ is the challenge ciphertext.
• Any pair of queries 〈(rkextract, id∗, idi),(extract, idi)〉
• Any pair of queries 〈(reencrypt, id∗, idi,c∗),(extract, idi)〉.
• Any pair of queries 〈(rkextract, id∗, idi),(decrypt, idi,ci)〉 where ci = Reencrypt(rkid∗→idi ,c

∗).

In the GUESS stage, let id∗ be the target identity, and parse the challenge ciphertext c∗ as
(S∗,A∗,B∗,C∗). In both phases, B responds to A’s queries as follows.

- On (extract, id), where (in the GUESS) stage id 6= id∗, B evaluates H1(id) to obtain (z,α). B
outputs skid = (ga)z to A .

- On (rkextract, id1, id2), B evaluates H1(id1) to obtain the recorded values (α1,z1), and evaluates

H1(id2) to obtain (α2,z2). B selects N $←{0,1}n and returns the value:

rkid1→id2 = 〈(ga)z1 ·H2(e(gaz1 ,H1(id2))||id1||id2||N),N〉.

Note that when α1 = 1 this re-encryption key is correctly formed; when α1 = 0 this key is

incorrectly formed. See section below.

- On (decrypt, id,c) where (in the GUESS stage) (id,c) 6= (id∗,c∗), check whether c is a level-
1 (non re-encrypted) or level-2 (re-encrypted) ciphertext. In the GUESS stage, parse c∗ as
(S∗,A∗,B∗,C∗).

For a level-1 ciphertext, B parses c as (S,A,B,C) and:

(a) Looks up the value A in the H4 table, to obtain the tuple (σ,m,r). If A is not in the table, or
if (in the GUESS stage) A = A∗, then B returns ⊥ to A .

(b) Checks that S = H3(id||〈A,B,C〉)r. If not, B returns ⊥ to A .
(c) Checks that σ = B/e(ga,H1(id)r). If not, B returns ⊥ to A .
(d) Checks that C = H5(σ)⊕m. If not, B returns ⊥ to A .
(e) Otherwise, B returns m to A .

For a level-2 ciphertext, B parses c as (A,B,C, idsrc,N) and:

(a) Compute H1(idsrc), H1(id) to obtain (h1,z1,α1), (h2,z2,α2). If both α1 = α2 = 0
then abort the simulation. If id = id∗ then let K = e(H1(id),(ga)z1). Otherwise, let
K = e(H1(idsrc),(ga)z2).

(b) Let σ′= B/e(A,H2(K||idsrc||id||N)). Let m′=C⊕H5(σ′), and let r′= H4(σ′,m′). If gr′ ?= A
then return m′ to A .

(c) If this approach fails, then look up A in the H4 table to obtain (r,σ,m). Check that C =
H5(σ)⊕m and B = e(ga,H1(idsrc)r) ·m/e(A,rkidsrc→id), where rkidsrc→id is the value com-
puted by a (extract, . . .) query using nonce N. If so, return m. Otherwise, return ⊥.

- On (reencrypt, id1, id2,c), B parses c as (S,A,B,C) and:
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(a) Computes H = H3(id1||〈A,B,C〉), and performs the ciphertext validity check e(g,S) =
e(H,A). If this check does not succeed, B returns ⊥ to A .

(b) If (in the GUESS stage) (id1,A) = (id∗,A∗) and c 6= c∗ then B initiates a forgery event as
described in the section below.

(c) B selects N $←{0,1}n, and:
i. If (in the GUESS stage) id1 = id∗ then B computes H1(id1) to obtain (h1,y1,z1,α1), and

evaluates H3(id1||〈A,B,C〉) to obtain (H,z2,α2). If α2 = 0 then B aborts the simulation.

Otherwise, B selects t $← Z∗q and computes σ′ = B/ e(A,Hy1t)
e(gy1t ,S) . Finally, B outputs cid2 =

(A,σ′ · e(A,H2(e(H1(id1),(ga)z2)||id1||id2||N)),C, id1,N).
ii. If id1 6= id∗ then B extracts rkid1→id2 by executing a query on (rkgen, id1, id2) and out-

puts cid2 = Reencrypt(params,rkid1→id2 ,c).

(Note that in all cases where B does not abort, the values returned are correctly formed.)

At the end of the FIND phase, A outputs (id∗,m0,m1), with the condition that A has not previously
issued (extract, id∗) or the pair 〈(extract, idi),(rkextract, id∗, idi)〉 for any idi ∈ {0,1}∗.
At the end of the GUESS stage, A outputs its guess bit i′.

4. CHOICE AND CHALLENGE. At the end of the FIND stage, A submits (id∗,m0,m1). B forms the
challenge ciphertext as follows:

(a) Choose σ
$←GT , p $←{0,1}n, and insert (σ, p) into the H5 table. Insert (σ,mb, ·,gb) into the H4

table. (If σ is already present in either table, choose a different σ.) Evaluate H1(id∗) and obtain
the recorded value z.

(b) Compute (A∗,B∗,C∗) = 〈gb,σ ·T z, p⊕mi〉.
(c) Select z1

$← Z∗q and insert (id||〈A∗,B∗,C∗〉,z1,gz1 ,α1 = 1) into the H3 table. (If id||〈A∗,B∗,C∗〉
is already present in the table, choose a new σ and begin again.) Compute S∗ = (gb)z1 .

B outputs the challenge ciphertext c∗ = (S∗,A∗,B∗,C∗) =
(
gby,gb,σ ·T z, p⊕mi

)
to A , and begins the

GUESS stage.

5. FORGERIES AND ABORT CONDITIONS. Forgery events. In the event that a forgery event oc-
curs during the GUESS stage, B operates as follows. On values id1, id∗,c = (S,A,B,C), and
c∗ = (S∗,A∗,B∗,C∗) (where (id1,A) = (id∗,A∗), and c 6= c∗), let H = H3(id1||〈A,B,C〉) and extract
the H3 table value y. Note that (except with negl. probability) (id∗||〈A∗,B∗,C∗〉) 6= (id1||〈A,B,C〉)
when c 6= c∗.3

By the definition of H3 it holds that Pr [H = gcz ]≥ γ. In this case we substitute into the validity check
to obtain e(g,S) = e(gcz,gb) which finds S = gbcz. B computes S′ = Sz−1

= gbc (computing CDH on
gb,gc), and solves DBDH as follows:

i f orge←
(

e(S′,ga) ?= T
)

B evaluates the conditions for abort (below) and if all conditions are satisfied, terminates the simula-
tion and returns i f orge as the result.

3If (id∗||〈A∗,B∗,C∗〉) = (id1||〈A,B,C〉) then H = H3(id∗||〈A∗,B∗,C∗〉). However, this cannot be the case, since the validity
check equation e(g,S) = e(H,A) holds true iff S = S∗ (and thus c = c∗).
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Conditions for Abort. Let αi represent the value α generated by H1(idi). Prior to outputting a value,
B verifies several conditions:

(a) The value α corresponding to id∗ is 0.
(b) For each of A’s queries (extract, idi), αi = 1.
(c) For each of A’s queries (rkgen, idi, id j), where idi 6= id∗, αi = 1.

If any of the above conditions are false, B aborts the simulation and outputs a random bit. If a forgery
event occurred during the GUESS phase, B outputs i f orge. Otherwise, if i′ = i, B outputs 1, or 0
otherwise.

As in the previous proof, if the input to B is a DBDH tuple, then the challenge ciphertext c∗ is a correct en-
cryption of mi under id∗— otherwise c∗ is the encryption of a random element. Similarly, all elements given
to B— except for certain re-encryption keys and re-encrypted ciphertexts— have the correct distribution.

Probability of abort. A variety of conditions in the above simulation can lead the simulator to abort. Gentry
and Silverberg in [14] provide a technique for computing the value γ used in simulating the random oracle
H1, and for placing bounds on the abort probability. We refer the reader to this discussion, and provide a
detailed argument in the full version. 2

Invalid Re-encryption Keys/Re-encryptions. In the simulation above, every re-encryption key rkid∗→idi (for
all idi) is incorrectly formed. As in the proof of Appendix A, we make a separate argument that no adversary
A can distinguish our simulation from a “real-world” interaction in which all values have the correct form.
Since these keys are also used to compute the result of (reencrypt, . . .) queries, we extend our argument to
these results. Incorrectly-formed re-encryption keys are of the form rkinvalid = gaz1 ·W , while a correctly-
formed re-encryption key rkid∗→idi ∈G1 should have the form rkvalid = gcaz1 ·W , and W is:

W = H2(e(H1(id∗),H1(id1)a)||id∗||id1||N)

Note that by the rules of the game, A cannot possess a re-encryption key rkid∗→idi and also hold skidi .
Similarly, A can never extract skid∗ . Because the value W is randomly distributed, for A to distinguish
the keys requires that it be capable of solving the computational problem of determining the value K =
e(H1(id∗),H1(id1)a). We formalize the statement via the following Lemma, leave the complete proof for
the full version of this work:

Lemma B.1 (Indistinguishability of simulations) If there exists a p.p.t. algorithm A ′ with non-negligible
advantage ε′ at distinguishing the simulation above from a “correct” simulation (in which all values are
correctly-formed), then we can construct an algorithm B ′ that solves the DBDH problem in (G1,GT ) with
non-negligible advantage.

Proof Sketch. Let P1 = Pr [ i = i′ ] when A ′ is given correctly-distributed values as in the real attack, and
P2 = Pr [ i = i′ ] when A ′ is given one or more invalid re-encryption key(s) of the form described above. Let
A ′ be an algorithm such that |P1−P2|> ν(k): i.e., A ′ has this advantage at distinguishing the simulations.
We use distinguishing A ′ to construct B ′ that solves DBDH with probability > ν(k).

We do not specify the full details of B ′’s simulation, but instead re-use much of the simulation above.
Given a tuple (g,ga,gb,gc,T ), let (g,ga) be the public key given to A ′. We contrive the H1 oracle to
(probabilistically) output gbzi (for some known zi) on input H1(idi), and gcz1 (for known z1) on input H1(id∗).
When A ′ extracts a single re-encryption key rkid∗→idi , B ′ computes the key as gaz1 ·W where:
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W = H2(T z1zi ||id∗||id1||N)

Note that (z1,zi) are randomly distributed and outside of the view of A ′. Note also that when T = e(g,g)abc

then T z1zi is correctly distributed; otherwise T z1zi is a random element.
When T is random, then A ′ has a negligible probability of issuing an oracle call on H2(T z1zi ||id∗||id1||N).

Conversely, when T = e(g,g)abc, it must be the case that A ′ issues a call on H2(T z1zi ||id∗||id1||N) with
probability > ν(k). B ′ examines the trace to find such a call, and if it is present, outputs 1, and otherwise
outputs 0. Using standard arguments, we may extend this claim to address a case where A ′ extracts multiple
incorrectly-formed re-encryption keys.
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