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Abstract. Preneel, Govaerts, and Vandewalle[14](PGV) considered 64
most basic ways to construct a hash function from a block cipher, and
regarded 12 of those 64 schemes as secure. Black, Pogaway and Shrimp-
ton[3](BRS) provided a formal and quantitative treatment of those 64
constructions and proved that, in black-box model, the 12 schemes (
group − 1 ) that PGV singled out as secure really are secure. By step-
ping outside of the Merkle-Damg̊ard[4] approach to analysis, an addi-
tional 8 (group − 2) of the 64 schemes are just as collision resistant as
the first group of schemes. Tight upper and lower bounds on collision
resistance of those 20 schemes were given. In this paper, those collision
resistance and preimage resistance bounds are improved, which shows
that, in black box model, collision bounds of those 20 schemes are same.
In Group− 1 schemes, 8 out of 12 can find fixed point easily. Bounds on
second preimage, multicollisions of Joux[6], fixed-point multicollisons[8]
and combine of the two kinds multicollisions are also given. From those
bound, Group− 1 schemes can also be deviled into two group.
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1 Introduction

Most of hash functions iterated a compression function by Merkle-Damg̊ard
structure with constant IV[13]. Building hash function based on block cipher
gone back to Rabin[15], wherein one makes the compression function out of a
block cipher. This topic had been systematically analyzed in [3, 10, 11, 14].

Block cipher hash has been less widely used, for a variety of reasons. Black,
Rogaway, and Shrimpton[3] given some fresh light on the block cipher based hash
and taken a proof-centric look at the 64 block cipher based compression function
iterated by Merkel-Damg̊ard structure. First summary of those 64 schemes was
presented by Preneel, Govaerts, and Vandewalle[14]. Recently, some new double
length block cipher based hash functions have been recommend[7, 12].
PGV Paper PGV paper[14] considered turning a block cipher E : {0, 1}n ×
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{0, 1}n → {0, 1}n into a hash function H : ({0, 1}n)∗ → {0, 1}n using a compres-
sion function F : {0, 1}n × {0, 1}n → {0, 1}n derived from E. PGV considered
all 64 compression functions F of the form F (hi−1,mi) = Ea(b) ⊕ c, where
a, b, c ∈ {hi−1,mi, hi−1 ⊕mi, v}, in which v ∈ {0, 1}n is a constant. Of the 64
such schemes, the authors of [14] regarded 12 as secure. Another 13 schemes
they classify as backward − attackable. The remaining 39 schemes are subject
to damaging attacks identified by [14] and others.
BRS Paper BRS paper[3] taken a more proof-centric look at the schemes
from PGV, proved additional 8 schemes were collision resistant, divided the
20 schemes into two group where the group− 1 scheme, {H1, . . . , H12}, was the
12 schemes picked by PGV and the group− 2 scheme, {H13, . . . , H20}, was the
new founded 8 schemes. For the new founded schemes, the hash function H im-
mune to collision attack within the Merkle-Damg̊ard paradigm, the compression
functions were not immune to collision attack, the proves of collision resistant
of group− 2 used the assumptions of E was a black box model and H with fix
start model. They also gave both upper and lower bounds for each.
Our PGV Results We reanalyze those 64 schemes, improve the upper and
lower bounds that were given in BRS paper, using method based on graph theory,
by which, hashing procedure is considered as directed graph drawing procedure
and attacking method is considered path building method on directed graph.
Tabel1 is contrast of bounds between BRS and ours. Table2 considers the sec-
ond preimage bounds with plain padding and MD-strengthening padding.

Table 1. Summary of results on collision and preimage resistance bounds including
BRS and ours. The adversary asks at most q query. Message padding is plain padding.

Collision Resistance Preimage Resistance
Category UP Bound Low Bound UP Bound Low Bound

BRS Our BRS Our BRS Our BRS Our

Group-1: H[1..4]
0.039(q−1)(q−3)

2n
0.4q
2n−1

H[1..12]
q(q+1)

2n
q(q+1)

2n
q(q+1)

2n+1
q

2n−1
q

2n−1
q
2n

12 schemes H[5..12]
0.3q(q−1)

2n
0.6q
2n−1

Group-2:H[13..20]
3q(q+1)

2n
0.3q(q−1)

2n
9(q+3)2

2n
q(q+1)

2n
0.15q2

2n
q(q+1)

2n+2

Short DiCycle Multicollisions This attack is an attack similar to Multicol-
lisions, if Multicollisions is regarded as attack using short undirected cycle to
build collisions, then Short DiCycle Multicollisions is attack using short directed
cycle to build collisions. This attack was first given by Kelsey and Schneier[8].
Summary of Short DiCycle multicollisions, Combine of Joux’s and Kelsey’s Mul-
ticollisions, that are contrast with Joux’s Multicollisions are given in Tabel3.
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Table 2. Summary of bounds on second preimage resistance. Adversary asks at most q
query with plain padding(PlainPD) and MD-strengthening padding(MD-SP). t is the
first message length.

Second Preimage UP Low
Attack PlainPD MD-SP PlainPD MD-SP

H[1..4]
q(t+1)

2n
q

2n−1
q(t+1)

2n+2
q
2n

H[5..12]
q(t−1)

2n
q(t−1)

2n+2

H[13..20]
q(q+2t+3)

2n
q(q+t)

2n
q(q+4t+3)

2n+2
q(q+2t)

2n+2

Table 3. Summary of Short DiCycle multicollisions, Combine Multicollisions, that are
contrast with Joux’s Multicollisions. Message padding is MD-strengthening padding
with time consuming(Time), minimum message length(MML) and maximum collide
numbers(MCN).

Joux’s Short Dicycle Combine
Multicollisons Multicollisions Multicollisions Multicollisions

Time MML MCN Time MML MCN Time MML MCN

H[1..4] - - - - - -

H[5..12] K2n/2 K 2K 2K2n/2 L + K S(L, K)a 3K2n/2 L+2K 2KS(L, K)

H[13..20] 2K2n/2 2L + K SL(K) 3K2n/2 2L+2K 2KS(L, K)

a S(L, K) =
∑K

iL=0

∑iL

iL−1=0
. . .

∑i3
i2=0

(i2 + 1)

2 Notations and Definitions

Let message block: m ∈ {0, 1}n, message: m = m1‖ . . . ‖mi ∈ ∪t
ι=1{0, 1}n·ι and

instance of message: mi ∈ ∪t
ι=1{0, 1}n·ι. If m′,m′′ ∈ {0, 1}n, then m′‖m′′ ∈

{0, 1}2n and |m′| = |m′′| = n. Let m
(t)
1 = m1‖ . . . ‖m1, where |m(t)

1 | = t · n. Let
0 be n bit ′0′. Let a hash function algorithm H : M→ Y with initial value IV ,
for any m ∈M with H(m, IV ). Let Block cipher E : {0, 1}n×{0, 1}n → {0, 1}n

using notation E(x, k) or Ek(x), key k ∈ {0, 1}n.

64 Schemes We consider the schemes F (hi−1,mi) = Ea(b)⊕ c, where a, b, c ∈
{hi−1,mi, hi−1 ⊕mi, v}, in which block cipher E : {0, 1}n × {0, 1}n → {0, 1}n.
Hι has compression function Fι, in which Hι is numbered as BRS[3]. Not loosing
generally, we assume v = 0.

Message Padding Take the L-bit input message m (L < 2n/2) and append
a ′1′ followed by ’0’ bits such that z is the smallest positive integer satisfying
(L + 1 + z ≡ n/2 mod n) and, finally, append the binary representation of
the length of the original message P(m). We call this padding method as MD-
strengthening m‖1‖0(z)‖P(m). The padding m‖1‖0(z) is called plain padding,
in which z is the smallest positive integer satisfying (L + 1 + z ≡ 0 mod n).

Ideal Cipher Model[16] A block cipher with the block length n and the
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key length κ is called an (n, κ) block cipher. Let E : {0, 1}n × {0, 1}κ → {0, 1}n

be an (n, κ) block cipher. Then, E(k, ·) is a permutation for every k ∈ {0, 1}κ,
and it is easy to compute both E(k, ·) and E(k, ·)−1. Let Bn,κ be the set of all
(n, κ) block ciphers. In the ideal cipher model, E is assumed to be randomly
selected from Bn,κ. The encryption E and the decryption E−1 are simulated by
the following two oracles. The encryption oracle E first receives a pair of a key
and a plaintext as a query. Then, it returns a randomly selected ciphertext. On
the other hand, the decryption oracle E−1 first receives a pair of a key and a
ciphertext as a query. Then, it returns a randomly selected plaintext.

Adversary We consider a computationally unbounded adversary with access to
either a E and E−1. The adversarys ”running time” is determined by her number
of E queries. Our adversaries are probabilistic algorithms, and we concentrate
on the expected running time. We will describe the running time asymptotically.
Advantage on Collision We write x

$← S for the experiment of choosing a
random element from the finite set S and calling it x. An adversary is an algo-
rithm with access to one or more oracles. We write these as superscripts. The
adversary A with the oracle E, E−1 is a collision-finding algorithm of H. The
advantage of A finding collisions in H is:
Advcoll

H (A) = Pr[E $← Bn,κ; (m,m′) $← AE,E−1
: m 6= m′ ∧H(m) = H(m′)].

Advantage on Preimage The advantage of A finding preimage in H is:
Advpre

H (A) = Pr[E $← Bn,κ; δ $← {0, 1}n;m ← AE,E−1(δ) : δ = H(m)].
Advantage on Second Preimage The advantage of A finding second preim-
age in H is:
AdvsPre

H (A) = Pr[E $← Bn,κ;m $← {0, 1}n;m′ ← AE,E−1
(m) : H(m) = H(m′)].

For q > 1 let Advattack
H (q) = max

A
{Advattack

H (A)}, where A makes at most q

queries to E, E−1 in total, attack ∈ {coll, pre, sPre}.

Simulating a Ideal Cipher Oracle[3] An adversary A access to a simu-
late ideal cipher oracle for E and E−1, which is defined as follows:

Algorithm SimulateOracles(A, n)
Initially, i ← 0 and Ek(x) = undefined for all (x, k) ∈ {0, 1}n × {0, 1}n

Run A?,?, answering oracle queries as follows:
When A asks a query (x, k) to its left oracle:

i ← i + 1; ki ← k; xi ← x; yi
$← Range(Ek); Ek(x) ← yi; return yi to A

When A asks a query (k, y) to its right oracle:

i ← i + 1; ki ← k; yi ← y; xi
$← Domain(Ek); Ek(xi) ← y; return xi to A

When A halts, outputting a string out: return ((x1, k1, y1), . . . , (xi, ki, yi), out)

Fig. 1. Domain(Ek) is the set of points x where Ek(x) is no longer undefined and
Domain(Ek) = {0, 1}n −Domain(Ek) . Range(Ek) is the set of points where Ek(x)
is no longer undefined and Range(Ek) = {0, 1}n −Range(Ek).
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Merkle-Damg̊ard Graph Let H : ({0, 1}κ)∗ → {0, 1}n be a Merkel Damag̊ard
construction hash function with compression function F : {0, 1}n × {0, 1}κ →
{0, 1}n and initial value IV . Let Merkle-Damg̊ard Graph be a directed graph−→
G = (VG,

−→
E G). If h′ = F (h, e), then h and h′ are in vertex set VG ⊆ {0, 1}n

and (h, e, h′) or h
e→ h′, an arc begin from h point at h′, is in edge set −→E G =

{(h, e, h′)} ⊆ {0, 1}n × {0, 1}κ × {0, 1}n.

Graph Drawing Attack Let A?,? be an adversary attacking Hι. We ana-
lyze the behavior of A when its left oracle is instantiated by E

$← Bn,n and its
right oracle is instantiated by E−1. Assume that A asks its oracles at most q total
queries. A runs the algorithm SimulateOracle(A, n) and draws a directed graph−→
GH . When A asks an E−query(x, k) and this returns a value y, or when A asks
an E−1 − query of (k, y) and this returns x. Then A adds vertexes f1(x, k, y),
f3(x, k, y) and an arc (f1(x, k, y), f2(x, k, y), f3(x, k, y)) to −→GH . Time consum-
ing of graph drawing procedure is neglected. For hi = Fι(hi−1,mi), the relations

ι f1 = f2 = f3 = hi = ι f1 = f2 = f3 = hi =

1 k x y ⊕ x Ehi−1(mi)⊕mi 13 x⊕ k x y Ewi(mi)
2 k x⊕ k y ⊕ x Ehi−1(wi)⊕ wi 14 x⊕ k x y ⊕ k Ewi(mi)⊕ wi

3 k x y ⊕ x⊕ k Ehi−1(mi)⊕ wi 15 x k y Emi(hi−1)
4 k x⊕ k y ⊕ x⊕ k Ehi−1(wi)⊕mi 16 x x⊕ k y Ewi(hi−1)
5 x k y ⊕ x Emi(hi−1)⊕ hi−1 17 x k y ⊕ k Emi(hi−1)⊕mi

6 x⊕ k k y ⊕ x Emi(wi)⊕ wi 18 x x⊕ k y ⊕ k Ewi(hi−1)⊕ wi

7 x k y ⊕ x⊕ k Emi(hi−1)⊕ wi 19 x⊕ k k y Emi(wi)
8 x⊕ k k y ⊕ x⊕ k Emi(wi)⊕ hi−1 20 x⊕ k k y ⊕ k Emi(wi)⊕mi

9 x⊕ k x y ⊕ x Ewi(mi)⊕mi 21 k x y ⊕ k Ehi−1(mi)⊕ hi−1

10 x x⊕ k y ⊕ x Ewi(hi−1)⊕ hi−1 22 k x⊕ k y ⊕ k Ehi−1(wi)⊕ hi−1

11 x⊕ k x y ⊕ x⊕ k Ewi(mi)⊕ hi−1 23 k x y Ehi−1(mi)
12 x x⊕ k y ⊕ x⊕ k Ewi(hi−1)⊕mi 24 k x⊕ k y Ehi−1(wi)

Fig. 2. Rules for the functions of building vertexes and arc, in which the adversary
gets query (x, k, y) then computes the value f1 := f1(x, k, y), f2 := f2(x, k, y) and
f3 := f3(x, k, y). wi := hi−1⊕mi. The first and sixth columns are the number of those
Group− 1[1..12] and Group− 2[13..20] and additional 4 schemes numbered [21..24].

among hi,mi, hi−1 and f1, f2, f3 are that: hi−1 = f1(x, k, y), mi = f2(x, k, y)
and hi = f3(x, k, y), or saying f3(x, k, y) = Fi(f1(x, k, y), f2(x, k, y)). Relation
among f1(x, k, y), f2(x, k, y), f3(x, k, y) of those 20 schemes are in Fig2. Combine
of running SimulateOracle(A, n) and Graph drawing procedure is showing in
Fig3, named GraphDrawing(A, n).

Let −→Gq

H be −→GH after q-th query, −→GH begin with −→G0

H . Let H be connected
subgraph of −→GH , −→C be directed cycle or loop in −→

GH , C be undirected cycle
or loop in GH( on assuming the arc is undirected), and −→P be directed directed
Path in −→GH .
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In different attack, A uses following methods: A selects different G0
H ; A de-

fines different event as success event; In i-th query,A adds restriction on selection
of (xi, ki) for E − query, or on selection of (yi, ki)for E−1 − query.

GraphDrawing(A, n)
Initially, i ← 0 and Ek(x) = undefined for all (x, k) ∈ {0, 1}n × {0, 1}n,

GH = G0
H .

Run A?,?, answering oracle queries as follows:

When A asks a query (x
$← {0, 1}n, k

$← {0, 1}n) to its left oracle:

i ← i + 1; ki ← k; xi ← x; yi
$← Range(Ek); Ek(x) ← yi; return yi to A;

When A asks a query (y
$← {0, 1}n, k

$← {0, 1}n) to its right oracle:

i ← i + 1; ki ← k; yi ← y; xi
$← Domain(Ek); Ek(xi) ← y; return xi to A;

VGi
H
← V

Gi−1
H

∪ {f1(xi, ki, yi), f3(xi, ki, yi)};
EGi

H
← E

Gi−1
H

∪ {(f1(xi, ki, yi), f2(xi, ki, yi), f3(xi, ki, yi))};
When A halts, outputting a string and Graph Gi

H :
return ((x1, k1, y1), . . . , (xi, ki, yi), G

i
H).

Fig. 3. Adversary A executes its (simulated) oracle to form a directed graph GH to
build attack on Hι, where GH : VGH ⊆ {0, 1}n; EGH ⊆ {0, 1}n × {0, 1}n × {0, 1}n.

Conventions We assume the adversary does not ask any oracle query in which
the response is already known; namely, if A asks a query Ek(x) and this return y,
thenA does not ask a subsequent query of Ek(x) or E−1

k (y); and ifA asks E−1
k (y)

and this return x, then A does not ask a subsequent query of E−1
k (y) or Ek(x).

We also assume a successful adversary always outputs one or more messages
mi, which either collide or (2nd)preimages. Before finishing, the adversary asks
all the oracles calls to compute all hash values H(mi, IV ). In E − query(x, k),
f1(x, k, y) and f2(x, k, y) are not influenced the return value y, so before asking
E − query, we use notation ? to represent the unknown y; namely, when x and
k is known, f1(x, k, y) is known, then, before getting E − query(x, k), we use
f1(x, k, ?) to represent this value. And before getting E−1 − query(k, y), we use
notation ? to represent some unknown x.

3 Collision Resistance of PGV Schemes

BRS paper analyzed the group 1 schemes using the Merkle-Damg̊ard paradigm,
for their compression functions are collision resistant. Group 2 schemes were
analyzed by graph theory. We use Merkel-Damag̊ard drawing method to analyze
those schemes, by which preimage, second preimage or collision finding attack
is converted to special path finding algorithm. Theorem1 and Theorem2 based
on the fact that, adversary A runs algorithm GraphDrawing(A, n) with −→G0

Hι
=
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{IV }, if A gets connect subgraph H ⊆ GHι
with a cycle or loop C in it and

vertex IV in it, then he formes a collision attack on Hι.
Collision on H is that two directed paths −→P = h0

m1→ . . .
ml→ hl and −→

P
′

=

h′0
m′

1→ . . .
m′

l′→ h′l′ have same start h0 = h′0 and same end hl = h′l′ , or P ∪P ′ builds
a connect graph, a cycle or loop and IV on it. However this way of collision does
not consider the message padding. If H uses MD strengthening padding, then
the length of P and P ′ should be equal or the message lengths are included in
ml and ml′ . The proofs of Theorem 2 is on condition of plain padding, that is
also holden in MD strengthening padding, by restricting f1(xi, ki, ?) = IV or
including message length in f2(xi, ki, ?).

Theorem 1. Fix n ≥ 1, message padding is plain padding,

Group 1 Scheme: Advcoll
Hι

(A) ≤ q(q + 1)/2n for any q ≥ 1 and ι ∈ [1..12].
Group 2 Scheme: Advcoll

Hι
(A) ≤ q(q + 1)/2n for any q ≥ 1 and ι ∈ [13..20].

Group 3 Scheme: Advcoll
Hι

(A) = 1 for any q ≥ 2 and ι ∈ [21..64].

Proof. LetA?,? be an adversary attacking Hι.A runs GraphDrawing(A, n) with
−→
G

0

Hι
= {IV }. Let E be the event that, as a result of the adversary’s queries, there

be a connected subgraph H ⊆ GHι, which has a Cycle or loop C and vertex IV .
Let assume {IV } be a connected graph. Let Ei be the event that E occurs by the
i-th query. Define E0 be the null event. Then Pr[E ] =

∑q
i=1 Pr[Ei|E i−1∧ . . .∧E0].

We have Advcoll
Hι

(A) ≤ Pr[E ].

Claim Advcoll
Hι

(A) ≤ Pr[E ].
Meaning collision on Hι at least is a connected subgraph H ⊆ GH , H has a
cycle or loop C and vertex IV . A outputs colliding message m = m1‖ . . . ‖ml

and m′ = m′
1‖ . . . ‖m′

l′ ; that is Hi(m, IV ) = Hi(m′, IV ). In path −→P = h0
m1→

h1
m2→ . . .

ml→ hl and −→P ′
= h′0

m′
1→ h′1

m′
2→ . . .

m′
l′→ h′l′ , we have h0 = h′0, hl = h′l′

and P 6= P ′. Then there exists at least one cycle or loop in P ∪ P ′ and
IV ∈ P ∪ P ′. P ∪ P ′ is a connect subgraph.

Claim Let Hα be connect subgraph in GH and in each Hα, a cycle or a loop
C ⊆ Hα or IV ∈ Hα. Let Hq

α ⊆ Gq
H , ∪Hq

α be union of all such connected
subgraphs in Gq

H . Then |V∪Hq
α
| ≤ q + 1.

If Hα is a connect subgraph, then |VHα
| ≤ |EHα

| + 1. If a cycle or loop
C ⊆ Hα, then |VHα| ≤ |EHα|. Since |V∪Hq

α
| =

∑ |VHq
α
| ≤ ∑ |EHq

α
| + 1 ≤

EGq
H

+ 1 = q + 1, we have |V∪Hq
α
| ≤ q + 1.

Claim Let V er∪Hi−1
α

(fι(x, k, y))i be event that fι(xi, ki, yi) ∈ ∪Hi−1
α . Then

Pr[Ei|E i−1 ∧ . . . ∧ E0] ≤ Pr[V er∪Hi−1
α

(f1)i ∧ V er∪Hi−1
α

(f3)i].
Let E occurs in i-th query. Then there exists a connected subgraph H with
IV ∈ H and a cycle or loop C in H and H ⊆ Gi

H . We will give proof
of H − (f1, f2, f3) ⊆ ∪Hi−1

α . If that is true, then f1, f3 ∈ Hi−1
α . Firstly, if

(f1, f2, f3) is in cycle C, then H−(f1, f2, f3) is connected graph and IV ∈ H.
Secondly, if (f1, f2, f3) is not in cycle C, then at most two connected graph in
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H− (f1, f2, f3) denoted H1 and H2. Since IV ∈ H, we have IV ∈ H1 ∪H2.
Let assume IV ∈ H1. If there is a cycle in H1, then that is conflict with
collision occur in i-th query. Since (f1, f2, f3) /∈ C, then there is a circle in
H2. We have H1 ∪H2 ⊆ ∪Hi−1

α , that implies f1, f3 ∈ Hi−1
α .

Claim Pr[E ] ≤ q(q+1)
2n , ι ∈ [1..12].

Given E i−1 ∧ . . . ∧ E0, the event Ei occurs at least in case that, the return
vertex of i-th query has been exist in vertexes set ∪Hi−1

α .
Pr[V er∪Hi−1

α
(f1)i ∧ V er∪Hi−1

α
(f3)i] ≤ Pr[V er∪Hi−1

α
(f3)i|V er∪Hi−1

α
(f1)i].

If Ei occurs via an E− query(xi, ki), then yi is a random value from a set of
size at least 2n − (i− 1). Then f3(xi, ki, yi) is a random value from a set of
size at least 2n − (i− 1). We also have |V∪Hi−1

α
| ≤ i. So,

Pr[Ei|E i−1 ∧ . . . ∧ E0] ≤ i
2n−(i−1) .

Alternatively, let Ei occur via an E−1− query(yi, ki). For schemes ι ∈ [1..4],
A can select f1(xi, ki, yi) ∈ ∪Hi−1

α directly, that success probability is same
as asking E-query. For schemes ι ∈ [5..12], f1(xi, ki, yi) is a random value
from a set of size at least 2n − (i− 1). Then

Pr[V er∪Hi−1
α

(f1)i ∧ V er∪Hi−1
α

(f3)i]
= Pr[V er∪Hi−1

α
(f1)i|V er∪Hi−1

α
(f3)i]Pr[V er∪Hi−1

α
(f3)i]

We have Pr[E ] ≤ ∑q
i=1 Pr[Ei|E i−1 ∧ . . . ∧ E0] ≤

∑q
i=1

i
2n−(i−1) ≤ q(q+1)

2n .

Claim Pr[E ] ≤ q(q+1)
2n , ι ∈ [13..20].

If Ei occurs via an E−query(xi, ki), then that probability is same as gruop1.
Alternatively, if Ei occurs via an E−1 − query(yi, ki), then f1(xi, ki, yi) is a
random value from a set of size at least 2n − (i− 1). So,
Pr[V er∪Hi−1

α
(f1)i ∧ V er∪Hi−1

α
(f3)i] ≤ Pr[V er∪Hi−1

α
(f1)i|V er∪Hi−1

α
(f3)i]

We can select vertex f3(xi, ki, yi) in ∪Hi−1
α . We have,

Pr[E ] ≤ ∑q
i=0 Pr[Ei|E i−1 ∧ . . . ∧ E0] ≤

∑q
i=1

i
2n−(i−1) ≤ q(q+1)

2n .

Claim Pr[E ] = 1, ι ∈ [21..64].

Pr[Ei|E i−1 ∧ . . . ∧ E0] ≤ Pr[V er∪Hi−1
α

(f1)i ∧ V er∪Hi−1
α

(f3)i]

In 2th query, we can directly select f1(xi, ki, yi), f3(xi, ki, yi) ∈ VH1
α
. So we

have Pr[E ] = 1, q ≥ 2. ut
Theorem 2. Fix n ≥ 1, message padding is plain padding,

Group 1 Scheme Advcoll
Hι

(A) ≥ q(q + 1)/2n+1 for any q ≥ 1 and ι ∈ [1..12].
Group 2 Scheme Advcoll

Hι
(A) ≥ q(q + 1)/2n+1 for any q ≥ 1 and ι ∈ [13..20].

Proof. Let A?,? be an adversary attacking Hι. A runs GraphDrawing(A, n)
with −→G0

Hι
= {IV }. Let A only ask E − query(x, k). In each query, A selects x

and k to satisfy f1(x, k, ?) ∈ VGHι
. Then GHι

is connected graph and IV ∈ GHι
,

that is Gi
Hι

= ∪Hi
α. Let C be the event of IV ∈ GHι

and there exists a cycle or
loop in C. Let Ci be the event that C occurs by the i-th query. Define C0 be the
null event. Then Pr[C] =

∑q
i=1 Pr[Ci|Ci−1∧. . .∧C0]. We have Advcoll

Hι
(A) ≥ Pr[C].
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Claim Advcoll
Hι

(A) ≥ Pr[C].
If adversary A build a cycle or loop C in i-th query. Then there are two
directed path P and P ′ in Gi

Hι
with P = h0 → h1 → . . . → hl, P ′ = h0 →

h′1 → . . . → h′l′ , in which hl = h′l′ = f3(xi, ki, yi) and P 6= P ′.
Claim Pr[Ci|Ci−1 ∧ . . . ∧ C0] ≥ Pr[V erGi−1

Hι

(f3)i].

If f3(xi, ki, yi) ∈ Gi−1
Hι

, then E(Gi
Hι

) = V (Gi
Hι

). There must exist a cycle or
loop in GHι

.
Claim Advcoll

Hι
(A) ≥ q(q + 1)/2n+1 for any q ≥ 1 and ι ∈ [1..20].

Given Ci−1∧. . .∧C0, the event Ci occurs in case that, the return vertex of i-th
query has been exist in vertexes set Gi−1

Hι
. If Ei occurs via an E−query(xi, ki),

then yi is a random value from a set of size at most 2n. Then f3(xi, ki, yi) is
a random value from a set of size at most 2n. So,
Pr[C] ≥ ∑q

i=1 Pr[Ci|Ci−1 ∧ . . . ∧ C0] ≥
∑q

i=1
i

2n = q(q+1)
2n+1 . ut

Theorem 3. Fix n ≥ 1, message padding is MD strengthening padding,

q(q − 1)/2n ≥ Advcoll
Hι

(A) ≥ q(q − 1)/2n+1

for any q ≥ 1 and ι ∈ [1..20].

4 Preimage Resistance of PGV Schemes

The proofs of Theorem 4 and Theorem 5 follow the fact that, a preimage is a
directed path from IV to δ in graph −→GHι

. If adversary A finds a directed path
from IV to δ, then he builds a preimage. The bounds on preimage attack not
consider the MD-strengthening padding, if the padding is considered, the bounds
are same. Because message length can be added in f2(xi, ki, yi), before asking
i-th query.

Theorem 4. Fix n ≥ 1, given δ, message padding is plain padding,

Group 1 Scheme Advpre
Hι

(A) ≤ q/2n−1 for any q ≥ 1 and ι ∈ [1..12].
Group 2 Scheme Advpre

Hι
(A) ≤ q(q + 1)/2n for any q ≥ 1 and ι ∈ [13..20].

Others Scheme Advpre
Hι

(A) = 1 for any q ≥ 1 and ι ∈ [21..64].

Proof. Let A?,? be an adversary attacking Hι. A runs GraphDrawing(A, n)
with −→G0

Hι
= {IV, δ}. Preimage finding is not finding a cycle or loop, it is finding

a path. Let assume {IV } and {δ} be connected subgraphs. Let E be the event
that, as a result of the adversary’s queries, there are formed a directed path −→P
in −→GHι

, IV ∈ −→P and δ ∈ −→P . Let Ei be the event that E occurs by the i-th query.
Define E0 be the null event. Then Pr[E ] =

∑q
i=1 Pr[Ei|E i−1 ∧ . . . ∧ E0]. We have

Advpre
Hι

(A) ≤ Pr[E ].

Claim Advpre
Hι

(A) ≤ Pr[E ]. Implying preimage on H at least is a path P ⊆ GH ,
in which IV ∈ P and δ ∈ P .
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Claim Let Arcδ(f3(x, k, y)) be event that f3(x, k, y) = δ.
Then Pr[E ] ≤ Pr[Arcδ(f3(x, k, y))]. That implies at least a directed arc point
at δ.

Claim Let Ha be connect subgraph in GH with a ∈ Ha, in which a ∈ {IV, δ}.
Let Hq

a be the connect graph after q-th query. Then |VHq
IV
∪Hq

δ
| ≤ q + 2.

Claim Pr[Ei|E i−1 ∧ . . . ∧ E0] ≤ Pr[V erHi−1
IV

(f1)i ∧ V erHi−1
δ

(f3)i].
Claim Pr[E ] ≤ q

2n−1 , ι ∈ [1..12].
Claim Pr[E ] ≤ q·(q+1)

2n , ι ∈ [13..20].
Claim Pr[E ] = 1, ι ∈ [21..64].

For given IV and δ, we have Pr[V erHi−1
IV

(f1)i ∧ V erHi−1
δ

(f3)i] = 1. ut

Detail is in Appendix A.

Theorem 5. Fix n ≥ 1, given δ, message padding is plain padding,

Group 1 Scheme Advpre
Hι

(A) ≥ q/2n for any q ≥ 1 and ι ∈ [1..12].
Group 2 Scheme Advpre

Hι
(A) ≥ q(q + 1)/2n+2 for any q ≥ 1 and ι ∈ [13..20].

Proof. Let A?,? be an adversary attacking Hι. A runs GraphDrawing(A, n)
with −→G0

Hι
= {IV, δ}.

Claim Advcoll
Hι

(A) ≥ q/2n for any q ≥ 1 and ι ∈ [1..12].
A only asks E − query(x, k) with xi and ki satisfing f1(xi, ki, ?) ∈ HIV . Let
C be the event of δ ∈ HIV and at least a edge in HIV .
Advcoll

Hι
(A) ≥ Pr[C] ≥ ∑q

i=1 Pr[V erHi−1
δ

(f3)i] ≥
∑q

i=1
1
2n = q

2n .

Claim Advcoll
Hι

(A) ≥ q(q + 1)/2n+2 for any q ≥ 1 and ι ∈ [13..20].
A asks E − query(x, k) and E−1− query(y, k), alternately. In odd-th query,
A selects x and k satisfying f1(x, k, ?) ∈ HIV , in even-th query, A se-
lects y and k satisfing f3(?, k, y) ∈ Hδ. Let C be the event of δ ∈ HIV

and at least a edge in HIV . If C occurs in E − query, then Advcoll
Hι

(A) ≥
Pr[C] ≥ Pr[V erHi−1

δ
(f3)i] ≥

∑q
i=1

bi/2c+1
2n . If C occurs in E−1 − query, then

Advcoll
Hι

(A) ≥ Pr[C] ≥ Pr[V erHi−1
IV

(f1)i] ≥
∑q

i=1
bi/2c+1

2n . ut

Detail is in Appendix A.

5 Second Preimage Resistance of PGV Schemes

Second preimage bounds on Hι with plain-padding and MD-strengthening are
different, for the success events of those two attacks are different. Let the given
message build a path −→P . Second preimage attack with plain padding is also a
direct path −→P ′

finding attack, for which the target is all vertexes in path −→P .

Theorem 6. Fix n > 1, q ≥ 1, let H(m, IV ) = δ, m = m1‖ . . . ‖mt, message
padding is plain padding,
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Group 1 Scheme: (t+1)q
2n ≤ AdvsPre

Hι
(A) ≤ (t+1)q

2n−1 for ι ∈ [1..12].
Group 2 Scheme: q(4t+q+3)

2n+2 ≤ AdvsPre
Hι

(A) ≤ q(2t+q+3)
2n for ι ∈ [13..20].

Proof. This proof is followed the proofs of Theorem 4 and Theorem 5. Let A?,?

be an adversary attacking Hι. Let m = m1‖ . . . ‖mt, σι := H(mι, IV ),mι =
m1 . . . , mι, ι ≤ t. Let σ0 := IV . A runs GraphDrawing(A, n) with −→

G
0

Hι
:=

{σι|0 ≤ ι ≤ t}. A follows graph drawing method of Theorem 4 and Theorem 5.

UP Bound of Group 1 In q-query Pr[Arcσι
(f3)] ≤ q

2n−1 , we have
AdvsPre

Hι
(q) ≤ ∑t

ι=0 Pr[Arcσι
(f3)] ≤ q(t+1)

2n−1 . In i-th query Pr[V erHi−1
σt

(f3)i] ≥
t+1
2n . We have, AdvsPre

Hι
(q) ≥ ∑q

i=1 Pr[V erHi−1
σt

(f3)i] ≥ q(t+1)
2n .

UP Bound of Group 2 Since Pr[V erHi−1
σt

(f3)i|V erHi−1
IV

(f1)i] ≤ i+t+1
2n−(i−1) .

AdvsPre
Hι

(q) ≤ ∑q
i=0

i+t+1
2n−(i−1) ≤ q(q+2t+3)

2n . In i-th query, Pr[V erHi−1
σt

(f3)i] ≥
b i

2 c+t+1

2n . We have, AdvsPre
Hι

(q) ≥ ∑q
i=1 Pr[V erHi−1

σι
(f3)i] ≥ q(4t+q+3)

2n+2 . ut
Theorem 7 is based on the facts that, if the message length is considered,

in each query, the target image set is not set {σι, 0 ≤ ι ≤ t}, is a vertex in
it. Then the bound will become same as preimage attack. However, in schemes
[5..20], A can build a short direct cycle or loop −→

C , in this way, the length of
second message can be controlled by A. Let L = |C|. The target image set
becomes {σLι|2 ≤ ι ≤ bt/Lc}. C can found by precomputation with complexity
of O(2n/2), which can be used in any second preimage attack, that was not
included in complexity bounds of finding second preimage.

Theorem 7. Fix n > 1, q ≥ 1, let H(m, IV ) = δ, m = m1‖ . . . ‖mt, message
padding is MD strengthening padding,

Schemes [1..4] q
2n ≤ AdvsPre

Hι
(A) ≤ q

2n−1 .
Schemes [5..12] (t−1)q

2n ≤ AdvsPre
Hι

(A) ≤ (t−1)q
2n−1 .

Schemes [13..20] q(q+1)
2n+2 ≤ AdvsPre

Hι
(A) ≤ q(q+1)

2n .

Proof. This proof is followed the proofs of Theorem 6 and Theorem 7. Let A?,?

be an adversary attacking Hι. Let σι := H(mι, IV ),mι = m1 . . . , mι, ι ≤ t.

Schemes [1..4] For MD-strengthening, when message length is included in
f2(xi, ki, yi), the success event is Arcσι, not V erHσι

.
Schemes [5..12] Before attacking Hι, ι ∈ [5..12], A find message blocks m1

and m2 with Hι(m1‖m(i)
2 , IV ) = Hι(m1‖m(j)

2 , IV ),∀i, j > 0, detail is given
in next section, called expandable fixed point. Let IV ′ = Hι(m1, IV ). Let
G0

H := {σι, ι ≥ 2}. We have (t−1)q
2n ≤ AdvsPre

Hι
(A) ≤ (t−1)q

2n−1 .
Schemes [13..20] Before attacking Hι, ι ∈ [13..20], A find message blocks

m1 and m2 with Hι((m1‖m2)(i), IV ) = Hι((m1‖m2)(j), IV ), ∀i, j > 0, de-
tail is given in next section. Let G0

H := {σ2ι|2ι ≤ t}. We have (q+2t)q
2n+2 ≤

AdvsPre
Hι

(A) ≤ (q+t)q
2n . ut
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6 Multicollisions on PGV Schemes

Multicollisions Multicollisions attack is first given by Joux[6], which is a
way to produce a large number of messages that collide for an iterated hash
function, with only a little more work than is needed to find a single pair of
messages that collide. More precisely, using t collision H(B1‖ . . . ‖Bl, IV ) =
H(B′

1‖ . . . ‖B′
l, IV ), where Bi 6= B′

i and l = 1, . . . , t , we can build 2t-collisions
in H. The time consuming is t · O(2n/2). The collide block finding procedure is
illustrated as Algorithm CollisionBlock(A, h, t):
CollisionBlock(A, h, t)

For i := 1 to q
A selects xi, ki with f1(xi, ki, ?) = h, then asks E − query(xi, ki).

A success with f3(xi, ki, yi) = f3(xj , kj , yj),
return mt ← f2(xi, ki, yi);m′

t ← f2(xj , kj , yj);ht ← f3(xi, ki, yi);

Fixed-Point Expandable Message A fixed point is a pair (hi−1,mi) such
that hi−1 = F (hi−1,mi). Compression functions based on Davies-Meyer con-
struction, such as the SHA family, MD4, MD5 and Tiger, have easily found
fixed points. Kelesy and Schneier[8] gave a second preimage attack based on
Fixed-Point expandable message. We call it expandable short dicycle in this pa-
per, for, in schemes [13..20], fixed-point expandable message is not easy to be
found, but a similar expandable short directed cycle as expandable fixed point
can be found and attacks based on them.

Expandable Short DiCycle Expandable Short dicycle requires a short di-
rected cycle or loop being build with desired prefix. Let A?,? be an adversary
attacking Hι. A runs algorithm GraphDrawing(A, n). The expandable short
dicycle found algorithm is as follows:
ExpandableDiCycle(A, h, t, ι)

For i := 1 to 2n/2

A selects (xi, ki) with f1(xi, ki, ?) = h asks E − query(xi, ki).
For i := 1 to 2n/2

If ι ∈ {5, 8, 10, 11} Then
A selects (y′i, k

′
i) with y′i = 0 asks E−1 − query(y′i, k

′
i).

If ι ∈ {6, 7, 9, 12} Then
A selects (y′i, k

′
i) with y′i = k′i asks E−1 − query(y′i, k

′
i).

If ι ∈ [13..20] Then
A selects (y′i, k

′
i) with f3(?, k′i, y

′
i) = h asks E−1 − query(y′i, k

′
i).

A success with f3(xi, ki, yi) = f1(x′j , k
′
j , y

′
j),

return mt ← f2(xi, ki, yi);mtt ← f2(x′j , k
′
j , y

′
j);ht ← f3(x′i, k

′
i, y

′
i);

Short DiCycle Multicollisions Short DiCycle Multicollisions attack is first
given in[8], which is a way to produce a large number of messages that collide
for an iterated hash function, with only a little more work than is needed to find
a single pair of expandable short dicyle. More precisely, using t short dicycle, we
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can build multicollisions in Hι. The time consuming is 2t · O(2n/2).

Hι(m1‖m(k1)
11 ‖ . . . ‖mt‖m(kt)

tt ) = Hι(m1‖m(k′1)
11 ‖ . . . ‖mt‖m(k′t)

tt ), ι ∈ [5..12]

With
∑t

i=1 ki =
∑t

i=1 k′i.
Let l :=

∑t
i=1 ki. Then adversary takes 2t2n/2 times finding Sl(t), l + t −

length multicollisions, where Sl(t) =
∑t

il=0 Sl−1(il).

Sl(t) =
t∑

il=0

Sl−1(il) =
t∑

il=0

il∑

il−1=0

Sl−2(il−1) =
t∑

il=0

il∑

il−1=0

. . .

i3∑

i2=0

S2(i2).

Where S2(i) = i+1. For schemes [13..20], the minimum message length is 2l + t
with 2t2n/2 complexity and Sl(t) collisions.

Combine Multicollisions Let A?,? be an adversary attacking Hι. A runs
algorithm GraphDrawing(A, n) building multicollision, where original multi-
collisions and short Dicycle multicollisions are combined.

Hι(m1‖m(k1)
11 ‖m2‖m3‖m(k2)

33 . . . ‖m2t−1‖m(kt)
2t−12t−1‖m2t)

= Hι(m1‖m(k′1)
11 ‖m′

2‖m3‖m(k′2)
33 ‖ . . . ‖m2t−1‖m(k′t)

2t−12t−1‖m′
2t), ι ∈ [5..12]

With
∑t

i=1 ki =
∑t

i=1 k′i. Let l :=
∑t

i=1 ki.Then adversary takes O(3t2n/2)
times E − query to get O(2t(t + 1)l−1), 2t + l − length multicollisions, where
l ≥ t ≥ 2.

f3(xi,ki,yi)
f2(xi,ki,yi)

f1(xi,ki,yi)

1
2

Schemes[5..12]

...
2

n/2+i

1
2

q

...

h CollisionBlock(A,h)

1
2

q

...

h

DiCycle Multicollisons
IV

IV

Joux's Multicollisions

Combine Multicollisions Graph Example 8

1 3

64

7
IV

Schemes[13..20]

1

2

q

...

h

2

DiCycle Multicollisons
IV

5

Fig. 4. Directed Cycle finding algorithms of schemes [5..12] and [13..20] are illustrated
in subgraph 1 and 2. Undirected Cycle(Multicollision block) finding algorithm is given
in subgraph 3. Joux’s Multicollisions, Kelsey’s Multicollisions on schemes [5..12] and
[13..20] and combine of those two Multicollisions are presented in subgraph 4, 5, 6, 7,
respectively.
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7 Conclusions

In this paper, we give the bounds on PGV schemes against preimage, second
preimage, collision and multicollisions, and that are improved by graph drawing
method and short cycle build method. We omit the bounds of some new attacks
including second preimage attack based on other expandable message[8] and
preimage attack based on herding attack[9], for those bounds can be precise by
similar way as second preimage attack. From the bounds, schemes [1..4] seems
better than schemes [5..20], but more analysis is required.
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A Bounds on Preimage

The following theorem is proof of Theorem4.

Theorem 8. Fix n ≥ 1, given δ, message padding is plain padding,

Group 1 Scheme Advpre
Hι

(A) ≤ q/2n−1 for any q ≥ 1 and ι ∈ [1..12].
Group 2 Scheme Advpre

Hι
(A) ≤ q(q + 1)/2n for any q ≥ 1 and ι ∈ [13..20].

Others Scheme Advpre
Hι

(A) = 1 for any q ≥ 1 and ι ∈ [21..64].

Proof. Let A?,? be an adversary attacking Hι. A runs GraphDrawing(A, n)
with −→G0

Hι
= {IV, δ}. Preimage finding is not finding a cycle or loop, it is finding

a path. Let assume {IV } and {δ} be connected subgraphs. Let E be the event
that, as a result of the adversary’s queries, there are formed a directed path −→P
in −→GHι , IV ∈ −→P and δ ∈ −→P . Let Ei be the event that E occurs by the i-th query.
Define E0 be the null event. Then Pr[E ] =

∑q
i=1 Pr[Ei|E i−1 ∧ . . . ∧ E0]. We have

Advpre
Hι

(A) ≤ Pr[E ].

Claim Advpre
Hι

(A) ≤ Pr[E ].
Implying preimage on H at least is a path P ⊆ GH , in which IV ∈ P and
δ ∈ P . Adversary A find message m = m1‖ . . . ‖ml with H(m, IV ) = δ.

Then we build path P = h0
m1→ h1

m2→ . . .
ml→ δ we have h0 = IV , hl = δ.

Then there exists at least one path P , in which IV ∈ P and δ ∈ P .
Claim Let Arcδ(f3(x, k, y)) be event that f3(x, k, y) = δ.

Then Pr[E ] ≤ Pr[Arcδ(f3(x, k, y))]. That implies at least a directed arc point
at δ.

Claim Let Ha be connect subgraph in GH with a ∈ Ha, in which a ∈ {IV, δ}.
Let Hq

a be the connect graph after q-th query. Then |VHq
IV
∪Hq

δ
| ≤ q + 2.

Claim Pr[Ei|E i−1 ∧ . . . ∧ E0] ≤ Pr[V erHi−1
IV

(f1)i ∧ V erHi−1
δ

(f3)i].
If E occurs in i-th query, then there exists a Path P with IV, δ ∈ P and
P ⊆ Gi

H . We will give proof of P − (f1, f2, f3) ⊆ Hi−1
IV ∪ Hi−1

δ . If that is
true, then f1 ∈ Hi−1

IV and f3 ∈ Hi−1
δ . Since (f1, f2, f3) is in path P , two

connected graph in P − (f1, f2, f3) denoted H1 and H2. Since IV ∈ P , we
have IV ∈ H1 ∪H2. Let IV ∈ H1. If δ in H1, then that is conflict with path
occur in i-th query. We have f1 ∈ Hi−1

IV and f3 ∈ Hi−1
δ .
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Claim Pr[E ] ≤ q
2n−1 , ι ∈ [1..12].

If Arcδ(f3(x, k, y)) occurs via an E − query(x, k), then y is a random value
from a set of size at least 2n − (i− 1). Then f3(xi, ki, yi) is a random value
from a set of size at least 2n − (i− 1). Let the A try q time, then

Pr[Arcδ(f3)] ≤ q

2n − (i− 1)
.

Alternatively, if Ei occurs via an E−1− query(y, k), then f3(xi, ki, yi) is still
a random value from a set of size at least 2n − (i− 1). Then

Pr[E ] ≤ Pr[Arcδ(f3)] ≤ q

2n − (i− 1)
≤ q

2n−1
.

Claim Pr[E ] ≤ q·(q+1)
2n , ι ∈ [13..20].

Given E i−1 ∧ . . . ∧ E0, the event Ei occurs in case that, the return vertex of
i-th query has been exist in vertexes set Hi−1

IV and Hi−1
δ .

Pr[V erHi−1
IV

(f1)i ∧ V erHi−1
δ

(f3)i] ≤ Pr[V erHi−1
δ

(f3)i|V erHi−1
IV

(f1)i].

If Ei occurs via an E− query(xi, ki), then yi is a random value from a set of
size at least 2n − (i− 1). Then f3(xi, ki, yi) is a random value from a set of
size at least 2n − (i− 1). We also have |VHi−1

δ
| ≤ i. So,

Pr[Ei|E i−1 ∧ . . . ∧ E0] ≤ i

2n − (i− 1)
.

Alternatively, if Ei occurs via an E−1 − query(yi, ki), then f1(xi, ki, yi) is a
random value from a set of size at least 2n − (i− 1). Then

Pr[V erHi−1
IV

(f1) ∧ V erHi−1
δ

(f3)i] = Pr[V erHi−1
IV

(f1)i|V erHi−1
δ

(f3)i]

Pr[Ei|E i−1 ∧ . . . ∧ E0] ≤ i

2n − (i− 1)
.

We have Pr[E ] ≤ ∑q
i=1

i
2n−(i−1) ≤ q(q+1)

2n .

Claim Pr[E ] = 1, ι ∈ [21..64].
For given IV and δ, we have Pr[V erHi−1

IV
(f1)i ∧ V erHi−1

δ
(f3)i] = 1. ut

The following theorem is proof of Theorem5.

Theorem 9. Fix n ≥ 1, given δ, message padding is plain padding,

Group 1 Scheme Advpre
Hι

(A) ≥ q/2n for any q ≥ 1 and ι ∈ [1..12].
Group 2 Scheme Advpre

Hι
(A) ≥ q(q + 1)/2n+2 for any q ≥ 1 and ι ∈ [13..20].

Proof. Let A?,? be an adversary attacking Hι.
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Claim Advcoll
Hι

(A) ≥ q/2n for any q ≥ 1 and ι ∈ [1..12].
Followed the attack on Theorem 4, let adversary A only ask E−query(x, k).
In each query, select xi and ki to satisfy f1(xi, ki, ?) ∈ HIV . Let C be the
event of δ ∈ HIV and at least a edge in HIV . Let Ci be the event that
C occurs by the i-th query. Define C0 be the null event. Then Pr[C] =∑q

i=1 Pr[Ci|Ci−1 ∧ . . . ∧ C0]. We have Advcoll
Hι

(A) ≥ Pr[C]. If adversary A
builds a connected Graph HIV with δ ∈ HIV , then there is a path P from
IV to δ. If Ci occurs via an E−query(xi, ki), then yi is a random value from
a set of size at most 2n. Then f3(xi, ki, yi) is a random value from a set of
size at most 2n. So,

Pr[V erHi−1
IV

(f1)i ∧ V erHi−1
δ

(f3)i] ≥ Pr[V erHi−1
δ

(f3)i] ≥ 1
2n

Pr[Ci|Ci−1 ∧ . . . ∧ E0] ≥ 1
2n

.

We have Pr[E ] ≥ ∑q
i=1

1
2n = q

2n .
Claim Advcoll

Hι
(A) ≥ q(q + 1)/2n+2 for any q ≥ 1 and ι ∈ [13..20].

In the proof of Theorem3, let adversary A ask E − query(x, k) and E−1 −
query(y, k), alternately. In odd-th query, select x and k to satisfy f1(x, k, ?) ∈
HIV , in even-th query, select y and k to satisfy f3(?, k, y) ∈ Hδ. Let C be
the event of δ ∈ HIV and at least a edge in HIV . Let Ci be the event
that C occurs by the i-th query. Define C0 be the null event. Then Pr[C] =∑q

i=1 Pr[Ci|Ci−1∧. . .∧C0]. We have Advcoll
Hι

(A) ≥ Pr[C]. If adversary A build
a connected Graph HIV with δ ∈ HIV , then there is a path P from IV to δ.
Given Ci−1 ∧ . . . ∧ C0, the event Ci occurs in case that, the return vertex of
i-th query f3(xi, ki, yi) has been exist in vertexes set VHi−1

IV
. If Ci occurs via

an E − query(xi, ki), then yi is a random value from a set of size at most
2n. Then f3(xi, ki, yi) is a random value from a set of size at most 2n. So,

Pr[V erHi−1
IV

(f1)i ∧ V erHi−1
δ

(f3)i] ≥ Pr[V erHi−1
δ

(f3)i]

Pr[Ci|Ci−1 ∧ . . . ∧ E0] ≥ bi/2c+ 1
2n

.

If Ci occurs via an E−1− query(yi, ki), then xi is a random value from a set
of size at most 2n. Then

Pr[Ci|Ci−1 ∧ . . . ∧ E0] ≥ bi/2c+ 1
2n

.

We have Pr[E ] ≥ ∑q
i=1

i
2n+1 = q(q+1)

2n+2 . ut


