
Some Efficient Algorithms for the Final
Exponentiation of ηT Pairing

Masaaki Shirase1, Tsuyoshi Takagi1, and Eiji Okamoto2

1 Future University-Hakodate, Japan
2 University of Tsukuba, Japan

Abstract. Recently Tate pairing and its variations are attracted in
cryptography. Their operations consist of a main iteration loop and a
final exponentiation. The final exponentiation is necessary for generating
a unique value of the bilinear pairing in the extension fields. The speed
of the main loop has become fast by the recent improvements, e.g., the
Duursma-Lee algorithm and ηT pairing. In this paper we discuss how to
enhance the speed of the final exponentiation of the ηT pairing in the
extension field F36n . Indeed, we propose some efficient algorithms using
the torus T2(F33n) that can efficiently compute an inversion and a pow-
ering by 3n +1. Consequently, the total processing cost of computing the
ηT pairing can be reduced by 17% for n = 97.

Keywords: Tate pairing, ηT pairing, final exponentiation, torus

1 Introduction

Bilinear pairings deliver us new cryptographic applications such as identity-
based encryptions [3], short signatures [5], and efficient broadcast encryptions
[4]. Recently Duursma and Lee [6] proposed an efficient algorithm for computing
Tate pairing. The Duursma-Lee algorithm uses the supersingular curves,

Eb(F3n) : y2 = x3 − x + b with b ∈ {−1, 1}. (1)

Kwon proposed an efficient variation of the Duursma-Lee algorithm that re-
quires no cube root operation [10]. Barreto et. al. proposed the ηT pairing [1],
which reduces the number of the main loop in the Duursma-Lee algorithm to
half. Beuchat et. al. presented a faster variation of ηT pairing without a cube
root operation [2]. Currently the ηT pairing is one of the fastest algorithms for
computing the bilinear pairing.

Both the Duursma-Lee algorithm and the ηT pairing require the “final ex-
ponentiation”, i.e., As for A ∈ F36n and some integer s, since the resulting
element by the pairing algorithms is contained in the quotient group F ∗36n/F ∗33n .
The final exponentiations for the Duursma-Lee algorithm and the ηT pairing are
A33n−1 and AW with W = (33n − 1)(3n + 1)(3n + 1− b3(n+1)/2), respectively.
The ηT pairing without the final exponentiation is about twice faster than the
Duursma-Lee algorithm, but the final exponentiation in the ηT pairing causes
a relatively large overhead. For example, Shu et. al. [12] estimated that the ηT

pairing with the final exponentiation is as fast as the Duursma-Lee algorithm in
hardware. Ronan et. al. reported that the straightforward implementation of the
final exponentiation is more than 35% of the whole algorithm [11]. In Section 4,
we estimated that the currently fastest final exponentiation [2] is about 26% of
the whole algorithm.

In this paper we try to reduce the cost of the final exponentiation of the
ηT pairing. Note that A33n−1 is an element in the torus T2(F33n), which is a
subgroup of F ∗36n . We show that an inversion and an powering by (3n + 1)-th
in T2(F33n) are efficiently computed for the basis {1, σ} of F36n over F33n with
σ2 + 1 = 0. We then present an efficient algorithm for the final exponentiation
AW = B(3n+1)(3n+1−b3(n+1)/2) with B = A33n−1 of the ηT pairing in the torus
T2(F33n), which can be computed with 36 multiplications in F3n plus other negli-
gible operations. Consequently, the final exponentiation of our proposed scheme
requires only about 13% of the whole ηT pairing, which achieves about 17%
faster ηT pairing than the previous known algorithms.

On the other hand, Granger et. al. presented an encoding method of F ∗36n/F ∗33n

[8], which eliminates the final exponentiation from the Duursma-Lee algorithm.
We call it the GPS encoding according to the authors’ name. In this paper, we
discuss how to apply the GPS encoding to the ηT pairing. The ηT pairing with
the GPS encoding can be faster depending on the information of b.

The remainder of this paper is organized as follows: In Section 2 we explain
Tate pairing and the ηT pairing. In Section 3 we describe several representations
(including the Torus T2(F33n) and the GPS encoding) of group F ∗36n and apply
them to the efficient computation of the final exponentiation. In Section 4 we
propose new efficient algorithms of computing the final exponentiation for the
ηT pairing and how to apply the GPS encoding to the ηT pairing. In Section 5
we conclude this paper.

2 Tate Pairing and ηT Pairing

In this section we explain about Tate pairing and its efficient variations, namely
the Duursma-Lee algorithm and the ηT pairing.

2.1 Tate Pairing

Let Fq be a finite field with q elements, where q be a power of the characteristic
p. Let E be elliptic curves defined over Fq, and let OE be the point at infinity.
Let l be a positive integer relatively prime to q with l |#E(Fq), and let k be the
minimal positive integer with l | (qk − 1). This k is called the embedded degree.
Then Tate pairing is a map

〈·, ·〉l : E(Fq)[l]× E(Fqk)/lE(Fqk) → F∗qk/(F∗qk)l,

which satisfies the bilinearity 〈P, aQ〉l = 〈aP, Q〉l = 〈P, Q〉al for any integer
a 6= 0, and is non-degenerate, i.e., there exists a Q ∈ E(Fqk) such that 〈P, Q〉l 6∈
(F∗qk)l for P ∈ E(Fqk)[l] \ {OE}.

2

It is typically selected that l and qk are about 160 bits and 1024 bits, re-
spectively. One of the most efficient classes for computing the bilinear map is
constructed over supersingular elliptic curves. The embedded degree k of su-
persingular elliptic curves is one of 4, 6, or 2 for characteristic 2, 3 or p > 3,
respectively. This paper deals with the case of characteristic 3 and uses elliptic
curves formed by (1). It is known that #Eb(F3n) = 3n + 1 + b′3(n+1)/2, where
b′ is defined as

b′ =
{

b if n ≡ 1 mod 12,
−b if n ≡ 7 mod 12.

Note that we have n ≡ ±1, ±5 mod 12 since n has to be coprime to 6 [6].
We require an injection ψ from E(F3n)[l] to E(F36n)/lE(F36n) since 〈P,Q〉l is

defined for points P ∈ E(F3n)[l] and Q ∈ E(F36n)/lE(F36n). This ψ is sometimes
called as the distortion map. In the case of characteristic three, the distortion
map is defined as ψ(x, y) = (−x + ρ, y σ) for (x, y) ∈ E(F3n), where σ and ρ
satisfy

σ2 = −1 and ρ3 = ρ + b′.

We usually select the basis {1, σ, ρ, σρ, ρ2, σρ2} of F36n over F3n , where ρ and
σ are utilized in the distortion map. Every element A in F36n is then represented
as A = a0 + a1σ + a2ρ + a3σρ + a4ρ

2 + a5σρ2 for some ai ∈ F3n . Moreover an
element A0 in F33n is represented as A0 = a0 +a2ρ+a4ρ

2. We denote by Mk, Ck

and Ik the computational cost of multiplication, cubing, and inversion in F3kn ,
respectively. Then the following relationships

M6 = 3M3, M3 = 6M1, C6 = 2C3, C3 = 3C1, I6 = 5M3 + I3, I3 = 8M1 + I1

(2)
are held [9]. The computational costs appeared in this paper are estimated using
Eq. (2). The computational cost is estimated without considering the costs of
addition and subtraction which are usually negligible. Beuchat et. al. pointed out
A3n

in F36n can be computed virtually for free [2] (see Appendix B). Therefore
we have

the cost of A3n+1(= A3n ·A) is M6 = 18M1. (3)

The resulting value 〈P, ψ(Q)〉l of Tate pairing is contained in the quotient
group F ∗36n/(F ∗36n)l. Then there are many choices for representing elements in
a coset of the quotient group. Indeed A, B ∈ F ∗36n are contained in the same
coset, if they satisfies B = A · Cl for some C ∈ F ∗36n . We are able to eliminate
this ambiguity by using the final exponentiation. The final exponentiation tries
to compute the ((36n − 1)/l)-th powering to the output from the Tate pairing.
Therefore we also deploy the modified Tate pairing ê(P,Q) defined by

ê : E(F3n)[l]× E(F3n)[l] → F ∗36n , (P, Q) 7→ ê(P,Q) = 〈P,ψ(Q)〉(36n−1)/l
l ,

whose value in F ∗36n can be uniquely determined.
Granger et. al. proposed another technique to remove the ambiguity [8]. In

this paper we denote by GPS encoding the technique proposed by Granger et.
al. according to the authors’ name (refer Sections 3.2).

3

Algorithm 1: Duursma-Lee Algorithm [10]

input: P = (xp, yp), Q = (xq, yq) ∈ Eb(F3n)[l]

output: 〈P, ψ(Q)〉33n+1 ∈ F ∗36n/(F ∗36n)3
3n+1

1: R0 ← 1 (in F36n), xq ← x3
q, yq ← y3

q (in F3n), d ← (bn mod 3)
2: for i ← 0 to n− 1 do
3: xp ← x9

p, yp ← y9
p (in F3n)

4: r0 ← xp + xq + d (in F3n)
5: R1 ← −r2

0 − ypyqσ − r0ρ− ρ2 (in F36n)
6: R0 ← R3

0 (in F36n)
7: R0 ← R0R1 (in F36n)
8: yq ← −yq (in F3n)
9: d ← ((d− b)m

¯
od3)

10: end for
11: return R0 (Cost: 15nM1 + (10n + 2)C1)

Algorithm 2: Computation of ηT (P, Q)3
(n+1)/2

for n ≡ 1 mod 12 [2]

input: P = (xp, yp), Q = (xq, yq) ∈ Eb(F3n)[l]

output: ηT (P, Q)3
(n+1)/2 ∈ F ∗36n/(F ∗36n)3

n+1+b′3(n+1)/2

1: if b = 1 then yp ← −yp

2: d ← b (in F3), R0 ← −yp(xp + xq + b) + yqσ + ypρ (in F36n)
3: for i ← 0 to (n− 1)/2 do
4: r0 ← xp + xq + d (in F3n)
5: R1 ← −r2

0 + ypyqσ − r0ρ− ρ2 (in F36n)
6: R0 ← R0R1 (in F36n)
7: yp ← −yp (in F3n)
8: xq ← x9

q, yq ← y9
q (in F3n)

9: R0 ← R3
0 (in F36n

10: d ← ((d− b) mod 3)
11: end for
12: return R0 (Cost: (7.5n + 8.5)M1 + (5n + 5)C1)

2.2 Efficient Pairings on Supersingular Curves over F3n

We explain about some efficient algorithms for computing the bilinear pairing
over supersingular curves with characteristic three. Algorithm 1 is the Duursma-
Lee algorithm which outputs 〈P,ψ(Q)〉33n+1 [10]. The Duursma-Lee algorithm
has n interactions in the main loop and the whole computational cost is 15nM1+
(10n + 2)C1. Note that the final exponentiation of the Duursma-Lee algorithm
uses the powering to (36n − 1)/(33n + 1) = (33n − 1).

Next Barreto et. al. introduced the ηT pairing [1]. The ηT pairing is also de-
fined on supersingular elliptic curves formed by (1) for n ≡ 1 mod 6 in the case
of characteristic three. Beuchat et. al. proposed a variation of the ηT pairing (Al-
gorithm 2), which requires no cube root calculation and outputs ηT (P,Q)3

(n+1)/2

in the case of n ≡ 1 mod 12 [2]. The number of iterations in the main loop of

4

the ηT pairing becomes (n + 1)/2, which is half for the Duursma-Lee algorithm.
The computational cost of Algorithm 2 is (7.5n + 8.5)M1 + (5n + 5)C1.

Note that the ηT pairing itself does not satisfy the bilinearity. Therefore we
have to compute the final exponentiation with W -th powering with

W = (33n − 1)(3n + 1)(3n + 1− b′3(n+1)/2) = (36n − 1)/#Eb(F3n).

This powering function by W is the final exponentiation in the ηT pairing.
Finally we have the following relationship between the modified Tate pairing

and the ηT pairing
(ηT (P,Q)W)3T 2

= ê(P,Q)Z , (4)

where T = −b′3(n+1)/2 − 1, Z = −b′3(n+3)/2 [1]. An efficient algorithm of map-
ping ηT (P,Q)W to ê(P,Q) is described in Section 4.5.

3 Efficient Final Exponentiation and GPS Encoding

In this section we present the final exponentiation of Tate pairing and the GPS
encoding that requires no final exponentiation.

3.1 Efficient Final Exponentiation for Duursma-Lee algorithm

We recall how to efficiently compute the final exponentiation of the Duursma-Lee
algorithm, namely A33n−1 for A ∈ F36n [9].

The base of F36n over F3n is fixed with {1, σ, ρ, σρ, ρ2, σρ2} as we discussed
in Section 2. Let A0 and A1 be elements in F33n with A0 = a0 + a2ρ + a4ρ

2 and
A1 = a1 + a3ρ + a5ρ

2. Then every element A ∈ F36n is represented as

A = A0 + A1σ = a0 + a1σ + a2ρ + a3σρ + a4ρ
2 + a5σρ2.

This means that F36n is a quadratic extension from F33n with the basis {1, σ}. It
is easily to know that σ33n

= −σ for n ≡ 1 mod 6 which is a necessary condition
for the Duursma-Lee algorithm and the ηT pairing algorithms. We then have the
relationship

A33n

= (A0 + A1σ)3
3n

= A33n

0 + A33n

1 σ33n

= A0 −A1σ

for A = A0 + A1σ ∈ F ∗36n . Therefore, the final exponentiation for the Duursma-
Lee algorithm is performed as follows:

A33n−1 =
A33n

A
=

A0 −A1σ

A0 + A1σ
.

Moreover (A0 + A1σ) · (A0 −A1σ) = A2
0 + A2

1 ∈ F ∗33n yields the equation

A33n−1 =
(A0 −A1σ)2

A2
0 + A2

1

=
(A2

0 −A2
1)− 2A0A1σ

A2
0 + A2

1

. (5)

Then the computational cost of the final exponentiation for the Duursma-Lee
algorithm is

5M3 + I3 = 30M1 + I3. (6)

5

Table 1. Final exponentiation and GPS encoding for the Duursma-Lee algorithm

Output of
GPS encoding

Duursma-Lee algorithm

Group G = F ∗36n/F ∗33n F ∗3n ∪ {O}
Element A0 + A1σ, A0, A1 ∈ F33n A0/A1 (Cost: 6M1 + I3)

Final exponentiation
A0 −A1σ

A0 + A1σ
(Cost: 30M1 + I3) −

GPS encoding requires no final exponentiation.

3.2 GPS Encoding in F ∗
36n/F ∗

33n

The GPS encoding is another technique of removing the ambiguity of represen-
tation from the cosets in a quotient group F ∗36n/(F ∗36n)l [8].

Denote by G be a quotient group resulting from the Duursma-Lee algorithm,
namely G = F ∗36n/(F ∗36n)3

3n+1. This group G has a group raw which is isomorphic
to a subgroup of F ∗36n . We then have the relationship G = F ∗36n/F ∗33n due to
F ∗33n = (F ∗36n)3

3n+1. In other words, both A0 + A1σ and (λA0) + (λA1)σ are
contained in the same coset. Especially A0 + A1σ is equivalent to A0/A1 + σ in
G in the case of A1 6= 0. Therefore the map

τ : G → F33n ∪ {O}, A0 + A1σ 7→
{

A0/A1 if A1 6= 0
O if A1 = 0

is a bijection and gives a representation for G without ambiguity, where O is
the point at infinity. This representation for G is called the GPS encoding in
this paper. The computational cost for computing the GPS encoding for a given
A ∈ F ∗36n is

M3 + I3 = 6M1 + I3,

because the map τ is performed by one division in F33n (= one inversion and
one multiplication).

Table 1 gives a comparison of the final exponentiation with the GPS encoding
for the Duursma-Lee algorithm.

4 The Proposed Algorithm

In this section we present a new efficient final exponentiation and the GPS
encoding for the ηT pairing.

4.1 Torus T2(F33n)

Granger et. al. introduced the torus T2(F33n) for compressing the value of F36n

[8]. At first we describe the arithmetic of the torus.
Let L be an n-th extension field of a field k. Let NL/F be a norm map

to field F with k ⊂ F (L. The torus Tm(k) is a subgroup of L∗ defined by

6

Tm(k) = ∩k⊂F(LKer[NL/F]. In the paper we especially deal with the T2(k) =
Ker[NL/k] in the case of m = 2, k = F33n , and L = F36n . Every element in F ∗36n

is represented as A = A0 + A1σ with A0, A1 ∈ F33n . The conjugate element of
A = A0+A1σ in F ∗36n is Ā = A0−A1σ, and thus NF36n /F33n

(A) = AĀ = A2
0+A2

1.
Therefore T2(F33n) can be represented by

T2(F33n) = {A0 + A1σ ∈ F ∗36n : A2
0 + A2

1 = 1}.

The element A0 + A1σ ∈ F36n can be compressed to the half using the
relationship A2

0 +A2
1 = 1 (Refer [8] for the further results about the compression

of the pairing value).

4.2 The Proposed Final Exponentiation

We point out that some operations in the torus T2(F33n) can be computed ef-
ficiently. We then present a new efficient final exponentiation algorithm for the
ηT pairing.

At first we can easily prove the following lemma.

Lemma 1. The torus T2(F33n) has following properties.
(i) A0 −A1σ = (A0 + A1σ)−1 for A0 + A1σ ∈ T2(F33n).
(ii) (A0 + A1σ)3

3n−1 ∈ T2(F33n) for A0 + A1σ ∈ F ∗36n .

Proof. (i) A0−A1σ is the inverse of A0+A1σ due to (A0+A1σ)(A0−A1σ) = A2
0+

A2
1 = 1 for A0+A1σ ∈ T2(F33n). (ii) The summation of a squaring of the constant

term and that of the coefficient of Eq. (5) is equal to
(A2

0 −A2
1)

2 + (2A0A1)2

(A2
0 + A2

1)2
= 1,

and thus we obtain (A0 + A1)3
3n−1 ∈ T2(F33n). ¤

Therefore, the computational cost of the inversion in the torus T2(F33n) is
virtually for free.

Next let A ∈ F36n be an output value from the ηT pairing. Note that
B = A33n−1 is contained in the torus T2(F33n) due to Lemma 1. Then the
final exponentiation AW with W = (33n − 1)(3n + 1)(3n + 1 − b′3(n+1)/2), can
be computed as follows:

AW =
{

D · E−1 if b′ = 1
D · E if b′ = −1,

where D = C3n+1 and E = C3(n+1)/2
with C = B3n+1. It is easily to see that

C, D and E ∈ T2(F33n) since T2(F33n) is a subgroup of F ∗36n . The computation of
C3(n+1)/2

can be efficiently performed by repeatedly calling the cubing algorithm
in F3n . On other hand we have the following lemma for the computation of
X3n+1 with X ∈ T2(F33n) that requires no cubing.

7

Algorithm 3: Proposed Final Exponentiation of ηT Pairing

input: A = (a0, a1, a2, a3, a4, a5) ∈ F ∗36n , b′ ∈ {0, 1}
output: AW ∈ F ∗36n for W = (33n − 1)(3n + 1)(3n + 1− b′3(n+1)/2)

1: B ← A33n−1 (in F36n) (Eq.(5))

2: C ← B3n+1 = Λ(B) (in T2(F33n)) (Lemma 2)

3: D ← C3n+1 = Λ(C) (in T2(F33n)) (Lemma 2)
4: E ← C
5: for i ← 0 to (n− 1)/2 do
6: E ← E3 in F36n (in F36n)
7: end for

8 if (b′ = 1) then return D · E (in F36n) (Cost: 66M3 + 3(n + 1)C1 + I3)
9: else return D · E (in F36n) (Cost: 66M3 + 3(n + 1)C1 + I3)

Lemma 2. Let n ≡ 1 mod 6. For X = X0 + X1σ ∈ T2(F33n) we can compute
Y = Λ(X) = X3n+1 = Y0 + Y1σ with 9 multiplications in F3n as follows:
Let z0 ∼ z8 be defined as

z0 = x0x4, z1 = x1x5, z2 = x2x4,
z3 = x3x5, z4 = (x0 + x1)(x4 − x5), z5 = x1x2,
z6 = x0x3, z7 = (x0 + x1)(x2 + x3), z8 = (x2 + x3)(x4 − x5),

then, Y can be computed by

y0 = 1 + z0 + z1 − b′z2 − b′z3,
y1 = z1 + z4 + b′z5 − z0 − b′z6,
y2 = z7 − z2 − z3 − z5 − z6,
y3 = b′z0 + z3 + z8 − z2 − b′z1 − b′z4,
y4 = b′z2 + b′z3 + b′z7 − b′z5 − b′z6,
y5 = b′z3 + b′z8 − b′z2,

where X0 = x0+x2ρ+x4ρ
2, X1 = x1+x3ρ+x5ρ

2 and Y0 = y0+y2ρ+y4ρ
2, Y1 =

y1 + y3ρ + y5ρ
2 (xi, yi ∈ F3n) for i = 0, 1, ..., 5.

Proof. Refer Appendix A. ¤

From Lemma 2 the proposed algorithm can be obtained. We describe the
explicit algorithm of the proposed scheme in Algorithm 3.

Proposition 1. Algorithm 3 requires 66M1 +3(n+1)C1 + I3, where M1, C1, I3

are the cost of multiplication in F3n , cubing in F3n , inversion in F33n , respec-
tively.

Proof. The computation of B = A33n−1 is as expensive as that of the final
exponentiation for the Duursma-Lee algorithm, namely 30M1 + I3 from Eq. (6).
The calculations of C and D are performed by a powering to the (3n + 1)-
th power. The calculation of E is performed by (n + 1)/2 cubings (its cost is
(n+1)/2·C6 = 3(n+1)C1). We have to calculate E−1 in the case of b′ = 1, which

8

requires no cost due to Lemma 1. Hence the proposed algorithm of computing the
final exponentiation for the ηT pairing needs (30M1+I3)+3(n+1)C1+2CT +M6,
where CT = 9M1 is the cost of powering to (3n + 1)-th in T2(F33n)). We thus
obtain the cost estimation of this proposition. ¤.

4.3 How to Apply GPS Encoding to ηT Pairing

In this section we explain how to apply the GPS encoding to the ηT pairing.
The GPS encoding utilizes the arithmetic of the quotient group G = F ∗36n/F ∗33n .

Note that ηT (P,Q)V for V = (3n + 1)(3n + 1 − b′(3(n+1)/2)) is contained
in G. In order to compute the powering by V we have to compute in F36n

since ηT (P, Q) is contained neither in G nor T2(F33n). We have the relationship
ηT (P, Q)V = CD−b′ , where C = B3n+1, D = B3(n+1)/2

, and B = ηT (P, Q)3
n+1.

Algorithm 4 shows the GPS encoding for the ηT pairing.

Algorithm 4: Proposed GPS Encoding of ηT Pairing

input: A ∈ F ∗36n/(F ∗36n)3
n+1−b′3(n+1)/2

output: GPS encoding of A ∈ F ∗36n

1. B ← A3n+1 (in F36n)

2. C ← B3n+1 (in F36n)

3. D ← B3(n+1)/2
(in F36n)

4. if b′ = 1 then E ← C ·D−1 (in F36n)
else E ← C ·D (in F36n)

5. return E0/E1, where E = E0 + E1σ (in F33n)„
cost: 90M1 + 3(n + 1)C1 + 2I3 if b′ = 1

60M1 + 3(n + 1)C1 + I3 if b′ = −1

«

We estimate the computational cost of Algorithm 4. Recall that X3n ∈ F36n

is computed virtually for free (see [2] or Appendix B). Therefore the cost of
computing X3n+1 = X3n ·X is just M6 = 18M1. The total costs of both Step
1 and 2 are 36M1. The cost of B3(n+1)/2

is ((n + 1)/2) ·M6 = 3(n + 1)C1. The
cost of C · D−1 is M6 + I6 = 48M1 + I3 and the cost of C · D is M6 = 18M1.
The computation of E0/E1 which is same as the original GPS encoding takes
6M1 + I3. Consequently the GPS encoding for the ηT pairing is 90M1 + 3(n +
1)C1 + 2I1 if b′ = 1 and 60M1 + 3(n + 1)C1 + I1 if b′ = −1.

4.4 Comparison

Here we compare the computational cost of the proposed scheme with other
schemes.

The computational cost of an exponentiation with cubings and multiplica-
tions by bit is 2nM6/3 + (n − 1)C6 = 12nM1 + 6(n − 1)C1 on average. The

9

Table 2. Comparison of several bilinear pairing algorithms

ηT pairing computational cost estimation

Proposed final exponentiation 66M1 + (3n + 3)C1 + I3 122.8M1

(Algorithm 3) total cost (7.5n + 74.5)M1 + (8n + 8)C1 + I3 927.1M1

Proposed GPS encoding (b′ = 1) 90M1 + (3n + 3)C1 + 2I3 162.5M1

(Algorithm 4) total cost (7.5n + 98.5)M1 + (8n + 8)C1 + 2I3 966.9M1

Proposed GPS encoding (b′ = −1) 60M1 + (3n + 3)C1 + I3 116.8M1

(Algorithm 4) total cost (7.5n + 68.5)M1 + (8n + 8)C1 + I3 921.1M1

Ordinary final exponentiation 228M1 + (3n + 3)C1 + I3 284.8M1

([1, 2]) total cost (7.5n + 236.5)M1 + (8n + 8)C1 + I3 1089.1M1

Duursma-Lee algorithm computational cost estimation

Final exponentiation 30M1 + I3 45.73M1

([9]) total cost (15n + 30)M1 + (10n + 2)C1 + I3 1636.4M1

GPS encoding 6M1 + I3 21.73M1

([8]) total cost (15n + 6)M1 + (10n + 2)C1 + I3 1612.4M1

We set n = 97, C1 = 0.1395M1, I3 = 15.73M1 in the estimation.

previously fastest method proposed by [2] for computing the final exponentia-
tion requires 11M6+(n+1)C6/2+I6 = 228M1+(3n+3)C1+I3, which optimized
the number of multiplications and inversions for the final exponentiation without
using the torus. We choose the relationship among C1,M1, I3 so

C1 = 0.1395M1 and I3 = 15.73M1

as described in [8]. Then the cost of the final exponentiation appeared in [2] is
284.8M1, which is about 26% of the total cost 1089.1M1 of the ηT pairing. Note
that there is another relationship among them [7]. A trinomial basis is used in
[8], and a normal basis is used in [7] for a basis of F3n over F3. If the normal basis
is used, then C1 becomes virtually for free, however, M1 becomes considerably
higher.

On the other hand, the computational cost of our proposed final exponen-
tiation is 122.8M1 and the total takes 927.1M1, namely it is about 13% of the
whole ηT pairing. Therefore, the proposed scheme can compute the ηT pairing
about 17% faster than the previously known algorithms. Table 3 concludes a
final exponentiation and the GPS encoding for the ηT pairing.

4.5 Map of ηT Pairing to Tate Pairing

We explain how to efficiently obtain the value of Tate pairing using the output
from the variation of the ηT pairing (Algorithm 2).

Raising both sides of Eq. (4) to 3n-th power yields (ηT (P, Q)W)3
n

= (ηT (3(n−1)/2P,Q)3
(n+1)/2

)W due to the bilinearity of ηT (P, Q)W . Therefore
(ηT (P,Q)W)3

n

can be computed by inserting 3(n−1)/2P and Q to Algorithm 3.

10

The calculation of 3(n−1)/2P takes the cost of 2(n − 1)C1 because of 3(x, y) =
(x9 − b,−y9) for (x, y) ∈ Eb(F3n). Moreover, 3n-th root of elements in F ∗36n is
obtained only by computing some additions and subtractions in F3n [2] (see Ap-
pendix B). Next we consider an efficient map of ηT (P, Q)W to ê(P, Q). Let U =

ηT (P, Q)W , then we have the relationship ê(P, Q)=U−2·
(
U3(n+1)/2· 3n√

U (n−1)/2
)−b′

[2]. Moreover we set F = U2, G = U3(n−1)/3
, H = G3, I = 3n√

G. Then
ê(P, Q) = (FHI)−1 if b′ = 1, and ê(P, Q) = F−1HI otherwise. Consequently
we have obtained Algorithm 5 for the efficient map from ηT (P,Q)W to ê(P, Q).
We note that Algorithm 5 uses no inversion.

Algorithm 5: Proposed Map from ηT (P, Q)W to ê(P, Q)

input: U = ηT (P, Q)W ∈ F36n

output: ê(P, Q) ∈ F36n

1. F ← U2 (in F36n)

2. G ← U3(n+1)/2
(in F36n)

3. H ← G3 (in F36n)

4. I ← 3n√
G (in F36n)

5. if b = 1 then
6. J ← F ·H · I (in F36n)
7. return J0 − J1σ, where J = J0 + J1σ, J0, J1 ∈ F33n

8. else
9. J ← H · I (in F36n)
10. J ← (F0 − F1σ) · J , (in F36n)

where F = F0 + F1σ, F0, F1 ∈ F33n

11. return J
12. end if (Cost: 54M1 + (3n + 9)C1)

The cost of U , U3(n+1)/2
and G3 are M6 = 18M1, (n + 1)/2 · C6 = 3(n +

1)C1, C6 = 6C1, respectively. Moreover 3n√
G is computed virtually for free, and

the computation of both F · H · I and (F0 − F1σ) · H · I take 2M6 = 36M1.
Consequently the cost of map of ηT (P,Q)W to ê(P,Q) is 54M1 + (3n + 9)C1.

5 Conclusion

In this paper we presented some new efficient algorithms for the final exponen-
tiation of the ηT pairing. We deploy new encoding techniques for the embedded
group F36n , which allow us to efficiently perform the powering by 3n +1 and the
inversion. The total cost of computing the ηT pairing with n = 97 has become
about 17% faster than the previously known methods.

11

References

1. P. S. L. M. Barreto, S. Galbraith, C. Ó. hÉigeartaigh and M. Scott, “Efficient pair-
ing computation on supersingular abelian varieties,” Cryptology ePrint Archive,
Report 2004/375, 2004.

2. J-L. Beuchat, M. Shirase, T. Takagi and E. Okamoto, “An algorithm for the ηT

pairing calculation in characteristic three and its hardware implementation,” Cryp-
tology ePrint Archive, Report 2006/327, 2006.

3. D. Boneh and M. Franklin, “Identity based encryption from the Weil pairing,”
CRYPTO 2001, LNCS 2139, pp.213-229, 2001.

4. D. Boneh, C. Gentry and B. Waters, “Collusion resistant broadcast encryption
with short ciphertexts and private keys,” CRYPTO 2005, LNCS 3621, pp.258-275,
2005.

5. D. Boneh, B. Lynn and H. Shacham, “Short signature from the Weil pairing,”
ASIACRYPT 2001, LNCS 2248, pp.514-532, 2001.

6. I. Duursma and H. S. Lee, “Tate pairing implementation for hyperelliptic curves
y2 = xp − x + d,” ASIACRYPT 2003, LNCS 2894, pp.111-123, 2003.

7. R. Granger, D. Page and M. Stam, “Hardware and Software Normal Basis Arith-
metic for Pairing-Based Cryptography in Characteristic Three,” IEEE Transaction
on Computers, Vol. 54, No. 7, July 2005, pp.852-860, 2005.

8. R. Granger, D. Page and M. Stam, “On Small Characteristic Algebraic Tori in
Pairing-Based Cryptography,” Cryptology ePrint Archive, Report 2006/179, 2006.

9. T. Kerins, W. P. Marnane, E. M. Popovici and P. S. L. M. Barreto, “Efficient
hardware for the Tate pairing calculation in characteristic three,” CHES 2005,
LNCS 3659, Springer–Verlag, pp.412-426, 2005.

10. S. Kwon, “Efficient Tate pairing computation for supersingular elliptic curves over
binary fields,” Cryptology ePrint Archive, Report 2004/303, 2004.

11. R. Ronan, C. Ó. hÉigeartaigh, C. Murphy, T. Kerins and P. S. L. M. Baretto,
“Hardware Implementation of the ηT Pairing in Characteristic 3,” Cryptology
ePrint Archive, Report 2006/371, 2006.

12. C. Shu, S. Kwon and K. Gaj, “FPGA Accelerated Tate Pairing Based Cryptosys-
tems over Binary Fields,” Cryptology ePrint Archive, Report 2006/179, 2006.

A Proofs of Lemma 2

Lemma 2. Let n ≡ 1 mod 6. For X = X0 + X1σ ∈ T2(F33n) we can compute
Y = Λ(X) = X3n+1 = Y0 + Y1σ with 9 multiplications in F3n as follows:
Let z0 ∼ z8 be defined as

z0 = x0x4, z1 = x1x5, z2 = x2x4,
z3 = x3x5, z4 = (x0 + x1)(x4 − x5), z5 = x1x2,
z6 = x0x3, z7 = (x0 + x1)(x2 + x3), z8 = (x2 + x3)(x4 − x5),

then, Y can be computed by

y0 = 1 + z0 + z1 − b′z2 − b′z3,
y1 = z1 + z4 + b′z5 − z0 − b′z6,
y2 = z7 − z2 − z3 − z5 − z6,
y3 = b′z0 + z3 + z8 − z2 − b′z1 − b′z4,
y4 = b′z2 + b′z3 + b′z7 − b′z5 − b′z6,
y5 = b′z3 + b′z8 − b′z2,

12

where X0 = x0+x2ρ+x4ρ
2, X1 = x1+x3ρ+x5ρ

2 and Y0 = y0+y2ρ+y4ρ
2, Y1 =

y1 + y3ρ + y5ρ
2 (xi, yi ∈ F3n) for i = 0, 1, ..., 5.

Proof. Note that ρ3n

= ρ + b′, (ρ2)3
n

= ρ2 − b′ρ + 1 in the case of n ≡ 1 mod 6.
For X = X0 + X1σ ∈ T2(F33n) we have the relationship:

X3n+1 = X3n+1
0 + X3n+1

1 + (X3n

0 X1 −X3n

1 X0)σ,

X3n

0 = (x0 + b′x2 + x4) + (x2 − b′x4)ρ + x4ρ
2, (7)

X3n+1
0 = (x2

0 + b′x0x2 + x0x4 − b′x2x4 − x2
4) + (−x0x2 − b′x0x4 + b′x2

2)ρ
+(−x0x4 + x2

2 − x2
4)ρ

2.
(8)

We similarly see

X3n

1 = (x1 + b′x3 + x5) + (x3 − b′x5)ρ + x5ρ
2, (9)

X3n+1
1 = (x2

1 + b′x1x3 + x1x5 − b′x3x5 − x2
5) + (−x1x3 − b′x1x5 + b′x2

3)ρ
+(−x1x5 + x2

3 − x2
5)ρ

2.
(10)

X2
0 + X2

1 = 1 is satisfied since X = X0 + X1σ ∈ T2(F33n). This derives the
following equation.

(x0 + x2ρ + x4ρ
2)2 + (x1 + x3ρ + x5ρ

2)2 = 1 (= 1 + 0ρ + 0ρ2).

This equation gives

x2
0 + x2

1 = 1 + b′x2x4 + b′x3x5

x2
2 + x2

3 = x0x4 + x1x5 − b′x0x2 − b′x1x3 − b′x2x4 − b′x3x5

x2
4 + x2

5 = b′x0x2 + b′x1x3 + b′x2x4 + b′x3x5.
(11)

By Eqs. (8), (10), (11)

X3n+1
0 + X3n+1

1 = y0 + y2ρ + y4ρ
2

= (1 + x0x4 + x1x5 − b′x2x4 − b′x3x5)
+(x0x2 + x1x3 − x2x4 − x3x5)ρ
+(b′x0x2 + b′x1x3 + b′x2x4 + b′x3x5)ρ2.

And by Eqs. (7), (9), (11)

X3n

0 X1 −X3n

1 X0 = y1 + y3ρ + y5ρ
2

= (b′x1x2 + x1x4 − b′x0x3 − x0x5)
+(b′x0x5 + x3x4 − b′x1x4 − x2x5)ρ
+(b′x3x4 − b′x2x5)ρ2.

Moreover, we define z0, ... , z8 by

z0 = x0x4, z1 = x1x5, z2 = x2x4, z3 = x3x5, z4 = (x0 + x1)(x4 − x5),
z5 = x1x2, z6 = x0x3, z7 = (x0 + x1)(x2 + x3), z8 = (x2 + x3)(x4 − x5).

13

Then we have

y0 = 1 + x0x4 + x1x5 − b′x2x4 − b′x3x5 = 1 + z0 + z1 − b′z2 − b′z3,
y1 = b′x1x2 + x1x4 − b′x0x3 − x0x5 = z1 + z4 + b′z5 − z0 − b′z6,
y2 = x0x2 + x1x3 − x2x4 − x3x5 = z7 − z2 − z3 − z5 − z6,
y3 = b′x0x5 + x3x4 − b′x1x4 − x2x5 = b′z0 + z3 + z8 − z2 − b′z1 − b′z4,
y4 = b′x0x2 + b′x1x3 + b′x2x4 + b′x3x5 = b′z2 + b′z3 + b′z7 − b′z5 − b′z6,
y5 = b′z3z4 − b′z2z5 = b′z3 + b′z8 − b′z2.

Consequently Lemma 2 is showed. ¤

B Powering by 3n and 3n-th Root in F3n

This section explains that a powering by 3n or 3n-th root in F36n is computed
virtually for free. It follows that

σ3n

=
{

σ if n ≡ 0 (mod 2)
−σ if n ≡ 1 (mod 2) , ρ3n

=

ρ if n ≡ 0 (mod 3)
ρ + b′ if n ≡ 1 (mod 3)
ρ− b′ if n ≡ 2 (mod 3)

.

Suppose that n ≡ 1 (mod 6) which is a necessary condition of the Duursma-Lee
algorithm and the ηT pairing. Then we have

σ3n

= −σ, ρ3n

= ρ + b′, (ρ2)3
n

= ρ2 − b′ρ + 1.

B.1 Powering by 3n

Let Y = X3n

for X ∈ F ∗36n , where X = x0 + x1σ + x2ρ + x3σρ + x4ρ
2 + x5σρ2

and Y = y0 + y1σ + y2ρ + y3σρ + y4ρ
2 + y5σρ2 for some xi, yi ∈ F3n . Then we

have

y0 = x0 + b′x2 + x4

y1 = −x1 − b′x3 − x5

y2 = x2 − b′x4

y3 = −x3 + b′x5

y4 = x4

y5 = −x5

(12)

since

(x0 + x1σ + x2ρ + x3σρ + x4ρ
2 + x5σρ2)3

n

= x0 + x1(σ)3
n

+ x2(ρ)3
n

+ x3(σρ)3
n

+ x4(ρ2)3
n

+ x5(σρ2)3
n

= x0 + x1(−σ)3
n

+ x2(ρ + b′) + x3(−σρ− b′σ) + x4(ρ2 − b′ρ + 1)
+x5(σρ2 + b′σρ− σ)

= (x0 + b′x2 + x4) + (−x1 − b′x3 − x5)σ + (x2 − b′x4)ρ
+(−x3 + b′x5)σρ + x4ρ

2 − x5σρ2.

Note that x3n

i = xi and y3n

i = yi since xi, yi ∈ F3n . Therefore a powering by 3n

is computed virtually for free.

14

B.2 3n-th root

Let Y = 3n√
X for X ∈ F ∗36n , where X = x0 + x1σ + x2ρ + x3σρ + x4ρ

2 + x5σρ2

and Y = y0 + y1σ + y2ρ + y3σρ + y4ρ
2 + y5σρ2 for some xi, yi ∈ F3n . Note that

a 3n-th root operation in characteristic three is uniquely determined. We have

x0 = y0 + b′y2 + y4

x1 = −y1 − b′y3 − y5

x2 = y2 − b′y4

x3 = −y3 + b′y5

x4 = y4

x5 = −y5

(13)

by Eq.(12) since X = Y 3n

. Solving Eq.(13) for each yi gives

y0 = x0 − b′x2 + x4

y1 = −x1 + b′x3 − x5

y2 = x2 + b′x4

y3 = −x3 − b′x5

y4 = x4

y5 = −x5.

Therefore a 3n-th root operation is computed virtually for free.

15

