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Abstract

We present a new key exchange primitive based on the decomposition problem over non-
commutative groups. Different from the key establishment schemes that rely on the decompo-
sition problem where the problem is decomposing an element into three parts where the middle
piece is known, our scheme relies on decomposing an element into three parts, all unknown. We
call this problem ”Triple Decomposition Problem”. This seems to be a harder problem because
it requires quadratic systems to be solved instead of linear systems. We discuss the new prim-
itive over two different protocols. The underlying problems in the two protocols differ slightly.
We discuss the system and the underlying problems in one of the protocols in detail over braid
groups. We manage to provide a setting which resists against linear algebra attacks and length
based attacks.

Keywords: Key Exchange, Cryptographic Protocol, Public Key Cryptography, Non-commutative
Cryptography, Braid Group Cryptography, Decomposition Problem

1 Introduction

A key exchange is a protocol by which two parties, commonly named Alice and Bob, agree on a secret
key to use in their subsequent private communication. Key exchange is an essential part of a public
key system. The first key exchange scheme was introduced by Diffie and Hellman in 1976[7], and
independently by Merkle in 1978[17]. The security of the Diffie-Hellman key exchange system relies
on the difficulty of the decisional Diffie-Hellman problem over finite fields. The emergence of index
calculus attacks against the discrete logarithm problem [1], later the developments in quantum
computing, and also the curiosity of mathematicians have led to search for new cryptosystems;
cryptosystems relying on hard problems of different natures.

Other than adaptations of the Diffie-Hellman key exchange protocol to different groups, three
new schemes have been proposed for key exchange [3, 5, 15]. These schemes work over non-
commutative groups, in particular they were proposed to be used over braid groups. The security
of two of these systems, namely the security of Commutator Key Exchange [3] and Diffie-Hellman-
like key exchange (DH-like KE) [15] depends on variants of the conjugacy search problem over
braid groups. The third system is a revision of DH-like KE system, which we call ”revised DH-like
KE” [5], and its security relies on the difficulty of arranging a braid word in a certain order, or
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the decomposition problem in braid groups. Even though these problems are hard in general, the
special choices that had to be made for the systems to be practical allowed some attacks to yield
feasible solutions.

In this paper our main concern is the decomposition problem so we will focus on the methods
to solve the decomposition problem. One line of attacks against this problem over braid groups
used linear representations of braid groups and exploited the linear nature of the equations relating
the public key and the private key in the systems [6, 14, 16]. Recently, a length-based probabilistic
method to solve equations in certain cases over braid groups has been developed [10]. The primitive
we are about to describe is designed to overcome the vulnerabilities of braid-based cryptosystems
arising from the linear nature of the relations between the public and private keys. The system
parameters need to be chosen carefully to have an immune system against length-based attacks.

In the new primitive the private key has three components. The idea is to hide each of these
components by multiplying them by random elements in some subgroups. The crucial part is that
one of the components is multiplied by random elements both on the right and on the left. The main
difference of this scheme from DH-like KE scheme or its revision is that in latter systems a known
element is multiplied by elements on both sides whereas in our system an unknown element is
multiplied by elements on both sides. This destroys the linear relation between the public key and
the private key. To find the private key or more accurately a key that works as a private key, an
adversary has to decompose an element into three elements satisfying certain conditions. We call
this the triple decomposition problem.

In sections 2 and 3 we describe the system over a general platform. The platform needs to be
a monoid with subsets satisfying certain commutativity and invertibility conditions. For security
analysis, besides vulnerabilities that are specific to the scheme, we consider the attacks against
other braid-based cryptosystems and make sure that we avoid them.

In section 2 we describe the new primitive in a classical setting where the commutativity con-
ditions are satisfied by setting commuting subsets in advance and letting users choose from these
subsets as was done in DH-like KE scheme and its revision [5, 15]. In this scheme an adversary
has to decompose an element into three elements from these subsets in order to get a private key.
We also give conditions on the subsets to prevent immediate computation of the shared key from
the public keys and to make the system truly rely on the triple decomposition problem. A possible
platform and subsets satisfying the necessary conditions are discussed in section 5.

In section 3 we employ the protocol proposed by Shpilrain and Ushakov in [19]. In this protocol
the subsets are not set in advance. Centralizers are used to achieve commutativity. The underlying
problem in this protocol is different from the one in the previous protocol. Before solving the triple
decomposition problem, one has to find the subgroups that the unknowns belong to.

In section 4 we list some necessary properties that a platform should carry for a reliable system.
In section 5 we discuss the system over braid groups which have the desirable practical properties.
We also give a possible choice of subsets to be used in the protocol that we will discuss in section
2 . It turns out that the choice of these subsets is crucial to the reliability of the system. The
final setting we suggest in section 5 offers a system in which the relations between the private and
the public keys are quadratic. This renders the linear representation attacks ineffective. Also, the
subgroups in the setting are generated by short generators and this causes the length-based attacks
fail. So when known attacks against similar systems are considered the system stands strong.

Even though more research is required in order the system to be promising in practice, we
think it is a worthwhile direction to pursue as it brings a new perspective in non-commutative

2



cryptography. Even if braid groups turn out to be not suitable as a platform, there may be other
groups or monoids on which the new primitive can be explored and hopefully work.

2 The Primitive

In order to describe the system in a more general setting we assume that the underlying structure
is a monoid.

Definition. A monoid is a set with an associative binary operation and an identity element. It
is almost a group except that the elements may not be invertible.

Notation: Let G be a monoid. We write G multiplicatively and use the notation [A,B] = 1 for
two subsets A, B of G when ab = ba for all a ∈ A and b ∈ B.

2.1 Protocol I

The system requires a non-commutative monoid G with two sets of subsets of G containing 5 subsets
of G each, say A = {A1, A2, A3, X1, X2} and B = {B1, B2, B3, Y1, Y2}, satisfying the following
invertibility and commutativity conditions:

i. (Invertibility conditions) The elements of X1, X2, Y1, Y2 are invertible.
ii. (Commutativity conditions) [A2, Y1] = 1, [A3, Y2] = 1, [B1, X1] = 1, and [B2, X2] = 1.

2.1.1 Setting the private and the public keys

Suppose a monoid G and the subsets A = {A1, A2, A3, X1, X2} and B = {B1, B2, B3, Y1, Y2} satis-
fying i and ii above are fixed. Alice and Bob carry out the following steps:

1. Alice and Bob agree on who will use which set of subsets; say Alice uses A and Bob uses B.
2. Alice randomly chooses a1 ∈ A1, a2 ∈ A2, a3 ∈ A3, x1 ∈ X1, x2 ∈ X2, and computes:

u = a1x1, v = x1
−1a2x2, and w = x2

−1a3.

Her private key is (a1, a2, a3) and her public key is (u, v, w).
3. Bob randomly chooses b1 ∈ B1, b2 ∈ B2, b3 ∈ B3, y1 ∈ Y1, y2 ∈ Y2, and computes:

p = b1y1, q = y1
−1b2y2, and r = y2

−1b3.

His private key is (b1, b2, b3) and his public key is (p, q, r).

2.1.2 Key exchange

To agree on a key Alice and Bob do the following:

1. Alice sends Bob her public key (u, v, w).

2. Bob sends Alice his public key (p, q, r).

3. Alice computes a1pa2qa3r.

4. Bob computes ub1vb2wb3.
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Note that Alice computes

a1pa2qa3r = a1(b1y1)a2(y−1
1 b2y2)a3(y−1

2 b3) = a1b1a2b2a3b3,

and Bob computes

ub1vb2wb3 = (a1x1)b1(x−1
1 a2x2)b2(x−1

2 )a3b3 = a1b1a2b2a3b3.

Hence they agree on

shared key = a1b1a2b2a3b3.

The idea is to hide the private key by multiplying each component by some elements from the
monoid. These elements are chosen from subsets satisfying the invertibility and commutativity
conditions so that both parties compute the same key. Note that there are no conditions on the
subsets A1 and B3. If security is not sacrificed, they may be chosen in a special way to make the
system more practical; for instance to have smaller key sizes.

2.2 Some cases to be avoided

In this section we give some cases in which the shared key can be computed without requiring to
solve a quadratic system hence should be avoided. These cases are in a way obvious cases that
should be avoided over any platform. There may be other cases that needs to be avoided depending
on the platform chosen . One should pay attention to such platform-specific cases.

The cases listed in the remarks 1 and 2 below allow immediate computation of the shared key
from the public keys hence should be avoided.

Remark 1. If [X1, Y1] = 1, [X2, Y1] = 1, and [X2, Y2] = 1 then the shared key can be computed
from the public keys by

shared key = (a1x1)(b1y1)(x−1
1 a2x2)(y−1

1 b2y2)(x2a3)(y2b3) =upvqwr.

Remark 2. If [A2, B1] = 1, [A3, B2] = 1, and [A3, B1] = 1, then the shared key can be computed
from the public keys by

shared key = (a1a2a3)(b1b2b3) = uvwpqr.

The following discussion directs us to some necessary conditions for the system to truly rely on
the triple decomposition problem.

One way to attack the system is to find a pseudo-key, a key that is not necessarily the private
key (of one of the users) but works like one, which amounts to solving

a1x1 = u (2.1)

x−1
1 a2x2 = v (2.2)

x−1
2 a3 = w (2.3)

for a1, x1, a2, x2, a3 satisfying the invertibility and commutativity conditions. These conditions are
automatically met if it is made sure that x1, a2, x2, a3 come from X1, A2, X2, A3 respectively. The
problem is then to decompose v and w into elements from the respective subsets in such a way that
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the inverse of the last component of v is the first component of w. Note that because there are no
restrictions on a1, once x1 is found, u can be decomposed into a1x1 by taking a1 = ux−1

1 .
Solving equation 2.2 requires v to be decomposed into three elements, and solving 2.3 requires

w to be decomposed into two elements. The former is generally a harder task than the latter. One
can think of equation 2.2 as a quadratic equation in terms of the unknowns simply by rewriting it in
the form a2x2 = x1v whereas equation 2.3 is considered linear. When there is a unique solution to
equation 2.3, the security of the system mainly relies on decomposing an element into two elements:
First decompose w into x−1

2 a3, then substitute x−1
2 in equation 2.2 and decompose vx−1

2 into x−1
1 a2.

So we get

Remark 3. For the system to truly rely on solving equation 2.2 (i.e. a quadratic equation) we need
to make sure that there are many solutions to equation 2.3.

Another case that needs to be avoided in order to have a quadratic equation is given in the
following remark:

Remark 4. If [A2, B1] = 1 and [X2, B1] = 1, or [A3, B2] = 1 and [A3, Y1] = 1, then the security of
the system relies on the difficulty of decomposing an element into two elements.

When [A2, B1] = 1, the shared key is a1a2b1b2a3b3. Multiplying the first two components of
Alice’s public key, we get the equation a1a2x2 = uv. We need to check if having a1a2 together
in the shared key and in the equation above conduces any vulnerabilities. We need to investigate
if/when decomposing uv into ax2 with a ∈ G, x2 ∈ X2 suffices to compute the shared key. We
need to check if

apqa3r = shared key.

Substituting pq = b1b2y2 on the left hand side above and then using [A3, Y2] = 1 and a = uvx2
−1

for the second equality, and a3 = x2w for the third equality we get

L.H.S. = a(b1b2y2)a3y
−1
2 b3 = (uvx2

−1)(b1b2)a3b3 = (uvx2
−1)(b1b2)x2wb3.

Note that the shared key is ub1vb2wb3. The rightmost expression in the above equation is equal
to the shared key if [X2, B1] = 1, because then we have vb1 = b1v. This explains the first case
in Remark 4. Similar arguments apply for having b1b2 together and the case [A3, B2] = 1 and
[A3, Y1] = 1.

3 Protocol II

In this section we suggest an enhancement to the protocol using a technique suggested by Shpil-
rain and Ushakov in [19]. In the protocol in the previous section the commutativity conditions
are achieved by setting subsets that commute in advance. In this protocol the users pick random
elements and publish subsets of centralizers of these elements. When a party needs an element that
commutes with one of these random elements, he/she picks an element in the subset corresponding
to that random element. We explain the system in detail here.

Let G be a non-commutative monoid with a large number of invertible elements.
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Definition. For an element g ∈ G let C(g) be the set of elements in G that commute with g. i.e.
C(g) = {h ∈ G|gh = hg}. C(g) is called the centralizer of g in G.

For a subset H = {g1, . . . , gk} of G, define C(H) = C(g1, . . . ,gk} to be the set of elements in
G that commute with all gi for i = 1, . . . , k (hence C(H) = C(g1) ∩ · · · ∩ C(gk)).

The protocol goes as follows:

1. Alice picks two invertible elements x1, x2 ∈ G, chooses subsets Sx1 and Sx2 of C(x1) and
C(x2) respectively, and publishes Sx1 and Sx2 .

2. Bob picks two invertible elements y1, y2 ∈ G, chooses subsets Sy1 and Sy2 of C(y1) and C(y2)
respectively, and publishes Sy1 and Sy2 .

3. Alice chooses random elements a1 ∈ G, a2 ∈ Sy1 , and a3 ∈ Sy2 . (a1, a2, a3) is her private
key. She sends Bob her public key (u, v, w) where u = a1x1, v = x−1

1 a2x2, w = x−1
2 a3.

4. Bob chooses random elements b1 ∈ Sx1 , b2 ∈ Sx2 , and b3 ∈ G. (b1, b2, b3) is his private key.
He sends Alice his public key (p, q, r) where p = b1y1, q = y−1

1 b2y2, and r = y−1
2 b3.

5. Alice computes a1pa2qa3r = a1b1a2b2a3b3

6. Bob computes ub1vb2wb3 = a1b1a2b2a3b3

3.1 Security

To find the private key of one of the users, say Alice’s, or more accurately a key that works as
Alice’s private key (a pseudo-key), one has to solve the equations (2.1), (2.2), (2.3) given in section
2. Assuming that the cases in remarks in section 2.2 are taken into consideration, in order to find
a pseudo-key an adversary needs to solve equation

x−1
1 a2x2 = v (3.1)

for x1, a2, x2 satisfying the commutativity conditions. This amounts to decomposing v into three
elements x−1

1 , a2, x2 where x1 and x2 commute with elements in Sx1 and Sx2 respectively, and a2

is in Sy1 . Recall that Sx1 , Sx2 , Sy1 are public.
For the rest of the paper we assume that G is a group. All arguments in the previous sections

apply except that we do not need to state the invertibility conditions anymore as all elements in
a group are invertible. We also assume that the subsets that are published by the two parties in
steps 1 and 2 of the protocol are subgroups that are finitely generated and that users publish the
generators of the subgroups.

Solving the following two problems would allow an adversary to find a pseudo-key, so for a
reliable system at least these problems should be hard:

Problem 1. Given g1, . . . , gk ∈ G compute C(g1, . . . , gk).

Suppose Sx1 =< g1, . . . , gk > (i.e. Sx1 is generated by g1, . . . , gk1). An adversary trying to
find x1 does not know where to choose x1 from in the beginning. He knows that it commutes
with all elements in Sx1 . This implies that x1 ∈ C(g1)∩· · ·∩C(gk) = C(g1, . . . , gk). Similarly
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he knows that x2 ∈ C(g′1, . . . , g
′
k2

) where Sx2 =< g′1 . . . g′k2
>. So if the problem stated above

is solved then the subgroups that x1 and x2 belong to can be computed. Now the adversary
knows where to take x1 and x2 from. This leaves him with the following problem.

Problem 2.(Triple Decomposition Problem) Given v = x−1
1 a2x2 find x1 ∈ H, a2 ∈ A, and

x2 ∈ H ′ where H = C(g1, . . . , gk), H ′ = C(g′1, . . . , g
′
k2

), and A is a subgroup of G given by its
generators.

4 The Platform Group G

In this section we state some necessary properties a group G should have in order to have an
efficient and secure key establishment protocol. We concentrate on the second protocol. The
requirements on the group for Protocol I are the same except for a few of them. We will point
them out afterwards. The properties we list here are the same as the ones listed in [19] except for
the last one. We give the list here with necessary modifications.

P1 (from [19]) G should be a non-commutative and it should be of exponential growth which
means that the number of elements of length k in G is exponential in k. This is needed to
prevent attacks by complete exhaustion of the key space.

P2 The word problem in G, namely determining if an element is identity or not should be efficiently
solvable. This is needed to make sure that two parties compute the same key.

P3 Elements in G should be efficiently representable on a computer.

P4 Multiplication and inversion of elements should be computationally easy with the representa-
tion.

P5 (from [19])It should be computationally easy to generate pairs (a, {a1, . . . , ak}) such that aai =
aia for each i = 1, . . . , k.

P6 (from [19]) For a generic set {g1, . . . , gk} of elements of G it should be difficult to compute

C(g1, . . . , gn) = C(g1) ∩ · · · ∩ C(gk).

P7 Even if H1 = C(g1, . . . , gk1), H2 = C(g′1, . . . , g
′
k2

) are computed , it should be hard to find
x1 ∈ H1, x2 ∈ H2, and a ∈ H such that x1ax2 = v where H is some fixed subgroup given by
its generating set.

Note for Protocol I For the protocol in section 2.1 we require G to have subsets satisfying
the commutativity conditions and avoiding the cases in remarks in section 2.2. This is not sufficient
to ensure reliability though; the triple decomposition problem (property 7 above ) should be hard
with the choice of subsets. In section 5.2 we give a possible choice of subsets which avoids the cases
in remarks but does not provide a secure system. We discuss weaknesses of this choice in order to
motivate a choice that works. The new setting is given in section 5.2.2.

Properties P5 and P6 are not relevant in protocol I in general.
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5 Braid Groups

Braid groups have been used in cryptosystems such as Arithmetica [3] and Diffie-Hellman like braid-
based systems [5, 15]. Their practicality is well known [5, 8, 9]. Here we give a brief explanation of
braid groups that helps to state these practical properties.

Definition. The n-braid group Bn, is an infinite non-commutative group defined by the following
group presentation

Bn = < σ1, σ2, . . . σn−1 |
σiσj = σjσi, |i − j| ≥ 2

σiσjσi = σjσiσj , |i − j| = 1
>

The integer n is called the braid index and the elements in Bn are called n-braids or simply (braid)
words. The generators σi are called Artin generators.

5.1 Computations with Braids

The following are the properties that make braid groups suitable for applications.

B1. (from [19]) Braid groups Bn are non-commutative groups of exponential growth for n ≥ 3.

B2. (from [19]) There are several normal forms for elements of Bn including Garside normal form
[4]. This normal form is efficiently computable (in quadratic time with respect to the length
of a given element) and is unique so it gives a fast solution to the word problem.

B3. The Garside normal form is efficiently representable on a computer (pn log n where p is the so
called canonical length of the word in Bn [15]).

B4. (from [19]) There are quadratic time algorithms (in canonical length) to multiply or invert
normal forms of elements of Bn [9].

B5. (from [19]) It is not easy to compute the whole centralizer of an element g of G [13]. The
number of steps required to compute C(g) is proportional to the size of the ”super summit
set” of g which is typically huge. Nevertheless there are approaches to finding ”large parts”
of C(g) [13].

B6. (from [19])For a generic subgroup A it is hard to compute C(A). The complexity of such
computation is proportional to the size of the summit set of A, which is typically huge [12].

B7. Linear representations which were used to attack the DH-like KE and its revised version does
not work in this case because it made use of the linear equations and the special choices in the
system. Triple decomposition for carefully chosen parameters involves quadratic equations.

Recently a new method using a special length function was introduced to solve the decomposi-
tion problem over braid groups [10]. The method is probabilistic and fails for some scenarios.
When setting the system parameters we have to make sure that the system one needs to solve
in order to get a private key falls in one of those scenarios.
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5.2 Subgroups for Protocol I

Commutativity is easily achieved in braid groups by taking generators apart from each other. A
possible division of generators that satisfies the commutativity conditions and avoids the cases in
remarks 1,2,4 in section 2.2 is given below. Let Gn be the braid group of index n. Let n− 1 = 3d
for some positive integer d ≥ 2. Set

A1 = Gn (5.1)
X1 =< σ1, . . . , σd−1 > B1 =< σd+1, . . . , σn−1 >

A2 =< σ1, . . . , σd−1 > Y1 =< σd+1, . . . , σn−1 >

X2 =< σ1, . . . , σ2d−1 > B2 =< σ2d+1, . . . , σn−1 >

A3 =< σ1, . . . , σ2d−1 > Y2 =< σ2d+1, . . . , σn−1 >

B3 = Gn

so that X1 is generated by the first d − 1 generators and so on. The condition that the equation
x−1

2 a3 = w has a large solution space (Remark 3 in section 2.2) is satisfied in this setting, because
we have X2 = A3 which gives x2 = x, a = xw is a solution for any x ∈ X2.

Even though the above choice of subsets takes the remarks in section 2.2 into consideration,
the system can be broken using linear algebra attacks, in particular using Burau representation of
braid groups.

5.2.1 Burau Representation

In the Burau representation, the braid group Gn is mapped into GLn−1(Z[t±1]), (n− 1)× (n− 1)
matrices of Laurent polynomials over integers. The entries are quite simple: Image of the generator
σi is the (n−1)× (n−1) matrix obtained from the identity matrix by replacing the central (i, i+1)
square with

(
1−t t
1 0

)
, i.e. image of σi isIi−1 0 0

0 1−t t
1 0 0

0 0 In−i−1


where Ik is the identity matrix of size k.

The images of the braid words corresponding to the subgroups chosen in setting 5.1 are matrices
in certain block forms. Because we assume n− 1 = 3d, the matrices are composed of 9 submatrices
of size d×d each. We identify these submatrices by a row and a column number each running from
1 to 3. Now the matrices corresponding to braid words in A1 and in X1 are respectively of the form

a1 =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 x1 =

X11 0 0
0 Id 0
0 0 Id

 .

Having matrices in block forms conduces a vulnerability: some of the non-trivial entries in the
images of private keys get revealed in the public keys when matrices are multiplied. (The entries
of the submatrices that are 0 or Id are called trivial) For example the first component of Alice’s
public key looks like
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u = a1x1 =

A11X11 A12 A13

A21X11 A22 A23

A31X11 A32 A33

 .

Notice that the second and third columns of u and a1 are the same which means those entries
of a1 can be read off from the public key u. Another weakness in this setting is that the cases
in remarks in section 2.2 are barely avoided. The shared key is a1b1a2b2a3b3 which is equal to
a1a2b1a3b2b3 in this setting because a2 and b1, and a3 and b2 commute. b1 and a3 do not commute.
The common part of subgroups B1 and A3 which is generated by σd+1 through σ2d−1 is what keeps
them from commuting. However some of the entries in the images of b1 and a3 corresponding
to this common part are revealed in the images of the public keys. These revealed entries and
commuting parts in the shared key allow computation of the shared key. In the next section we
give a modification on these subsets to counter these weaknesses.

5.2.2 A countermeasure against revealed entries

In this section we modify the subsets in setting 5.1 to fully conceal the private keys and the secret
choices (i.e. x1, x2, y1, y2). The modification is based on the simple observation that if ab = ba,
then (sas−1)(sbs−1) = (sbs−1)(sas−1) for any s ∈ Gn.

Let s1, s2, s3, s4 ∈ Gn be fixed, system wide parameters and let X1, X2, A1, A2, A3, Y1, Y2, B1,
B2, B3 be as in 5.1. Set

A1 = Gn (5.2)

X ′
1 = {s1xs−1

1 | x ∈ X1} B′
1 = {s1bs

−1
1 | b ∈ B1}

A′
2 = {s2as−1

2 | a ∈ A2} Y ′
1 = {s2ys−1

2 | y ∈ Y1}
X ′

2 = {s3xs−1
3 | x ∈ X2} B′

2 = {s3bs
−1
3 | b ∈ B2}

A′
3 = {s4as−1

4 | a ∈ A3} Y ′
2 = {s4ys−1

4 | y ∈ Y2}
B3 = Gn.

The commutativity conditions are still satisfied with these subsets. With careful choice of si’s (by
careful we mean si should include a large number of generators) the block forms are destroyed so
no entry gets revealed in the public keys. The other weakness in the previous setting, namely the
commutativity of certain parts of the shared key is also avoided. The only case in the remarks in
section 2.2 that is not immediately taken care of is remark 3, namely the condition that equation
x′−1

2 a′3 = w′ has a large solution space for x′2 ∈ X ′
2 and a′3 ∈ A′

3. Written more explicitly the
equation

s3x
−1
2 s−1

3 s4a3s
−1
4 = w′

or equivalently

x−1
2 s−1

3 s4a3 = s−1
3 w′s4 (5.3)

should have a large solution space for x2 ∈ X2 and a3 ∈ A3. We will discuss this issue below.
Before, we would like to draw attention to the fact that this equation is similar to the equation
that needs to be solved in the revised DH-like KE system over braid groups [5]. Namely find
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x, y ∈ H ⊂ G given u = xay and a ∈ G. Over braid groups H is generated by either the left or the
right half of the generators. Once this problem is solved one has a key that works like a private
key. The case in the new system is different in two ways:

1. H corresponds to X2 in our case and it consists of a larger potion of the generators(two
thirds instead of a half).

2. A solution to equation 5.3 does not necessarily lead to a private key. A solution for x2 has
to also satisfy

s1x
−1
1 s−1

1 s2a2s
−1
2 s3x2s

−1
3 = v′

or equivalently

x−1
1 s−1

1 s2a2s
−1
2 s3x2 = s−1

1 v′s3 = v. (5.4)

The first point is worth mentioning because the techniques that were able to get solutions for
parameters suggested in [15] made use of the special structure of the subgroup H or more accurately
the image of H under linear representations of Gn( see [6, 16]). When we have a larger H this
structure changes and the same techniques may not work.

More important is the the second point. One way to proceed is to substitute a solution of
equation 5.3 into equation 5.4. This gives another equation of similar type. If this new equation
has a solution that we can compute then we have a key, if not we try another solution of equation
5.3. This works if the solution space for 5.3 is small. Otherwise one has to deal with equation 5.4
as a whole. The linear algebra methods will not work in this case because the equations that are
obtained when the system is mapped into matrices are not linear anymore.

Now the issue is how to make sure 5.3 has a large solution space. Note that if x−1
2 = x, a3 = a

is a solution to the system, then so is x−1
2 = xz, a3 = z−1a for any z ∈ C(s−1

3 s4) ∩ X2. (Recall
that in setting 5.1 the subgroups X2 and A3 are equal so we have xz ∈ X2 and z−1a ∈ A3 as
required.) Therefore in order to guarantee a large solution space for 5.3 we can choose s3 and s4 so
that C(s−1

3 s4) ∩X2 is large. Similarly, for the corresponding party we require C(s−1
1 s2) ∩ Y1 to be

large. We will discuss the case for equations on Alice’s side. The conclusions for Bob’s side can be
derived similarly. One way of having many elements in C(s−1

3 s4) ∩ X2 is for C(s−1
3 s4) and X2 to

have several common generators. Recall that X2 is generated by σ1, . . . , σ2d−1. For example, if s3

and s4 are chosen so that s−1
3 s4 consists of generators from σd+1, . . . , σn−1, then X2 and C(s−1

3 s4)
will have σ1, . . . , σd−1in common so equation 5.3 will have many solutions. (On Bob’s side s1 and
s2 would be chosen so that s−1

1 s2 consist of generators from σ1, . . . , σ2d−1).
Now the equation to solve is equation 5.4 which can be restated as: Given v, s, s′ ∈ Gn decom-

pose v into x−1
1 sa2s

′x2 where x1 ∈ X1, a2 ∈ A2, and x2 ∈ X2. This is a difficult problem in general
because it involves quadratic relations. The linear algebra attacks that were mainly used to attack
the decomposition problem in the previous systems where the relations were linear (see [6, 16]) do
not work in this case.

5.2.3 Length-based attacks

In [10] Garber et al give a probabilistic method to solve a system of equations in a random finitely
generated subgroup of the braid group. They make use of a ”monotonic” length function - a length
function which satisfies that the expected length tends to increase with the number of generators
(of the subgroup) multiplied. In the analysis they provide, the subgroup is generated by elements
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that are composed of 10 Artin generators each. They state that if the generators can be written
as a product of very few Artin generators then the required monotonicity of the length function
gets violated and the algorithm fails. According to setting 5.2 in the previous section and the
discussion that follows it the generators of the subgroups that the unknowns belong to are single
Artin generators. This protects the system from length-based attacks.

5.2.4 Suggested Parameters

The analysis of length-based attacks given in [10] is for subgroups generated by elements that are
products of 10 randomly chosen Artin generators. Most of the analysis were over B8, braid group
of index 8. For larger index, it was concluded that the probability of success decreases but not
significantly. The discussion in this paper seemed insufficient to make conclusions for our system
so we referred to another paper by the same authors [11] where the conjugacy problem instead
of the general decomposition problem is considered. The method applies more effectively to the
conjugacy problem because of the special nature of the equations involved. (we have x−1ax = u
where x is the unknown.) Some of the conclusions they get apply to any decomposition problem.
Two of these conclusions are:

1. The smaller is the size of the generators of the subgroups, the smaller is the probability of
success. (Here size of an element is the number of Artin generators in it)

2. The longer is the length of x in terms of the number of generators, the smaller is the
probability of success.

Taking these into account we recommend to use the braid group B100. This gives 33 generators
in each of the subgroups and each of these generators is a single Artin generator. Choose the secret
values to consist of a couple of hundred elements say 300 elements each. We hope to do more
research on what would be an optimal choice considering the key lengths and the time complexities
for computing and exchanging keys.

6 Conclusion

We have proposed a new way to achieve key exchange in a public key system. The security of the
new scheme relies on what we called the triple decomposition problem in a non-commutative group,
namely decomposing an element into three pieces satisfying certain properties. We have focused on
braid groups as they have the desirable practical properties required by the system. We analyzed
the system over a classical protocol in detail and were able to choose a setting so that the system is
immune to linear algebra and length-based attacks. The second protocol seems more advantageous
as it allows more randomness. There are two problems an adversary has to deal with. The first
one is to find the common centralizer of a finite number of elements and the second is the triple
decomposition problem. The main security shield is the first problem for now because we have not
yet found a way to make sure that the underlying triple decomposition problem is hard.

Further research is required to establish a stronger confidence in the system and to determine
concrete parameters for practical purposes. We hope to give more results on practical values in an
extended paper.
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[12] N. Franco, J. González-Meneses, Computation of Centralizers in Braid Groups and Garside
Groups, Rev. Mat. Iberoamericana, 19 (2003), 367-384.
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