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Abstract: Signcryption is a cryptographic primitive that performs signature and encryption simulta-

neously, at a lower computational costs and communication overheads than the signature-then-encryption

approach. In this paper, we propose an efficient multi-recipient signcryption scheme based on the bilinear

pairings which broadcasts a message to multiple users in a secure and authenticated manner. We prove

its semantic security and unforgeability under the Gap Diffie-Hellman problem assumption in the ran-

dom oracle model. The proposed scheme is more efficient than re-signcrypting a message n times using

a signcryption scheme in terms of computational costs and communication overheads.
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1 Introduction

Confidentiality, integrity, non-repudiation and authentication are the important requirements

for many cryptographic applications. A traditional approach to achieve these requirements is to

sign-then-encrypt the message. Signcryption, first proposed by Zheng[1] in 1997, is a cryptographic

primitive that performs signature and encryption simultaneously, at a lower computational costs

and communication overheads than the signature-then-encryption approach. Several efficient sign-

cryption schemes have been proposed since 1997. The original scheme in [1] is based on the discrete

logarithm problem but no security proof is given. Zheng’s original construction[1] was only proven

secure in 2002 by Baek et al.[2] who described a formal security model in a multi-user setting.

The bilinear pairings, namely the Weil pairing and the Tate pairing of algebraic curves, are im-
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portant tools for construction of identity-based (ID-based) cryptographic schemes. Many ID-based

signcryption schemes[3−15] and certificate-based signcryption schemes[16−19] using the bilinear pair-

ings have been proposed. However, all of the above schemes consist of only single recipient. In

practice, broadcasting a message to multiple users in a secure and authenticated manner is an

important facility for a group of people who are jointly working on the same project to commu-

nicate with one another. In [20], Zheng proposed a signcryption scheme for multiple recipients

(multi-recipient signcryption). The basic idea is to use two types of keys: the first type consists of

only a single randomly chosen key (a message-encryption key) and the second type of keys include

a key chosen independently at random for each recipient (called a recipient specific key). The

message-encryption key is used to encrypt a message with a private key cipher, while a recipient

specific key is used to encrypt the message-encryption key. In [21], Seo and Kim proposed a

domain-verifiable signcryption scheme which signcrypts n messages to n users. Each user with

domain can decrypt just his own message and all users can verify the whole transaction. However,

both [20] and [21] are inefficient since they are sequential composition of signcryption. In addition,

the formal model and security proof for their schemes are also not considered.

The main contribution of this paper is to present the formal security model for multi-recipient

signcryption and propose an efficient multi-recipient signcryption scheme using the bilinear pair-

ings. We then prove its security in the random oracle model assuming the Gap Diffie-Hellman

problem is computationally hard.

The rest of this paper is organized as follows. Some preliminary works are given in Section 2.

The formal model for multi-recipient signcryption is given in Section 3. The proposed multi-

recipient signcryption scheme is described in Section 4. We analyze the proposed scheme in

Section 5. Finally, the conclusions are given in Section 6.

2 Preliminaries

In this section, we briefly describe the basic definition and properties of the bilinear pairings.

Let G1 be a cyclic additive group generated by P , whose order is a prime q, and G2 be a cyclic

multiplicative group of the same order q. Let a, b be elements of Zq
∗. A bilinear pairings is a map

ê : G1 ×G1 → G2 with the following properties:

1. Bilinearity: ê(aP, bQ) = ê(P,Q)ab .

2. Non-degeneracy: There exists P and Q ∈ G1 such that ê(P,Q) 6= 1.
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3. Computability: There is an efficient algorithm to compute ê(P,Q) for all P ,Q ∈ G1.

The modified Weil pairing and the Tate pairing[22] are admissible maps of this kind. The

security of our scheme described here relies on the hardness of the following problems.

Definition 1. Given two groups G1 and G2 of the same prime order q, a bilinear map

ê : G1 ×G1 → G2 and a generator P of G1,

• The Computational Diffie-Hellman problem (CDH) in G1 is, given (P, aP, bP ) for unknown

a, b ∈ Zq , to compute abP ∈ G1.

• The Decisional Diffie-Hellman problem (DDH) is, given (P, aP, bP, cP ) for unknown a, b, c ∈
Zq , to decide whether ab ≡ c(modq) or not. Tuples of the form (P, aP, bP, cP ) for which

the latter condition holds are called “Diffie-Hellman tuples”.

• The Gap Diffie-Hellman problem (GDH) is to solve a given instance (P, aP, bP ) of the CDH

problem with the help of a DDH oracle that is able to decide whether a tuple (P, a′P, b′P, c′P )

is such that c′ ≡ a′b′(modq).

As shown in [23], a pairing can implement a DDH oracle. Indeed, in a group G1 for which pairings

are efficiently computable, to determine whether a tuple (P, aP, bP, cP ) is a valid Diffie-Hellman

tuple or not, it suffices to check if ê(P, cP ) = ê(aP, bP ). This kind of group, where the DDH

problem is easy while the CDH one is still believed to be hard, is called Gap Diffie-Hellman

groups.

3 Formal Model for Multi-Recipient Signcryption

3.1 Generic Scheme

A generic multi-recipient signcryption scheme for broadcasting a single message consists of the

following three algorithms.

Keygen: Given a security parameter k, it generates a private/public key pair (sk, pk).

Signcrypt: Given a message m, a private key skS and multiple public keys pkR1 , . . . , pkRn , it

outputs a ciphertext σ. m is drawn from a message space M which is defined as {0, 1}n1 .

Unsigncrypt: Given a ciphertext σ, a private key skRi (i ∈ {1, . . . , n}) and a public key pkS , it

outputs the original message m or the symbol ⊥ if σ is not a valid ciphertext corresponding

to (skRi , pkS ).
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For consistency purposes, we of course require that if σ = Signcrypt(m, skS , pkR1 , . . . , pkRn ),

then we have m = Unsigncrypt(σ, pkS , skRi ).

3.2 Security Notions

Baek et al.[2] defines the security notions for signcryption schemes. These notions are indistin-

guishability against adaptive chosen ciphertext attacks and unforgeability against adaptive chosen

messages attacks. We modify this definition slightly to adapt for our multi-recipient signcryption

scheme.

Definition 2 (Confidentiality). A multi-recipient signcryption scheme is semantically se-

cure against adaptive chosen ciphertext attack (MRSC-IND-CCA2) if no polynomially bounded

adversary has a non-negligible advantage in the following game:

1. The challenger runs Keygen to generate multiple key pairs (skRi , pkRi )(i = 1, . . . , n). skRi

is kept secret while pkRi is given to adversary A.

2. In the first stage, A makes a number of queries to the following oracles:

• Signcryption oracle: A produces a message m ∈ M and requires the result of the

operation Signcrypt(m, skS , pkR1 , . . . , pkRn ).

• Unsigncryption oracle: A produces a ciphertext σ and an arbitrary public key pkU ,

and requires the result of the operation Unsigncryt(σ, pkU , skRi ).

These queries can be asked adaptively: each query may depend on the answers to previous

ones.

3. A produces two plaintexts m0,m1 ∈ M . The challenger picks a bit b ∈ R{0, 1} and computes

a signcryption σ∗ = Signcrypt(mb , skS , pkR1 , . . . , pkRn ) of mb with the sender’s private key

skS under the attacked receivers’ public keys pkRi (i = 1, . . . , n). σ∗ is sent to A as a challenge

ciphertext.

4. A makes a number of new queries as in the first stage with the restriction that it cannot

query the unsigncryption oracle with σ∗.

5. At the end of the game, A outputs a bit b′ and wins if b′ = b.

A’s advantage is defined to be Advind−cca2 (A) := 2Pr[b′ = b]− 1.
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Definition 3 (Unforgeability). A multi-recipient signcryption scheme is existentially un-

forgeable against chosen message attack (MRSC-EUF-CMA) if no polynomially bounded adver-

sary has a non-negligible advantage in the following game:

1. The challenger runs Keygen to generate a key pair (skS , pkS ). skS is kept secret while pkS

is given to forger F .

2. The forger F makes a number of queries to the signcryption oracle as in the confidentiality

game. Again, these queries can also be produced adaptively. Note that we allow F to have

access to all recipients’ private keys as well as the corresponding public keys.

3. At the end of the game, F produces a ciphertext σ and wins the game if the result of

Unsigncrypt(σ, pkS , skRi )(i = 1, . . . , n) is not the ⊥ symbol such that σ was not the

output of a signcryption query Signcrypt(m, skS , pkR1 , . . . , pkRn ) made during the game.

Note that we do not require the unsigncryption query since the adversary can simulate the

unsigncryption oracle by himself.

4 An Efficient Multi-Recipient Signcryption Scheme

In this section, we propose a certificate-based multi-recipient signcryption scheme using the

bilinear pairings. Our scheme is motivated by Yang et al.’s signcryption schem[17].

We assume that both the sender and the recipients agree on public parameters: security

parameters k and l, cyclic groups G1 and G2 of prime order q ≥ 2k such that l is the number of bits

required to represent elements of G1 , a generator P of G1 and a bilinear map ê : G1 ×G1 → G2.

They also agree on three hash functions H1 : G1 → {0, 1}n1 , H2 : {0, 1}n1+(n+1)l → G1 and

H3 : G1
3 → {0, 1}l . The proposed scheme consists of the following three algorithms (we recall

that the symbol ⊕ denotes the bitwise exclusive OR).

Keygen: User u chooses his private key xu from Zq randomly and sets corresponding public

key Y u = xuP . We will denote the sender and the recipients respectively by u = S and

u = Ri(i = 1, . . . , n) and their key pair by (xS , Y S ) and (xRi , Y Ri ).

Signcrypt: To signcrypt a message m ∈ M for recipients R1, . . . , Rn , the sender S follows the

steps below.

1. Choose r ∈ Zq and R ∈ G1 randomly, respectively.
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2. Compute U = rP .

3. Compute c = m⊕H1(R).

4. Compute V = xSH2(c, U, Y R1 , . . . , Y Rn ).

5. Compute Z i = R⊕H3(U, Y Ri , rY Ri ) for i = 1, . . . , n.

The ciphertext is σ = (U, c, V, Z1, . . . , Zn).

Unsigncrypt: When receiving a ciphertext σ = (U, c, V, Z1, . . . , Zn), the receiver Ri follows the

steps below.

1. Compute R = Z i ⊕H3(U, Y Ri , xRiU).

2. Compute m = c⊕H1(R).

3. Compute H = H2(c, U, Y R1 , . . . , Y Rn )

4. Accept the message if and only if ê(P, V ) = ê(Y S , H), return ⊥ otherwise.

The consistency of the scheme is easy to verify. Any third party can be convinced of the

message’s origin by computing H = H2(c, U, Y R1 , . . . , Y Rn ) and checking if the condition ê(P, V ) =

ê(Y S , H) holds. The knowledge of the plaintext m is not required for the public verification of

a message’s origin. Therefore, our scheme provides the ciphertext authenticity[5] which is very

useful in firewalls[24]. If required, the anonymity property is obtained by scrambling the sender’s

public key Y S together with the message at step 3 of Signcrypt(i.e. c = m||Y S ⊕ H1(R).) in

such a way that the recipient retrieves it at step 2 of Unsigncrypt(i.e. m||Y S = c⊕H1(R)).

5 Analysis of the Scheme

In this section, we analyze the security and efficiency of our scheme.

5.1 Security

Theorem 1. In the random oracle model, if an adversary A has a non-negligible advantage

ε against the MRSC-IND-CCA2 security of the above scheme when running in a time t and

performing qsc signcryption queries, qusc unsigncryption queries and qH i queries to oracles H i (

i = 1, 2, 3), then there exists an algorithm B that can solve the CDH problem in the group G1

with a probability ε′ ≥ ε − qH3
qusc

22k in a time t′ ≤ t + (2qusc + 2qH 3)te , where te denotes the time

required for one pairing computation.
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Proof. The algorithm B runs A as a subroutine to solve the CDH problem in a polynomial

time. Let (aP, bP ) be a random instance of the CDH problem. B simulates A’s challenger in the

game of Definition 2 and starts it with Y u = bP as the challenge public key. Without loss of

generality, we let Y u = Y R1 . A then adaptively performs queries as explained in the definition.

To handle these queries, B maintains lists Li to keep track of the answers given to oracle queries

on H i for i = 1, 2, 3.

• H1 queries: For a H1(Re) query, B first checks if the value of H1 was previously defined for

the input Re . If it was, the previously defined value is returned. Otherwise, B randomly

chooses g from {0, 1}n1 , returns g as an answer and inserts the tuple (Re , g) into L1.

• H2 queries: For a H2(ce , U e , Y R1 , . . . , Y Rn ) query, B first checks if the value of H2 was

previously defined for the input (ce , U e , Y R1 , . . . , Y Rn ). If it was, the previously defined

value is returned. Otherwise, B chooses w from Zq randomly, returns wP as an answer and

inserts the tuple (ce , U e , Y R1 , . . . , Y Rn , w) into L2.

• H3 queries: For a H3(U e , Y Ri , P e) query, B first checks if the value of H3 was previously

defined for the input (U e , Y Ri , P e). If it was, the previously defined value is returned.

Otherwise, B randomly chooses Q from G1, returns Q as an answer and inserts the tuple

(U e , Y Ri , P e , Q) into L3.

• Signcryption queries: For a signcryption query on a plaintext m chosen by the adversary

A, B first randomly chooses r ∈ Zq and R ∈ G1, computes U = rP , runs the H1 simu-

lation process to obtain h1 = H1(R), computes c = m ⊕ h1, and checks if L2 contains a

tuple (c, U, Y R1 , . . . , Y Rn , w
′) indicating that H2(c, U, Y R1 , . . . , Y Rn ) was previously defined

to be w′P . If no such tuple is found, B chooses w′ from Zq randomly and puts the entry

(c, U, Y R1 , . . . , Y Rn , w
′) into L2. B then computes V = w′Y S = xSH2(c, U, Y R1 , . . . , Y Rn ) for

the random w′ chosen or recovered from L2. Finally, B runs the H3 simulation process to ob-

tain h3i = H3(U, Y Ri , rY Ri ) and computes Z i = R⊕h3i for i = 1, . . . , n. (U, c, V, Z1, . . . , Zn)

is then returned as the signcryption of m.

• Unsigncryption queries: For a unsigncryption query on a ciphertext (U, c, V, Z1, . . . , Zn) and

a sender’s public key Y S both chosen by A, B proceeds as follows: it scans the list L3, looking

for tuples (U, Y R1 , Si , h3i ) (0 ≤ i ≤ qH 3) such that Ri = Z1⊕ h3i exists in an entry (Ri , h1i )

of L1, and for the corresponding elements h1i , mi = c⊕h1i is such that there exists an entry
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(c, U, Y R1 , . . . , Y Rn , h2i ) in the list L2 satisfying ê(P, V ) = ê(Y S , h2i ). If no such tuples are

found, the ⊥ symbol is returned to A. Otherwise, mi is returned to A.

At the end of the first stage, A outputs two plaintexts m0 and m1 and requires a chal-

lenge ciphertext built under the recipient’s public key Y u . B chooses a random bit b ∈ {0, 1}
and signcrypts mb . To do so, B sets U∗ = aP and randomly chooses R∗ from G1, runs the

H1 simulation process to obtain h1
∗ = H1(R

∗), computes cb = mb ⊕ h1
∗, runs the H2 sim-

ulation process to obtain h2
∗ = H2(cb , U

∗, Y R1 , . . . , Y Rn ), and computes V ∗ = h2
∗Y S . Then

B randomly picks Z1
∗, . . . , Zn

∗ from distributions. Finally, B sends the challenge ciphertext

σ = (U∗, cb , V
∗, Z1

∗, . . . , Zn
∗) = (aP, cb , V

∗, Z1
∗ . . . , Zn

∗) to A. A performs a second series of

queries at a second stage. These queries are handled by B as those at the first stage. It is easy to

show that A will not realize that σ is not a valid signcryption for the sender’s private key xS and

the public key Y u unless it asks for the hash value H3(aP, bP, abP ). In that case, the solution

of the Diffie-Hellman problem would be inserted in L3 exactly at that moment and it does not

matter if the simulation of A’s view is no longer perfect.

At the end of the game, A produces a result which is ignored by B. The latter just looks into

the list L3 for tuples of the form (aP, bP,Di , .). For each of them, B checks whether ê(P,Di) =

ê(aP, bP ) and, if this relation holds, stops and outputs Di as a solution of the CDH problem. If

no tuple of this kind satisfies the latter equality, B stops and outputs “failure”.

We can now assess B’s probability of success. Let AskH3 be the event that A asks the hash

value of abP during the simulation. As long as the simulation of the attack’s environment is

perfect, the probability for AskH3 to happen is the same as in a real attack. In a real attack, we

have

Pr[b = b′] ≤ Pr[b = b′|¬AskH3]Pr[¬AskH3] + Pr[AskH3] =
1

2
+

1

2
Pr[AskH3]

and then we have ε = 2Pr[b = b′] − 1 ≤ Pr[AskH3]. Now, the probability that the simulation is

not perfect remains to be assessed. The only case where it can happen is when a valid ciphertext

is rejected in a unsigncryption query. It is easy to see that for every tuple (U, Y R1 , Si , h3i ) in L3,

there is exactly one pair (h1i , h2i ) of elements in the range of oracles H1 and H2 providing a valid

ciphertext. The probability to reject a valid ciphertext is thus not greater than qH 3/2
2k . So we

have

ε′ ≥ ε− qH 3qusc

22k
.

The bound on B’s computation time derives from the fact that every unsigncryption query requires

at most 2 pairing evaluations while the extraction of the solution from L3 implies to compute at
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most 2qH 3 pairings.

Theorem 2. In the random oracle model, if an adversary F that has a non-negligible ad-

vantage ε against the MRSC-EUF-CMA security of the above scheme when running in a time t

and performing qsc signcryption queries, qusc unsigncryption queries and qH i queries on oracles

H i (i = 1, 2, 3), then there exists an algorithm B that can solve the Diffie-Hellman problem in G1

with a probability ε′ ≥ ε− qscqH2

2k in a time t′ = t.

Proof. B receives a random instance (aP, bP ) of the Diffie-Hellman problem. It uses F as a

subroutine to solve that instance and plays the role of F ’s challenger in the game of Definition 3.

It initializes F with Y u = bP as a challenge public key. F then performs adaptive queries that

are handled like explained below (using lists L1, L2, L3 as in the proof of Theorem 1):

• H1 and H3 queries: H1 and H3 queries are dealt with in the usual way as in the proof of

Theorem 1.

• H2 queries: When F asks the hash value of a tuple (c, U, Y R1 , . . . , Y Rn ) that was previ-

ously queried, B returns the value defined at the previous query. For a query on a new tuple

(c, U, Y R1 , . . . , Y Rn ), B picks a random w ∈ Zq and defines the value of H2(c, U, Y R1 , . . . , Y Rn )

to be w(aP ) which is returned to F .

• Signcryption queries: For a signcryption query on a message chosen by F , B picks r ∈ Zq

and R ∈ G1 randomly, computes U = rP and c = m ⊕ H1(R) (where the value H1

is obtained from oracle simulation algorithm). If the value of H2 is already defined at

(c, U, Y R1 , . . . , Y Rn ), then B outputs “failure” and halts. Otherwise, B picks a random

w ∈ Zq and sets H2(c, U,R1, . . . , Y Rn ) = wP . B then computes V = wY S and Z i =

R⊕H3(U, Y Ri , rY Ri ) for i = 1, . . . , n (where the value H3 is obtained from oracle simulation

algorithm). The ciphertext (U, c, V, Z1, . . . , Zn) is then returned to F as the signcryption of

m.

At the end of the game, F produces a ciphertext (U ′, c′, V ′, Z1
′, . . . , Zn

′). If the forgery is valid,

we have ê(P, V ′) = ê(Y u , H2(c
′, U ′, Y R1 , . . . , Y Rn )). If the hash value H2(c

′, U ′, Y R1 , . . . , Y Rn ) was

not asked by F during the simulation, B outputs “failure” and stops. Otherwise, the hash value

H2(c
′, U ′, Y R1 , . . . , Y Rn ) must have been defined to be w(aP ), for some w ∈ Zq which is known

to B, and V ′ must be equal to w(abP ) that can then easily extract the solution w−1V ′ of the

CDH problem in G1. We can now assess B’s probability of success. It is easy to see that the

probability for B to fail in answering a signcryption query is not greater than qscqH 2/2
k (since at



10

each signcryption query, there is at most qH 2 elements in L2 and the randomly chosen r ∈ Zq is

uniformly taken from a set of 2k elements). Therefore, we have

ε′ ≥ ε− qscqH 2

2k
.

5.2 Efficiency

We compare the major computational costs and communication overheads (the length of the ci-

phertext) of our scheme with those of the obvious construction of multi-recipient signcryption that

simply re-signcrypts a message n times using a signcryption scheme. To signcrypt a message m,

our scheme only needs n+2 scalar multiplications in G1 (to compute rP , xSH2(c, U, Y R1 , . . . , Y Rn ),

and rY Ri ) and n+2 hash functions (to compute H1(R), H2(c, U, Y R1 , . . . , Y Rn ) and H3(U, Y Ri , rY Ri )).

The ciphertext is (n + 2)|G1| + |m|. On the other hand, re-signcrypting a message n times us-

ing Yang et al.’s scheme[17] (RSY approach for short) needs 3n scalar multiplications in G1 (to

compute riP , xSH1(m,U i , Y Ri ), and riY Ri ) and 3n hash functions (to compute H1(m,U, Y Ri ),

H2(U, Y Ri , rY Ri ) and H3(U, Y Ri , rY Ri )). The ciphertext is 3n|G1| + n|m|. We summarize the

above comparisons in the following Table 1. It is obvious that our scheme is more efficient than

Table 1: Efficiency comparison

Scalar multiplications in G1 Hash functions Ciphertext size

RSY approach 3n 3n 3n|G1|+ n|m|
Our scheme n + 2 n + 2 (n + 2)|G1|+ |m|

re-signcrypting a message n times using Yang et al.’s scheme.

6 Conclusions

We have proposed a multi-recipient signcryption scheme that broadcasts a message to multiple

users in a secure and authenticated manner. Our scheme is proved to be secure in the random

oracle model assuming the Gap Diffie-Hellman problem is computationally hard. Since it has

much less computational costs and communication overheads than re-signcrypting a message n

times using a signcryption scheme, we expect that our scheme can be used to transmit messages

efficiently through the Internet.
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