
An Algorithm for the ηT Pairing Calculation in
Characteristic Three and its Hardware

Implementation
Jean-Luc Beuchat∗, Masaaki Shirase†, Tsuyoshi Takagi†, and Eiji Okamoto∗

∗Laboratory of Cryptography and Information Security
University of Tsukuba

1-1-1 Tennodai, Tsukuba
Ibaraki, 305-8573 Japan

†Future University-Hakodate
School of Systems Information Science

116-2 Kamedanakano-cho, Hakodate
Hokkaido, 041-8655, Japan

Abstract— In this paper, we propose a modified ηT pairing
algorithm in characteristic three which does not need any cube
root extraction. We also discuss its implementation on a low cost
platform which hosts an Altera Cyclone II FPGA device. Our
pairing accelerator is ten times faster than previous known FPGA
implementations in characteristic three.
Keywords: Tate pairing, ηT pairing, characteristic three, el-
liptic curve, hardware accelerator, FPGA.

I. INTRODUCTION

Since the introduction of pairings over (hyper)elliptic curves
in constructive cryptographic applications, an ever increasing
number of protocols based on Weil or Tate pairings have
appeared in the literature: identity-based encryption [1], short
signature [2], and efficient broadcast encryption [3] to men-
tion but a few. Nowadays pairing-based cryptosystems have
become a central research topic in cryptography.

Miller’s algorithm [4] was the only way to compute the
Tate pairing until 2002, where significant improvements were
independently proposed by Barreto et al. [5] and Galbraith et
al. [6]. One year later, Duursma and Lee gave a closed formula
in the case of characteristic three [7]. They described an
iterative scheme involving additions, multiplications, cubing
operations, and cube root extractions over F3m . This work was
then extended by Kwon, who proposed a closed formula for
the Tate pairing computation for supersingular elliptic curves
over F2m with odd dimension m [8]. Furthermore, he proved
that both his algorithm and Duursma-Lee algorithm can be
modified so that no inverse Frobenius map (i.e. square root
in characteristic two or cube root in characteristic three) is
required.

Fong et al. showed that extracting a square root in F2m

requires approximately the time of a field multiplication and
proposed an improved scheme for trinomials [9]. Barreto
extended this approach to cube root in characteristic three [10]:
if F3m admits an irreducible trinomial xm + axk + b (a, b ∈
{−1, 1}) with the property k ≡ m (mod 3), then five shifts

and five additions allow to implement this operation. How-
ever, these algorithms restrict the choice of curves and it
seems interesting to design pairing algorithms without inverse
Frobenius maps. Hardware implementations also benefit from
such pairing algorithms: removing the inverse Frobenius maps
allows to design simpler arithmetic and logic units.

By introducing the ηT pairing, Barreto et al. reduced the
number of iterations of Duursma-Lee algorithm by half [11].
However, this algorithm reintroduces inverse Frobenius maps.
Recently, Shu et al. described how to get rid of square roots in
characteristic two [12]. In this paper, we introduce a modified
ηT pairing algorithm in characteristic three which does not
require any cube root (Section II). Then, we discuss its hard-
ware implementation on a low cost Field Programmable Gate
Array (FPGA) board hosting Altera Cyclone II technology
(Section III) and we compare this pairing accelerator against
several software and hardware architectures reported in the
literature (Section IV).

II. AN ALGORITHM FOR THE ηT PAIRING CALCULATION

Let E be an elliptic curve over Fq, where q is a power of
a prime number. A formal symbol (P) is defined for each
point P of the curve. A divisor D on E is then a finite
linear combination of such symbols with integer coefficients:
D =

∑
j aj(Pj), aj ∈ Z. The degree of a divisor is defined

by deg(
∑

j aj(Pj)) =
∑

j aj ∈ Z. For an introduction to
divisors, we refer the reader to [13]. Let l > 0 be an integer
relatively prime to q. The least positive integer k satisfying
qk ≡ 1 (mod l) is called embedding degree or security
multiplier. Let E(Fq)[l] be the set of points P ∈ E(Fq)
such that lP = O, where O is the point at infinity. Consider
P ∈ E(Fq)[l] and Q ∈ E(Fqk)[l]. The reduced Tate pairing
is the map

el : E(Fq)[l]× E(Fqk)[l]→ F∗
qk ,

given by
el(P,Q) = fl,P (DQ)

qk−1
l , (1)

where fl,P is a rational function on E whose divisor is
equivalent to l(P) − l(O), and DQ is a divisor of degree 0
equivalent to (Q)− (O). fl,P and DQ have disjoint supports.
The computation of the (qk − 1)/l-th power is referred to
as final exponentiation. The reduced Tate pairing satisfies the
following properties:

• Bilinearity: let a be an integer; then el(aP,Q) =
el(P, aQ) = el(P,Q)a, for all P ∈ E(Fq)[l] and Q ∈
E(Fqk)[l].

• Non-degeneracy. If el(P,Q) = 1 for all Q ∈ E(Fqk)[l],
then P = O.

Equation (1) was initially computed according to an algorithm
introduced by Miller in the context of Weil pairing [4]. Several
improvements have been proposed since 2002 (see for example
[5], [6], [7], [8]). Barreto et al. [5] proved that the reduced
pairing can be computed as

el(P,Q) = fl,P (Q)
qk−1

l ,

where fl,P is evaluated on a point rather than on a divisor.
In the same paper, the authors exploited a distortion map to
further enhance Miller’s algorithm.

This work is devoted to the computation of pairing in
characteristic three (i. e. q = 3m, where m is odd). Let Eb be
a supersingular elliptic curve over F3m :

Eb : y2 = x3 − x+ b, with b ∈ {−1, 1}.

The distortion map ψ : Eb(F3m)→ Eb(F36m) is then defined
as follows:

ψ(Q) = ψ(xq, yq) = (−xq + ρ, yqσ),

where σ and ρ belong to F36m and respectively satisfy σ2 =
−1 and ρ3 = ρ+ b. The modified Tate pairing ê(P,Q) is then
given by:

ê(P,Q) = el(P,ψ(Q)).

Note that {1, σ, ρ, σρ, ρ2, σρ2} is a basis of F36m over F3m .
We will therefore represent an element A ∈ F36m as

A = (a0, a1, a2, a3, a4, a5)

= a0 + a1σ + a2ρ+ a3σρ+ a4ρ
2 + a5σρ

2,

where the ai’s belong to F3m . This representation is equivalent
to a tower extension of F3m (see for instance [14]):

F32m = F3m [y]/(y2 + 1)

and
F36m = F32m [z]/(z3 − z − b),

where y2 +1 and z3− z− b are respectively irreducible poly-
nomials over F3m and F32m . This tower field representation
allows one to replace arithmetic over F36m by arithmetic over
F3m .

Barreto et al. defined the ηT pairing as [11]:

ηT (P,Q) = fT,P (ψ(Q)),

for some T ∈ Z. This formula does not always give a non-
degenerate, bilinear pairing. However, Barreto et al. described
some cases where ηT (P,Q)W is a non-degenerate and bilinear
map (a final exponentiation is therefore required for pairing-
based cryptosystems). In such cases, this approach reduces the
number of iterations by half (Algorithm 1). In characteristic
three, the relationship between the ηT pairing and the modified
Tate pairing is given by:(

ηT (P,Q)W
)3T 2

= ê(P,Q)Z (2)

where

T = −b3
m+1

2 − 1,

Z = −b3
m+3

2 , and

W = (33m − 1)(3m + 1)(3m − b3
m+1

2 + 1).

Let v = ηT (P,Q)W . The modified Tate pairing can be
computed as follows (see Appendix I for details):

ê(P,Q) = v−2 ·
(
v3(m+1)/2

· 3m√
v3(m−1)/2

)−b

.

This method is more efficient than the one proposed by
Barreto et. al in [11]. ηT (P,Q) can be calculated according to
Algorithm 1. As mentioned in Section I, this scheme involves
two cube root extractions at each iteration.

Algorithm 1 Computation of ηT pairing in characteristic
three [11].

Require: P̃ = (x̃p, ỹp) and Q̃ = (x̃q, ỹq) ∈ Eb(F3m)[l]. The
algorithm requires R̃0 and R̃1 ∈ F36m , as well as r̃0 ∈
F3m for intermediate computations.

Ensure: ηT (P̃ , Q̃)
1: if b = 1 then
2: ỹp ← −ỹp;
3: end if
4: r̃0 ← x̃p + x̃q + b;
5: R̃0 ← −ỹpr̃0 + ỹqσ + ỹpρ;
6: for i = 0 to (m− 1)/2 do
7: r̃0 ← x̃p + x̃q + b;
8: R̃1 ← −r̃20 + ỹpỹqσ − r̃0ρ− ρ2;
9: R̃0 ← R̃0R̃1;

10: x̃p ← x̃
1/3
p ; ỹp ← ỹ

1/3
p ;

11: x̃q ← x̃3
q; ỹq ← ỹ3

q ;
12: end for
13: Return R̃0;

We propose here a modified ηT pairing algorithm in char-
acteristic three which computes ηT (P,Q)3

(m+1)/2
without any

cube root operation (Algorithm 2). A proof of correctness of
this new scheme is provided in Appendix II. Let us describe
now how to implement the original ηT (P,Q) pairing with
our algorithm. Recall that tripling a point requires only four
cubing operations in characteristic three for supersingular
elliptic curves (see for instance [15]): 3(xp, yp) = (x9

p −
b,−y9

p). Therefore, we suggest to compute 3
m−1

2 P by means

of 2(m− 1) cubings and to take advantage of the bilinearity
of ηT (P,Q)W :(

ηT

(
3

m−1
2 P,Q

)3
m+1

2
)W

=
(
ηT (P,Q)W

)3m

. (3)

Note that cubing over F3m is efficiently performed in hardware
(Section III-B). A postprocessing step involving a 3m-th root
is further required. However, this operation is carried out by
means of six additions (or subtractions) and a negation over
F3m (see Appendix III for details). Assume that b = 1. Raising
ηT (P,Q)3

(m+1)/2
to the W -th power is based on the following

observation:

W = 35m + 2 · 34m + 33m + 3m+(m+1)/2 + 3(m+1)/2

− (34m+(m+1)/2 + 33m+(m+1)/2 + 32m + 2 · 3m + 1).

This operation requires 11 multiplications and a single in-
version over F36m , as well as additions over F3m (see Ap-
pendix IV for details).

Algorithm 2 Proposed computation of ηT (P,Q)3
(m+1)/2

.

Require: P = (xp, yp) and Q = (xq, yq) ∈ Eb(F3m)[l]. The
algorithm requires R0 and R1 ∈ F36m , as well as r0 ∈
F3m and d ∈ F3 for intermediate computations.

Ensure: ηT (P,Q)3
(m+1)/2

1: if b = 1 then
2: yp ← −yp;
3: end if
4: r0 ← xp + xq + b;
5: d← b;
6: R0 ← −ypr0 + yqσ + ypρ;
7: for i = 0 to (m− 1)/2 do
8: r0 ← xp + xq + d;
9: R1 ← −r20 + ypyqσ − r0ρ− ρ2;

10: R0 ← (R0R1)3;
11: yp ← −yp;
12: xq ← x9

q; yq ← y9
q ;

13: d← (d− b) mod 3;
14: end for
15: Return R0;

III. HARDWARE IMPLEMENTATION

This section describes the hardware implementation of
Algorithm 2 for the field F3[x]/(x97 + x12 + 2) and the
curve y2 = x3 − x + 1 (i.e. b = 1). A first approach
consists in designing an architecture able to compute both
pairing and final exponentiation. However, it does not allow
to take advantage of the constant coefficients of R1 (see
Algorithms 1 and 2) to optimize the multiplication over
F36m . Therefore, we suggest to design a pairing accelerator
evaluating ηT (P,Q)3

(m+1)/2
and a coprocessor responsible for

final exponentiation working in parallel. In this paper, we will
only focus on the computation of the modified ηT pairing.
Algorithm 2 and final exponentiation require respectively

(m − 1)/2 + 1 = 49 and 11 multiplications over F36m . The
inversion over F36m can be replaced by a few multiplications
and additions over F3m and a single inversion over F3m [14].
Consequently, the final exponentiation requires less operations
(and thus less hardware) than the computation of the ηT

pairing.
In order to compare our architecture against software imple-

mentations, we decided to choose a design board whose price
is comparable to that of an entry level desktop computer. We
selected a DE2 development and education board [16] which
costs $495 and hosts an Altera Cyclone II EP2C35F672C6
FPGA. Note that Altera provides free simulation and design
tools for the Cyclone II family. The smallest unit of logic
in a Cyclone II is called Logic Element (LE). Each LE
includes a 4-input Look-Up Table (LUT), carry logic, and a
programmable register. A Cyclone II EP2C35F672C6 device
contains for instance 33216 LEs. Readers who are not familiar
with Cyclone II devices should refer to [17] for further details.
Since we leave the study of final exponentiation for further
work, our pairing accelerator should not utilize all resources
of our target FPGA. Thus, we impose a size constraint: our
design must require less than 50% of the available configurable
logic.

A. Addition and Subtraction over F3m

Since they are performed component-wise, addition and
subtraction over F3m are rather straightforward operations.
Each element ai of F3 is encoded by two bits aL

i and aH
i

such that [18]: aL
i = ai mod 2 and aH

i = ai div 2. Thus,
the addition of ai and bi on a Cyclone-II FPGA requires
two 4-input LUTs. A nice property of this encoding is that
the negation of ai is performed by swapping the bits aL

i

and aH
i . Our processor includes an operator which adds or

subtracts up to three elements of F3m and stores the result in
a register (Figure 1a).

D1
Ctrl

S
gn

0

S
gn

1

S
gn

2

3 2 1 0

E
n

C

D
pe_cubingCtrl E

n1

S
gn

E
n0

2 1 0

−1

x 3

Sgn

En0

En1

D

C

D0 D1 D2

S

Sgn0

En

Sgn2

Sgn1

(b)(a)

−1 −1 −1

D2D0

S

pe_add

Fig. 1. (a) Addition over F3m . (b) Cubing over F3m .

B. Cubing over F3m and F36m

Cubing is also a pretty simple arithmetic operation. Since
F36m is constructed as an extension field of F3m , the com-
putation of R3

0 involved in Algorithm 2 is replaced by six
cubing, six additions (or subtractions), and a negation over
F3m . Indeed, by noting that:

σ3 = −σ, (ρ2)3 = ρ2 − ρ+ 1,

ρ3 = ρ+ 1, (σρ2)3 = −σρ2 + σρ− σ, and

(σρ)3 = −σρ− σ,

we obtain

C3 = (c0 + c1σ + c2ρ+ c3σρ+ c4ρ
2 + c5σρ

2)3

= (c30 + c32 + c34) + (−c31 − c33 − c35)σ + (c32 − c34)ρ
+ (−c33 + c35)σρ+ c34ρ

2 + (−c35)σρ2,

where C = (c0, c1, c2, c3, c4, c5) belongs to F36m . Let us now
consider the computation of b(x) = a(x)3 over F3m . We have:

b(x) = a(x)3 =

(
m−1∑
i=0

aix
3i

)
mod f(x),

where f(x) is a degree m irreducible polynomial over F3.
Since we set f(x) = x97 + x12 + 2, a simple Maple or Pari
program provides us with a closed formula for cubing over
F3m :

b0 = a93 + a89 + a0, b3 = a94 + a90 + a1

b1 = a65 − a61, . . .

b2 = a33, b96 = a32.

The most complex operation involved in cubing is the addition
of three elements of F3. Therefore, the critical path includes
only two LUTs. Our pairing accelerator embeds a single
cubing unit (Figure 1b) which computes either a(x)3 or
(−a(x))3 according to a control bit. In order to guarantee a
short critical path, the operator includes two pipeline stages. It
is worth noticing that the only degree 97 irreducible trinomial
over F3 allowing a simple cube root extraction [10] has a
more complex closed formula for cubing. Thus, Algorithm 2
offers additional flexibility to select parameters leading to the
smallest hardware operators.

C. Multiplication over F3m

We designed a Most Significant Element (MSE) first mul-
tiplier over F3m based on a paper by Song and Parhi [19] to
compute a(x)b(x) mod f(x). At step i we compute a degree
(m+D − 2) polynomial t(x) which is the sum of D partial
products:

t(x) =
D−1∑
j=0

aDi+jx
jb(x).

A degree (m+D−1) polynomial s(x), updated according to
the celebrated Horner’s rule, allows to accumulate the partial
products:

s(x)← t(x) + xD · (s(x) mod f(x)).

Thus, after dm/De steps, this algorithm returns a degree (m+
D − 1) polynomial s(x), which is congruent with a(x)b(x)
modulo f(x). The circuit described by Song and Parhi requires
dedicated hardware to compute p(x) = s(x) mod f(x) [19].
We suggest to achieve this final modulo f(x) reduction by
performing an additional iteration with a−j = 0, 1 ≤ j ≤ D.
Since t(x) is now equal to zero, we have:

s(x) = xD · (a(x)b(x) mod f(x)).

Therefore, it suffices to consider the m most significant
coefficients of s(x) to get the result (Figure 2a):

p(x) = s(x)/xD.

Algorithm 3 summarizes this multiplication scheme. Synthesis
results indicate that for D = 3 and D = 4, such a multiplier
requires respectively 1170 and 1560 LEs. According to our
size constraint, up to ten multipliers can be included in our
pairing accelerator.

Algorithm 3 MSE multiplication over F3m .
Require: A degree m monic polynomial f(x) = xm +

fm−1x
m−1 + . . . + f1x + f0, a degree n polynomial

a(x), and a degree (m− 1) polynomial b(x). We assume
that a−j = 0, 1 ≤ j ≤ D. The algorithm requires
a degree (m + D − 1) polynomial s(x) as well as a
degree (m + D − 2) polynomial t(x) for intermediate
computations.

Ensure: p(x) = a(x)b(x) mod f(x)
1: s(x)← 0;
2: for i in dm/De − 1 downto −1 do

3: t(x)←
D−1∑
j=0

aDi+jx
jb(x);

4: s(x)← t(x) + xD · (s(x) mod f(x));
5: end for
6: p(x)← s(x)/xD;

Shu et al. proposed to reduce the partial products
xjaDi+jb(x) as well as xDp(x) modulo f(x) in order to
keep a degree (m − 1) intermediate result [12] (Figure 2b).
This approach avoids the extra clock cycle introduced by our
algorithm at the price of a larger critical path. It also requires
D modulo f(x) reductions instead of a single one. However,
due to the irreducible polynomial over F3 and the values
of D considered in this work, the hardware overhead is not
significant.

Least Significant Element (LSE) first algorithms have for
instance been investigated by Bertoni et al. [20] (Figure 2c),
and more recently by Kumar et al. [21]. Although the operator
designed by Bertoni et al. has the same critical path as our
multiplier, it requires additional resources to compute powers
of b(x) modulo f(x). The technique introduced in [21] allows
to shorten the critical path at the price of extra registers.

s(x)

x2

PPG

a2ia2i+1

x x2

mod f(x)

Critical
path

mod f(x)

s(x)

x

PPG

a2i+1 a2i

x2

mod f(x)

01

b(x)

p(x)

PPG

a2i+1 a2i

x

mod f(x)

x2

Critical
path

Critical
path

p(x)

Register

t(x)

b(x)

p(x)

(a) (b) (c)

b(x)

Final reduction

p(x)

b(x)

PPG

PPG

PPG

mod f(x)

Fig. 2. Three multipliers over F3m (D = 2). a) Improvement of the
algorithm by Song and Parhi [19]. Algorithms proposed by b) Shu et al. [12],
and c) Bertoni et al. [20]. A box labelled PPG denotes a Partial Product
Generator. A box with rounded corners involves only wiring.

D. Multiplication over F36m

The cost of Algorithm 2 is dominated by the multiplication
of R0 by R1 over F36m . By applying Karatsuba-Ofman’s
algorithm (see for instance [22]) and taking advantage of
the constant coefficients of R1, the product R0R1 could be
computed in parallel by means of 13 multiplications and
50 additions (or subtractions) over F3m [23]. Two further
multiplications are needed to compute ypyq as well as r20 (a
straightforward modification of the scheduling of Algorithm 2
allows to compute r20 , ypyq, and R0R1 in parallel). However,
according to our size constraints, it is impossible to imple-
ment 15 multipliers on our target FPGA. Furthermore, our
processor embeds only three adders over F3m and scheduling
50 additions could be a complex task. We propose here an
algorithm which offers a better trade-off between the number
of additions and multiplications.

Let A = a0 + a1σ + a2ρ + a3σρ + a4ρ
2 + a5σρ

2 and
C = c0 +c1σ+c2ρ+c3σρ+c4ρ2 +c5σρ2 be two elements of
F36m . We write each coefficient ci as a sum of two elements
c
(0)
i and c

(1)
i ∈ F3m . Thanks to this notation we define the

product C = A · (−r20 + ypyqσ − r0ρ− ρ2) as follows:

c
(0)
0 = −a4r0 − a2, c

(1)
0 = −a0r

2
0 − a1ypyq,

c
(0)
1 = −a5r0 − a3, c

(1)
1 = a0ypyq − a1r

2
0,

c
(0)
2 = −a0r0 − a4 + c

(0)
0 , c

(1)
2 = −a2r

2
0 − a3ypyq,

c
(0)
3 = −a1r0 − a5 + c

(0)
1 , c

(1)
3 = a2ypqq − a3r

2
0,

c
(0)
4 = −a2r0 − a0 − a4, c

(1)
4 = −a4r

2
0 − a5ypyq,

c
(0)
5 = −a3r0 − a1 − a5, c

(1)
5 = a4ypyq − a5r

2
0.

Note that computation of the c(0)i ’s, 0 ≤ i ≤ 5, requires six
multiplications over F3m and depends neither on r20 nor on
ypyq. Thus, we can perform eight multiplications over F3m in
parallel (r20 , ypyq, and air0, 0 ≤ i ≤ 5). Consider now c

(1)
0

and c
(1)
1 and assume that (a0 + a1), as well as (ypyq − r20),

are stored in registers. Karatsuba-Ofman’s algorithm allows to

compute c(1)0 and c
(1)
1 by means of three multiplications and

three additions over F3m :

c
(1)
0 = −a0r

2
0 − a1ypyq, (4)

c
(1)
1 = a0ypyq − a1r

2
0

= (a0 + a1)(ypyq − r20) + a0r
2
0 − a1ypyq. (5)

Therefore, the computation of the c(1)i ’s involves nine multi-
plications over F3m , which can be carried out in parallel.

Algorithm 4 summarizes this multiplication scheme involv-
ing 17 multiplications and 29 additions (or subtractions) over
F3m . Since at most nine multiplications can be performed in
parallel, our pairing accelerator hosts nine multipliers over
F3m and the computation of R0R1 involves two multiplication
cycles. A careful scheduling allows to share operands between
up to three operators, thus saving hardware resources (Table I):

• During the first multiplication cycle, M0, M1, and M2

respectively compute a0r0, a2r0, and a4r0. The MSE
multiplier described in Section III-C stores its first
operand in a shift register, and its second operand in a
standard register. Since a shift register is more complex
(an operand is loaded in parallel, and then shifted), we
load the common operand r0 in this component. At the
end of the first cycle, the three standard registers still
contain a0, a2, and a4. Therefore it suffices to load r20 in
the shift register before starting the second multiplication
cycle. Figure 3a describes the operator we designed.
This component is connected to the addition/subtraction
operator described in Section III-A (Figure 4).

• The same architecture allows to compute a1r0, a3r0,
a5r0, a1ypyq, a3ypyq, and a5ypyq.

• The five remaining multiplications involve a slightly
more complex component (Figure 3b). Two shift registers
are required to compute r20 and ypyq since there is no
common operand. At the end of the first multiplication
cycle, a dedicated subtracter computes ypyq − r20 and
stores the result in the shift registers. Three clock cycles
are requested to load (a0 +a1), (a2 +a3), and (a4 +a5),
which have been computed during the first multiplication
cycle (see Algorithm 4).

This approach could also be adopted to implement the multi-
plication of R̃0 by R̃1 in Algorithm 1.

TABLE I
MULTIPLICATION OVER F3m : SCHEDULING.

First cycle Second cycle
M0 a0 · r0 a0 · r2

0
M1 a2 · r0 a2 · r2

0
M2 a4 · r0 a4 · r2

0

M3 a1 · r0 a1 · ypyq

M4 a3 · r0 a3 · ypyq

M5 a5 · r0 a5 · ypyq

M6 r0 · r0 (a0 + a1) · (ypyq − r2
0)

M7 yp · yq (a2 + a3) · (ypyq − r2
0)

M8 – (a4 + a5) · (ypyq − r2
0)

Algorithm 4 Multiplication over F36m .
Require: A = a0 + a1σ + a2ρ+ a3σρ+ a4ρ

2 + a5σρ
2 ∈ F36m . r0, yp, and yq ∈ F3m .

Ensure: C = A · (−r20 + ypyqσ − roρ− ρ2)
1: Compute in parallel (8 multiplications and 3 additions over F3m): pi ← air0, 0 ≤ i ≤ 5; p6 ← r0r0; p7 ← ypyq;
s0 ← a0 + a1; s1 ← a2 + a3; s2 ← a4 + a5;

2: Compute in parallel (7 additions over F3m):

s4 ← p7 − p6; // ypyq − r20 c3 ← a5 + p1; // a5 + a1r0

c0 ← a2 + p4; // a2 + a4r0 c4 ← a0 + p2; // a0 + a2r0

c1 ← a3 + p5; // a3 + a5r0 c5 ← a1 + p3; // a1 + a3r0

c2 ← a4 + p0; // a4 + a0r0

3: Compute in parallel (9 multiplications and 4 additions over F3m):

p8 ← a0p6; // a0r
2
0 p15 ← a5p7; // a5ypyq

p9 ← a1p7; // a1ypyq p16 ← s2s4; // (a4 + a5)(ypyq − r20)
p10 ← s0s4; // (a0 + a1)(ypyq − r20) c2 ← c2 + c0; // a0r0 + a4 + a4r0 + a2

p11 ← a2p6; // a2r
2
0 c3 ← c3 + c1; // a1r0 + a5 + a5r0 + a3

p12 ← a3p7; // a3ypyq c4 ← c4 + a4; // a2r0 + a0 + a4

p13 ← s1s4; // (a2 + a3)(ypyq − r20) c5 ← c5 + a5; // a3r0 + a1 + a5

p14 ← a4p6; // a4r
2
0

4: Compute in parallel (15 additions over F3m):

c0 ← −c0 − p8 − p9; c3 ← −c3 + p13 + p11 − p12;
c1 ← −c1 + p10 + p8 − p9; c4 ← −c4 − p14 − p15;

c2 ← −c2 − p11 − p12; c5 ← −c5 + p16 + p14 − p15;

3 2 1 09 8 7 6 5 412 11 10

Sel1

Se
l0

R
st

1

R
st

0

E
n1

E
n0

Sh
if

t

L
d4

L
d3

L
d2

L
d1

L
d0
M 0 M 1 M 2

Control word

Sel

R
st

1

R
st

0

E
n0

Sh
if

t

E
n1

L
d3

L
d2

L
d1

L
d0

Q

En1
Rst1

Sel

En0
Rst0

00 01 10 11

Synchronous reset

L
d0

L
d1

L
d2

L
d3

Sh
if

t
D

0

D
1

Shift register

00 01 10 11

En0
Rst0

En1
Rst1

Q

Sel1

Synchronous reset

01 01

L
d0

L
d1

L
d2

D
0

D
1

Sel0
Shift
Ld4Ld3

Shift register

Control word

(a) pe_mult_block_t1_generic (b) pe_mult_block_t2_generic

M 6 M 7 M 8

pe_mult_block_t1_generic
D1D0

Q

Ctrl
10 9 8 7 6 5 4 3 2 1 0

D1D0

Q

Ctrl
pe_mult_block_t2_generic

Fig. 3. Building blocks for multiplication over F36m .

E. Architecture of the Pairing Accelerator

Figure 4 shows the architecture of our hardware accelerator.
Inputs and outputs, as well as intermediate results, are stored
in registers implemented using embedded memory blocks
available in the FPGA.

The control unit mainly consists of a ROM containing the
microcode of Algorithm 2 and a program counter. The size
of the microcode depends on D, the number of coefficients
processed at each clock cycle by a multiplier over F3m . For
D = 3, the initialization step of Algorithm 2 (copy of inputs
in registers of multipliers and computation of r0, d, and R0)
and the main loop respectively require 47 and 98 clock cycles.
Since m = 97, a pairing is completed after 47 + 98 · (m −
1)/2 = 47 + 98 · 49 = 4849 clock cycles. For D = 4, the
initialization and the main loop respectively involve 39 and 80
microinstructions. Thus, the computation of a pairing requires
39 + 80 · 49 = 3959 clock cycles.

pe_add
D1

Ctrl

Mux10 1

0

1Mux0

pe_mult_block_t1_generic
D1D0

Q

Ctrl

Mux2

0

1

D1D0

Q

Ctrl
pe_mult_block_t2_generic

RAM

Q_a

Q_b

M2

M1

M0

M8

M7

M6

M
ux

0

M
ux

1

M
ux

2

R
A

M

PE
0

PE
1

PE
2

PE
4

PE
3

Host computer

Cyclone II EP2C35

C

D
pe_cubingCtrl

Ctrl

Controller

M5

M4

M3

PE1PE0 PE2

PE3

PE4

pe_mult_block_t1_generic
D1D0

Q

Ctrl

D2D0

S

Fig. 4. Architecture of the ηT pairing accelerator.

IV. RESULTS AND COMPARISONS

The proposed architecture was captured in the VHDL lan-
guage and prototyped on an Altera Cyclone II EP2C35F672C6
device. Both synthesis and place-and-route steps were per-
formed with Quartus II 6.0 Web Edition. VHDL simulations
and experiments with a DE2 board were carried out to exten-
sively test our design. The area and the calculation time depend
on D, the number of coefficients of a multiplier processed at
each clock cycle (Section III-C). The two rightmost columns
of Table II summarize our results for D = 3 and D = 4.
When D = 3, the pairing accelerator occupies 45% of the
LEs, thus meeting our size constraint (Section III). However,
choosing D = 4 lead to an architecture which requires 56%
of the configurable logic.

Several researchers described implementations of pairing al-
gorithms on Xilinx Virtex-II Pro FPGAs and reported the area
in terms of slices. Each slice features two 4-input LUTs, carry
logic, wide function multiplexers, and two storage elements.
Let us assume that Xilinx design tools try to utilize both LUTs
of a slice as often as possible (i.e. area optimization). Under
this hypothesis, we consider that a slice is roughly equivalent
to two LEs in our comparisons.

To our best knowledge, the FPGA-based pairing accelerator
described by Shu et al. in [12] is the fastest to date. It
computes the Tate pairing over F2239 in 34 µs on a Virtex-
II Pro 100 device (25287 slices). Ronan et al. designed an
embedded processor to compute the ηT pairing on genus
2 hyperelliptic curves [24]. This architecture requires 43986
slices on a Virtex-II Pro 125 device and computes a pairing
in 749 µs. Kerins et al. proposed an implementation of the
modified Duursma-Lee algorithm on a Xilinx Virtex-II Pro 125
FPGA [14]. Multiplication over F36m is performed according
to Karatsuba-Ofman’s algorithm. However, since the authors
do not take advantage of the constant terms of R1, this
operation requires 18 multiplications over F3m . Thus, the
hardware architecture consists of 18 multipliers and 6 cubing
circuits over F397 , along with “a suitable amount of simpler
F3m arithmetic circuits for performing addition, subtraction,
and negation” [14]. The authors claim that roughly 100% of
available resources are required to implement their pairing
accelerator. We can therefore estimate the cost to 55616
slices [12]. Remember that our target FPGA embeds 33216
LEs. Consequently, even if the final exponentiation unit we
left for future work requires 50% of the device, our processor
is smaller than the aforementioned solutions. Furthermore,
our approach requires a less expensive FPGA technology for
which free simulation and design tools are available.

Grabher and Page designed a coprocessor dealing with
F3m arithmetic, which is controlled by a general purpose
processor [18]. Their hardware accelerator embeds a single
multiplier over F3m . Our architecture requires roughly twice
as much LEs, while performing up to nine multiplications in
parallel.

Several researchers studied the software implementation of
pairings on smartcards or mobile phones (see for instance [25]
and [26]). For comparison purpose, they often provide the
reader with timings on desktop computers. Table III summa-
rizes such results which indicate that our FPGA architecture
achieves a speedup of 100.

TABLE III
COMPARISONS WITH SOFTWARE IMPLEMENTATIONS ON DESKTOP

COMPUTERS.

Kawahara Scott Proposed
et al. [25] et al. [26] architecture

Algorithm ηT pairing ηT pairing Algorithm 2
Processor Pentium M Pentium 4 FPGA

Clock frequency 1.73 GHz 3 GHz 0.149 GHz
Calculation time 10.15 ms 3.7 ms 0.033 ms

TABLE II
COMPARISON AGAINST PREVIOUS FPGA IMPLEMENTATIONS. THE PARAMETER D REFERS TO THE NUMBER OF COEFFICIENTS PROCESSED AT EACH

CLOCK CYCLE BY A MULTIPLIER.

Shu, Kwon, Ronan et al. [24] Grabher and Kerins et al. [14] Proposed architecture
and Gaj [12] Page [18] D = 3 D = 4

Algorithm ηT pairing ηT pairing Duursma-Lee Duursma-Lee Algorithm 2
Underlying field F2239 F2103 F397 F397 F397

Curve Elliptic Hyperelliptic Elliptic Elliptic Elliptic
FPGA Virtex-II Pro 100 Virtex-II Pro 125 Virtex-II Pro 4 Virtex-II Pro 125 Cyclone II EP2C35

Free design tools No No Yes No Yes
Controller Hardwired logic Hardwired logic Microprocessor Hardwired logic Hardwired logic

Multiplier(s) 6 (over F2239) 12 (over F2103) 1 (over F397) 18 (over F397) 9 (over F397)
Area 25287 slices 43986 slices 4481 slices 55616 slices 14895 LEs 18553 LEs

Clock cycles – – – 12866 4849 3959
Clock frequency 84 MHz 32.3 MHz 150 MHz 15 MHz 149 MHz 147 MHz
Calculation time 34µs 749µs 399.4µs 850µs 33µs 27µs

Final exponentiation Yes Yes No Yes No No

V. CONCLUSIONS

We have proposed a modified ηT pairing algorithm on
supersingular elliptic curves over F3m which does not need
any cube root. We have then described a pairing accelerator
based on a low cost platform hosting an Altera Cyclone II
FPGA. Since VHDL simulation and FPGA configuration are
performed with free design tools, the price of our system
is comparable to that of an entry level desktop computer.
Our results demonstrate a one hundred-fold improvement on
software implementations, and a ten-fold improvement on the
best known FPGA implementation in characteristic three. We
achieve the same calculation time than the fastest published
accelerator in characteristic two, while requiring less hardware
resources. Further work will include the design of a small
processing unit responsible for final exponentiation.

ACKNOWLEDGEMENT

This work was supported by the New Energy and Industrial
Technology Development Organization (NEDO), Japan.

REFERENCES

[1] D. Boneh and M. Franklin, “Identity-based encryption from the Weil
pairing,” in Advances in Cryptology – CRYPTO 2001, ser. Lecture Notes
in Computer Science, J. Kilian, Ed., no. 2139. Springer, 2001, pp. 213–
229.

[2] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil
pairing,” in Advances in Cryptology – ASIACRYPT 2001, ser. Lecture
Notes in Computer Science, C. Boyd, Ed., no. 2248. Springer, 2001,
pp. 514–532.

[3] D. Boneh, C. Gentry, and B. Waters, “Collusion resistant broadcast
encryption with short ciphertexts and private keys,” in Advances in
Cryptology – CRYPTO 2005, ser. Lecture Notes in Computer Science,
V. Shoup, Ed., no. 3621. Springer, 2005, pp. 258–275.

[4] V. S. Miller, “Short programs for functions on
curves,” 1986, unpublished manuscript available at
http://crypto.stanford.edu/miller/miller.pdf.

[5] P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott, “Efficient
algorithms for pairing-based cryptosystems,” in Advances in Cryptology
– CRYPTO 2002, ser. Lecture Notes in Computer Science, M. Yung,
Ed., no. 2442. Springer, 2002, pp. 354–368.

[6] S. D. Galbraith, K. Harrison, and D. Soldera, “Implementing the Tate
pairing,” in Algorithmic Number Theory – ANTS V, ser. Lecture Notes
in Computer Science, C. Fieker and D. Kohel, Eds., no. 2369. Springer,
2002, pp. 324–337.

[7] I. Duursma and H. S. Lee, “Tate pairing implementation for hyperelliptic
curves y2 = xp − x + d,” in Advances in Cryptology – ASIACRYPT
2003, ser. Lecture Notes in Computer Science, C. S. Laih, Ed., no. 2894.
Springer, 2003, pp. 111–123.

[8] S. Kwon, “Efficient Tate pairing computation for supersingular elliptic
curves over binary fields,” 2004, cryptology ePrint Archive, Report
2004/303.

[9] K. Fong, D. Hankerson, J. López, and A. Menezes, “Field inversion
and point halving revisited,” IEEE Transactions on Computers, vol. 53,
no. 8, pp. 1047–1059, Aug. 2004.

[10] P. S. L. M. Barreto, “A note on efficient computation of cube roots in
characteristic 3,” 2004, cryptology ePrint Archive, Report 2004/305.

[11] P. S. L. M. Barreto, S. Galbraith, C. Ó hÉigeartaigh, and M. Scott,
“Efficient pairing computation on supersingular Abelian varieties,” 2004,
cryptology ePrint Archive, Report 2004/375.

[12] C. Shu, S. Kwon, and K. Gaj, “FPGA accelerated Tate pairing based
cryptosystem over binary fields,” 2006, cryptology ePrint Archive,
Report 2006/179.

[13] J. H. Silverman, The Arithmetic of Elliptic Curves, ser. Graduate Texts
in Mathematics. Springer-Verlag, 1986, no. 106.

[14] T. Kerins, W. P. Marnane, E. M. Popovici, and P. Barreto, “Efficient
hardware for the Tate Pairing calculation in characteristic three,” in
Cryptographic Hardware and Embedded Systems – CHES 2005, ser.
Lecture Notes in Computer Science, J. R. Rao and B. Sunar, Eds., no.
3659. Springer, 2005, pp. 412–426.

[15] K. Harrison, D. Page, and N. P. Smart, “Software implementation of
finite fields of characteristic three, for use in pairing-based cryptosys-
tems,” LMS Journal of Computation and Mathematics, vol. 5, pp. 181–
193, Nov. 2002.

[16] DE2 Development and Education Board – User Manual, Altera, 2006,
available from Altera’s web site (http://altera.com).

[17] Cyclone II Device Handbook, Altera, 2006, available from Altera’s web
site (http://altera.com).

[18] P. Grabher and D. Page, “Hardware acceleration of the Tate Pairing in
characteristic three,” in Cryptographic Hardware and Embedded Systems
– CHES 2005, ser. Lecture Notes in Computer Science, J. R. Rao and
B. Sunar, Eds., no. 3659. Springer, 2005, pp. 398–411.

[19] L. Song and K. K. Parhi, “Low energy digit-serial/parallel finite field
multipliers,” Journal of VLSI Signal Processing, vol. 19, no. 2, pp. 149–
166, July 1998.

[20] G. Bertoni, J. Guajardo, S. Kumar, G. Orlando, C. Paar, and T. Wollinger,
“Efficient GF(pm) arithmetic architectures for cryptographic applica-
tions,” in Topics in Cryptology – CT-RSA 2003, ser. Lecture Notes in
Computer Science, M. Joye, Ed., no. 2612. Springer, 2004, pp. 158–
175.

[21] S. Kumar, T. Wollinger, and C. Paar, “Optimum digit serial GF(2m)
multipliers for curve-based cryptography,” IEEE Transactions on Com-
puters, vol. 55, no. 10, pp. 1306–1311, Oct. 2006.

[22] D. Zuras, “More on squaring and multiplying large integers,” IEEE
Transactions on Computers, vol. 43, no. 8, pp. 899–908, Aug. 1994.

[23] G. Bertoni, L. Breveglieri, P. Fragneto, and G. Pelosi, “Parallel hardware
architectures for the cryptographic Tate pairing,” in Proceedings of

the Third International Conference on Information Technology: New
Generations (ITNG’06). IEEE Computer Society, 2006.

[24] R. Ronan, C. Ó hÉigeartaigh, C. Murphy, M. Scott, T. Kerins, and
W. Marnane, “An embedded processor for a pairing-based cryptosys-
tem,” in Proceedings of the Third International Conference on Informa-
tion Technology: New Generations (ITNG’06). IEEE Computer Society,
2006.

[25] Y. Kawahara, T. Takagi, and E. Okamoto, “Efficient implementation of
Tate pairing on a mobile phone using Java,” 2006, cryptology ePrint
Archive, Report 2006/299.

[26] M. Scott, N. Costigan, and W. Abdulwahab, “Implementing crypto-
graphic pairings on smartcards,” 2006, cryptology ePrint Archive, Report
2006/144.

APPENDIX I
RELATIONSHIP BETWEEN ηT (P,Q)W AND ê(P,Q)

According to Equation (2), we have:

ê(P,Q)−b3(m+3)/2
= v3(−b3(m+1)/2−1)2 ,

where v denotes ηT (P,Q)W . Let us raise both sides of the
above equation to the −b3(m−3)/2-th power. Since b2 = 1, we
obtain:

ê(P,Q)3
m

= v3(−b3(m+1)/2−1)2(−b3(m−3)/2)

= v3m(−2−b3(m+1)/2)−b3(m−1)/2
.

Thus,

ê(P,Q) =
3m√

v3m(−2−b3(m+1)/2) · v−b3(m−1)/2

= v−2 ·
(
v3(m+1)/2

· 3m√
v3(m−1)/2

)−b

.

Algorithm 5 describes the implementation of the above equa-
tion.

Algorithm 5 Computation of the modified Tate pairing.
Require: v = ηT (P,Q)W ∈ F36m . Three variables x0, x1,

and x2 belonging to F36m store intermediate results.
Ensure: ê(P,Q)

1: x0 ← v(3m−1)/2; // (m− 1)/2 cubings
2: x1 ← v2; // 1 multiplication
3: x2 ← x3

0; // 1 cubing
4: x0 ← 3m√x0; // 3m-th root
5: if b = 1 then
6: x0 ← x0 · x1 · x2; // 2 multiplications
7: x0 ← x−1

0 ; // 1 inversion
8: else
9: x0 ← x0·x2

x1
; // 1 multiplication and 1 division

10: end if
11: Return x0;

APPENDIX II
PROOF OF ALGORITHM 2

Assume that Algorithms 1 and 2 are provided with the
same input (i.e. P = P̃ and Q = Q̃). In order to prove the
correctness of the scheme proposed in this paper, it suffices
to show that:

R0[(m− 1)/2] = R̃0[(m− 1)/2]3
(m+1)/2

,

where [i] denotes the value of a variable at the end of the ith
iteration of Algorithms 1 and 2. The proof proceeds in three
steps. After establishing some useful properties, we prove that:

R1[i] = R̃1[i]3
i

. (6)

We conclude by showing that:

R0[i] = R̃0[i]3
i+1
. (7)

A. Properties

The computation of R̃1[i]3
i

requires that we raise σ, ρ, and
ρ2 to the 3i-th power. Since σ2 = −1, we have:

σ3i

=

{
σ if i ≡ 0 (mod 2),
−σ otherwise.

(8)

From ρ3 = ρ+ b, we deduce that:

ρ3i

=


ρ if i ≡ 0 (mod 3),
ρ+ b if i ≡ 1 (mod 3),
ρ− b otherwise,

(9)

and

(ρ2)3
i

=


ρ2 if i ≡ 0 (mod 3),
ρ2 − bρ+ 1 if i ≡ 1 (mod 3),
ρ2 + bρ+ 1 otherwise.

(10)

We also need a relationship between r0[i] and r̃0[i]. Since
P = P̃ , we easily check by induction that:

xp[i] = x̃p[i]3
i+1
, yp[i] = (−1)i+1ỹp[i]3

i+1
,

xq[i] = x̃q[i]3
i+1

, and yq[i] = ỹq[i]3
i+1
.

(11)

Remember now that r̃0[i] and r0[i] are respectively updated
as follows:

r̃0[i]← x̃p[i− 1] + x̃q[i− 1] + b, and
r0[i]← xp[i− 1] + xq[i− 1] + d[i− 1].

Therefore, according to Equation (11), we have:

r0[i] = x̃p[i− 1]3
i

+ x̃q[i− 1]3
i

+ d[i− 1].

We deduce the update rule of d[i] from Algorithm 2:

d[i] =


0 if i ≡ 0 (mod 3),
−b if i ≡ 1 (mod 3),
b otherwise.

Thus,

r0[i] =


r̃0[i]3

i

if i ≡ 0 (mod 3),
r̃0[i]3

i − b if i ≡ 1 (mod 3),
r̃0[i]3

i

+ b otherwise.

B. Relationship Between R1[i] and R̃1[i]
The most technical part of the proof consists in showing

that Equation 6 holds. Recall that R̃1[i] and R1[i] are updated
as follows:

R̃1[i]← −r̃0[i]2 + ỹp[i− 1]ỹq[i− 1]σ − r̃0[i]ρ− ρ2, and

R1[j]← −r0[i]2 + yp[i− 1]yq[i− 1]σ − r0[i]ρ− ρ2.

Therefore, we have to study six cases depending on i (see
Table IV for details):

• i ≡ 0 (mod 6):

R̃1[i]3
i

= (−r̃0[i]2)3
i

+ ỹp[i− 1]3
i

ỹq[i− 1]3
i

σ

−r̃0[i]3
i

ρ− ρ2

= −r0[i]2 + yp[i− 1]yq[i− 1]σ
−r0[i]ρ− ρ2

= R1[i]

• i ≡ 1 (mod 6):

R̃1[i]3
i

= −(r̃0[i]2)3
i

− ỹp[i− 1]3
i

ỹq[i− 1]3
i

σ

−r̃0[i]3
i

(ρ+ b)− ρ2 + bρ− 1

= (−(r̃0[i]3
i

)2 − r̃0[i]3
i

b− 1)

+yp[i− 1]yq[i− 1]σ − (r̃0[i]3
i

− b)ρ− ρ2

= (−(r̃0[i]3
i

)2 + 2r̃0[i]3
i

b− 1)
+yp[i− 1]yq[i− 1]σ − r0[i]ρ− ρ2

Since b ∈ {−1, 1}, b2 = 1 and we have:

(−(r̃0[i]3
i

)2 − r̃0[i]3
i

b− 1)

= −((r̃0[i]3
i

)2 − 2r̃0[i]3
i

b+ b2)

= −(r̃0[i]3
i

− b)2 = −r0[i]2.

Therefore, R̃1[i]3
i

= R1[i].
• i ≡ 2 (mod 6):

R̃1[i]3
i

= −(r̃0[i]2)3
i

+ ỹp[i− 1]3
i

ỹq[i− 1]3
i

σ

−r̃0[i]3
i

(ρ− b)− ρ2 − bρ− 1

= (−(r̃0[i]3
i

)2 + r̃0[i]3
i

b− 1)

+yp[i− 1]yq[i− 1]σ − (r̃0[i]3
i

+ b)ρ− ρ2

= −((r̃0[i]3
i

)2 + 2r̃0[i]3
j

b+ b2)
+yp[i− 1]yq[i− 1]σ − r0[i]ρ− ρ2

= −(r̃0[i]3
j

+ b)2

+yp[i− 1]yq[i− 1]σ − r0[i]ρ− ρ2

= R1[i]

• i ≡ 3 (mod 6):

R̃1[i]3
i

= (−r̃0[i]2)3
i

− ỹp[i− 1]3
i

ỹq[i− 1]3
i

σ

−r̃0[i]3
i

ρ− ρ2

= −r0[i]2 + yp[i− 1]yq[i− 1]σ
−r0[i]ρ− ρ2

= R1[i]

• i ≡ 4 (mod 6):

R̃1[i]3
i

= −(r̃0[i]2)3
i

+ ỹp[i− 1]3
i

ỹq[i− 1]3
i

σ

−r̃0[i]3
i

(ρ+ b)− ρ2 + bρ− 1

= (−(r̃0[i]3
i

)2 − r̃0[i]3
j

b− b2)
+yp[i− 1]yq[i− 1]σ − (r̃0[i]3

i

− b)ρ− ρ2

= −(r̃0[i]3
j

− b)2

+yp[i− 1]yq[i− 1]σ − r0[i]ρ− ρ2

= R1[i]

• j ≡ 5 (mod 6):

R̃1[i]3
i

= −(r̃0[i]2)3
i

− ỹp[i− 1]3
i

ỹq[i− 1]3
i

σ

−r̃0[i]3
i

(ρ− b)− ρ2 − bρ− 1

= (−(r̃0[i]3
i

)2 + r̃0[i]3
i

b− 1)

+yp[i− 1]yq[i− 1]σ − (r̃0[i]3
i

+ b)ρ− ρ2

= −((r̃0[i]3
i

)2 + 2r̃0[i]3
i

b+ b2)
+yp[i− 1]yq[i− 1]σ − r0[i]ρ− ρ2

= −(r̃0[i]3
i

+ b)2

+yp[i− 1]yq[i− 1]σ − r0[i]ρ− ρ2

= R1[i]

Thus, R1[i] = R̃1[i]3
i

.

C. Relationship Between R0[i] and R̃0[i]

We check easily that Equation (7) holds for i = 0. At step i,
1 ≤ i ≤ (m−1)/2, Algorithms 1 and 2 respectively compute:

R̃0[i]← R̃0[i− 1]R̃1[i], and

R0[i]← (R0[i− 1]R1[i])3.

Recall that R1[i] = R̃1[i]3
i

and assume that R0[i] = R̃0[i]3
i+1

.
We show by induction that Equation (7) holds for any i:

R0[i+ 1] = (R0[i]R1[i+ 1])3

= (R̃0[i]3
i+1
R̃1[i+ 1]3

i+1
)3

= (R̃0[i]R̃1[i+ 1])3
i+2

= R̃0[i+ 1]3
i+2
.

We conclude the proof by substituting (m − 1)/2 for i in
Equation (7). We obtain:

R0[(m− 1)/2] = R̃0[(m− 1)/2]3
(m+1)/2

.

APPENDIX III
3m-TH ROOT OVER F36m

This Appendix describes an algorithm to compute B =
3m√
A, where A = (a0, a1, a2, a3, a4, a5) and B =

(b0, b1, b2, b3, b4, b5) belong to F36m . We will only investigate
the case where b = 1 and m is congruent with 1 modulo 6.

TABLE IV
COMPUTATION OF R1[i] FROM R̃1[i]3

i
.

i ≡ 0 (mod 6) i ≡ 1 (mod 6) i ≡ 2 (mod 6) i ≡ 3 (mod 6) i ≡ 4 (mod 6) i ≡ 5 (mod 6)

σ3i
σ −σ σ −σ σ −σ

ρ3i
ρ ρ + b ρ − b ρ ρ + b ρ − b

(ρ2)3
i

ρ2 ρ2 − bρ + 1 ρ2 + bρ + 1 ρ2 ρ2 − bρ + 1 ρ2 + bρ + 1

yp[i − 1] ỹp[i − 1]3
i −ỹp[i − 1]3

i
ỹp[i − 1]3

i −ỹp[i − 1]3
i

ỹp[i − 1]3
i −ỹp[i − 1]3

i

r0[i] r̃0[i]3
i

r̃0[i]3
i − b r̃0[i]3

i
+ b r̃0[i]3

i
r̃0[i]3

i − b r̃0[i]3
i
+ b

According to Equations (8), (9), and (10), we have σ3m

= −σ,
ρ3m

= ρ+ 1, and (ρ2)3
n

= ρ2 − ρ+ 1. Thus,

(b0,b1, b2, b3, b4, b5)3
m

= (b0 + b1σ + b2ρ+ b3σρ+ b4ρ
2 + b5σρ

2)3
m

= b0 + b1σ
3m

+ b2ρ
3m

+ b3(σρ)3
m

+ b4(ρ2)3
m

+ b5(σρ2)3
m

= (b0 + b2 + b4) + (−b1 − b3 − b5)σ + (b2 − b4)ρ
+ (−b3 + b5)σρ+ b4ρ

2 + (−b4)σρ2

= (a0, a1, a2, a3, a4, a5).

By solving this system of six equations, we obtain:

b0 = a0 − a2 + a4,

b1 = −a1 + a3 − a5,

b2 = a2 + a4,

b3 = −a3 − a5,

b4 = a4,

b5 = −a5.

APPENDIX IV
RAISING ηT (P,Q) TO THE W -TH POWER

Algorithm 6 describes a simple way to rise ηT (P,Q) (or
ηT (P,Q)3(m+1)/2) to the W -th power when b = 1. To check
its correctness, it suffices to note that the intermediate variables
ui and vi are defined as follows:

u0 = ηT (P,Q), u1 = ηT (P,Q)2·3
m

,

u2 = ηT (P,Q)3
2m

, u3 = ηT (P,Q)3
3m

,

u4 = ηT (P,Q)2·3
4m

, u5 = ηT (P,Q)3
5m

,

v0 = ηT (P,Q)3
(m+1)/2

, v1 = ηT (P,Q)3
m+(m+1)/2

,

v3 = ηT (P,Q)3
3m+(m+1)/2

, v4 = ηT (P,Q)3
4m+(m+1)/2

.

Thus,

u6 = ηT (P,Q)3
(m+1)/2+3m+(m+1)/2+33m+2·34m+35m

and

v5 = ηT (P,Q)1+2·3m+32m+33m+(m+1)/2+34m+(m+1)/2
.

The algorithm returns u6/v5 which is equal to ηT (P,Q)W .
Since cubing and raising to the 3m-th power require only a few
additions over F3m , the cost of Algorithm 6 is dominated by
ten multiplications and one division (or eleven multiplications
and one inversion) over F36m .

Algorithm 6 Raising ηT (P,Q) to the W -th power (b = 1).
Require: ηT (P,Q) ∈ F36m . Thirteen variables ui, 0 ≤ i ≤ 6,

and vi, 0 ≤ i ≤ 5 belonging to F36m store intermediate
results.

Ensure: ηT (P,Q)W ∈ F36m

1: u0 ← ηT (P,Q);
2: for i = 1 to 5 do
3: ui ← u3m

i−1;
4: end for
5: u1 ← u2

1; // 1 multiplication
6: u4 ← u2

4; // 1 multiplication
7: v0 ← ηT (P,Q)3

(m+1)/2
; // (m+ 1)/2 cubings

8: for i = 1 to 4 do
9: vi ← v3m

i−1;
10: end for
11: u6 ← v0 · v1 · u3 · u4 · u5; // 4 multiplications
12: v5 ← u0 · u1 · u2 · v3 · v4; // 4 multiplications
13: Return u0 ← u6/v5; // 1 division

