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Abstract. We consider broadcast encryption schemes wherein a center needs to broadcast a secret
message to a privileged set of receivers. We prescribe a probability distribution P on the privileged set.
In this setting, the transmission overhead can be viewed as a random variable over P and we define its
expected value as the average transmission overhead (or ato).

Given P, the Shannon’s entropy function H(.) provides a lower bound on the average number of bits
required to identify every privileged set. This provides a natural lower bound for the ato in terms
of H(P). For session key distribution, we consider the subset cover framework and bound the ato in
terms of the size of the cover. We further specialize our bound to accommodate storage constraints at
receivers.

We consider two families of distributions for P that occur naturally in broadcast networks.

– Each receiver independently joins the privileged set with probability p.

– The privileged set is selected uniformly from a collection of subsets of receivers.

We evaluate the ato of some practical schemes such as the subset difference method, the LSD scheme
and the Partition-and-Power scheme under these distributions. Our investigations lead us to conclude
that each scheme is inherently tailored to perform optimally for specific distributions.

Keywords. Broadcast Encryption, Average Transmission Overhead, Subset Cover Framework, Shan-
non’s Entropy.

1 Introduction

The average transmission overhead is an important statistical measurement of the effectiveness
of communication systems. It finds applications in diverse fields such as video transmission over
wireless networks [13], management of replicated data [14] and classification of access networks
[16]. The overhead is determined by prescribing a probability distribution on some parameter of
the system and using standard methods from probability theory (see [1] for a good introduction)
to compute its value.

The setting in a broadcast encryption scheme consists of a broadcaster B and a collection of
receivers R. Periodically, B will want only some privileged subset R ⊆ R of receivers to avail the
broadcast. To ensure this, B first broadcasts a message M that only the receivers in R can decipher.
The receivers are pre-configured with the right bits of information to achieve this. M includes a
session key that is used for encrypting further broadcasts intended for R. The transmission overhead
is the length of M, that is, the amount of information (in bits) required to transfer the session key
to R. Naturally, this overhead depends on R.
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Suppose we impose a probability distribution P on the privileged set. The distribution is deter-
mined by the particular application the broadcaster intends to deploy. For instance, if the programs
belong to the premium pay-per-view category, the privileged sets are more likely to be small and
P should relect this fact.

We assume that P holds true for every broadcast and is not affected by past broadcast history.
Let us denote the probability of a subset R ⊆ R being privileged as P(R). The transmission
overhead may then be viewed as a random variable over P whose expected value we define as the
average transmission overhead (or ato). In other words,

ato =
∑

R⊆R
P(R) · to(R).

where to(R) is the transmission overhead for R.
We observe that the Shannon’s entropy function [15]

H(P) = −
∑

R⊆R
P(R) logP(R)3

provides a lower bound on the average number of bits required to identify every privileged set.
Since the broadcasts are independent, any broadcast encryption technique must provide for enough
communication to allow identification of the privileged set. This observation translates into the
following fact.

Fact 1.

ato ≥ H(P).

1.1 Related work

To the best of our knowledge, the concept of average transmission overhead has never been studied
before in the broadcast encryption context. Broadcast encryption itself is a well-studied topic
though; see for instance [7, 3, 8] for an introduction. In [3], a broadcast scheme is proposed using
polynomial interpolation and related vector formulation methods. Fiat and Naor [8] consider k-
resilient broadcast schemes where coalitions of k users not in the privileged set cannot recover the
session key. Blundo et al study the trade-off between communication and storage in an information
theoretic setting for unconditionally secure broadcast encryption schemes [4, 5]. Luby and Staddon
[11] use a combinatorial model to study this trade-off.

Subset cover schemes were introduced in [12]. The authors describe a subset difference method
to cover the set of non-revoked users by a collection of disjoint subsets. Each non-revoked user uses
the key corresponding to his subset to recover the session key. If r is the number of revoked users
and n the total number of users, their scheme has a transmission overhead of 2r− 1 messages, each
receiver stores O(log2 n) keys and the processing time at a receiver is O(log n) operations. These
bounds are improved by Halevy and Shamir [9] using a Layered Subset Difference (LSD) scheme.
Specifically, they reduce the storage size to O(log3/2 n) while the processing time remains the same.
However, the transmission overhead increases to 4r messages.
3 In this paper, all logs are in base 2.



In [10, 6], the authors develop new methods to reduce transmission overheads in broadcast
encryption. The methods are based on the idea of assigning one key per each partition using
one-way key chains after partitioning the users. One method adopts skipping chains on partitions
containing up to p revoked users and the other adopts cascade chains on partitions with layer
structure. The scheme using the former reduces the transmission overhead down to r

p+1 messages
asymptotically as r grows, and the scheme using the latter keeps the transmission overhead very
small when r approaches 0, where r is the number of revoked users. Combining the two schemes,
the authors propose a new broadcast encryption scheme with least transmission overhead. These
schemes require a large storage at a receiver though, and this storage may grow exponentially in
some cases.

The Partition-and-Power scheme (PaP) was introduced in [2] wherein each user stores m keys
and the subset cover is formed by partitioning the set of users into n/(log m + 1) equally sized
sets and taking the union of all subsets of each set. A lower bound for the maximum transmission
overhead for a subset cover scheme was determined and the PaP scheme was shown to achieve
within a constant factor of this bound.

1.2 Our Contribution

In this article, we assume that keys are distributed using the subset cover method. These offer
several advantages over other key distribution methods. For instance, the receivers in this scheme
are stateless, i.e. once configured, the keys don’t have to be updated. This scheme is also fully
resilient in the sense that the session key cannot be computed by any coalition of non-receivers.
The keys may either be explicitly stored as in the complete subtree method [12] and partition-and-
power (PaP) scheme [2] or computed through pseudo-random generators as in the subset difference
(SD) method [12] or the layered subset difference (LSD) method [9].

Our main result is a generic lower bound for the ato in terms of the storage at a receiver, the
distribution P and the key length (Theorem 4). Using this bound as the benchmark, we evaluate
different subset cover schemes (SD, LSD and PaP) under two families of distributions encountered
in practice. Our findings show that each scheme is inherently tailored to perform optimally for
specific distributions.

Outline of the paper: In the next section, we introduce subset cover schemes and derive the
expression for the ato. We specialize this bound in terms of the storage at receivers when all subset
keys are explicitly stored with the receiver. In Section 3, we consider some probability models for
the privileged set that are natural and useful in practice, and compute the bounds for ato under
these distributions. In Section 4, we consider some specific subset cover schemes (such as SD, LSD,
PaP schemes) and estimate their ato for these distributions. We conclude with Section 5.

2 The Subset Cover Framework

We consider subset cover schemes introduced in [12]. The idea is to express the privileged set as
a union of a collection of subsets from a cover and encrypt the session key with the subset key
corresponding to each subset in the union. These encrypted values are broadcast. Each privileged
user either stores the subset keys explicitly or is able to compute them using some pre-stored
information. The subset key is then used to recover the session key from the encrypted message.



LetR = {r1, . . . , rn} be a set of n receivers capable of receiving transmissions from a broadcaster
B. Let S,X ⊆ 2R be collections of subsets of R defined in the following manner. S is the collection
of privileged sets. In the most general case, S would comprise of all subsets of R. X is defined to
be a cover for S, i.e. every element in S can be expressed as a union of some elements from X .
Formally,

∀R ∈ S, ∃XR ⊆ X such that
⋃

X∈XR

X = R.

Let
fX (R) = min

XR⊆X ,S
X∈XR

X=R

|XR|.

For each X ∈ X , there exists a (unique) subset key KX that is known only to the receivers in X.
To distribute a session key K to a set of receivers, say R ∈ S, B first finds the smallest cover for
R by the elements from X . Suppose it is R = X1 ∪X2 ∪ · · · ∪Xf where f = fX (R). Then B sends
the following broadcast

〈[MX1 , . . . ,MXf
, EKX1

(K), . . . , EKXf
(K)], EK(M)〉, (1)

where EKX
(K) is the encryption of K under KX and EK(M) is the broadcast message M encrypted

under K. Here the message MXi uniquely addresses Xi. Note that the quantity in square brackets
in (1) is the transmission overhead.

Suppose all keys are t bits in length (so that |X | ≤ 2t) and let MX (R) = |MX1 |+ · · ·+ |MXf
|.

Let toX (R) be the transmission overhead to target R so that

toX (R) = MX (R) + fX (R)t. (2)

To define the average transmission overhead, we assume a probability distribution P on the
privileged sets. Assume that a privileged set R ∈ S, occurs with probability 0 < P(R) ≤ 1 so that∑

R∈S P(R) = 1. The average transmission overhead is then the quantity

atoX =
∑
R∈S

P(R) · toX (R)

We observe that atoX depends only on the cover and not on any specific privileged set. Since R is
identified by MX (R), using (2) and Fact 1, we get

atoX =
∑

R∈S
P(R) ·MX (R) +

∑
R∈S

P(R) · fX (R)t

≥ H(P) + aX t, (3)

where aX =
∑

R∈S P(R)fX (R) is the average covering number of X . Let us now bound aX in
terms of H(P).

Claim 2.

aX log
|X |
aX

≥ H(P).



Proof. There are |X | different elements of X . Let’s suppose that they are represented by numbers
1 to |X |. We denote by NX the number representing the set X ∈ X .

Consider the case when R ∈ S is the privileged set whose minimum cover is R = X1∪X2∪. . .∪Xf

(where f = fX (R)), and NX0 = 0 < NX1 ≤ NX2 ≤ · · · ≤ NXf
≤ |X |. Then, B sends MXi =

NXi −NXi−1 for 1 ≤ i ≤ f . Note that

NXi =
i∑

j=1

MXj ,

so it is easy for receivers to reconstruct the numbers NXis and identify Xis. Here,

MX (R) = |MX1 |+ |MX2 |+ · · ·+ |MXf
|

= log NX1 + log (NX2 −NX1) + · · ·+ log (NXf
−NXf−1

)

≤ f log
NXf

f

≤ fX (R) log |X | − fX (R) log fX (R).

Now,

H(P) ≤
∑

R∈S
P(R)MX (R)

≤
∑

R∈S
P(R)fX (R) log |X | −

∑
R∈S

P(R)fX (R) log fX (R)

= aX log |X | −
∑

R∈S
P(R)fX (R) log fX (R)

≤ aX log |X | − aX log aX .

Note that we used the Jensen’s inequality for convex function φ = x log x in the final simplification.
The Jensen’s inequality says that E[φ(X)] ≥ φ(E[X]) when φ is convex.

ut

From Claim 2, we get the following bound on aX :

aX ≥ H(P)
log |X | − log aX

≥ H(P)
log |X | − log H(P) + log log |X |

.

Plugging this bound in equation (3), we get the following important lemma.

Lemma 3. Under a probability distribution P over the privileged sets S ⊆ 2R, with a subset key
of length t bits, the average transmission overhead is bounded by

atoX ≥ H(P)
(

1 +
t

log |X | − log H(P) + log log |X |

)
(4)

for broadcast encryption schemes that use subset cover method as outlined by (1).



Suppose a receiver can store a maximum of m subset keys and we consider schemes where the
subset keys are stored explicitly in the receiver. The cover size then satisfies |X | ≤ mn and (4)
specializes to the following result.

Theorem 4. Under a probability distribution P over the privileged sets S ⊆ 2R, with a storage
bound of m keys per receiver and a subset key of length t bits, the average transmission overhead is
bounded by

atoX ≥ H(P)
(

1 +
t

log mn− log H(P) + log log mn

)
(5)

for broadcast encryption schemes that use subset cover method as outlined by (1) and explicit storage
of subset keys at the receiver.

Theorem 4 bounds the average transmission overhead in terms of the parameters of the broad-
cast network, such as the number of receivers, key length, receiver storage and the distribution of
the privileged set. Thus a practical scheme can determine its effectiveness by measuring how far it
deviates from this bound.

3 Some Special Probability Distributions

We evaluate the lower bound expression in (5) for a couple of probability distributions that are
natural and useful in practice.

3.1 Independent and Identically Distributed Case

Consider the case where each receiver, independently, joins the privileged set with probability
0 ≤ p ≤ 1. Therefore, the probability of R ⊆ R being privileged is

P(R) = p|R|(1− p)n−|R|.

For such a distribution Pp over 2R, its Shannon entropy is

H(Pp) = nH2(p),

where H2(p) = −p log p − (1 − p) log (1− p) is the standard binary entropy function. This
follows from the fact that the entropy of the joint distribution of independent events is the sum of
the individual entropies of each distribution.

Thus, equation (5) translates into

atoX ≥ n

(
1 +

t

log m + log log mn

)
H2(p). (6)

This expression is symmetric around p = 1/2. It reaches its maximum value n(1+ t
log m+log log mn)

when p = 1/2 which corresponds to the case where every subset of R is equally likely to be a
privileged set. It is interesting to note that this bound is comparable with the lower bound of [2]
for maximum transmission overhead in broadcast communication.

Note that equation (6) shows that the average transmission overhead is high for mid-range p.
In fact, broadcast schemes addressing such distributions are hard to implement since all subsets of
R are more or less equally likely to be privileged.



3.2 Equiprobable Case

Next, we assume a uniform distribution over S ⊆ 2R, i.e. all privileged sets occur with the same
probability (of 1/|S|). Let us label this probability distribution as PS . In this case, its Shannon
entropy is

H(PS ) = −
∑
R∈S

P(R) logP(R) =
∑
R∈S

log |S|
|S|

= log |S|.

Thus, equation (5) translates into

atoX ≥ log |S| ·
(

1 +
t

log mn− log log |S|+ log log mn

)
. (7)

When S = 2R, PS is the uniform distribution over all subsets of R, and the expression in (7)
reaches its maximum of n(1 + t

log m+log log mn). The scenario of practical interest is the case where
S = {R ⊆ R : l ≤ |R| ≤ u}, i.e., privileged sets are restricted to a size in the interval [l, u]. Then,

|S| =
(

n

l

)
+ · · ·+

(
n

u

)
≥

{(
n

n/2

)
if l ≤ n/2 ≤ u

(u− l + 1)
( n

l+u
2

)
otherwise.

This bounds |S| from below and hence the ato in equation (7).

4 Analysis of Some Subset Cover Schemes

We consider the SD, LSD and the PaP schemes and evaluate their ato values for distributions Pp

and PS studied in Section 3.

4.1 The Subset Difference method

In the SD method [12], the storage per receiver is m = O(log2 n) keys. The cover X is chosen in
such a way that if R is a privileged set of size n − r, then fX (R) ≈ 1.25r. The average covering
number is then

aX ≈
n∑

r=0

(
n

r

)
1.25rpn−r(1− p)r = 1.25n(1− p).

Since identification of the privileged set in this scheme requires a negligible number of bits
compared to key distribution, the ato value is

atoX ≈ 1.25nt(1− p)

which decreases with p. Thus this scheme is effective when the privileged set is likely to be large.



4.2 The LSD method

In the LSD method [9], the storage per receiver is m = log3/2 n keys. The subset cover X satisfies
fX (R) ≈ 2r where |R| = n− r. Then aX is calculated as

aX ≈
n∑

r=0

(
n

r

)
2rpn−r(1− p)r = 2n(1− p).

Thus this scheme is again effective when p is large.

4.3 The PaP Scheme

Let m be the number of subset keys that can be stored at a receiver. The PaP scheme [2] partitions
R into groups of size g := log m + 1. The subset cover X is the union of the power set of each of
these groups. Thus, |X | = 2gn/g ≈ 2mn/ log m. Each receiver stores all the keys corresponding to
the subsets it belongs to in X . To address a privileged set R, R is expressed as a disjoint union of
at most f = n/g sets from X . Thus for any distribution, the average cover number is always less
than n/g.

4.3.1 Independent and Identically Distributed Case : Suppose R ⊆ R is privileged with
distribution Pp. If fX (R) = j, then R contains at least one element from j groups and none from
the remaining groups. The average cover number is given by

aX =
f∑

j=1

j

(
f

j

)
(1− p)g(f−j)

(
g∑

i=1

(
g

i

)
pi(1− p)g−i

)j

= f(1− (1− p)g) =
n

g
(1− (1− p)g)

after routine simplifications. As one would expect, aX increases with p. Now, the ato is given by

atoX = aX (log |X |+ t) =
n(1− (1− p)g)(log n

g + g + t)

g
.

Consider the ratio of atoX to the minimum ato. Using the lower bound provided by equation (6),
we get

atoX
min ato

≤
n(1− (1− p)g)(log n

g + g + t)

g
· log m + log log mn

nH2(p)(t + log m + log log mn)

≤ 2
H2(p)

· (1 +
log log mn

log m
). (8)

Note that we have used g = log 2m ≥ 2, and 2t ≥ |X | ≥ n while deriving (8). There are two
distinct terms in (8): the first term 2

H2(p) underlines the probabilistic setup whereas the second

term (1+ log log mn
log m ) represents the storage constraint. We now analyze this ratio for different values

of p.



p = c/n (or p = 1− c/n) where c is a constant: In this case, the expression (8) is Θ(n). Thus,
the performance of PaP scheme could be arbitrarily bad.

p = 1/2 (or any constant): In this case, the expression (8) is Θ(1 + log log mn
log m ). If m is fixed, and

n is varied, then here again the performance of PaP scheme could be arbitrarily bad.
If mn < 2m (which is a likely scenario in practice), then the expression (8) is O(1). Thus, the

ato of PaP scheme is within a constant factor of the optimal. For example, if n = 220,m = 210, and
p = 1/2, then the performance of PaP scheme is within a factor of 3 of the minimum on the ato
measure.

4.3.2 Equi-Probable case : Since S can be any subcollection, the best we can do is bound the
average cover number from above by f = n/g. Thus, the ato of PaP scheme is

atoX ≤ 2tf =
2tn

log 2m
.

Comparing with the lower bound given by (7), we observe that when log |S| ≈ n, the ato is within
a Θ(1 + log log mn

log m ) factor of the minimum. When |S| is small, the PaP scheme is not effective.

5 Conclusion

The ato is a statistical measure of the efficacy of a transmission scheme and finds applications in
different domains [13, 14, 16]. Thus studying this concept in the field of broadcast encryption is
a natural extension. The ato can be used a yardstick to measure the effectiveness of a broadcast
scheme and to compare different schemes under uniform conditions such as same storage at receivers,
same key length and identical distributions.

In this article, we studied the subset cover framework and derived a lower bound for the ato
under a given distribution on the privileged set. Our analysis used the entropy of the distribution
to bound the number of bits required to identify any privileged set. We specialized the lower bound
when the storage on a receiver was constrained. We considered two probability distributions and
evaluated the ato of some subset cover schemes under these distributions. Our studies show that
each scheme is naturally designed to give optimal performance for specific distributions.

Other distributions for the privileged set are possible. For instance, we have assumed that every
receiver is privileged with the same probability p. A natural extension is to consider the scenario
where different groups of receivers are privileged with different probabilities. The most general case
would prescribe a probability for each privileged set. However, such distributions appear harder to
analyze.

We emphasize that under a probabilistic setting, the ato is just one statistical measurement
of the distribution. The overall efficiency of the broadcast scheme is determined by taking other
statistical parameters into account such as the standard deviation, the minimum and maximum
values of the transmission overhead etc.
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