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Abstract. The Merkle signature scheme (MSS) is an interesting alter-
native for well established signature schemes such as RSA, DSA, and
ECDSA. The security of MSS only relies on the existence of cryptograph-
ically secure hash functions. MSS has a good chance of being quantum
computer resistant. In this paper, we propose CMSS, a variant of MSS,
with reduced private key size, key pair generation time, and signature
generation time. We demonstrate that CMSS is competitive in practice
by presenting a highly efficient implementation within the Java Cryp-
tographic Service Provider FlexiProvider. We present extensive exper-
imental results and show that our implementation can for example be
used to sign messages in Microsoft Outlook.

Keywords: Merkle Signatures, One-Time-Signatures, Post-Quantum Sig-
natures, Tree Authentication.

1 Introduction

Digital signatures have become a key technology for making the Internet and
other IT infrastructures secure. Digital signatures provide authenticity, integrity,
and support for non-repudiation of data. Digital signatures are widely used in
identification and authentication protocols, for example for software downloads.
Therefore, secure digital signature algorithms are crucial for maintaining IT
security.

Commonly used digital signature schemes are RSA [RSA78], DSA [Elg85],
and ECDSA [JM99]. The security of those schemes relies on the difficulty of
factoring large composite integers and computing discrete logarithms. However,
it is unclear whether those computational problems remain intractable in the
future. For example, Peter Shor [Sho94] proved that quantum computers can
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factor integers and can calculate discrete logarithms in the relevant groups in
polynomial time. Also, in the past thirty years there has been significant progress
in solving the integer factorization and discrete logarithm problem using classi-
cal computers (Lenstra and Verheul). It is therefore necessary to come up with
new signature schemes which do not rely on the difficulty of factoring and com-
puting discrete logarithms and which are even secure against quantum computer
attacks. Such signature schemes are called post-quantum signature schemes.

A very interesting post-quantum signature candidate is the Merkle signature
scheme (MSS) [Mer89]. Its security is based on the existence of cryptographic
hash functions. In contrast to other popular signature schemes, MSS can only
verify a bounded number of signatures using one public key. Also, MSS has
efficiency problems (key pair generation, large secret keys and signatures) and
was not used much in practice.

Our contribution In this paper, we present CMSS, a variant of MSS, with re-
duced private key size, key pair generation time, and signature generation time.
We show that CMSS is competitive in practice by presenting a highly efficient
CMSS Java implementation in the Java Cryptographic Service Provider Flexi-
Provider [Fle06]. This implementation permits easy integration into applications
that use the Java Cryptography Architecture [JCA02]. We present experiments
that show: As long as no more that 240 documents are signed, the CMSS key pair
generation time is reasonable, and signature generation and verification times in
CMSS are competitive or even superior compared to RSA and ECDSA. We also
show that the CMSS implementation can be used to sign messages in Microsoft
Outlook using our FlexiS/MIME plug-in [FOP03]. The paper specifies CMSS keys
using Abstract Syntax Notation One (ASN.1) [Int02] which guarantees interop-
erability and permits efficient generation of X.509 certificates and PKCS#12
personal information exchange files. CMSS is based on the Thesis of Coronado
[Cor05b] and incorporates the improvements of MSS from [Szy04,DSS05].

Related Work Szydlo presents a method for the construction of authentica-
tion paths requiring logarithmic space and time in [Szy04]. Dods, Smart and
Stam give the first complete treatment of practical implementations of hash
based digital signature schemes in [DSS05]. In [NSW05], Naor et. al. propose a
C implementation of MSS and give timings for up to 220 signatures. A prelim-
inary version of CMSS including security proofs appeared in the PhD thesis of
Coronado [Cor05b] and in [Cor05a].

Organization The rest of this paper is organized as follows: In Section 2, we
describe the Winternitz one-time signature scheme and the Merkle signature
scheme. In Section 3, we describe CMSS. Section 4 describes details of the CMSS
implementation in the FlexiProvider and the ASN.1 specification of the keys.
Section 5 presents experimental data including a comparison with standard sig-
nature schemes. Section 6 describes the integration of the CMSS implementation
into Microsoft Outlook. Section 7 states our conclusions.



2 Preliminaries

Before we describe CMSS in Section 3, we first describe the Winterzitz one-time
signature scheme used in CMSS and the Merkle signature scheme (MSS) which
CMSS is based on.

2.1 The Winternitz One-time Signature Scheme

In this section, we describe the Winternitz one-time signature scheme (OTSS)
that was first mentioned in [Mer89] and explicitly described in [DSS05]. It is
a generalization of the Merkle OTSS [Mer89], which in turn is based on the
Lamport-Diffie OTSS [DH76]. The security of the Winternitz OTSS is based on
the existence of a cryptographic hash function H : {0, 1}∗ → {0, 1}s [MvOV96].
It uses a block size parameter w that denotes the number of bits that are pro-
cessed simultaneously. Algorithms 1, 2, and 3 describe the Winternitz OTSS key
pair generation, signature generation, and signature verification, respectively.

Algorithm 1 Winternitz OTSS Key Pair Generation

System Parameters: hash function H : {0, 1}∗ → {0, 1}s, parameters w ∈ N and
t = ⌈s/w⌉+ ⌈(⌊log2⌈s/w⌉⌋+ 1 + w)/w⌉

Output: signature key X, verification key Y
1: choose x1, . . . , xt ∈R {0, 1}s uniformly at random.
2: set X = (x1, . . . , xt).
3: compute yi = H2

w−1(xi) for i = 1, . . . , t.
4: compute Y = H(y1|| . . . ||yt), where || denotes concatenation.
5: return (X, Y ).

Algorithm 2 Winternitz OTSS Signature Generation

System Parameters: hash function H : {0, 1}∗ → {0, 1}s, parameters w ∈ N and
t = ⌈s/w⌉+ ⌈(⌊log2⌈s/w⌉⌋+ 1 + w)/w⌉

Input: document d, signature key X
Output: one-time signature σ of d
1: compute the s bit hash value H(d) of document d.
2: split the binary representation of H(d) into ⌈s/w⌉ blocks b1, . . . , b⌈s/w⌉ of length

w, padding H(d) with zeros from the left if required.
3: treat bi as the integer encoded by the respective block and compute the checksum

C =

⌈s/w⌉
X

i=1

2w − bi.

4: split the binary representation of C into ⌈(⌊log2⌈s/w⌉⌋ + 1 + w)/w⌉ blocks
b⌈s/w⌉+1, . . . , bt of length w, padding C with zeros from the left if required.

5: treat bi as the integer encoded by the respective block and compute σi = Hbi(xi),
i = 1, . . . , t, where H0(x) := x.

6: return σ = (σ1, . . . , σt).



Algorithm 3 Winternitz OTSS Signature Verification

System Parameters: hash function H : {0, 1}∗ → {0, 1}s, parameters w ∈ N and
t = ⌈s/w⌉+ ⌈(⌊log2⌈s/w⌉⌋+ 1 + w)/w⌉

Input: document d, signature σ = (σ1, . . . , σt), verification key Y
Output: TRUE if the signature is valid, FALSE otherwise
1: compute b1, . . . , bt as in Algorithm 2.
2: compute φi = H2

w−1−bi(σi) for i = 1, . . . , t.
3: compute Φ = H(φ1|| . . . ||φt).
4: if Φ = Y then return TRUE else return FALSE

The parameter w makes the Winternitz OTSS very flexible. It allows a trade-
off between the size of a signature and the signature and key pair generation
times. If w is increased, more bits of H(d) are processed simultaneously and the
signature size decreases. But more hash function evaluations are required during
key and signature generation. Decreasing w has the opposite effect. In [DSS05],
the authors show that using w = 2 requires the least number of hash function
evaluations per bit.

Example 1. Let w = 2 and H(d) = 110001110. Hence s = 9 and t = 8. Therefore
we have (b1, . . . , b5) = (01, 10, 00, 11, 10), C = 12 and (b6, b7, b8) = (00, 11, 00).
The signature of d is σ =

(

H(x1), H
2(x2), x3, H

3(x4), H
2(x5), x6, H

3(x7), x8

)

.

2.2 The Merkle Signature Scheme

The basic Merkle signature scheme (MSS) [Mer89] works as follows. Let H :
{0, 1}∗ → {0, 1}s be a cryptographic hash function and assume that a one-time
signature scheme (OTSS) is given. Let h ∈ N and suppose that 2h signatures are
to be generated that are verifiable with one MSS public key.

MSS Key Pair Generation At first, generate 2h OTSS key pairs (Xi, Yi),
i = 1, . . . , 2h. The Xi are the signature keys. The Yi are the verification keys.
The MSS private key is the sequence of OTSS signature keys. To determine the
MSS public key, construct a binary authentication tree as follows. Consider each
verification key Yi as a bit string. The leafs of the authentication tree are the
hash values H(Yi) of the verification keys. Each inner node (including the root)
of the tree is the hash value of the concatenation of its two children. The MSS
public key is the root of the authentication tree.

MSS Signature Generation The OTSS key pairs are used sequentially. We
explain the calculation of the MSS signature of some document d using the ith
key pair (Xi, Yi). That signature consists of the index i, the ith verification key
Yi, the OTSS signature σ computed with the ith signature key Xi, and the
authentication path A for the verification key Yi. The authentication path A is
a sequence of nodes (ah, . . . , a1) in the authentication tree of length h that is



constructed as follows. The first node in that sequence is the leaf different from
the ith leaf that has the same parent as the ith leaf. Also, if a node N in the
sequence is not the last node, then its successor is the node different from N with
the same parent as N . Figure 1 shows an example of an authentication path for
h = 2. Here, the authentication path for Y2 is the sequence A2 = (a2, a1).

R

a1

a2 H(Y2)

Y2

Fig. 1. Merkle’s Tree Authentication

MSS Signature Verification To verify a MSS signature (i, Y, σ, A), the ver-
ifier first verifies the one-time signature σ with the verification key Y . If this
verification fails, the verifier rejects the MSS signature as invalid. Otherwise, the
verifier checks the validity of the verification key Y by using the authentication
path A. For this purpose, the verifier constructs a sequence of nodes of the tree
of length h+1. The first node in the sequence is the ith leaf of the authentication
tree. It is computed as the hash H(Y ) of the verification key Y . For each node
N in the sequence which is not the last node, its successor is the parent P of N

in the authentication tree. The verifier can calculate P since the authentication
path A included in the signature contains the second child of P . The verifier
accepts the signature, if the last node in the sequence is the MSS public key.

3 CMSS

In this section, we describe CMSS. It is an improvement of the Merkle signature
scheme (MSS) [Mer89]. A preliminary version of CMSS including security proofs
appeared in the PhD thesis of Coronado [Cor05b] and in [Cor05a].

For any h ∈ N, MSS signs N = 2h documents using N key pairs of a one-
time signature scheme. Unfortunately, for N > 225, MSS becomes impractical
because the private keys are very large and key pair generation takes very long.

CMSS can sign N = 22h documents for any h ∈ N. For this purpose, two
MSS authentication trees, a main tree and a subtree, each with 2h leafs, are
used. The public CMSS key is the root of the main tree. Data is signed using
MSS with the subtree. But the root of the subtree is not the public key. That



root is authenticated by an MSS signature that uses the main tree. After the
first 2h signatures have been generated, a new subtree is constructed and used
to generate the next 2h signatures. In order to make the private key smaller, the
OTSS signature keys are generated using a pseudo random number generator
(PRNG) [MvOV96]. Only the seed for the PRNG is stored in the CMSS private
key.

CMSS key pair generation is much faster than that of MSS, since key gen-
eration is dynamic. At any given time, only two trees, each with only 2h leafs,
have to be constructed. CMSS can efficiently be used to sign up to N = 240

documents. Also, CMSS private keys are much smaller than MSS private keys,
since only a seed for the PRNG is stored in the CMSS private key, in contrast
to a sequence of N OTSS signature keys in the case of MSS. So, CMSS can be
used in any practical application. CMSS is illustrated in Figure 2 for h = 2.

RR

b1,1

b1,2

b2,1

b2,2

sign R1 sign R2

sign d1 sign d2

d1 d2

R1

a4,1

a4,2

R2

a1,1

a1,2

Fig. 2. CMSS with h = 2

In the following, CMSS is described in detail. First, we describe CMSS key
pair generation. Then, we explain the CMSS signature generation process. In
contrast to other signature schemes, the CMSS private key is updated after
every signature generation. This is necessary in order to keep the private key
small and to make CMSS forward secure [Cor05a]. Such signature schemes are
called key-evolving signature schemes and were first defined in [BM99].

CMSS Key Pair Generation Algorithm 6 describes CMSS key pair gen-
eration. The algorithm uses two subroutines described in Algorithms 4 and 5.
CMSS uses the Winternitz OTSS described in Section 2.1. For the OTSS key pair
generation, we use a pseudo random number generator (PRNG) f : {0, 1}s →
{0, 1}s×{0, 1}s [MvOV96]. In our experiments, we use a PRNG based on SHA1



which is part of the SUN JCE provider [JCA02]. The modified Winternitz OTSS
key pair generation process is described in Algorithm 4.

Algorithm 4 Winternitz OTSS key pair generation using a PRNG

System Parameters: PRNG f : {0, 1}s → {0, 1}s × {0, 1}s, hash function H :
{0, 1}∗ → {0, 1}s, parameters w ∈ N and t = ⌈s/w⌉+ ⌈(⌊log2⌈s/w⌉⌋+ 1 + w)/w⌉

Input: a seed seedin ∈R {0, 1}s chosen uniformly at random
Output: a Winternitz OTSS key pair (X, Y ) and a seed seedout ∈ {0, 1}s

1: compute (seedout, s0) = f(seedin)
2: for i = 1, . . . , t do

3: compute (si, xi) = f(si−1)

4: set X = (x1, . . . , xt)
5: compute the verification key Y as in steps 3 and 4 of Algorithm 1
6: return (X, Y ) and seedout

Algorithm 5 is used to construct a binary authentication tree and its first au-
thentication path. This is done leaf-by-leaf, using a stack for storing intermediate
results. Algorithm 5 carries out the computation for one leaf. It is assumed that
in addition to the node value, the height of a node is stored. The algorithm is
inspired by [Mer89] and [Szy04].

Algorithm 5 Partial construction of an authentication tree

System Parameters: hash function H : {0, 1}∗ → {0, 1}s

Input: a leaf value H(Y ), algorithm stack stack, sequence of nodes A
Output: updated stack stack and updated sequence A
1: set in = H(Y )
2: while in has same height as top node from stack do

3: if in has greater height than last node in A or A is empty then

4: append in to A

5: pop top node top from stack
6: compute in = H(top||in)

7: push in onto stack
8: return stack, A

CMSS key pair generation is carried out in two parts. First, the first subtree
and its first authentication path are generated using Algorithms 4 and 5. Then,
the main tree and its first authentication path are computed. The CMSS public
key is the root of the main tree. The CMSS private key consists of two indices
i and j, three seeds for the PRNG, three authentication paths (of which one is
constructed during signature generation), the root of the current subtree and
three algorithm stacks for subroutines. The details are described in Algorithm
6.



Algorithm 6 CMSS key pair generation

System Parameters: hash function H : {0, 1}∗ → {0, 1}s, PRNG f : {0, 1}s →
{0, 1}s × {0, 1}s, Winternitz parameter w

Input: parameter h ∈ N, two seeds seedmain and seedsub chosen uniformly at random
in {0, 1}s

Output: a CMSS key pair (priv, R)
1: set N = 2h and seed0 = seedsub

2: initialize empty stack stacksub and empty sequence of nodes A1

3: for i = 1, . . . , N do

4: compute ((Xi, Yi), seedi)← Algorithm 4(seedi−1)
5: compute (stacksub, A1)← Algorithm 5(H(Yi), stacksub, A1)

6: let R1 be the single node in stacksub; R1 is the root of the first subtree
7: set seednext = seedN and seed0 = seedmain

8: initialize empty stack stackmain and empty sequence of nodes B1

9: for j = 1, . . . , N do

10: compute ((Xj , Yj), seedj)← Algorithm 4(seedj−1)
11: compute (stackmain, B1)← Algorithm 5(H(Yj), stackmain, B1)

12: let R be the single node in stackmain; R is the root of the main tree
13: initialize empty stacks stackmain, stacksub, and stacknext and empty sequence of

nodes C1

14: set priv = (1, 1, seed{main,sub,next}, A1, B1, C1, R1, stack{main,sub,next})
15: return (priv, R)

CMSS Signature Generation CMSS signature generation is carried out in
four parts. First, the MSS signature of document d is computed using the subtree.
Then, the MSS signature of the root of the subtree is computed using the main
tree. Then, the next subtree is partially constructed. Finally, the CMSS private
key is updated.

The CMSS signature generation algorithm uses an algorithm of Szydlo for the
efficient computation of authentication paths. We do not explain this algorithm
here but we refer to [Szy04] for details. We call the algorithm Szydlo.auth.
Input to Szydlo.auth are the authentication path of the current leaf, the seed
for the current tree and an algorithm stack. Output are the next authentication
path and the updated stack. Szydlo.auth needs to compute leaf values of leafs
with higher index than the current leaf. For this purpose, Algorithm 7 is used.
The details of CMSS signature generation are described in Algorithm 8.

Algorithm 7 leafcalc

System Parameters: hash function H : {0, 1}∗ → {0, 1}s, PRNG f : {0, 1}s →
{0, 1}s × {0, 1}s

Input: current leaf index i, current seed seed, leaf index j > i
Output: leaf value H(Yj) of jth leaf
1: set seed0 = seed
2: for k = 1, . . . , j − i do compute (seedk, s0) = f(seedk−1)
3: compute ((Xj , Yj), seedout)← Algorithm 4(seedj−i)
4: return H(Yj)



Algorithm 8 CMSS signature generation

System Parameters: hash function H : {0, 1}∗ → {0, 1}s

Input: document d, CMSS private key priv = (i, j, seedmain, seedsub, seednext,
Ai, Bj , C1, Rj , stackmain, stacksub, stacknext)

Output: signature sig of d, updated private key priv, or STOP if no more signatures
can be generated

1: if j = 2h + 1 then STOP

2: obtain an OTSS key pair: ((Xi, Yi), seedsub)← Algorithm 4(seedsub)
3: compute the one-time signature of d: σi ← Algorithm 2(d, Xi)
4: obtain second OTSS key pair: ((Xj , Yj), seedtemp)← Algorithm 4(seedmain)
5: compute the one-time signature of Rj : τj ← Algorithm 2(Rj , Xj)
6: set sig = (i, j, σi, τj , Ai, Bj)

7: compute the next authentication path for the subtree:
(Ai+1, stacksub)← Szydlo.auth(Ai, seedsub, stacksub)
and replace Ai in priv by Ai+1

8: partially construct the next subtree:
((Xi, Yi), seednext)← Algorithm 4(seednext)
(stacknext, C1)← Algorithm 5(H(Yi), stacknext, C1)

9: if i < 2h then set i = i + 1
10: else

11: let Rj+1 be the single node in stacknext; Rj+1 is the root of the (j+1)th subtree.
12: compute the next authentication path for the main tree:

(Bj+1, stackmain)← Szydlo.auth(Bj , seedmain, stackmain)
and replace Bj in priv by Bj+1

13: replace Rj in priv by Rj+1, seedmain by seedtemp, and Ai by C1

14: set i = 1 and j = j + 1

15: return the CMSS signature sig of d and the updated private key priv

CMSS Signature Verification CMSS signature verification proceeds in two
steps. First, the two authentication paths are validated, then the validity of the
two one-time signatures is verified. The details are described in Algorithm 9.

Algorithm 9 CMSS signature verification

System Parameters: hash function H : {0, 1}∗ → {0, 1}s

Input: document d, CMSS signature sig = (i, j, σi, τj , Ai, Bj), CMSS public key R
Output: TRUE if the signature is valid, FALSE otherwise.
1: repeat steps 1 to 3 of Algorithm 3 with input d and σi to obtain an alleged verifi-

cation key Φi

2: using Φi and Ai, compute the root Rj of the current subtree as in the case of MSS
signature verification (see Section 2.2).

3: repeat steps 1 to 3 of Algorithm 3 with input Rj and τj to obtain an alleged
verification key Ψj

4: using Ψj and Bj , compute the root Q of the main tree as in the case of MSS.
5: if Q is not equal to the CMSS public key R then return FALSE

6: verify the one-time signature σi of d using Algorithm 3 and verification key Φi

7: verify the one-time signature τj of Rj using Algorithm 3 and verification key Ψj

8: if both verifications succeed return TRUE else return FALSE



4 Specification and Implementation

This section describes parameter choices and details of our CMSS implementa-
tion. CMSS is implemented as part of the Java Cryptographic Service Provider
(CSP) FlexiProvider [Fle06]. It is therefore possible to integrate the implementa-
tion into any application that uses the Java Cryptographic Architecture [JCA02]
and Java Cryptography Extension [JCE02]. Our CMSS implementation is avail-
able at [Fle06] as open source software.

Scheme Parameters The hash function H used in the OTSS and the authen-
tication trees can be chosen among SHA1, SHA256, SHA384, and SHA512. The
Winternitz parameter w can be chosen among 1, 2, 3, and 4. As PRNG f , we use
a PRNG based on SHA1 which is part of the SUN JCE provider [JCA02]. For
each choice, there exists a distinct object identifier (OID) that can be found in
Appendix B.

As described earlier, CMSS makes use of the Winternitz OTSS. However,
it is possible to replace the Winternitz OTSS by any other one-time signature
scheme. If unlike in the case of Winternitz OTSS the verification keys can not be
computed from the signature keys, they have to be part of the CMSS signature.
Also, the PRNG based on SHA1 can be replaced by any other PRNG.

Key Generation The CMSS private and public keys are stored using Abstract
Syntax Notation One (ASN.1) [Int02]. ASN.1 ensures interoperability between
different applications and also allows efficient generation of X.509 certificates
and PKCS#12 personal information exchange files. The ASN.1 encoding of the
keys can be found in Appendix A. In addition to what was described in Section
3, both the CMSS public and private key contain the OID of the algorithm they
can be used with.

Signature Generation and Verification For the computation of authenti-
cation paths, we use the preprint version of the algorithm Szydlo.auth which
is more efficient than the conference version. See [Szy04] for details.

Each time a new CMSS signature is computed, the signature of the root of
the current subtree is recomputed. This reduces the size of the CMSS private
key. The time required to recompute this MSS signature is tolerable.

5 Experimental Results

This section compares the CMSS implementation with RSA, DSA, and ECDSA.
We compare the times required for key pair generation, signature generation,
and signature verification as well as the sizes of the private key, public key, and
signatures. For RSA, DSA, and ECDSA, the implementations provided by the
Java CSP FlexiProvider are used, which is available at [Fle06] as open source
software.



The results are summarized in Table 1. In case of CMSS, the first column
denotes the logarithm to the base 2 of the number of possible signatures N . For
RSA, DSA, and ECDSA, the column mod denotes the size of the modulus. The
size of the keys is the size of their DER encoded ASN.1 structure.

The experiments were made using a computer equipped with a Pentium M
1.73GHz CPU, 1GB of RAM and running Microsoft Windows XP.

log N spublic key sprivate key ssignature tkeygen tsign tverify

CMSS with SHA1, w = 1
20 46 bytes 1900 bytes 7168 bytes 2.9 s 10.2 ms 1.2 ms
30 46 bytes 2788 bytes 7368 bytes 1.5 min 13.6 ms 1.2 ms
40 46 bytes 3668 bytes 7568 bytes 48.8 min 17.5 ms 1.2 ms

CMSS with SHA1, w = 2
20 46 bytes 1900 bytes 3808 bytes 2.6 s 9.2 ms 1.3 ms
30 46 bytes 2788 bytes 4008 bytes 1.4 min 12.4 ms 1.4 ms
40 46 bytes 3668 bytes 4208 bytes 43.8 min 14.9 ms 1.3 ms

CMSS with SHA1, w = 3
20 46 bytes 1900 bytes 2688 bytes 3.1 s 9.7 ms 1.5 ms
30 46 bytes 2788 bytes 2888 bytes 1.5 min 13.2 ms 1.5 ms
40 46 bytes 3668 bytes 3088 bytes 47.8 min 16.9 ms 1.6 ms

CMSS with SHA1, w = 4
20 46 bytes 1900 bytes 2128 bytes 4.1 s 12.5 ms 2.0 ms
30 46 bytes 2788 bytes 2328 bytes 2.0 min 17.0 ms 2.0 ms
40 46 bytes 3668 bytes 2528 bytes 62.3 min 21.7 ms 2.0 ms

mod spublic key sprivate key ssignature tkeygen tsign tverify

RSA with SHA1
1024 162 bytes 634 bytes 128 bytes 0.4 s 13.8 ms 0.8 ms
2048 294 bytes 1216 bytes 256 bytes 3.4 s 96.8 ms 3.0 ms

DSA with SHA1
1024 440 bytes 332 bytes 46 bytes 18.2 s 8.2 ms 16.2 ms

ECDSA with SHA1
192 246 bytes 231 bytes 55 bytes 5.1 ms 5.1 ms 12.9 ms
256 311 bytes 287 bytes 71 bytes 9.6 ms 9.8 ms 24.3 ms
384 441 bytes 402 bytes 102 bytes 27.3 ms 27.3 ms 66.9 ms

Table 1. Timings for CMSS, RSA, DSA, and ECDSA

The table shows that the CMSS implementation offers competitive signing
and verifying times compared to RSA, DSA, and ECDSA. The table also shows
that a CMSS public key is significantly smaller than a RSA or a DSA public
key.



In the case of N = 240, key pair generation takes quite long. However, this does
not affect the usability of the implementation, since key pair generation has to be
performed only once. Also, the size of the signature and the private key is larger
compared to RSA and DSA. While this might lead to concerns regarding memory
constrained devices, those sizes are still reasonable in an end-user scenario.

To summarize, CMSS offers a very good trade-off concerning signature gen-
eration and verification times compared to RSA and DSA while preserving a
reasonable signature and private key size. Appendix C contains a table showing
timings for CMSS with SHA256.

6 Signing Messages in Microsoft Outlook with CMSS

Section 5 showed that the space and time requirements of our CMSS implemen-
tation are sufficiently small for practical usage. Also, the number of signatures
that can be generated is large enough for practical purposes.

The implementation can be easily integrated in applications that use the
JCA. An example for such an application is the FlexiS/MIME Outlook plug-in
[FOP03], which enables users to sign and encrypt emails using any Java Cryp-
tographic Service Provider in a fast and easy way. The plugin is available at
[FOP03] as a free download and is compatible with Microsoft Outlook 98, 2000,
2002, XP and 2003.

In addition to the basic functions like key pair generation, signature gen-
eration and verification, the plug-in also supports the generation of self-signed
X.509 certificates and PKCS#10 conform certification requests for a certification
authority. Furthermore, it is possible to import and export X.509 certificates and
PKCS#12 personal information exchange files.

Using the FlexiS/MIME Outlook plug-in in conjunction with the FlexiPro-
vider implementation, we are able to sign emails with CMSS. Furthermore,
CMSS can be easily integrated into existing public-key infrastructures.

7 Conclusion

In this paper, we present CMSS, an improved Merkle signature scheme with
significantly reduced private key size, key pair generation, and signature gener-
ation times. We describe an efficient CMSS FlexiProvider implementation. The
implementation provides competitive or even superior timings compared to the
commonly used signature schemes RSA, DSA, and ECDSA. This demonstrates
that it is already possible today to use quantum computer resistant signature
schemes without any loss of efficiency concerning signature generation and ver-
ification times and with reasonable signature and key lengths. Using CMSS, it
is possible to sign up to 240 messages, while preserving moderate key pair gen-
eration times. Because CMSS is implemented as part of a Java Cryptographic
Service Provider, it can be used with any application that uses the JCA, e.g. the
FlexiS/MIME plug-in, which can be used to sign emails with Microsoft Outlook.
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A ASN.1 Encoding

This section describes the specification of the CMSS public and private keys
using Abstract Syntax Notation number One (ASN.1) [Int02].

CMSSPublicKey ::= SEQUENCE {

algorithm OBJECT IDENTIFIER

height INTEGER

root OCTET STRING

}

CMSSPrivateKey ::= SEQUENCE {

algorithm OBJECT IDENTIFIER

counterSub INTEGER

counterMain INTEGER

seedMain OCTET STRING

seedSub OCTET STRING

seedNext OCTET STRING

authMain AuthPath

authSub AuthPath

authNext AuthPath

stackMain Stack

stackSub Stack

stackNext Stack

}

AuthPath ::= SEQUENCE OF OCTET STRING

Stack ::= SEQUENCE OF OCTET STRING

B Object Identifiers

This section lists the object identifiers (OIDs) assigned to our CMSS implemen-
tation. The main OID for CMSS as well as the OID for the CMSSKeyFactory
is

1.3.6.1.4.1.8301.3.1.3.2

The OIDs for CMSS are summarized in the following table, where the column
”Hash function” denotes the hash function used in the OTSS and the authenti-
cation trees, and the column ”w” denotes the Winternitz parameter w.



Hash function w Object Identifier (OID)

SHA1 1 1.3.6.1.4.1.8301.3.1.3.2.1

SHA1 2 1.3.6.1.4.1.8301.3.1.3.2.2

SHA1 3 1.3.6.1.4.1.8301.3.1.3.2.3

SHA1 4 1.3.6.1.4.1.8301.3.1.3.2.4

SHA256 1 1.3.6.1.4.1.8301.3.1.3.2.5

SHA256 2 1.3.6.1.4.1.8301.3.1.3.2.6

SHA256 3 1.3.6.1.4.1.8301.3.1.3.2.7

SHA256 4 1.3.6.1.4.1.8301.3.1.3.2.8

SHA384 1 1.3.6.1.4.1.8301.3.1.3.2.9

SHA384 2 1.3.6.1.4.1.8301.3.1.3.2.10

SHA384 3 1.3.6.1.4.1.8301.3.1.3.2.11

SHA384 4 1.3.6.1.4.1.8301.3.1.3.2.12

SHA512 1 1.3.6.1.4.1.8301.3.1.3.2.13

SHA512 2 1.3.6.1.4.1.8301.3.1.3.2.14

SHA512 3 1.3.6.1.4.1.8301.3.1.3.2.15

SHA512 4 1.3.6.1.4.1.8301.3.1.3.2.16

Table 2. OIDs assigned to CMSS

C CMSS Timings Using SHA256

log N spublic key sprivate key ssignature tkeygen tsign tverify

CMSS with SHA256, w = 1
20 58 bytes 2884 bytes 17672 bytes 7.0 s 23.4 ms 2.9 ms
30 58 bytes 4244 bytes 17992 bytes 3.8 min 32.3 ms 3.3 ms
40 58 bytes 5604 bytes 18312 bytes 120.9 min 41.3 ms 3.3 ms

CMSS with SHA256, w = 2
20 58 bytes 2884 bytes 9160 bytes 6.3 s 19.6 ms 2.8 ms
30 58 bytes 4244 bytes 9480 bytes 3.2 min 27.3 ms 2.8 ms
40 58 bytes 5604 bytes 9800 bytes 101.3 min 34.9 ms 2.9 ms

CMSS with SHA256, w = 3
20 58 bytes 2884 bytes 6408 bytes 7.5 s 23.3 ms 3.7 ms
30 58 bytes 4244 bytes 6728 bytes 3.8 min 31.9 ms 3.7 ms
40 58 bytes 5604 bytes 7048 bytes 120.7 min 40.9 ms 3.7 ms

CMSS with SHA256, w = 4
20 58 bytes 2884 bytes 4936 bytes 10.2 s 31.6 ms 5.1 ms
30 58 bytes 4244 bytes 5256 bytes 5.2 min 43.4 ms 5.1 ms
40 58 bytes 5604 bytes 5576 bytes 165.5 min 55.8 ms 5.1 ms

Table 3. Timings for CMSS with SHA256


