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Abstract

In most forward-secure signature constructions, a program that updates a user’s private sign-
ing key must have full access to the private key. Unfortunately, these schemes are incompatible
with several security architectures including Gnu Privacy Guard (GPG) and S/MIME, where
the private key is encrypted under a user password as a “second factor” of security, in case the
private key storage is corrupted, but the password is not.

We introduce the concept of forward-secure signatures with untrusted update, where the key
update can be performed on an encrypted version of the key. Forward secure signatures with
untrusted update allow us to add forward security to signatures, while still keeping passwords
as a second factor of security. We provide a construction that has performance characteristics
comparable with the best existing forward-secure signatures. In addition, we describe how to
modify the Bellare-Miner forward secure signature scheme to achieve untrusted update.

1 Introduction

One problem commonly faced in security research is how to limit damage when an attacker com-
promises a system and private secrets are exposed. Ross Anderson, in an invited talk, originally
proposed a signature scheme known as Forward-Secure Signatures [3] that was meant to mitigate
the damage when private signature keys were exposed. In his proposal, each signature would be
associated with the current time period in addition to the signed message. After each time interval,
a user’s private signing key is updated such that it can no longer be used to sign for past time
periods. In this manner, if a user’s private key is compromised at a given time period, the attacker
is unable to forge signatures that appear to come from any earlier time period.

Anderson’s original solution was quite simple. At setup time a user would issue himself a
separate certificate and private key for every time period. As each time period passed, the private
key for that period would be deleted. While the solution was quite elegant, it had the drawback
that the private key size of the user grew linearly with the number of time periods, making it
rather inefficient and infeasible for systems requiring a small storage space (such as smartcards).
Bellare and Miner [4] formalized the notion of Forward-Secure Signatures and provided two schemes

∗Voltage Security Inc. — xb@boyen.org
†Weizmann Institute of Science — hovav.shacham@weizmann.ac.il
‡Supported by a Koshland Scholars Program fellowship.
§Stanford University — emily@cs.stanford.edu
¶SRI International — bwaters@csl.sri.com
‖Supported by NFS and DHS. This material is based upon work supported by the Department of Homeland

Security (DHS) and the Department of Interior (DOI) under Contract No. NBCHF040146. Any opinions, finding
and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of DHS and DOI.

1



with improved private storage requirements. Several constructions followed [25, 22, 19, 21, 1, 2]
that provided different tradeoffs in the metrics of private key storage, signature size, and the
computational time required for setup, key update, signing, and verifying.

While there has been considerable (and successful) effort put into achieving constructions with
sufficient efficiency for practical use, in order for a new primitive to be adopted it must integrate
into existing software architectures. In addition, it should be as transparent as possible—the
added burden on the user should be minimal. One feature of several cryptographic software suites,
including the popular Pretty Good Privacy suite [34], is that a user’s private key is encrypted under
some additional secret, typically a password. The added value of encrypting the private key is that
it provides a “second factor” for security in case the storage is compromised.

Unfortunately, most existing forward-secure signature constructions are difficult to integrate
into this model. The primary difficulty is that the “update” algorithms need to access the private
key unencrypted in order to move it forward. Given this limitation, the software will either need
to require that the user intervene each time it updates the key or it will need to forgo the second
factor altogether. The former option is undesirable for several reasons: first, it places a burden on
the users to take an action at regular intervals to update their keys, something they will most likely
come to resent; second, it makes some update schedules (say, every hour) infeasible; third, since
updates are not automatic, keys are likely to be often not fully updated, and, if an non-updated
key is compromised, the attacker can produce signatures for past time periods—precisely the threat
that forward-secure signatures are supposed to prevent. The second choice is also unfavorable since
it is unclear that achieving forward security is worth the tradeoff of abandoning the extra security
provided by keeping the keys encrypted under the second factor; developers of security software
will be unlikely to adopt a new feature in favor of dropping an old one.

Our Contribution. We introduce forward-secure signatures with untrusted update, a signature
primitive that allows a program to update, i.e., move forward in time, an “encrypted” version of
the private key. To sign a message an algorithm must have an additional secret key, the second
factor, which in practice is a password provided by the user. The required security properties are
both that an attacker with access to just the encrypted key cannot forge signatures and that the
scheme will maintain the traditional forward-secure properties.

We observe that the original proposal of Anderson can actually be easily modified to achieve
these properties—simply encrypt each of the private keys under the secret key. However, as dis-
cussed above, this solution requires an unreasonable amount of private key storage. Our goal is
to design a forward secure scheme with comparable or better performance and security properties
than existing schemes.

We create a (non-trivial) forward-secure signature scheme with untrusted updates. Our con-
struction is “tree-based” and the underlying structure is similar to recent hierarchical identity-based
encryption schemes [8, 6] where the private keys are composed of elements from bilinear groups.
Using this structure, we are able to encrypt private keys in such a way that a third party can
perform a homomorphic key update operation on them.

Our scheme is quite efficient with signatures consisting of three group elements, private keys
of O(log(n)2) group elements, and constant encryption, verification, update, and setup times.
In addition, our scheme is provably secure without random oracles. These features are actually
interesting in their own right, and we regard the forward-secure construction as being of interest
even if we disregard the untrusted update property.
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While our primary contribution is the introduction of a new forward-secure signature scheme
with untrusted update, one might desire to realize untrusted update in a different signature scheme
that has different security or performance tradeoffs. We show that the concept of untrusted update
can be applied in other schemes by sketching how to modify the Bellare-Miner [4] forward-secure
signature scheme to achieve untrusted update.

Finally, to demonstrate the practical applicability of our scheme, we provide an implementation
of our construction. We create an API for our construction.

1.1 Organization

We begin by discussing related work in Section 2. Next, we give a formal description of a forward-
secure signature scheme with untrusted update and definitons of security in Section 3. We present
some background information on bilinear groups and our assumptions in Section 4. Then we present
our construction and a proof of its security in Section 5. Additionally, we describe in Section 6 how
to equip the Bellare-Miner [4] forward-secure signature with an untrusted update. We follow by
describing a software implementation of our scheme in Section 7. Finally, we conclude in Section 8.

2 Related Work

Originally, forward security was introduced for key exchange protocols [16]. Anderson’s original
suggestion was for the user to store a separate private key for each time period. Bellare and
Miner [4] later formalized the notion of forward-secure signatures.

Following work can roughly be divided into two classes. The first comprises generic constructions
that need not necessarily require random oracles. The first of these is the tree construction of Bellare
and Miner [4]. In this construction a generic signature scheme is used to build a binary tree from
chains of certificates where leaves correspond to time periods. The private key storage, signature
time, and verification time will all be a multiplicative factor of O(log(T )) longer than the original
signature scheme, where T is the number of time periods. Malkin, Micciancio, and Miner [25]
apply Merkle trees [26] so that signing and verifying requires O(log(n)) hashes (instead of signing
or verifying operations). This comes at some additional expense during setup and key generation,
though. They additionally show a method for combining various tree-based schemes in order to
make various tradeoffs. Cronin et al. [9] provide an evaluation of the practical performance of
these schemes and create an open-source forward-secure signature library. Krawczyk [22] presents
a generic method for keeping a short private secret key on trusted storage; however, one must still
maintain some (possibly untrusted) storage linear in T for the signer.

The other class of forward-secure signatures comprises specific random oracle-based schemes.
The first of these was due to Bellare and Miner [4] in which they achieve short signatures with fast
key update by applying Ong-Schnorr signatures [28]; however, the verification procedure is linear in
T . Abdalla and Reyzin [2] later show tradeoffs in the computational time with signature and public
key size. Itkis and Reyzin [19] propose a scheme with highly efficient signature and verification
times based on Guillou-Quisquater signatures [15]. Although their basic technique requires an
expensive update, they show how to apply certain pebbling techniques to achieve constant update
time while storing just O(log(T )) elements. Finally, Kozlov and Reyzin [21] give a scheme with
fast key update.
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In addition, there has been work on related subjects such as key-insulated update and in-
trusion resilient signature schemes [10, 11, 20, 18] and applications of forward security to group
signatures [32] and threshold cryptography [1].

Canetti, Halevi and Katz [8] show how Hierarchical Identity-Based Encryption [14, 17] (HIBE)
can be used to achieve forward-secure encryption. Boneh, Boyen, and Goh [6] later show how
certain HIBE ciphertexts can be compressed to a constant size. In our work we apply Naor’s
observation (stated in [7]) that private keys from an Identity-Based Encryption [31] system can be
viewed as signatures on a given identity. We use a particular version of hierarchical signatures to
achieve forward security with short signatures without random oracles.

3 Definitions

We describe forward-secure signature schemes and give a formal definition for their security. A
forward-secure signature scheme is made up of four algorithms:

KeyGen(T ): The setup algorithm takes in an integer, T , the number of time periods and outputs
a public verification key VK, the encrypted signing key EncSK, and another second factor secret
decryption key DecK. The current time period identifier, ID, is initially set to 1. The time period
is embedded within the encrypted signing key.

Update(EncSK, ID′): The update algorithm takes in the encrypted signing key at some time period
ID and outputs a new encrypted signing key EncSK′ for time period ID′ > ID. After this the previous
signing key is erased. If ID′ ≥ T , then the old key is just erased and there is no new key. This
algorithm does not require the decryption key.

Sign(EncSK,DecK,M): The signing algorithm takes as input the encrypted signing key EncSK,
the second factor decryption key DecK, and a message M . It outputs a signature S for the time
period ID that is embedded in the signing key. The time period may be included as part of the
signature.

Verify(S, M, VK): The verification algorithm takes as input a signer’s verification key VK, a
message M , and a signature S. It outputs either valid or invalid.

3.1 Security Model

We now define the security of forward-secure signatures with untrusted update in terms of two
games.

3.1.1 Forward Security

The first security game captures the “traditional” notions of existential unforgeability and forward
security. The game is played between an adversary A and a challenger B, and proceeds in three
phases.
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Key Generation. The challenger runs the Setup algorithm and gives the adversary the verifica-
tion key VK, and the second factor decryption key DecK. The time period t is set to 1.

Interactive Queries. In the query phase the adversary can issue three types of requests in an
adaptive, interactive manner:

Sign: The adversary can query the challenger to sign a message M on the current time period ID;
the challenger will then return a signature S.

Update: The adversary can request that the challenger execute the update algorithm, in which
case the time period will be increased to a new value ID′ chosen by the adversary.

Corrupt: The adversary can request that the challenger hand out all its keys at the current time
period. The challenger returns the encrypted signing key EncSK for the current time period.

The adversary can repeatedly make Sign and Update queries; however, once he makes a Corrupt
query the game moves to the next phase.

Final Forgery. Let ID′ be the time period at which the Corrupt query was issued. The adversary
produces a forgery, consisting of a time, message, signature tuple (ID∗,M∗, S∗). The adversary is
successful if ID∗ < ID′, the signature verifies for time ID∗, and the adversary had not queried for a
signature on M∗ at the exact time period ID∗.

We let AdvFSA denote the advantage of an algorithm A in the forward-security game.

3.1.2 Update Security

This game captures the notion of security against an adversary that controls the storage of the
encrypted signing key, but not the second factor decryption key.

Key Generation. The challenger runs the Setup algorithm and gives the adversary the verifica-
tion key, VK, and the initial encrypted signing key, EncSK. The time period ID is set to 1.

Query Phase. The adversary can issue two types of interactive requests:

Sign: The adversary can query the challenger to sign a message M under a key EncSK′ specified
by the adversary, for the current time period ID. The challenger must output a signature S
if the given key EncSK′ appears well formed (for the current time period ID). It may return
an error symbol ⊥ whenever it can demonstrate that EncSK′ is not well formed.

Update: The adversary can request that the challenger update the clock to a new time ID′ > ID,
of the adversary’s choice.

The adversary can repeatedly make Sign and Update queries, and at some point will choose to
move to the next phase.
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Final Forgery. At last, the adversary produces a time, message, and signature tuple (ID∗,M∗, S∗).
The adversary is successful if the signature verifies for time ID∗, and the adversary had not queried
for a signature on M∗ at time period ID∗.

We let AdvUSA denote the advantage of an algorithm A in the update security game.

The “encrypted” signing key EncSK need not be encrypted in the traditional semantically secure
sense. The only requirement is that the key be blinded or rendered inoperative in such a way that
no adversary can gain a non-negligible advantage in the update security game. In other words, the
encrypted signing key EncSK should be useless by itself to produce signatures.

The decryption key DecK is viewed in this model as being output by the key generation algo-
rithm. In Section 7 we will address the issue of letting DecK be derived from a user password, as
will often be done in practice.

4 Background

Before describing our scheme, we briefly review a few notions.

4.1 Bilinear Groups and Pairings

We review the usual notions of bilinear groups and bilinear maps defined over them [13, 29]. We
use a multiplicative notation for the group operations. For simplicity, we restrict our attention to
“symmetric” bilinear maps, while noting that our constructions can be advantageously generalized
to use asymmetric pairings.

Let G and Gt be two cyclic groups of prime order p, and let g be a generator of G. A symmetric
bilinear map over G is a non-constant function e : G × G → Gt such that e(ua, vb) = e(u, v)ab for
all u, v ∈ G and all a, b ∈ Z. We say that an (infinite) family of groups G with these properties
forms a bilinear group family if the group operation and the bilinear map admit O(poly log |p|)-time
algorithms. It is common to refer to log |p|, or an appropriately rounded multiple thereof, as the
security parameter.

4.2 Computational Complexity Assumptions

Many complexity assumptions have been proposed in the context of bilinear pairings. In this paper,
we make use of the Computational Diffie-Hellman assumption in bilinear groups (CDH), and the
Bilinear Diffie-Hellman Inversion assumption (BDHI).

The CDH assumption in a bilinear group G is very similar to the familiar CDH assumption:
given group elements g, ga, gb ∈ G, it assumes that it is infeasible to compute gab ∈ G. One
important distinction, however, is that in a bilinear group the corresponding DDH problem is easy:
given g, ga, gb, Z ∈ G we can tell whether Z = gab by testing whether the equality e(ga, gb) = e(g, Z)
holds in Gt. The CDH assumption in a bilinear group thus makes a stronger statement than it
does classically.

The BDHI assumption in a bilinear group G originates from [27, 5]. Given a parameter ` ≥ 1,
the `-BDHI assumption in G states the following: given g, gα, gα2

, . . . , gα` ∈ G, it is infeasible to
compute e(g, g)1/α ∈ Gt.
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Definition 4.1. We say that the `-BDHI assumption holds in G if no efficient algorithm can solve a
random instance with non-negligible probability. For i = 1, . . . , `, let gi = g(αi) ∈ G. An algorithm
A has an advantage ε in solving the `-BDHI problem in G if

Pr
[
A

(
g, g1, . . . , g`

)
= e(g, g)(α

−1)
]
≥ ε .

The probability is over the random choice of g ∈ G and α in Zp, and the random bits used by A.
We then say that the computational (t, ε, `)-BDHI assumption holds in G if no t-time algorithm
has advantage at least ε in solving a random instance of the `-BDHI problem in G.

Clearly, for all `, the (` + 1)-BDHI assumption is at least as strong as the `-BDHI assumption.
In addition, the 1-BDHI assumption is itself at least as strong as the CDH assumption in G. We
shall still mention and use the CDH assumption in G as it makes certain proofs clearer.

5 Construction

It is instructive to first understand the intuition behind the forward-secure signature scheme without
the untrusted update property. The scheme is roughly based on a hierarchical identity-based
encryption (HIBE) structure [17, 14]. We use a similar approach to Canetti, Halevi, and Katz [8]
in that we use a binary tree hierarchy to represent a discrete notion of time: we map the leaves of
the tree to the corresponding time periods. A secret key holder will store the private keys material
for a set of at most ` nodes, from which the private keys for the current and all future time periods
can be derived, where ` is the height or depth of the binary tree.

To sign a message, the signer will use the private key of the current time period. By applying
the compression techniques of Boneh, Boyen, and Goh [6], this private key can be expressed in two
group elements, even though it is for an `-level identity. The signature is obtained by appending
to the hierarchy a final “identity” that is dependent on the message; we use the Waters hash [33]
at this level to obtain existential unforgeability.

By combining all of these ideas we can obtain a forward-secure scheme with constant size
signatures that is provably secure without random oracles. To obtain the untrusted update property,
at key creation time we simply multiply the initial private keys by a second factor “decryption key”
DecK, which we will assume to be a secret group element. (In practice, one can hash a secret
bitstring to obtain the group element.) Since the private keys are blinded by DecK, an attacker
with access to the private storage will not be able to sign messages. However, the user can divide
out DecK and recover the true private keys of the original scheme outlined above in order to sign
messages. Finally, we observe that the update procedure of our particular HIBE-based signature
scheme will produce private key nodes that are still a factor of DecK away from a “real” private
key. The fact that this remains consistent during an HIBE Derive (i.e., key delegation) procedure
is what allows an untrusted entity perform an update.

We now give a detailed construction of our scheme and then state our formal theorems of
security.

5.1 Scheme

Let G be a bilinear group of prime order p, and let e : G×G→ Gt be a symmetric bilinear map.
Messages to be signed are taken as fixed-length binary strings of m bits, for simplicity. Fur-

thermore, for certain proofs (such as of the Update Security property), it is convenient to forbid
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that signatures on the same message be ever issued at two different time periods. One simple
way to enforce this restriction is to embed the time period within the m bits to be signed, for
example, as M = Time‖Msg (with the drawback of reducing the available space for the message
itself). Another way is to hash the message together with the time using a collision-resistant hash
function H : {0, 1}∗ → {0, 1}m, and sign the result M = H(Time‖Msg). Yet another way involves a
universal one-way hash family H : {0, 1}m′ ×{0, 1}∗ → {0, 1}m′′

such that m′ +m′′ = m; the signer
would pick a random index R ∈ {0, 1}m′

into the UOWHF family, and then sign the concatenation
M = R‖H(R,Time‖Msg).

Using a hash function such as these also has the advantage of letting us sign arbitrarily long
messages. In the description that follows, we shall keep all this in mind though we treat M as an
m-bit fixed-length binary string.

Time is modeled discretely as a sequence of 2` atomic time periods, arranged as the leaves of
a binary tree of depth `, in chronological order. A time period is identified by an `-bit integer
ID = (I1, . . . , I`) ∈ {0, 1}` (though for convenience we exclude the zero-th period 0` and let the first
period be represented by 0`−11). The bits I1 to I` are ordered from the top to the bottom of the
tree, while a 0 and a 1 respectively indicate the first and second branch in the order of traversal.
It follows that the traversal of the leaves, the chronology of the time periods, and the numerical
values of their identifiers, all obey the same ordering.

For j = 1, . . . , ` + 1, we define a time period’s “second sibling at depth j”, as

sibling(j, ID) =


(I1, . . . , Ij−1, 1) if j < ` + 1 and Ij = 0 ,

⊥ if j < ` + 1 and Ij = 1 ,

ID if j = ` + 1 .

A second sibling at depth j is either ⊥, or a j-bit string that is never a prefix of ID — except that
for notational convenience we pose sibling(` + 1, ID) = ID at the fictitious depth ` + 1.

Last, we let bit(i, S) denote the i-th bit from the string S ∈ {0, 1}∗, that is, for 1 ≤ i ≤ n and
S = (s1, s2 . . . , sn) ∈ {0, 1}n, we have bit(i, S) = si ∈ {0, 1}.

Our forward-secure signature scheme with untrusted updates works as follows:

KeyGen(`,m): Let 2` be the number of time periods, and {0, 1}m the message space. The genera-
tion of a random initial set of keys proceeds as follows. Select two random integers ν, ω ∈ Zp,
and a few random group elements g, h0, h1, . . . , h`, f0, f1, . . . , fm ∈ G. We fix ID = 0`−11.

For each j = 1, . . . , ` + 1, we let kj = sibling(j, ID). Specifically, (k1, k2, . . . , k`, k`+1) =
(1, 01, . . . , 0`−21, ⊥, 0`−11). For each kj , a private key component Kj is computed as follows.
If kj = ⊥, then Kj = ⊥. Otherwise, pick a random integer rj ∈ Zp, and let

Kj =
(

gν+ω ·
(
h0 · h

bit(1,kj)
1 · . . . · hbit(j,kj)

j︸ ︷︷ ︸
|kj | factors

)rj

, grj , h
rj

j+1, . . . , h
rj

`︸ ︷︷ ︸
` − |kj | components

)
.

Since for j < ` we have kj = 0j−11, we obtain Kj =
(
gν+ω · (h0 ·hj)rj , grj , h

rj

j+1, . . . , h
rj

`

)
.

For j = `, we get K` = ⊥. For j = ` + 1, we end up with K`+1 =
(
gν+ω · (h0 · h`)r`+1 , gr`+1

)
by letting h0

`+1 = 1 in the general expression above even though h`+1 is not defined.

The encrypted signing key for period ID = 0`−11 and the “second factor” decryption key are

EncSK0`−11 =
(
ID, K1, K2, . . . , K`−1, K` = ⊥, K`+1

)
, DecK = g−ω .
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Also compute V = e(g, g)ν and W = e(g, g)ω. The public verification key is given by

VK =
(
g, V, W, h0, h1, . . . , h`, f0, f1, . . . , fm

)
.

CheckKey(EncSKID,VK): To verify that an encrypted key EncSKID is valid for a public key VK,
proceed as follows.

Parse EncSKID as (ID,K1, . . . ,K`,K`+1). For j = 1, . . . , ` + 1, let kj = sibling(j, ID), and
check that kj = ⊥ if and only if Kj = ⊥. Then, for each j such that kj 6= ⊥, parse Kj

as (a0, a1, bj+1, . . . , b`), verify that 1 = V ·W · e(a0, g
−1) · e

(
a1, h0

∏j
i=1 h

bit(i,kj)
i

)
in Gt and

that ∀i = j + 1, . . . , ` : e(a1, hi) = e(bi, g) in Gt. If all equalities are verified, output valid,
otherwise output invalid.

Update(EncSKID, ID′,VK): To update an encrypted signing key EncSKID from time period ID to
time period ID′, given the verification key VK (but not the decryption key), proceed as follows.
To start, parse EncSKID as (ID,K1, . . . ,K`,K`+1), and ascertain that 0` < ID ≤ ID′ ∈ {0, 1}`.
Let j, j′ denote indices in the range 1, . . . , `+1. Let kj = sibling(j, ID) and k′

j′ = sibling(j′, ID′).
By construction, each non-⊥ string k′

j′ contains exactly one of the strings kj as a prefix.
Formally: ∀j′ ∈ {1, . . . , ` + 1}, either k′

j′ = ⊥, or ∃!j ∈ {1, . . . , j′} s.t. k′
j′ = kj‖s for some

string s ∈ {0, 1}|k
′
j′ |−|kj |.

For all j′ = 1, . . . , ` + 1, we construct the j′-th component K ′
j′ of the updated key as follows.

If k′
j′ = ⊥, then set K ′

j′ = ⊥. If k′
j′ = kj , then set K ′

j′ = Kj . Otherwise, determine the index
j < j′ such that k′

j′ = kj‖s for some suffix string s, parse the j-th component of EncSKID as
Kj = (a0, a1, bj+1, . . . , b`), pick a fresh random rj′ ∈ Zp, and set

K ′
j′ = (a′0, a

′
1, b

′
j′+1, . . . , b

′
`)

=
(

a0 ·
(

b
bit(j+1,k′

j′ )

j+1 · . . . · b
bit(j′,k′

j′ )

j′︸ ︷︷ ︸
|k′

j′ | − |kj | factors

)
·
(
h0 · h

bit(1,k′
j′ )

1 · . . . · h
bit(j′,k′

j′ )

j′︸ ︷︷ ︸
|k′

j′ | factors

)rj′
, a1 · grj′ ,

bj′+1 · h
rj′

j′+1, . . . , b` · h
rj′
`

)
.

Once all the K ′
j′ have been computed, output the new encrypted key for period ID′ as

EncSKID′ =
(
ID′, K ′

1, . . . , K ′
`+1

)
.

Sign(EncSKID,DecK,VK) : To sign a message M ∈ {0, 1}m using the encrypted signing key EncSKID

and the decryption key DecK, proceed as follows.

Parse EncSKID = (ID,K1, . . . ,K`,K`+1), and then parse K`+1 = (a0, a1) 6= ⊥. The elements
a0 and a1 and the time period ID are all that we need from EncSKID. At this point, if the key
is not trusted (e.g., being the result of an untrusted update), the signer needs to ensure that
1 = V ·W · e(a0, g

−1) · e
(
a1, h0

∏`
i=1 h

bit(i,ID)
i

)
in Gt. If this test fails, output ⊥ and halt.

Otherwise, to produce a signature, pick two random integers r, s ∈ Zp, and output

SID(M) =

ID, DecK · a0 ·
(
h0 ·

∏̀
i=1

h
bit(i,ID)
i

)r
·
(
f0 ·

m∏
j=1

f
bit(j,M)
j

)s
, a1 · gr, gs

 .
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Verify(S, M, VK): To verify a signature S = (ID, s0, s1, s2) on a message M ∈ {0, 1}m with respect
to a verification key VK, it suffices to check the following equality in Gt:

1 = V · e
(
s0, g

−1
)
· e

(
s1, h0

∏̀
i=1

h
bit(i,ID)
i

)
· e

(
s2, f0

m∏
j=1

f
bit(j,M)
j

)
.

Output valid if the equality holds, and invalid if it does not.

Observe that for any time period, the signature contains only three group elements in addition
to the time period identifier ID. Signature verification is also fairly fast as it requires only three
pairings.

Validating Untrusted Keys. The test procedure CheckKey serves to completely validate an
encrypted signing key EncSKID. Without this check, certain corruptions of EncSKID may not be
immediately apparent, but will creep up in the update process, and eventually surface as we try
to sign at some future time ID′. The basic check in the Sign algorithm is sufficient to prevent a
signature from being created incorrectly, and thus CheckKey is superfluous in the formal proof of
security. In practice, however, CheckKey is a useful discretionary test that should be performed
before overwriting an old key with an new key from an untrusted source.

We also note that, as written, CheckKey implicitly assumes that the checking algorithm has
an uncorrupted version of the public key VK when validating EncSK, in addition to DecK. This is
potentially problematic if an attacker controlling the key storage can corrupt VK as well as EncSK.
However, in practice we can protect against this attack by having the key DecK include a MAC key
in addition to the second factor decryption key. The MAC key will be used by KeyGen to append
an authentication code to the public key VK, and later by CheckKey to check the integrity of VK
against that code. For simplicitly we stick to the original model in the formal proofs.

Re-randomization Issues. For performance reasons, the Update procedure does not fully re-
randomize the encrypted key EncSKID upon all invocations. In particular, running a “zero-step”
update of the form Update(EncSKID, ID′,VK) with ID′ = ID simply outputs the given key, unaltered.
We could have designed Update to recompute each component K ′

j′ , even in the case where k′
j′ =

kj 6= ⊥, causing the key to be fully re-randomized no matter how small the update. However, the
selective re-randomization strategy gives us amortized constant time for single-step updates, which
the indiscriminate strategy does not.

In the Sign procedure, we re-randomize the two group elements from EncSKID that intervene in
the signing process, before each signature. This ensures that the signatures are jointly uniformly
distributed (over the space of valid signatures for given times and messages), which helps us keep
the security proofs reasonably simple.

Very Fine Time Granularities. Our update algorithm is general in the sense that it lets us
jump to any time period in the future in a single operation, as opposed to the next period only. The
possibility of making large jumps greatly simplifies the updating task in the case where many time
periods have elapsed since the last update. In turn, this makes it possible to have an extremely
fine-grained discretization of time (such as 1µs periods over a 10-year span), without significant
performance degradation.
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Achieving Constant Update Time. Another desirable feature to have is a true constant-time
update when the time increment is 1, rather than the amortized constant-time we currently have.
Canetti, Halevi, and Katz [8] show a tree-based method for achieving constant-time updates by
associating interior nodes with time periods and doing an in-order traversal through the tree. We
could apply the same method; however, we choose to use a simpler structure to better expose
the novel features of our scheme. The CHK method also loses its advantage over the simpler
approach under fine-grained discretizations of time—where updates are to cover many micro-periods
at once—, which we expect to be more important in practice.

5.2 Security

We now state our two main security theorems. Detailed proofs may be found in the appendix.

Theorem 5.1. Let A be an adversary that produces an existential forgery, in the forward security
attack model, against the signature scheme instantiated for m-bit messages and T time periods.
Assume that A makes no more than q queries, and succeeds with probability ε in time τ . Then
there exists an algorithm B that solves the `-BDHI problem in G in time τ̃ ≈ τ with success
probability ε̃ ≥ ε/(4mqT ).

Proof. See Appendix A.

Theorem 5.2. Let A be an adversary that produces an existential forgery, in the update security
attack model, against the forward secure signature scheme instantiated to accept m-bit messages.
Assume that A makes no more than q queries, and succeeds with probability ε in time τ . Then
there exists an algorithm B that solves the CDH problem in G in time τ̃ ≈ τ with success probability
ε̃ ≥ ε/(4mq).

Proof. See Appendix A.

6 Adding Untrusted Update to the Bellare-Miner Scheme

In the previous section we achieved untrusted update from a new forward-secure signature scheme
derived from HIBE. Our primary leverage for achieving untrusted update was the particular al-
gebraic structure of the underlying scheme. This leads to the natural question of whether other
existing number-theoretic forward-secure signature schemes have similar properties and can be
modified to achieve untrusted update.

In this section we describe how to modify the Bellare-Miner [4] scheme to achieve untrusted
update. We give short, intuitive descriptions of the schemes and proofs, and omit the details.

We briefly describe the number theoretic scheme of Bellare and Miner [4]. The key generation
algorithm chooses a Blum-Williams integer N = pq and publishes the public key as N and ` random
points U1, . . . , U` ∈ ZN , where ` depends on the security parameter of the scheme. If the scheme
has T total time periods, the initial private keys for time period 1 will be S1,1, . . . , S`,1 ∈ ZN , where
Si,1 is the 2T+1-th root of Ui. The factorization is discarded after key generation.

Key update is done simply by squaring each value of the secret key. The private keys for time
period j + 1 are computed as Si,j+1 = S2

i,j for all 1 ≤ i ≤ `. To sign a message at a time period t,
the signer proves non-interactively that he has the 2T+2−t-th roots for all Ui using Fiat-Shamir [12]
heuristic techniques in the random oracle model.
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Adding untrusted update is rather straightforward. Let the second factor DecK be ` elements
DecK1, . . . ,DecK` of ZN . (In practice these can be generated by applying a hash function modeled
as a random oracle to a shorter secret.) The new initial secret keys are constructed by multiplying
in the blinding factors as S′

1,i = S1,i DecKi for all 1 ≤ i ≤ `, where S1,1, . . . , S`,1 are the initial
secret keys from the original scheme. The key update algorithm is the same; it simply squares each
component of the secret key. At time period t, the secret key components will be S′

t,i = St,iDecK2t−1
.

To recover the private key component of the original scheme St,i, the signer simply needs to compute
DecK2t−1

and divide it out from S′
t,i; after this step the signer can sign the message as before. One

drawback is that the signing algorithm will need to perform a number of squarings that is linear in
` T . We can informally, argue that the scheme is secure against untrusted storage since the stored
private keys will be just random group elements in Zn.

It would be interesting to see untrusted update added to other signature schemes. In particular
the Itkis-Reyzin [19] scheme is of particular interest due to its desirable performance parameters.
However, the straightforward methods to add untrusted update remove the performance benefits
that made the scheme interesting to begin with. We leave the addition of untrusted update to other
existing forward secure signature schemes (without significantly degrading performance) as future
work.

7 Implementation and Applications

We present the implementation of our signature scheme. We first describe the core functionality
and the interface to our implementation. Then we discuss our performance measurements. Finally,
we describe some issues that arise in integrating our code with security application programs.

7.1 Software Implementation

We describe the API to our forward-secure signature functionality and report timing numbers. For
the elliptic curve operations underlying our crypto code, we used Ben Lynn’s PBC library [24].
PBC uses the GMP library [30] for its bignums and other math code. We expect to make the
source for our library available under a GPL-compatible license.

7.1.1 Interface

We describe our API and explain some of the choices we made. In addition to the core functions
we describe here, there are, of course, routines for such mundane operations as reading keys from
and writing them to disk.

void fs_gen_sys_param(fs_sys_param_t param, pairing_t pairing);
void fs_gen(fs_public_key_t pk, fs_private_key_t sk, fs_dec_key_t dk,

fs_sys_param_t param, unsigned int msg_len_bits,
unsigned int num_intervals);

Key generation first requires system parameter generation. It is expected that applications will ship
with preselected system parameters, so that users need not generate their own. The actual key
generation algorithm outputs a public key pk, an encrypted secret key sk, and a second-factor dk
that can be used to decrypt sk for the signing operation. We expect that applications will use
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a password obtained from the user to encrypt the second-factor dk. The algorithm takes several
arguments: the system parameters generated earlier; the length of messages to be signed, typically
160 and the output of a collision-resistant hash function like SHA-1; and the number of intervals T
over which the key can evolve.

int get_time_from_sk(fs_private_key_t sk);
int fs_check_key(fs_private_key_t sk, fs_public_key_t pk);
void fs_update(fs_private_key_t sk, fs_public_key_t pk);

Three functions are called for managing time periods. None of these requires the second factor dk
to operate, so they can all be called without the user’s involvement. The first, get_time_from_sk,
returns the time period to which the (encrypted) private key has been updated. The second,
fs_check_key, checks that the private key is indeed valid for signing and has not been tampered
with. The idea is that the application uses this function as a self-test before requiring the user
to enter a password so that she can sign a message. The third, fs_update, updates the key by a
single time period. It can, obviously be called repeatedly to update the key to an arbitrary period.

void fs_sign(unsigned char *sig, unsigned char *msg, unsigned int msg_len_bits,
fs_public_key_t pk, fs_private_key_t sk, fs_dec_key_t dk);

int fs_verify(unsigned char *sig, unsigned char *msg,
unsigned int msg_len_bits, int j, fs_public_key_t pk);

Finally, two functions are provided for signing and verifying messages. The signing operation,
fs_sign, transforms a message in msg to a signature in sig; the verification operation fs_verify
checks that sig is a correct signature on msg. The signing operation requires the second-factor
key dk along with the (encrypted) secret key sk; the verification algorithm obviously, requires only
the public key pk.

The signing function generates a signature for the present time period, so it does not take as
input the time period to use. An application should make sure, before signing, that it has updated
the key to the correct time period. This check could be performed within fs_sign itself, but it
could then be the case that the application and the library have different ideas of what the present
time period should be.

Our verification function, on the other hand, takes a time period j. It is the application’s job to
determine what time period it expects the signature to be from. As with the signing algorithm, the
intention is that all clock-to-time-period conversion be handled by a single location in the code to
avoid what is (more literally here than usually) a time-of-check–time-of-use error. The algorithm
required for this conversion is quite simple for most applications, doing simple arithmetic on the
start and end times for the key’s validity and the number T of time periods through which it
evolves, along with the time at which the signature was generated. Some applications might impose
additional constraints, however, so the code should be implemented in the application to ensure a
consistent answer.

7.1.2 Timing

In Table 1, we present timing numbers for the basic operations we expose. We test our code for
several choices of total time intervals: T ∈ {16, 32, 64, 128, 256}. The setup uses an MNT curve
chosen for 1024-bit security. We sign 160-bit messages. To smooth out the timing, we ran the
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Table 1: Times, in seconds, of forward-secure signing operations, for various total numbers of time
intervals.

Operation T = 16 T = 32 T = 64 T = 128 T = 256
Key generation 37.365 37.832 38.636 39.187 41.026
Signature generation 0.134 0.136 0.135 0.138 0.137
Signature verification 0.328 0.329 0.333 0.341 0.341
Key update (1 step) 0.109 0.146 0.168 0.193 0.202
Key validity check 0.205 0.205 0.208 0.213 0.214

Table 2: Times, in seconds, of forward-secure signing operations, for large total numbers of intervals.
Times are averaged over the first 1024 time intervals.

Operation T = 210 T = 220 T = 230

Key generation 41.99 51.23 66.98
Signature generation 0.14 0.14 0.14
Signature verification 0.34 0.33 0.33
Key update (1 step) 0.22 0.22 0.23
Key validity check 0.21 0.21 0.21

following procedure five times: generate key, then, for each of the T time periods, verify that the
key is valid, sign and verify a message and update to the next period. Measurements were taken
on a 2.8 GHz Pentium IV machine with 512 MB RAM, running OpenBSD 3.8.

In additon, in Table 2, we present timing numbers for our system when used with a large
number of intervals: T ∈ {210, 220, 230}. To generate this table we followed the same procedure as
above, but we ran the timing procedure only once and averaged the single-step key update time
only through the first 1024 intervals.

All operations except key generation take less than one second to complete. We note that
efficient pairing computation is an active research area, and new algorithms are likely to decrease
the times we see.

7.2 Practical Considerations

We describe some details that must be considered when integrating our forward-secure signature
code with an application.

7.2.1 Storing the Second Factor

In our implementation, the second factor key dk is generated uniformly at random in the course
of the fs_gen function. It is expected that the application encrypt this second factor on disk by
means of a user password. In our analysis of update security, we expected that dk is kept secret
from the adversary. Thus if a password is used to encrypt dk, it is important that this password
contain sufficient entropy to deter offline password guessing. The same caveat, of course, applies

14



to any private key stored encrypted with a password. If a better source of entropy is available, the
application can make use of it.

An alternative design strategy would have allowed the application to supply the second-factor
key ω on its own, rather than having ω randomly chosen by fs_gen. The application could then
generate ω using a user-supplied password. The resulting scheme would be somewhat more efficient.
However, it would require tighter integration between our code’s representation of bignums and the
application’s routines for extracting entropy from passwords, a requirement we deemed inadvisable.

7.2.2 Key Storage and Unattended Updates

The natural and correct choice for implementing automatic updates is for the application to set up
a cron job on the user’s behalf that updates the key at the appropriate interval. The cron job can
check if a key update has been skipped (for example, because the system was powered down) and
apply the updates necessary to bring the key to the current time period. An application making
use of our library can also check whether updates have been missed when it is run by the user.

The security guarantees of our scheme mean that it is also possible for the encrypted private
key to be stored on a remote server whose job it is to update it at every interval. The danger of
this approach is that if the server retains old versions of the secret key then a compromise of the
second factor will cause these old versions to be revealed, not just the version corresponding to the
present time period.

7.2.3 Mapping Times to Time Periods

The security of a forward-secure signature scheme relies crucially on a proper mapping of signatures
to the time period in which they were generated. For example, consider a backdated signature that
claims, “I was made in time period j,” but was in fact made in time period j′ > j, and verifies
only with the public key for period j′. An application that accepts this signature will violate the
forward-security semantics, though no cryptographic flaw exists. As with much about signatures,
the semantics of signature verification are what is important, but also what is hard to pin down;
cf. Laurie and Bohm [23].

It is also important, but less so, that the signer correctly calculate the the appropriate time
period with which to generate a signature. In the worst case, the resulting signature will not verify,
since it will be deemed to have been backdated. The calculations are also easier for the signer,
since it relies on the current time as reported by the OS (or a clock server), not the signing time
listed in a maliciously generated signature. The secret signing key should be kept updated on disk,
of course.

An upshot of this is that an application that verifies signatures from untrusted sources must be
sure to make the user aware of the time in which it understands the signature to have been generated
and, ideally, also the start and end of that time period. This is an extension of the backdating attack
mentioned earlier. Even if a signature that claims to have been issued in time period j and was
in fact issued then, the contents of the message might lead the user astray. For example, suppose
document signing functionality with forward security is added to a word processing application. If
the displays a checkmark next to the document to indicate that the signature was valid, an attacker
who compromises Alice’s signing key today can create a signature (correctly using the current time
period) on a document that, in its body, prominently lists a date in the past. Now Bob, opening
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the document, will be tricked into believing that Alice generated it earlier, and might not discount
it even if he hears from Alice that her key was recently compromised.

8 Conclusion

We introduced the notion of forward-secure signatures with untrusted update. With these signa-
tures, private keys can be updated forward in time as they are kept in encrypted form, without
first requiring decryption. This allows practical applications such as GPG to adopt the benefits of
forward security, without forgoing the practice of encrypting the private keys under a second factor
such as a user password.

We presented and proved secure a very efficient construction of forward-secure signatures with
untrusted update, based on pairings. We also showed how to retrofit untrusted update into some
existing forward-secure schemes, based on factoring. To validate the concept, we implemented our
main (pairing-based) construction using the open-source GMP and PBC libraries, and obtained
performance measurements.
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A Proofs

We give detailed formal proofs of the security properties stated in Section 5.2.
For simplicity, and to get slightly stronger results, we base our security reductions on the so-

called wBDHI* assumption [6], which is a slightly weaker and more convenient variant of the familiar
BDHI assumption discussed earlier. It is immediate to show that for any ` ≥ 1, any algorithm that
(τ, ε)-solves the `-wBDHI* problem in a bilinear group G can be transformed into an algorithm
that (τ̃ , ε)-solves the `-BDHI assumption in the same group G, with the same advantage ε, and
essentially the same running time τ̃ ≈ τ .

Suppose that G is a bilinear group of order p and generated by a random w ∈ G. Let β ∈ Z∗
p.

For ` ≥ 1, the `-th Bilinear Diffie-Hellman Inversion problem [5, 27] is usually stated as

`-BDHI : given w,wβ , w(β2), . . . , w(β`) compute e(w,w)
1
β .

Now, consider g and h, two random generators of G, and let α be a random integer in Z∗
p. For

` ≥ 1, the (modified) Weak BDHI problem from [6] is as follows:

`-wBDHI*: given g, h, gα, g(α2), . . . , g(α`) compute e(g, h)(α
`+1) .

Any algorithm for `-wBDHI* in G gives an algorithm for `-BDHI in G with a tight reduction. Given
an `-BDHI problem instance (w,w1, . . . , w`), we build a `-wBDHI* instance (w`, h, w`−1, . . . , w1, w)
where h = wr

` for some random exponent r ∈ Z∗
p. If Z ′ be the solution to the `-wBDHI* instance,

then Z = (Z ′)1/r is the solution to the original `-BDHI instance.
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As usual, we say that the `-wBDHI* assumption holds in G if no efficient algorithm can solve a
random instance with non-negligible probability. For i = 1, . . . , `, let gi = g(αi) ∈ G∗. An algorithm
A has advantage ε in solving the `-wBDHI* problem in G if

Pr
[
A

(
g, h, g1, . . . , g`

)
= e(g, h)(α

`+1)
]
≥ ε,

where the probability is over the random choice of generators g, h of G, the random choice of α in
Z∗

p, and the random bits used by A.

Definition A.1. The computational (t, ε, `)-wBDHI* assumption holds in G if no t-time algorithm
has advantage at least ε in solving a random instance of the `-wBDHI* problem in G.

A.1 Proving Forward Security

Proof of Theorem 5.1. Suppose that an algorithm A succeeds with advantage ε in time τ to produce
a forgery in a random instance of the forward-secure signature scheme with T = 2`−1 time periods.
Using A, we build an algorithm B that solves the computational `-wBDHI* problem in G with
probability ε′ ≥ ε/(4mqT ) in time τ ′ ≈ τ .

Thus, algorithm B is given as input a single random instance of the `-wBDHI* problem, in the
form of a tuple (g, h, g1, . . . , g`), where g ∈ G is a generator, and gi = g(αi) ∈ G for some undisclosed
random α ∈ Z∗

p. The goal of B is to output a value Z ∈ Gt such that Z = e(g, h)(α
`+1). To do so,

B will simulate the challenger against adversary A in the forward-secure existential forgery game.
The process is as follows:

Initial Key Generation. To start the game, B must give A a verification key VK. Before that,
B guesses the time period that A will choose to create a forgery. Let thus ID∗ = (I∗1 , . . . , I∗` ) be its
identifier, randomly chosen by B in {0, 1}` \ 0`. To create VK, algorithm B proceeds in two steps.

First, algorithm B picks a random integer β ∈ Zp, and constructs the triple (g, g′, g′′) =
(g, gα, gβ+α`

) = (g, g1, g
βg`). This triple defines a CDH instance in G, whose solution, gαβ+α`+1

,
would let B calculate the solution to the wBDHI* problem as Z = e(g, h)(α

`+1) = e(gαβ+α`+1
g−β
1 , h).

Algorithm B further selects a random integer ρ ∈ {0, . . . ,m}, followed by m + 1 random integers
x0, x1, . . . , xm in the interval {0, . . . , 2q−1}, and another m+1 integers z0, z1, . . . , zm picked in Zp.
It assigns f0 = (g′′)x0−2qρgz0 , and fi = (g′′)xjgzj for i = 1, . . . ,m.

Second, algorithm B picks ` + 1 random integers γ0, γ1, . . . , γ` in Zp. Using the previously
defined g′ = g1 = gα and g′′ = gβg` = gβ+α`

, it computes V = e(g′, g′′) = e(g, g)αβ+α`+1
. This

implicitly sets ν = αβ+α`+1. The algorithm then assigns h0 = gγ0 ·
∏`

i=1 g
I∗i
`−i+1, and hi = gγig−1

`−i+1

for i = 1, . . . , `.
To finish the key generation, B picks an extra random integer, ω ∈ Zp, lets W = e(g, g)ω, and

gives A the verification key VK = (g, V, W, h0, . . . , h`, f0, . . . , f`). It also gives A the second factor
decryption key DecK = gω (even though it is not formally required at this stage). Finally, algorithm
B sets up a public clock, ID ∈ {0, 1}`, to keep track of the current time period; the clock is initially
set to ID← 0`−11.

Interactive Query Phase. There are three types of queries. A can make as many Update
queries as it wishes, and up to q Sign queries; these queries can be made in any order. B is to
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respond to each query before seeing the next one. A may then make a single final Corrupt query
before moving to the Forgery phase. The queries and responses are handled as follows.

“Update” queries. A may request that B advance its clock to a new value ID′ > ID, under the
constraint that ID′ ∈ {0, 1}`. To respond, B updates ID← ID′ and acknowledges.

“Sign” queries. A may request that B sign a message M ∈ {0, 1}m of A’s choosing, using the
key for the current time period as indicated by B’s clock, ID. Algorithm B responds as follows.

If ID 6= ID∗, algorithm B first generates a (partial) signing key that will let it create a signature
using the regular Sign procedure. Recall from the scheme description that Sign only necessitates
K`+1 = (a0, a1) from EncSKID. Since k`+1 = sibling(` + 1, ID) = ID 6= ID∗ = sibling(` + 1, ID∗),
algorithm B is able to compute K`+1 even though it may not be able to assemble the full key
EncSKID. The process to compute K`+1 is essentially as described below, when answering the
“Corrupt” query.

If, ID = ID∗, however, algorithm B must proceed differently. Let M = (µ1, . . . , µm) ∈ {0, 1}m
be the message to be signed. Let B compute D = −2qρ + x0 +

∑m
i=1 xiµi and J = z0 +

∑m
i=1 ziµi.

If D ≡ 0 (mod p), then B cannot produce the requested signature and must abort. Otherwise, B
picks two random integers r, s ∈ Zp, lets h = h0 ·

∏`
j=1 h

bit(ID∗,j)
j , and outputs the signature

S = (ID, s0, s1, s2) =
(

ID, g
−J/D
1 · hr · (f0

m∏
i=1

fµi
i )s, gr, g

1/D
1 gs

)
.

Let us substitute the expression α/D + s̃ for the random exponent s. We successively rewrite s0 =
g
−J/D
1 ·hr·((g′′)DgJ)s = (gα)−J/D·hr·(g′′)α+Ds̃gαJ/D+Js̃ = gα(β+α`)hr(g′′)Ds̃gJs̃ = gνhr((g′′)DgJ)s̃ =

gν(h0
∏`

j=1 h
bit(ID,j)
j )r(f0

∏m
i=1 f

bit(M,i)
i )s̃, and similarly, s2 = g

1/D
1 ga/D+s̃ = gs̃. This shows that S

is a valid signature with the correct distribution, as the exponents r and s̃ are uniform over Zp.

“Corrupt” query. A may make a final request that B reveal the encrypted signing key EncSKID

for the current value of the clock ID. (The decryption key DecK was already given to A during key
generation.)

If ID ≤ ID∗, algorithm B terminates its execution since it is unable to answer the query. Oth-
erwise, algorithm B constructs a key EncSKID = (ID,K1, . . . ,K`+1), where each component is
computed as follows. For j = 1, . . . , ` + 1, we define

sibling(j, ID) =


(I1, . . . , Ij−1, 1) if j < ` + 1 and Ij = 0 ,

⊥ if j < ` + 1 and Ik = 1 ,

ID if j = ` + 1 ,

as in the scheme description, and let kj = sibling(j, ID). If kj = ⊥, then we let B assign Kj = ⊥.
Otherwise, we know that kj is a bit string of length j′ = min{j, `}, and that it is not a prefix of ID.
For a binary string S, let us denote by S|j′ the first j′ bits of S. It is easy to see that kj is not a
prefix of ID∗ either because, by definition of sibling, we have kj > ID|j′ , and in the current context
we have ID > ID∗, and thus ID|j′ ≥ ID∗

|j′ . Hence, kj 6= ID∗
|j′ , and therefore there exists an index

θ ≤ j such that bit(kj , θ) 6= bit(ID∗, θ). W.l.o.g., suppose that θ is the smallest such index. Recall
that ID∗ = (I∗1, . . . , I

∗
`). We similarly expand kj as (I′1, . . . , I

′
j). Note that I′θ 6= I∗θ.
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B generates Kj in two steps. First, it creates a “prototype” K ′
j based on the first θ bits of kj .

Let B pick a random integer r̃ in Zp, and pose r = αθ

(I′θ−I∗θ)
+ r̃ ∈ Zp. The prototype is given as

K ′
j = (a0, a1, bθ+1, . . . , b`) =

(
gν+ω · (h0 · h

I′1
1 · . . . · h

I′θ
θ )r, gr, hr

θ+1, . . . , hr
`

)
.

We show that B can compute K ′
j without knowing r or ν. Recall that g

(αj)
i = gi+j for any i and j.

For a0, we successively get

a0 = gν+ω · (h0 · h
I′1
1 · · ·h

I′θ
θ )r

= gν+ω ·
(

gγ0+
Pθ

i=1 I′iγi ·
( θ−1∏

i=1

g
(I∗i −I′i)
`−i+1

)
· g(I∗θ−I′θ)

`−θ+1 ·
( ∏̀

i=θ+1

g
I∗i
`−i+1

))r

= gαβ+α`+1 · g−αθ

`−θ+1 · g
(I∗θ−I′θ)r̃

`−θ+1 · gω ·
(

gγ0+
Pθ

i=1 I′iγi ·
( θ−1∏

i=1

g
(I∗i −I′i)
`−i+1︸ ︷︷ ︸
=1

)
·
( ∏̀

i=θ+1

g
I∗i
`−i+1

))r

= gαβ · g(I∗θ−I′θ)r̃

`−θ+1 · gω ·
(

gγ0+
Pθ

i=1 I′iγi ·
∏̀

i=θ+1

g
I∗i
`−i+1

)r

.

The α`+1-th powers of g are unknown to B, but they cancel each other out. In addition, the second
factor in the big parentheses vanishes because I′i = I∗i for 1 ≤ i < θ. It is easy to verify that all of
what remains can be expressed in terms of the values of gi at B’s disposal. B can thus calculate
a0. The remaining components of the prototype are easy to compute. Considering a1, we have

a1 = gr = (gθ)1/(I′θ−I∗θ) · gr̃ ,

which B can compute. For bθ+1, we have

bθ+1 = hr
θ+1 = (gθ)−γθ+1/(I′θ−I∗θ) · gγθ+1r̃ · (g`)−1/(I′θ−I∗θ) · (g`−θ)−r̃ .

The remaining components are similarly obtained, since none of them involves the term g`+1.
The second step for B, once K ′

j has been calculated, is to transform K ′
j = (a0, a1, bθ+1, . . . , b`)

into Kj as in the Update procedure. To do so, B picks a random r′ ∈ Zp, and computes

Kj =
(

a0 ·
(
b
I′θ+1

θ+1 · . . . · b
I′j
j

)
·
(
h0 · h

I′1
1 · . . . · h

I′j
j

)r′

, a1 · gr′ , bj+1 · hr′
j+1, . . . , b` · hr′

`

)
.

Once this two-step process has been performed for each j = 1, . . . , `+1, B ends up with EncSKID,
which it gives to A, as required.

Forgery and Reduction. When it is done with the query phase, A outputs an existential forgery
“in the past”. The forgery consists of a message M∗ = (µ∗

1 . . . µ∗
m) ∈ {0, 1}m and a signature

S∗ = (ID∗∗, s∗0, s
∗
1, s

∗
2), under the constraint that A must not have previously requested a signature

on M∗ when the clock read ID∗∗. From this point on, there is no further interaction with A.
If ID∗∗ 6= ID∗, then B has failed as it will not be able to complete the reduction. However, if B

had correctly guessed ID∗∗ = ID∗, it may proceed as follows. Let D∗ = −2ρq + x0 +
∑m

i=1 xiµ
∗
i . If
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D∗ 6≡ 0 (mod p), algorithm B aborts. Otherwise, let J∗ = z0+
∑m

i=1 ziµ
∗
i and H∗ = γ0+

∑`
j=1 γjI∗j .

For some integers r and s in Zp, the forgery S∗ = (ID∗, s∗0, s
∗
1, s

∗
2) is necessarily of the form

S∗ =
(
ID∗, gν(h0

∏̀
j=1

h
bit(ID∗,j)
j )r(f0

m∏
i=1

f
bit(M∗,i)
i )s, gr, gs

)
=

(
ID∗, gαβ+α`+1+H∗r+J∗s, gr, gs

)
.

To obtain gαβ+α`+1
and thereby solve the synthetic CDH instance (g, g′, g′′), algorithm B computes

(s∗2)
−J∗(s∗1)

−H∗
(s∗0) = gαβ+α`+1

= gαβ+α`+1
. As mentioned earlier, B is now able to solve the

original wBDHI* instance: Z = e(g, h)(α
`+1) = e(gαβ+α`+1

g−β
1 , h).

Success Probability. To conclude this proof, we give a lower bound on the efficiency of the
reduction. To succeed, the guess ID∗ must be correct, which has a prior probability of 1/T =
1/(2` − 1). In addition, B must not abort upon answering signature queries. It is always able
to sign any message at a time ID 6= ID∗. At time period ID∗, however, there is a small failure
probability ≤ 1/(2q) for each new signature request. Since the number of signature queries is
bounded by q, by the union bound it follows that B will be able to satisfy all the requests with
conditional probability at least 1/2. Last, for the forgery phase to succeed, it is necessary that
D∗ ≡ 0 (mod p), which happens with conditional probability at least 1/(2mq). Therefore, if A
makes at most q signature queries and breaks the forward-secure signature scheme with probability
ε, then B solves the wBDHI* problem with probability ε′ ≥ ε/(4mqT ).

This concludes the proof of Theorem 5.1.

A.2 Proving Update Security

Proof of Theorem 5.2. Consider an instantiation of our signature scheme with T = 2` − 1 time
periods, and suppose that there is an algorithm A that runs in time τ and wins the update security
game with advantage ε while making no more than q signature queries. Then we show how to
construct an algorithm B that solves the computational Diffie-Hellman problem in the bilinear
group G with probability ε′ ≥ ε/(4qm) in time τ ′ ≈ τ .

Algorithm B is given an instance (g, g′, g′′) of the CDH problem in G, where g ∈ G is a generator,
and g′ = gα and g′′ = gβ for undisclosed random α, β ∈ Z∗

p. Its goal is to compute Z = gαβ ∈ G.
Algorithm B works by simulating an attack environment to A per the update security game. The
process is as follows:

Initial Key Generation. To launch the game, B must give A a verification key VK and an
initial encrypted signing key EncSKID for ID = 0`−11.

Algorithm B starts by selecting a random integer δ ∈ Zp. It computes V = e(g′, g′′) = e(g, g)αβ ,
and assigns W = e(g, g)δ · V −1. This implicitly defines ν = αβ (mod p) and ω = δ − ν (mod p).

Algorithm B then selects a random integer ρ ∈ {0, . . . ,m}, and picks m + 1 random integers
x0, x1, . . . , xm in the interval {0, . . . , 2q − 1}. It also picks m + 1 integers z0, z1, . . . , zm in Zp, and
assigns f0 = (g′′)x0−2qρgz0 , and fi = (g′′)xjgzj for i = 1, . . . ,m. Finally, it picks ` + 1 random
integers γ0, γ1, . . . , γ` in Zp, and assigns h0 = gγ0 , and hi = gγi for i = 1, . . . , `.

The clock is set to ID← 0`−11, and the verification key is VK = (g, V, W, h0, . . . , h`, f0, . . . , f`).
The initial encrypted signing key EncSKID is computed as in the scheme itself: even though B does
not know either ν or ω, it can compute gν+ω = gδ, and the rest is known. B gives to A the keys
VK and EncSKID. Nobody gets DecK.
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Interactive Query Phase. There are two types of queries: Update and Sign. A can make as
many Update queries as it wants, and at most q Sign queries, in any order. B must respond at
once to each query.

“Update” queries. A can request B to advance the clock to any new value ID′ of its choice,
provided that ID′ > ID and that ID′ ∈ {0, 1}`. B responds by updating ID← ID′.

“Sign” queries. A may request that B sign a message M ∈ {0, 1}m of A’s choosing, using an
encrypted signing key EncSK that is also supplied by A. The time period identifier embedded in
the key must match that indicated by B’s clock, ID. Algorithm B responds as follows.

The first task for B is to determine whether the signing key is valid, at least for time period ID,
by testing whether 1 = V ·W · e(a0, g

−1) · e
(
a1, h0

∏`
i=1 h

bit(i,ID)
i

)
in Gt, as specified in the actual

scheme. If the test fails, the key is demonstrably invalid (since anyone can perform the same test),
and thus B has a justification to respond with ⊥.

If the test passes, then EncSK is valid for the current time period, and B should produce a
signature. Instead of using EncSK, which it cannot decrypt, B will create a signature from scratch,
that will be have the same uniform distribution over valid signatures as if the Sign procedure had
been used. This is fine because the specification of Sign clearly shows that the signature distribution
is conditionally independent of EncSK (if valid), for a given VK, time, and message.

Let thus M = (µ1, . . . , µm) ∈ {0, 1}m be the message to be signed at time ID. Let B compute
D = −2qρ + x0 +

∑m
i=1 xiµi and J = z0 +

∑m
i=1 ziµi. If D ≡ 0 (mod p), then B must abort, being

unable to respond. Otherwise, B picks two random integers r, s ∈ Zp, lets h = h0 ·
∏`

j=1 h
bit(ID∗,j)
j ,

and outputs the signature

S = (ID, s0, s1, s2) =
(

ID, (g′)−J/D · hr · (f0

m∏
i=1

fµi
i )s, gr, (g′)1/Dgs

)
.

To see that this is a good uniformly distributed signature, we substitute s = α/D + s̃, then
rewrite s0 = (g′)−J/D · hr · ((g′′)DgJ)s = (gα)−J/D · hr · (g′′)α+Ds̃gαJ/D+Js̃ = gαβhr(g′′)Ds̃gJs̃ =
gνhr((g′′)DgJ)s̃ = gν(h0

∏`
j=1 h

bit(ID,j)
j )r(f0

∏m
i=1 f

bit(M,i)
i )s̃, and similarly, s2 = (g′)1/Dga/D+s̃ = gs̃.

This shows that S is a valid signature whose randomization exponents r and s̃ are independent and
uniform in Zp.

Forgery and Reduction. When it is done with the query phase, A outputs an existential forgery.
The forgery consists of a message M∗ = (µ∗

1 . . . µ∗
m) ∈ {0, 1}m and a signature S∗ = (ID∗, s∗0, s

∗
1, s

∗
2),

under the constraint that A must not have previously requested a signature on M∗ at any time.
There are no further interactions with A from this point on.

Compute D∗ = −2ρq+x0+
∑m

i=1 xiµ
∗
i . If D∗ 6≡ 0 (mod p), algorithm B must abort. Otherwise,

let J∗ = z0 +
∑m

i=1 ziµ
∗
i and H∗ = γ0 +

∑`
j=1 γjI∗j . For some integers r and s in Zp, the forgery

S∗ = (ID∗, s∗0, s
∗
1, s

∗
2) can be expressed as

S∗ =
(
ID∗, gν(h0

∏̀
j=1

h
bit(ID∗,j)
j )r(f0

m∏
i=1

f
bit(M∗,i)
i )s, gr, gs

)
=

(
ID∗, gαβ+H∗r+J∗s, gr, gs

)
.

To extract gαβ and thereby solve the given CDH instance (g, g′, g′′) in G, algorithm B computes
(s∗2)

−J∗(s∗1)
−H∗

(s∗0) = gαβ = gαβ , and outputs the result.
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Success Probability. It remains to bound the efficiency of the reduction. First, B must not
abort at any time when answering signature queries. For each new message, the probability of
aborting is at most 1/(2q); it is 0 for any repeat message even if the time period has changed. Since
A makes requests on at most q unique messages, B will complete the query phase with probability
at least 1/2. Second, for the forgery phase to succeed, we must have D∗ ≡ 0 (mod p), which for
a new message M∗ happens with conditional probability at least 1/(2mq). In summary, if A wins
the update security game with probability ε, then B solves the CDH problem in G with probability
ε′ ≥ ε/(4mq).

Observe that the success probability argument in this proof depends on the adversary not
querying on the forgery message M∗ at any other time period. This can easily be realized by
embedding the time period into the message itself. It is easy to accommodate in the construction
by letting M = H(ID‖Msg) or M = R‖HR(ID‖Msg), where Msg is the true message, and H is
either a collision-resistant hash function or a UOWHF family indexed by R.

24


