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Abstract. HMAC is a widely used message authentication code and a pseudorandom
function generator based on cryptographic hash functions such as MD5 and SHA-1. It
has been standardized by ANSI, IETF, ISO and NIST. HMAC is proved to be secure
as long as the compression function of the underlying hash function is a pseudorandom
function. In this paper we devise two new distinguishers of the structure of HMAC,
called differential and rectangle distinguishers, and use them to discuss the security of
HMAC based on HAVAL, MD4, MD5, SHA-0 and SHA-1. We show how to distinguish
HMAC with reduced or full versions of these cryptographic hash functions from a
random function or from HMAC with a random function. We also show how to use our
differential distinguisher to devise a forgery attack on HMAC. Our distinguishing and
forgery attacks can also be mounted on NMAC based on HAVAL, MD4, MD5, SHA-0
and SHA-1. Furthermore, we show that our differential and rectangle distinguishers
can lead to second-preimage attacks on HMAC and NMAC.

1 Introduction

Message Authentication Code (MAC) algorithms are widely used in Internet security pro-
tocols (SSL/TLS, SSH, IPsec) and in the financial sector for debit and credit transactions.
MAC algorithms are keyed hash functions that allow to verify whether a transmitted message
has been altered. In order to use a MAC algorithm in computer networks, a secret key should
be first distributed to the authorized entities, Alice and Bob. When Alice sends a message to
Bob, she computes the MAC value of the message with the shared secret key and appends it
to the message. Once Bob receives the message and its MAC value, he recomputes the MAC
value of the obtained message with the key and verifies the authenticity of the message by
checking if the recomputed MAC value is the same as the received MAC value. The security
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of a MAC algorithm depends on the difficulty for an unauthorized entity to produce a forgery,
that is, a new message with a valid MAC. Typically, the forger is allowed to query the MAC
generation oracle with adaptively chosen queries (see for example [3, 17]).

In the literature there have been mainly two types of MAC algorithms: block cipher based
MAC algorithms (e.g., CBC-MAC [11], TMAC [15], RMAC [13] and OMAC [12]) and hash
function based MAC algorithms (NMAC [2], HMAC [2] and MDx-MAC [18]). Both types of
MAC algorithms usually inherit the security and efficiency of its underlying primitives. Other
MAC algorithms are based on the design principle of a stream cipher (e.g., SOBER [21])
and a universal hash function (e.g., UMAC [9] and Poly1305–AES MAC [5]). Furthermore,
several authenticated encryption schemes have been proposed that offer both confidentiality
and authenticity of a message (e.g., CWC [14], EAX [4] and GCM [16]).

HMAC, which was designed by Bellare, Canetti and Krawczyk, is a standardized hash-
based MAC algorithm that is widely used as a MAC algorithm and as a pseudorandom
function generator [2]. HMAC takes a message of an arbitrary bit-length and hashes it with
one secret key. For the same length of the message it calls the compression function of the
underlying hash function additionally three more times than the iterated hash construction,
i.e., the MD construction. For long messages, its efficiency is thus almost the same as the
MD construction. Furthermore, cryptographic hash functions such as MD5 and SHA-1 can
be used in HMAC, which are more efficient in software than block ciphers, and thus HMAC
is typically faster than block cipher based MACs. HMAC is proved to be a pseudorandom
function under the assumption that the compression function of the underlying hash function
is a pseudorandom function [1] (note that the security proof of pseudorandomness provides the
MAC security [3]). However, this does not guarantee the security of HMAC if it is instantiated
with a specific cryptographic hash function such as MD5 or SHA-1. The recent attacks of Wang
et al. [22–26] and Biham et al. [7, 8] have undermined the confidence in the most popular
collision resistant hash functions such as MD5 and SHA-1. However, it is widely assumed
that these attacks have no impact on the security of MAC algorithms based on these hash
functions such as HMAC since they use a keyed initial value.

This paper is the first work which presents a detailed analysis of distinguishing and forgery
attacks on HMAC based on MD5, SHA-1 and other MDx-type hash functions. Our results
allow to quantify to which extent the vulnerabilities of these hash functions carry over to
the HMAC construction. This is achieved by the introduction of two novel distinguishers
of the general structure of HMAC. We use a message pair which induces a collision in its
corresponding MAC pair for designing a differential distinguisher of HMAC and also use a
message quartet which induces two collisions in its corresponding MAC quartet for designing
a rectangle distinguisher of HMAC. With these two distinguishers we discuss the security of
HMAC based on HAVAL [27], MD4 [19], MD5 [20], SHA-0 [28] and SHA-1 [29].

First, we construct new differentials of the full 3-pass HAVAL and reduced MD5 to form
rectangle distinguishers of HMAC, and we use them to distinguish HMAC with the full 3-
pass HAVAL and reduced MD5 from HMAC with a random function. Second, we investigate
how effectively the differentials of MD4, SHA-0 and SHA-1 found by Wang et al. [22–26]
and Biham et al. [7, 8] are applied to our differential and rectangle distinguishers in HMAC.
After converting their differentials into our differential and rectangle distinguishers, we devise
distinguishing and forgery attacks on HMAC based on reduced or full versions of MD4, SHA-0
and SHA-1. In particular, we show how to distinguish HMAC with the full SHA-0 and MD4
from HMAC with a random function and present a forgery attack on HMAC with the full
MD4. See for details of the results Table 3 in Sect. 6 (the function h2 and the probabilities
p̂ and q in Table 3 will be defined in the following sections). Our distinguishing and forgery
attacks can be mounted on NMAC based on HAVAL, MD4, MD5, SHA-0 and SHA-1 with
the same complexity. Furthermore, we show that our differential and rectangle distinguishers
can lead to second-preimage attacks on HMAC and NMAC.

The paper is organized as follows: in Sect. 2, we give a brief description of HMAC and in
Sect. 3, we describe some general attacks on HMAC. Section 4 devises two distinguishers of
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the general structure of HMAC and Sect. 5 presents differentials on the compression functions
of HAVAL, MD4, MD5, SHA-0 and SHA-1, which can be used in our distinguishers of HMAC.
In Sect. 6, we present distinguishing and forgery attacks on HMAC based on HAVAL, MD4,
MD5, SHA-0 and SHA-1. We also discuss distinguishing and forgery attacks on NMAC in
Sect. 7 and we present some implications of our differential and rectangle distinguishers in
Sect. 8. Section 9 concludes the paper.

2 Description of HMAC

HMAC [2] applies in both its inner and outer parts the iterated MD construction of a hash
function H given a compression function h, H(IV, M) = h(· · ·h(h(IV,M1),M2) · · · ,Mn),
where IV is a l-bit fixed initial value and M is an arbitrary-length message which is padded
to a multiple of b-bit and divided into n b-bit blocks M1||M2|| · · · ||Mn (note that the outputs
of functions h and H are l-bit strings).

HMAC(K, M) = H(IV, (K ⊕ opad)||H(IV, (K ⊕ ipad)||M))
= h(h(IV, (K ⊕ opad)), H(h(IV, (K ⊕ ipad)),M)) , (1)

where K is the secret key, opad, ipad are constants and |K ⊕ opad| = |K ⊕ ipad| = b. If
HMAC takes a one-block message M , it can be expressed as

HMAC(K, M) = h(h(IV, (K ⊕ opad)), h(h(IV, (K ⊕ ipad)),M)) . (2)

In order to facilitate the description of our analysis of HMAC we denote the four compression
functions h in (2) by h1, h2, h3 and h4, and the four functions in (1) by h1, H2, h3 and h4.
See Fig. 1 for a schematic description of HMAC with this notation. Note that the outputs of
H2 and h2 are padded to a b-bit string to be inserted into h4.

h1
-

?

?

h2
-

h4

?

h3

?

?
-

¾

IV

IVK ⊕ ipad

K ⊕ opad

M

HMAC(K, M)

(M : multi-block length message) (M : one-block length message)

h1
-

?

?

H2
-

h4

?

h3

?

?

¾

IV

IVK ⊕ ipad

K ⊕ opad

M

HMAC(K, M)

-

Fig. 1. A schematic description of HMAC

In practice the function h can be replaced by the compression function of cryptographic
hash functions such as HAVAL [27], MD4 [19], MD5 [20], SHA-0 [28], SHA-1 [29] and so on.
Each compression function of these cryptographic hash functions has the following form:

h(I, M) = E(I,M) + I , (3)

where I is an l-bit initial value, M is a b-bit message block and E is an iterative step function.
The function E typically consists of 3, 4 or 5 passes and each form has 16, 20 or 32 rounds.
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In HAVAL, MD4, MD5, SHA-0 and SHA-1, the l-bit initial value is loaded into l/32 32-
bit registers, (A,B, C,D, · · ·). The b-bit message block M is also loaded into b/32 32-bit
words, (m0,m1,m2,m3, · · ·) and a message expansion algorithm is used to expand the b/32
32-bit words into 32-bit message words (as many as the number of rounds). The l-bit initial
value loaded into l/32 32-bit registers is then updated through a number of rounds by using
the expanded 32-bit message words. In each pass a fixed Boolean function and fixed 32-bit
constants are used. Table 1 shows the parameters of HAVAL, MD4, MD5, SHA-0 and SHA-1
(see [27, 19, 20, 28, 29] for their detailed descriptions).

Table 1. Parameters of HAVAL, MD4, MD5, SHA-0 and SHA-1

Hash Bit-Length of Bit-Length of # of # of Rounds Total # of
Functions Message Block (b) Initial Value (l) Passes in a Pass Rounds

HAVAL 1024 256 3,4 or 5 32 96, 128 or 160
MD4 512 128 3 16 48
MD5 512 128 4 16 64

SHA-0 512 160 4 20 80
SHA-1 512 160 4 20 80

3 Some General Attacks on HMAC

Using the birthday paradox we can induce a general distinguishing attack on HMAC as follows
[18]:

1. Collect 2l/2 randomly chosen messages with a b-bit length, denoted Mi, and ask for their
MAC values, denoted Ci.

2. Find message pairs Mj and Mk such that Cj = Ck.
3. For each of (Mj ,Mk) pairs such that Cj = Ck, ask for a MAC pair of Mj ||P and Mk||P ,

where P is some non-empty string. If there is at least one MAC pair that collides in this
step, output the MAC algorithm = HMAC.

This attack requires about 2l/2 messages and works with a probability of 0.63 by the
birthday paradox when the MAC algorithm is HMAC (this is due to the fact that if there
exists at least one message pair (Mj ,Mk) such that their outputs of h2 or H2 are same, this
attack always works). This attack can also easily be converted into a general forgery attack on
HMAC. Once we get a MAC pair that collides in Step 3, we again ask for the corresponding
MAC of Mj ||P ||P ′, denoted C, where P ′ is some non-empty string. We can then construct a
forgery, i.e., a new message Mk||P ||P ′ with a valid MAC, i.e., C with the same success rate.

These general attacks make distinguishing and forgery attacks on HMAC which require
more than 2l/2 message queries have not much advantage. We thus consider attacks of dis-
tinguishing HMAC from a random function, and forgery attacks on HMAC which work with
a data complexity of less than 2l/2 messages. In addition to these two kinds of attacks, we
also consider attacks of distinguishing instantiated HMAC (by existing hash functions) from
HMAC with a random function. In these attacks it does not matter whether or not they
require more than 2l/2 message queries, since there does not exist a general attack based on
the birthday paradox which can distinguish HMAC with existing hash functions from HMAC
with a random function. For the clarification we denote the first and second distinguishing
attacks by distinguishing-R and distinguishing-H attacks, respectively. The distinguishing-R
attack is useful when the cryptanalyst wants to check whether output strings are produced
from HMAC (in this case, the cryptanalyst does not know whether the output producing al-
gorithm is HMAC), while the distinguishing-H attack is useful when the cryptanalyst wants
to check which cryptographic hash function is embedded in HMAC (in this case, the crypt-
analyst somehow already knew that the output producing algorithm is HMAC, for instance,
by the distinguishing-R attack, but does not know the underlying hash function in HMAC).
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4 Distinguishers of HMAC

In this section we present two distinguishers of the general structure of HMAC, which can
lead to distinguishing or forgery attacks if HMAC is instantiated with some cryptographic
hash function with a low difference propagation. These two distinguishers, called differential
and rectangle distinguishers, are both built based on internal collisions. We focus on HMAC
with one-block messages, which is the main target in our attacks.

4.1 Differential Distinguisher of HMAC

By using MAC collisions we construct a differential distinguisher of HMAC. It works as
follows:

– Choose a message Mi at random and compute another message M ′
i = Mi ⊕ α, where Mi

has the same length as α (6= 0).
– With a chosen message attack scenario, obtain the MAC values Ci = HMAC(K,Mi) and

C ′i = HMAC(K,M ′
i).

– Check if Ci ⊕ C ′i = 0.

Assuming that the values h1(IV, K⊕ipad) are uniformly distributed for a given key K, the
last test holds with a probability1 of approximately q, where q = PrX,I [h2(I, X)⊕ h2(I, X ⊕
α) = 0]. On the other hand, for a random function or HMAC with a random function2,
the last test holds with a probability of approximately 2−l. Hence, we have the following
differential distinguisher of HMAC.

Proposition 1. [A Differential Distinguisher of HMAC] Assume that the output values of
the function h1 are distributed uniformly at random. Then HMAC can be distinguished from a
random function and from HMAC with a random function if q > 2−l, where q = PrX,I [h2(I,
X)⊕ h2(I,X ⊕ α) = 0].

In order for this differential distinguisher to be used in distinguishing-R and forgery at-
tacks, the probability q should be larger than 2−l/2, which makes possible for those attacks
to work with less than 2l/2 message queries (details are described in Sect. 6).

4.2 Rectangle Distinguisher of HMAC

The rectangle distinguisher of HMAC can be built by the rectangle attack which is widely
used in analyzing block ciphers [6]. In block ciphers the rectangle attack can be mounted based
on their bijectivity. However, in MACs it can exploit the non-bijectivity, i.e., two different
messages may correspond to a same MAC value or a same intermediate value (an internal
collision). We use this non-bijective property to devise our rectangle distinguisher of HMAC.
Our rectangle distinguisher of HMAC works as follows (refer to Fig. 2):

– Choose two messages Mi and Mj at random and compute two other messages M ′
i = Mi⊕α

and M ′
j = Mj ⊕ α, where Mi and Mj both have the same length as α ( 6= 0).

– With a chosen message attack scenario, obtain the MAC values Ci = HMAC(K,Mi),
C ′i = HMAC(K,M ′

i), Cj = HMAC(K, Mj) and C ′j = HMAC(K,M ′
j).

– Check if Ci ⊕ Cj = C ′i ⊕ C ′j = 0 or Ci ⊕ C ′j = C ′i ⊕ Cj = 0.

1 In fact, the last test holds with a probability of approximately q + (1 − q) · 2−l. Because even if
the Mi and M ′

i do not cause a collision after the function h2, their MAC values can still have a
same value. However, in the computation of a probability for our differential distinguisher we do
not consider this case.

2 From [1] we know that HMAC with a random function behaves like a random function.
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Fig. 2. A Rectangle Distinguisher of HMAC (Mi ⊕M ′
i = Mj ⊕M ′

j = α)

We denote by Xi, X ′
i, Xj and X ′

j the outputs of h2◦h1 for the messages Mi, M ′
i , Mj and

M ′
j , respectively (see Fig. 2). Note that in Fig. 2 K⊕ ipad and K⊕opad are inserted into the

message parts of the functions h1 and h3, respectively. In order to compute the probability
to satisfy the last test we should consider the following probabilities: p = PrX,I [h2(I, X) ⊕
h2(I,X ⊕ α) = β] and p̂ =

√∑
β(p2).

Assuming that the values h1(IV, K ⊕ ipad) are uniformly distributed for a given key K,
we get Xi⊕X ′

i = Xj⊕X ′
j = β with probability p2. Since the function h2 is not a permutation

(here, the domain of h2 is the message space and its co-domain is the space of hash values), we
expect Xi ⊕Xj = 0 with probability 2−l under the assumption that the output values of h2

are distributed uniformly at random. Once we get Xi ⊕X ′
i = Xj ⊕X ′

j = β and Xi ⊕Xj = 0,
we have the following equation:

X ′
i ⊕X ′

j = (Xi ⊕ β)⊕ (Xj ⊕ β) = Xi ⊕Xj = 0

These equations allow us to get Ci⊕Cj = C ′i⊕C ′j = 0 and thus the probability3 of satisfying
Ci ⊕ Cj = C ′i ⊕ C ′j = 0 is approximately

∑

β

p2 · 2−l = p̂2 · 2−l .

Similarly, we get Xi⊕X ′
j = 0 with a probability of 2−l and thus Ci⊕C ′j = C ′i⊕Cj = 0 holds

with the same probability p̂2 · 2−l.
3 Note that the probability of satisfying Ci ⊕ Cj = C′i ⊕ C′j = 0 is slightly larger than p̂2 · 2−l.

Because even if the Xi and Xj (or the X ′
i and X ′

j) are not the same, still there is a chance to
have Ci ⊕ Cj = C′i ⊕ C′j = 0. However, we believe that a simplified analysis is sufficient for the
computation of the probability for our rectangle distinguisher.
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On the other hand, for a random function or HMAC with a random function, Ci ⊕ Cj =
C ′i ⊕ C ′j = 0 and Ci ⊕ C ′j = C ′i ⊕ Cj = 0 hold with a probability of approximately 2−2l,
respectively, since each requires a 2l-bit restriction to be satisfied. Hence, we have the following
rectangle distinguisher of HMAC.

Proposition 2. [A Rectangle Distinguisher of HMAC] Assume that the output values of the
functions h1 and H2 are distributed uniformly at random. Then HMAC can be distinguished
from a random function and from HMAC with a random function if p̂2 · 2−l > 2−2l, i.e.,
p̂ > 2−l/2, where p̂ =

√∑
β(p2) and p = PrX,I [h2(I, X)⊕ h2(I,X ⊕ α) = β].

Our rectangle distinguisher cannot be used in distinguishing-R and forgery attacks, since
its required data complexity is always larger than 2l/2 messages (details are described in Sect.
6). This is due to the fact that the rectangle probability is always less than or equal to 2−l.

Unlike the differential distinguisher of HMAC, the rectangle distinguisher uses a number
of differentials without any restriction for output differences, while its requirement to work
is more expensive than that of the differential distinguisher, i.e., it uses probability 2−l/2

instead of 2−l for its comparison. If it is easy to get some nonzero output difference from the
compression function of the underlying hash function, but it is difficult to get a zero output
difference, i.e., a collision, then this rectangle distinguisher would be useful.

The success of our two distinguishers for HMAC depends significantly on the strength of
h2, which means the distinguishers do not depend strongly on the properties of h1, h3 and h4.
Even if h1, h3 and h4 employs cryptographically strong compression functions (even iterated
hash functions), our distinguishers can still work if h2 has a low difference propagation.

5 Differentials on HAVAL, MD4, MD5, SHA-0 and SHA-1

First, we check how many rounds of the compression functions of HAVAL, MD4, MD5, SHA-
0 and SHA-1 can be used for h2 in our rectangle distinguisher, i.e., we investigate for how
many rounds of each compression function p̂ > 2−l/2 holds. Second, we discuss how to extend
one-block messages (corresponding to h2) into multi-block messages (corresponding to H2) to
apply them to our rectangle distinguisher. Third, we deal with differentials with probabilities
q such that q > 2−l or q > 2−l/2.

5.1 One-Block Differentials for Rectangle Distinguishers

In order to compute the number of rounds for each compression function such that p̂ > 2−l/2,
we investigate a differential with probability p from which the probability p̂ can be estimated.
We first consider the compression function of 3-pass HAVAL.

In the compression function of HAVAL we insert a one-bit difference to two message
words to produce a collision after the first pass with a high probability. This enables us to
get probability-one differentials through many rounds in the first and second passes. In more
detail, if we denote by r1, r2, r3, r4, r5 and r6 the round numbers involved in two such
message words in the three passes where r1 < r2 < · · · < r6, we can construct a 96-round
differential with the following probability: for the rounds 0 ∼ r1 probability 1, for each of
the rounds (r1 + 1) ∼ r2 probability 2−1, for the rounds (r2 + 1) ∼ (r3 − 1) probability 1,
for each of the rounds r3 ∼ r4 probability 2−1, for each of the rounds (r4 + 1) ∼ (r5 − 1)
probability 2−2, for each of the rounds r5 ∼ r6 probability 2−3 and for each of the rounds
(r6+1) ∼ 95 probability 2−4 (this can be done by the computation of differential probabilities
derived from the differential distributions of Boolean functions and the use of both XOR
and modular additions). These probabilities may be slightly different according to in which
message word between the two a difference 0x80000000 is given. But the total probability is
the same: 2−(r2−r1+r4−r3+1+2(r5−r4−1)+3(r6−r5+1)+4(95−r6)).
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As a result of an exhaustive search4, inserting a one-bit difference to the third and eleventh
message words provides the best probability p = 2−102. See Table 2 for more details. In Table
2 ei represents a 32-bit word that has 0′s in all bit positions except for bit i and ei1,···,ik

represents ei1 ⊕ · · · ⊕ eik
(in our notation the leftmost bit is referred to as the 31-th bit, i.e.,

the most significant bit). Note that we use the XOR difference as the measure of difference
and in the computation of the probability p in Table 2 the modular additions of the unknown
initial value and the last output value are considered. In our analysis we take into account the
probability that the last output difference is preserved through the final modular additions.

In order to calculate p̂ we should sum the square of the probability of all differentials with
message difference α. However, it is computationally infeasible and thus we have carried out
experiments on the last three rounds (rounds 93 ∼ 95) to estimate a lower bound for p̂ (our
simulation is based on the assumption that chosen message pairs follow the first 93-round
differential in Table 2). For this work, we have randomly chosen a number of IV s with 228

message pairs Mi, M∗
i and 228 input pairs of round 93 Ii, I∗i each and computed M

′
i = Mi⊕α,

M∗′
i = M∗

i ⊕ α and I
′
i = Ii ⊕ δ and I∗

′
i = I∗i ⊕ δ, where α is the message difference and δ is

the input difference of round 93 in Table 2. We have then encrypted through rounds 93 ∼ 95
Ii, I

′
i , I∗i and I∗

′
i with Mi, M

′
i , M∗

i and M∗′
i to obtain outputs Oi, O

′
i, O∗

i and O∗
′

i . Finally,
we have checked if (Oi + IV ) ⊕ (O

′
i + IV ) = (O∗i + IV ) ⊕ (O∗

′
i + IV ). In our experiments

we have observed that the number of such quartets was ranging 320 ∼ 2130 for each IV .
This simulation result suggests that the square of the probability p̂ for rounds 93 ∼ 95 is
approximately 2−18.2 and thus we can estimate the probability p̂ ≈ 2−9.1 ·2−90 = 2−99.1 since
the differential probability for rounds 0 ∼ 92 in Table 2 is 2−90. Furthermore, we can extend
this differential up to 101 rounds such that p̂ > 2−128. See Table 2 for this extension. We have
also performed a series of simulations on the last two rounds and from the simulation result
we can estimate p̂ ≈ 2−124.4 for rounds 0 ∼ 101.

Similarly, we have investigated differentials on the compression function of MD5 with
high probabilities by inserting a one-bit difference in two or three message words to produce
a collision after the first pass. As a result, we can construct a 33-round differential on MD5
with probability p = 2−69, which can be used to construct differentials with probability p̂.
See Table 4 in Appendix A for details of our reduced MD5 differential. Our investigations on
HAVAL and MD5 have started from the assumption that low-weight differentials work out
best when we can not use neutral bits and message modifications. However, still there is a
possibility that HAVAL and MD5 have stronger differentials which can be derived by other
methods.

For MD4, SHA-0 and SHA-1, we have used the previous differentials in our distinguishers,
i.e., a 48-round differential on MD4 with probability 2−56 in [26], a 65-round differential on
SHA-0 with probability 2−78 in [7, 8] and a 43-round differential on SHA-1 with probability
2−80 in [8]. The 43-round differential on SHA-1 is an extended one for the 34-round differential
described in [8], and the computations of differential probabilities on SHA-0 and SHA-1 are
recomputed5. See Appendix A for the recomputed differentials of SHA-0 and SHA-1. We have
also carried out the same experiments on the last few rounds to estimate each p̂ and from our
simulations we can estimate p̂ ≈ 2−56, 2−60.6, 2−78 and 2−73.4 for 48-round MD4, 33-round
MD5, 65-round SHA-0 and 43-round SHA-1, respectively.

4 The exhaustive search has experimentally been done by considering all possible r1, r2, r3, r4, r5

and r6 which can produce a collision after the first pass.
5 The main difference of the computations of differential probabilities between [7, 8] and this paper

is the use of neutral bits. In the SHA-0 and SHA-1 initial values are known, which enables us to
use neutral bits on message pairs to improve differential probabilities. However, in our analysis of
HMAC initial values are determined by a secret key K, which implies they are unknown.
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Table 2. A Differential of HAVAL

Round (i) ∆Ai ∆Bi ∆Ci ∆Di ∆Ei ∆F i ∆Gi ∆Hi ∆mi Prob.

0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 e31(= ∆m2) 1
3 0 0 0 0 0 0 0 e31 0 2−1

4 0 0 0 0 0 0 e31 0 0 2−1

5 0 0 0 0 0 e31 0 0 0 2−1

6 0 0 0 0 e31 0 0 0 0 2−1

7 0 0 0 e31 0 0 0 0 0 2−1

8 0 0 e31 0 0 0 0 0 0 2−1

9 0 e31 0 0 0 0 0 0 0 2−1

10 e31 0 0 0 0 0 0 0 e20(= ∆m10) 2−1

11 0 0 0 0 0 0 0 0 0 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
44 0 0 0 0 0 0 0 0 0 1
45 0 0 0 0 0 0 0 0 e20(= ∆m10) 2−1

46 0 0 0 0 0 0 0 e20 0 2−1

47 0 0 0 0 0 0 e20 0 0 2−1

48 0 0 0 0 0 e20 0 0 0 2−1

49 0 0 0 0 e20 0 0 0 0 2−1

50 0 0 0 e20 0 0 0 0 0 2−1

51 0 0 e20 0 0 0 0 0 0 2−1

52 0 e20 0 0 0 0 0 0 0 2−1

53 e20 0 0 0 0 0 0 0 0 2−1

54 0 0 0 0 0 0 0 e9 0 2−1

55 0 0 0 0 0 0 e9 0 0 2−1

56 0 0 0 0 0 e9 0 0 0 2−1

57 0 0 0 0 e9 0 0 0 0 2−1

58 0 0 0 e9 0 0 0 0 0 2−1

59 0 0 e9 0 0 0 0 0 0 2−1

60 0 e9 0 0 0 0 0 0 e31(= ∆m2) 2−1

61 e9 0 0 0 0 0 0 e31 0 2−2

62 0 0 0 0 0 0 e31 e30 0 2−2

63 0 0 0 0 0 e31 e30 0 0 2−2

64 0 0 0 0 e31 e30 0 0 0 2−2

65 0 0 0 e31 e30 0 0 0 0 2−2

66 0 0 e31 e30 0 0 0 0 0 2−2

67 0 e31 e30 0 0 0 0 0 0 2−2

68 e31 e30 0 0 0 0 0 0 0 2−2

69 e30 0 0 0 0 0 0 e20 0 2−2

70 0 0 0 0 0 0 e20 e19 0 2−2

71 0 0 0 0 0 e20 e19 0 0 2−2

72 0 0 0 0 e20 e19 0 0 0 2−2

73 0 0 0 e20 e19 0 0 0 0 2−2

74 0 0 e20 e19 0 0 0 0 0 2−2

75 0 e20 e19 0 0 0 0 0 0 2−2

76 e20 e19 0 0 0 0 0 0 0 2−2

77 e19 0 0 0 0 0 0 e9 0 2−2

78 0 0 0 0 0 0 e9 e8 0 2−2

79 0 0 0 0 0 e9 e8 0 0 2−2

80 0 0 0 0 e9 e8 0 0 0 2−2

81 0 0 0 e9 e8 0 0 0 0 2−2

82 0 0 e9 e8 0 0 0 0 0 2−2

83 0 e9 e8 0 0 0 0 0 0 2−2

84 e9 e8 0 0 0 0 0 0 0 2−2

85 e8 0 0 0 0 0 0 e30 0 2−2

86 0 0 0 0 0 0 e30 e29 0 2−2

87 0 0 0 0 0 e30 e29 0 0 2−2

88 0 0 0 0 e30 e29 0 0 0 2−2

89 0 0 0 e30 e29 0 0 0 0 2−2

90 0 0 e30 e29 0 0 0 0 0 2−2

91 0 e30 e29 0 0 0 0 0 e20(= ∆m10) 2−3

92 e30 e29 0 0 0 0 0 e20 0 2−3

93 e29 0 0 0 0 0 e20 e19 0 2−3

94 0 0 0 0 0 e20 e19 e18 0 2−3

95 0 0 0 0 e20 e19 e18 0 e31(= ∆m2) 2−3

96 0 0 0 e20 e19 e18 0 e31 0 2−4

0 ∼ 95 p = 2−102, p̂ = 2−99.1 (3-pass HAVAL)

97 0 0 e20 e19 e18 0 e31 0 0 2−4

98 0 e20 e19 e18 0 e31 0 0 0 2−4

99 e20 e19 e18 0 e31 0 0 0 0 2−4

100 e19 e18 0 e31 0 0 0 e9 e31(= ∆m2) 2−4

101 e18 0 e31 0 0 0 e9 e8,31 0 2−5

102 0 e31 0 0 0 e9 e8,31 e7

0 ∼ 101 p = 2−127, p̂ = 2−124.4 (reduced 4-pass HAVAL)
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5.2 Multi-Block Differentials for Rectangle Distinguishers

We now discuss the probability p̂ on HMAC using multi-block messages. Assume that two
multi-block messages M and M ′ inserted to H2 are divided into n block sub-messages
M1||M2|| · · · ||Mn and M ′1||M ′2|| · · · ||M ′n with difference α = α1 ||α2|| · · · ||αn. Then the
initial values for M i and M ′i are the same as the hash values of the underlying hash function
for the sub-messages M1||M2|| · · · ||M i−1 and M ′1||M ′2|| · · · ||M ′i−1 for 2 ≤ i ≤ n. Recall
that the initial values for the M1 and M ′1 is the same, namely the output of the compression
function for K ⊕ ipad. Assuming that for the i-th compression function of the H2 there exist
differentials βi−1 → βi with probability pi under the message difference αi, where β0 = 0,
i.e., for a sub-message pair (M i,M ′i) the input difference βi−1 goes to output difference βi

with probability pi, we get

p̂ =
√ ∑

β1,β2,···,βn

(p1 × p2 × · · · × pn)2

under the message difference α1||α2|| · · · ||αn. This is due to the fact that the initial value
to the first compression function of the H2 is not known6. So it is much more difficult to
apply multi-block messages in our rectangle distinguisher of HMAC compared to the use of
one-block messages (in terms of the same number of rounds of compression function). This
statement also applies to multi-block differentials for differential distinguishers with the same
reasoning. We omit the details of multi-block differentials of HAVAL, MD4, MD5, SHA-0 and
SHA-1.

5.3 Differentials for Differential Distinguishers

As stated above, our differential distinguisher works based on a differential which causes a
zero difference, i.e., a collision, after the function h2. We use the foregoing differentials or the
previously known differentials on MD4, SHA-0 and SHA-1 in our distinguishing and forgery
attacks:

– For SHA-0, the 65-round differential with probability 2−78 in Table 5 can be extended
into a 82-round differential with probability 2−98 (≈ q), which causes a collision (this
extended differential has appeared in [7], but the differential probability is lower than
that in [7] since we cannot use neutral bits.)

– For SHA-1, the first 34-round differential with probability 2−52 in Table 6 can be used as
our differential distinguisher.

– For the full MD4, there exists a differential with probability 2−56 (≈ q), which causes a
zero output difference from an unknown initial value [26].

– For the full SHA-0, there exists a differential with probability 2−107 (≈ q), which causes
a zero output difference from an unknown initial value [23, 25].

6 Distinguishing and Forgery Attacks on HMAC

We use the probabilities p̂ and q to show two distinguishing and a forgery attacks on the
HMAC construction, and apply these attacks to HMAC based on HAVAL, MD4, MD5, SHA-
0 and SHA-1.

Our first distinguishing attack on HMAC using p̂ and a rectangle distinguisher is described
as follows:
6 If the initial value is known, the probability p̂ is much higher than when it is unknown since

the known initial value allows us to find specific sub-messages Mi and M ′
i with probability pi to

produce two outputs with difference βi from i = 1 till i = n in order. This method has been
introduced in [22, 25, 24, 8].
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1. Collect 2(l+1)/2 · p̂−1 message pairs (Mi,M
′
i) with difference α, where all the Mi and M ′

i

have the same bit-length t.
2. With a chosen message attack scenario, ask for MAC pairs of all the (Mi,M

′
i). We denote

the corresponding MAC pairs by (Ci, C
′
i). (We assume that the MAC algorithm is either

an instantiated HMAC or a random function (or HMAC with a random function) which
maps from t bits to l bits.)

3. Check if Ci ⊕ Cj = C ′i ⊕ C ′j = 0 or Ci ⊕ C ′j = C ′i ⊕ Cj = 0 for all i, j such that
1 ≤ i < j ≤ 2(l+1)/2 · p̂−1. If there is at least one MAC quartet that satisfies this test,
output the MAC algorithm = HMAC, otherwise, output the MAC algorithm = a random
function (or HMAC with a random function).

The data complexity of this attack is 21+((l+1)/2) · p̂−1 chosen messages and this attack
requires a memory of 21+(l+1)/2 · p̂−1 l-bit blocks for storing all the MAC values. The time
complexity of this attack is dominated by Step 1 (the data collection time) and Step 3, which
seeks colliding MAC quartets. Since it can be done efficiently by sorting the MAC pairs
(Ci, C

′
i)’s by Ci’s, the time complexity of this attack is thus a fraction of the time required

to compute the MAC values for the chosen messages (Step 1).
We now analyze the success rate of this attack. In Step 1 the 2(l+1)/2 · p̂−1 message

pairs form 2l · p̂−2 message quartets ((Mi,M
′
i),(Mj ,M

′
j)) corresponding to MAC quartets

((Ci, C
′
i),(Cj , C

′
j)) for 1 ≤ i < j ≤ 2(l+1)/2 · p̂−1. Since for HMAC Ci ⊕ Cj = C ′i ⊕ C ′j = 0

holds with a probability of 2−l · p̂2, and Ci ⊕ C ′j = C ′i ⊕ Cj = 0 also holds with the same
probability (this probability has been computed in Sect. 4), the expected number of MAC
quartets satisfying the last test is 2 (= (2l · p̂−2) · (2−l · p̂2)+(2l · p̂−2) · (2−l · p̂2)). On the other
hand, for a random function (or HMAC with a random function), Ci⊕Cj = C ′i⊕C ′j = 0 holds
with a probability of 2−2l, and Ci⊕C ′j = C ′i⊕Cj = 0 also holds with the same probability and
thus the expectation of satisfying the test is 2−l+1 · (p̂−2)(= 2−2l · (2l · p̂−2)+ 2−2l · (2l · p̂−2)).
Hence, the success rate of this attack is

1− (1− 2−l · p̂2)2
l+1·p̂−2

2
+

(1− 2−2l)2
l+1·p̂−2

2
≈ 1− e−2

2
+

e−2−l+1·p̂−2

2
.

Here, the first term is approximately 0.43. Our second distinguishing attack on HMAC
using q and a differential distinguisher is described as follows:

1. Collect 2 · q−1 message pairs (Mi,M
′
i) with difference α, where all the Mi and M ′

i have
the same bit-length t.

2. With a chosen message attack scenario, ask for MAC pairs of all the (Mi,M
′
i). We denote

the corresponding MAC pairs by (Ci, C
′
i). We assume that the MAC algorithm is either

an instantiated HMAC or a random function (or HMAC with a random function) which
maps t bits to l bits.

3. Check if Ci⊕C ′i = 0. If there is at least one MAC pair that satisfies this test, output the
MAC algorithm = HMAC, otherwise, output the MAC algorithm = a random function
(or HMAC with a random function).

The data complexity of this attack is 22 · q−1 chosen messages and this attack does not
require any storage, and the time complexity of this attack itself is a fraction of the time
required to compute the MAC values for the chosen messages. Similarly, the success rate of
this attack is computed as follows:

1− (1− q)2·q
−1

2
+

(1− 2−l)2·q
−1

2
≈ 1− e−2

2
+

e−2−l+1·q−1

2
.

Finally, our forgery attack on HMAC using q and a differential distinguisher is described
as follows:
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Table 3. Distinguishing and forgery attacks on HMAC with HAVAL, MD4, MD5, SHA-0 and SHA-1

Hash Type of Type of h2 Probability of Data Success
Function Distinguisher Attack # of Rounds Distinguisher Complexity Rate

3-pass HAVAL R† Distinguishing 96 (full) p̂ = 2−99.1 2228.6 0.93
(96 rounds)

4-pass HAVAL R Distinguishing 102 (reduced) p̂ = 2−124.4 2253.9 0.93
(128 rounds)

MD4 R† Distinguishing 48 (full) p̂ = 2−56 2121.5 0.93

(48 rounds) D† Forgery 48 (full) q = 2−56 258 0.93

MD5 R Distinguishing 33 (reduced) p̂ = 2−60.6 2126.1 0.92
(64 rounds)

SHA-0 R Distinguishing 65 (reduced) p̂ = 2−78 2159.5 0.87

D† Distinguishing 82 (full) q = 2−98 2100 0.93

D† Distinguishing 80 (full) q = 2−107 2109 0.93
D Forgery 54 (reduced) q = 2−61 263 0.93

(80 rounds) D Forgery 65 (reduced) q = 2−78 280 0.93

SHA-1 R Distinguishing 43 (reduced) p̂ = 2−73.4 2154.9 0.93
(80 rounds) D Forgery 34 (reduced) q = 2−51 253 0.93

†: the attacks can work on HMAC based on full-round (or extended-round) hash functions.
R: Rectangle, D: Differential
Data complexity is the amount of chosen messages
In the rectangle attacks, memory complexity is the same as data complexity
Distinguishing attack is the attack to distinguish instantiated HMAC from HMAC with a random function

1. Run Step 1 in the second distinguishing attack.
2. Run Step 2 in the second distinguishing attack, but we assume that the MAC algorithm

is an instantiated HMAC.
3. Check if Ci ⊕ C ′i = 0 and ask for the MAC pair of Mi||P and M ′

i ||P , where Mi and
M ′

i have a same MAC value and P is some non-empty string. If the obtained MAC pair
collides, again ask for the MAC value of Mi||P ||P ′, where P ′ is some non-empty string.
We denote this obtained MAC value by C. Output C as the MAC value of M ′

i ||P ||P ′.
Otherwise, restart this step until we check all MAC pairs (Ci, C

′
i).

It is easy to see that this forgery attack works with (almost) the same data complexity
and the same success rate as our second distinguishing attack.

We can easily apply these three attacks to HMAC based on HAVAL, MD4, MD5, SHA-0
and SHA-1 by using their probabilities p̂ and q. Table 3 shows the results of distinguishing
and forgery attacks on those instantiations of HMAC7. In Table 3 forgery attacks also imply
distinguishing-R and distinguishing-H attacks.

Note: Our distinguishing and forgery attacks are also applicable to HMAC in which the
four components h1, h2, h3, h4 are instantiated with different compression functions (see
for example the pseudorandom functions of SSL 3.0). For example, if HMAC employs full-
round MD-5, full-round MD-4, full-round MD5 and full-round MD5 for h1, h2, h3 and h4,
respectively, it can be forged with a data complexity of 258 chosen messages. This is due to
the fact that our distinguishing and forgery attacks depend only on the function h2.

7 These attacks are mounted under the assumption that the output values of the functions h1 and
h2 distribute uniformly over all possible values when K and Mi are chosen uniformly at random
(differential distinguishers are independent of the distributions of the output values of the functions
h2 and H2).



13

7 Applications to NMAC

NMAC is a generalized version of HMAC, which uses two l-bit secret keys (K1,K2). It is
computed as follows:

NMAC(K1,K2,M) = H(K2,H(K1,M)) .

NMAC has exactly the same structure as HMAC except for the use of the keys, i.e., in NMAC
the secret keys K1 and K2 are used instead of h1(IV, K ⊕ ipad) and h3(IV, K ⊕ opad).

Due to the similar structure, our differential and rectangle distinguishers of HMAC also
apply to NMAC. Thus, the distinguishing and forgery attacks described in Sect. 6 also work
on NMAC and the results of Table 3 apply NMAC based on HAVAL, MD4, MD5, SHA-0 and
SHA-1.

8 Some Implications of Our Differential and Rectangle
Distinguishers

Our differential and rectangle distinguishers in Propositions 1 and 2 can be useful to construct
second-preimage attacks on HMAC and NMAC.

It is natural to define a second-preimage resistance for MAC algorithms from that for hash
functions:

Second-preimage resistance on MAC algorithms: for any message M , it is computa-
tionally infeasible to find another message M ′ such that MAC(K,M ′) = MAC(K,M), where
K is a randomly chosen key.

It follows that for any message M , it should be computationally infeasible for an attacker to
find another message M ′ such that MAC(K, M ′) = MAC(K, M) with a probability larger
than 2−l. Since our differential distinguisher uses a probability larger than 2−l, which can find
a second preimage with the same differential probability, our differential attacks on HMAC
and NMAC imply second-preimage attacks on HMAC.

The second-preimage resistance on MAC algorithms also follows that for any message pair
(Mi,M

′
j), an attacker cannot find another message pair (M ′

i ,Mj) such that MAC(K, Mi) =
MAC(K, Mj) and MAC(K, M ′

i) = MAC(K, M ′
j) with a probability larger than 2−2l. This

implies that our rectangle distinguisher is applicable to second-preimage attacks on HMAC
and NMAC. For example, consider the distinguishing-H attack on HMAC-HAVAL(3-pass) in
Table 3. From the probability p̂ = 2−99.1, we know that for a given message pair (Mi,M

′
j),

our rectangle distinguisher can find another message pair (M ′
i ,Mj) such that f(K,Mi) =

f(K, Mj) and f(K, M ′
i) = f(K,M ′

j) with a probability of approximately (2−99.1)2 · 2−256 =
2−452.2 which is much larger than (2−256)2 = 2−512, where f =HMAC-HAVAL(3-pass) (refer
to Fig. 2. and Table 2).

The second-preimage resistance on MAC algorithms is a weakened security notion of
forgery. Indeed, a second-preimage attack implies a forgery. However, the converse dose not
hold since second-preimage attacks are first given a target message. This security notion is
also very important if meaningful messages are considered.

9 Conclusions

We have presented differential and rectangle distinguishers on HMAC, which are derived from
its structural property. They allow to present distinguishing and forgery attacks on HMAC
that can be mounted when HMAC employs hash functions with slow difference propaga-
tions. With these distinguishing and forgery attacks we have shown that HMAC with the
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full versions of 3-pass HAVAL and SHA-0 can be distinguished from HMAC with a random
function, and HMAC with the full version of MD4 can be forged. These distinguishing and
forgery attacks have also been applied to HMAC based on reduced versions of MD5 and SHA-
1. We have also shown that our distinguishing and forgery attacks can be mounted on NMAC
(which is a generalized version of HMAC) with the same complexity. Furthermore, we have
shown that our differential and rectangle distinguishers can lead to second-preimage attacks
on HMAC and NMAC. All these attacks do not contradict the security proof of HMAC, but
they improve our understanding of the security of HMAC based on existing cryptographic
hash functions.

Our differential distinguisher on HMAC works only if the underlying hash function has
a differential with a zero output difference with probability larger than 2−|hash value|. Our
rectangle distinguisher on HMAC works only if the underlying hash function has differentials
such that the sum of the square of their probabilities is larger than 2−|hash value|. Unlike the
previous attacks on hash functions, our analysis on the hash function embedded in HMAC
should be done under an unknown fixed initial value (which is determined by a secret key).
This fact makes difficult to use the recently proposed message modification technique (Wang et
al.’s attacks) and neutral-bit technique (Biham et al.’s attacks) in analyzing HMAC based on
specific cryptographic hash functions. However, it is interesting to investigate if their methods
can be applied to HMAC with some new other techniques when HMAC is instantiated with
a specific cryptographic hash function. We expect that the method developed in this paper
would be useful for the further analysis of HMAC.
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A Differentials on the Compression Functions of MD5, SHA-0 and
SHA-1

Table 4. A Differential for Rounds 0 ∼ 32 on MD5

Round (i) ∆Ai ∆Bi ∆Ci ∆Di ∆mi Prob.

0 0 0 0 0 0 1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
7 0 0 0 0 0 1

8 0 0 0 0 e24 2−1

9 0 e31 0 0 e19 2−2

10 0 0 e31 0 0 2−1

11 0 0 0 e31 0 2−1

12 e31 0 0 0 e31 1
13 0 0 0 0 0 1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
23 0 0 0 0 0 1

24 0 0 0 0 e19 2−2

25 0 e24 0 0 0 2−2

26 0 e24 e24 0 0 2−3

27 0 e6,24 e24 e24 e24 2−5

28 e24 e6,24 e6,24 e24 0 2−6

29 e24 e6,11,24 e6,24 e6,24 0 2−7

30 e6,24 e6,11,24 e6,11,24 e6,24 0 2−9

31 e6,24 e6,11,24 e6,11,24 e6,11,24 e31 2−9

32 e6,11,24 e6,11,19,24 e6,11,24 e6,11,24 0 2−8

33 e6,11,24 e6,11,23 e6,11,19,24 e6,11,24

0 ∼ 32 p = 2−69, p̂ = 2−60.6
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Table 5. A Differential on SHA-0

Round (i) ∆Ai ∆Bi ∆Ci ∆Di ∆Ei ∆mi Prob.

0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1
2 0 0 0 0 0 0 1
3 0 0 0 0 0 e1 2−1

4 e1 0 0 0 0 e6 2−1

5 0 e1 0 0 0 e1 2−2

6 0 0 e31 0 0 e31 2−1

7 0 0 0 e31 0 e31 2−1

8 0 0 0 0 e31 e1,31 2−1

9 e1 0 0 0 0 e6 2−1

10 0 e1 0 0 0 0 2−2

11 e1 0 e31 0 0 e6,31 2−2

12 0 e1 0 e31 0 e1,31 2−3

13 0 0 e31 0 e31 e1 2−2

14 e1 0 0 e31 0 e6,31 2−2

15 0 e1 0 0 e31 e1,31 2−2

16 0 0 e31 0 0 e31 2−1

17 0 0 0 e31 0 e1,31 2−2

18 e1 0 0 0 e31 e1,6,31 2−2

19 e1 e1 0 0 0 e6 2−3

20 e1 e1 e31 0 0 e6,31 2−2

21 e1 e1 e31 e31 0 e1,6 2−2

22 0 e1 e31 e31 e31 e1,31 2−1

23 0 0 e31 e31 e31 e1,31 2−1

24 e1 0 0 e31 e31 e6 2−1

25 0 e1 0 0 e31 e31 2−1

26 e1 0 e31 0 0 e1,6,31 2−2

27 e1 e1 0 e31 0 e1,6,31 2−2

28 0 e1 e31 0 e31 e1 2−1

29 0 0 e31 e31 0 0 1
30 0 0 0 e31 e31 0 1
31 0 0 0 0 e31 e31 1
32 0 0 0 0 0 e1 2−1

33 e1 0 0 0 0 e1,6 2−2

34 e1 e1 0 0 0 e6 2−2

35 e1 e1 e31 0 0 e1,6,31 2−2

36 0 e1 e31 e31 0 e1 2−1

37 0 0 e31 e31 e31 e31 1
38 0 0 0 e31 e31 0 1
39 0 0 0 0 e31 e31 1
40 0 0 0 0 0 0 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
45 0 0 0 0 0 0 1
46 0 0 0 0 0 e1 2−1

47 e1 0 0 0 0 e1,6 2−2

48 e1 e1 0 0 0 e1,6 2−3

49 0 e1 e31 0 0 e1,31 2−3

50 0 0 e31 e31 0 0 2−1

51 0 0 0 e31 e31 0 2−1

52 0 0 0 0 e31 e31 1
53 0 0 0 0 0 0 1
54 0 0 0 0 0 e1 2−1

55 e1 0 0 0 0 e1,6 2−2

56 e1 e1 0 0 0 e1,6 2−3

57 0 e1 e31 0 0 e31 2−3

58 e1 0 e31 e31 0 e1,6 2−3

59 e1 e1 0 e31 e31 e1,6 2−4

60 0 e1 e31 0 e31 e1 2−1

61 0 0 e31 e31 0 0 1
62 0 0 0 e31 e31 0 1
63 0 0 0 0 e31 e31 1
64 0 0 0 0 0 0 1
65 0 0 0 0 0 e1 2−1

0 ∼ 64 p = 2−78, p̂ = 2−78

66 e1 0 0 0 0 e1,6 2−2

67 e1 e1 0 0 0 e1,6 2−2

68 0 e1 e31 0 0 e1,31 2−1

69 0 0 e31 e31 0 0 1
70 0 0 0 e31 e31 e1 2−1

71 e1 0 0 0 e31 e6,31 2−1

72 0 e1 0 0 0 0 2−1

73 e1 0 e31 0 0 e1,6,31 2−2

74 e1 e1 0 e31 0 e1,6,31 2−2

75 0 e1 e31 0 e31 0 2−1

76 e1 0 e31 e31 0 e1,6 2−2

77 e1 e1 0 e31 e31 e1,6 2−2

78 0 e1 e31 0 e31 e1 2−1

79 0 0 e31 e31 0 0 1
80 0 0 0 e31 e31 0 2−1

81 0 0 0 0 e31 e31 1
82 0 0 0 0 0

0 ∼ 81 q = 2−98
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Table 6. A Differential for Rounds 0 ∼ 42 on SHA-1

Round (i) ∆Ai ∆Bi ∆Ci ∆Di ∆Ei ∆mi Prob.

0 0 0 0 0 0 e1 2−1

1 e1 0 0 0 0 e6 1

2 0 e1 0 0 0 0 2−2

3 e1 0 e31 0 0 e6,31 2−2

4 0 e1 0 e31 0 e31 2−3

5 e1 0 e31 0 e31 e6 2−2

6 0 e1 0 e31 0 e0,31 2−4

7 e0,1 0 e31 0 e31 e5,6 2−3

8 0 e0,1 0 e31 0 e0,1,31 2−5

9 0 0 e30,31 0 e31 e1,30 2−4

10 e1 0 0 e30,31 0 e6,30,31 2−4

11 0 e1 0 0 e30,31 e1,30,31 2−3

12 0 0 e31 0 0 e31 2−1

13 0 0 0 e31 0 e31 2−1

14 0 0 0 0 e31 e1,31 2−1

15 e1 0 0 0 0 e6 2−1

16 0 e1 0 0 0 e1 2−2

17 0 0 e31 0 0 e31 2−1

18 0 0 0 e31 0 e31 2−1

19 0 0 0 0 e31 e31 1

20 0 0 0 0 0 e1 2−1

21 e1 0 0 0 0 e6 2−1

22 0 e1 0 0 0 0 2−1

23 e1 0 e31 0 0 e6,31 2−1

24 0 e1 0 e31 0 e1,31 2−1

25 0 0 e31 0 e31 0 1
26 0 0 0 e31 0 e31 1
27 0 0 0 0 e31 e31 1
28 0 0 0 0 0 0 1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

33 0 0 0 0 0 0 1

34 0 0 0 0 0 e2 2−1

35 e2 0 0 0 0 e7 2−1

36 0 e2 0 0 0 e2 2−1

37 0 0 e0 0 0 e0,3 2−2

38 e3 0 0 e0 0 e0,2,8 2−3

39 e2 e3 0 0 e0 e0,3,7 2−3

40 0 e2 e1 0 0 e1,2,4 2−5

41 e4 0 e0 e1 0 e0,1,3,9 2−6

42 e3 e4 0 e0 e1 e0,1,3,4,8 2−7

43 e3 e3 e2 0 e0

0 ∼ 42 p = 2−75, p̂ = 2−73.4


