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Abstract. In many practical settings, participants are willing to deviate from the protocol only if
they remain undetected. Aumann and Lindell introduced a concept of covert adversaries to formalize
this type of corruption. In the current paper, we refine their model to get stronger security guarantees.
Namely, we show how to construct protocols, where malicious participants cannot learn anything beyond
their intended outputs and honest participants can detect malicious behavior that alters their outputs.
As this construction does not protect honest parties from selective protocol failures, a valid corruption
complaint can leak a single bit of information about the inputs of honest parties. Importantly, it is
often up to the honest party to decide whether to complain or not. This potential leakage is often
compensated by gains in efficiency—many standard zero-knowledge proof steps can be omitted. As
a concrete practical contribution, we show how to implement consistent versions of several important
cryptographic protocols such as oblivious transfer, conditional disclosure of secrets and private inference
control.
Keywords. Consistency, equivocal and extractable commitment, oblivious transfer, private inference
control.

1 Introduction

Although classical results assure the existence of secure two- and multi-party protocols for any functionality
in the presence of malicious adversaries, the computational overhead is often prohibitively large in practice.
Hence, cryptographers have sought more restricted models for malicious behavior, which are still realistic
but facilitate more efficient protocol construction. A model of covert adversaries [AL07] proposed by Au-
mann and Lindell considers a setting, where corrupted parties are unwilling to deviate from the protocol
unless they remain uncaught. More precisely, they defined a hierarchy of security models, where malicious
behavior that alters the outputs of honest parties is detectable with high probability. However, none of these
models guarantee input-privacy because a malicious adversary might potentially issue a detectable attack
that completely reveals inputs of all honest parties. We extend their hierarchy with a new security model
(consistent computing), which guarantees that malicious participants cannot learn anything beyond their
intended outputs and honest participants can detect malicious behavior that alters their outputs. As a re-
sult, a valid corruption complaint leaks only a single bit of information about the inputs of honest parties as
opposed to the complete disclosure. Moreover, an honest participant can often decide whether to complain
or not. If a complaint is not filed, then no information will be leaked at all unless the adversary learns it
indirectly through other messages.

Our security model also guarantees that no participant can change their input during a multi-round
protocol, which consists of many sub-protocols, i.e., there exists an input that is consistent with all outputs.
Additionally, the client can prove cheating to third parties without active participation from the server, since
the protocol failure together with a proof that shows correctness of client’s actions is sufficient. Hence, our
security model is sufficient for many client-server applications, where a server’s long-term reputation is more
valuable than information revealed by corruption complaints.

Finally, note that the ability to detect cheating from legitimate protocol failures can be important, as
well. A good example is private inference control [WS04], where the client makes queries to the server’s
database. To protect the server’s privacy, certain query patterns are known to be forbidden and should be
rejected, though without the server necessarily getting to know which one of the “forbidden” query patterns



Objective Input-privacy Output-privacy Complaint handling Detectability

Multi-party protocols

Security Yes Yes Secure Optional
Consistency Limited leaks Limited leaks Possible Optional
K-leakage Limited leaks Limited leaks Possible No
Covert Model No No Impossible Partial
Privacy No No Impossible No

Two-party protocols

Security Yes Yes Secure Yes
Consistency Yes Yes Possible Yes
K-leakage Limited leaks Limited leaks Possible No
Covert Model No No Impossible Yes
Privacy No No Impossible No

Table 1. Comparison of various security objectives in a malicious model

the client was really using. Hence, a client really needs to know whether the query failed due to insufficient
privileges or the server just cheated.

Our contributions. Our main contribution is the new security model, which provides more strict security
guarantees than the semihonest model, all flavors of covert models, and the k-leakage model described by
Mohassel and Franklin [MF06], see Table 1 for a brief overview. Further details are given in Sect. 2, Sect. 6
and App. A.

We also present concrete, efficient protocols for consistent adaptive oblivious transfer and consistent
conditional disclosure of secrets. Notably, all our constructions are much more efficient than their fully
secure counterparts. For instance, the new consistent oblivious transfer protocol is secure against unbounded
malicious clients, uses 2 messages per query, and has communication and computation comparable to that
of the underlying private oblivious transfer protocol.

As a main technical tool, we use list commitment schemes, which allow to commit to a list of elements so
that, given a short certificate, one can later verify the value of a single element of the committed list. Besides
conventional hiding and binding properties, we need equivocality and extractability. Formal definitions and
necessary constructions of such list commitment schemes are given in Sect. 3.

History. We note that the first version of this eprint from the March of 2006 already defines consistency
(although under a different name) and thus predates [AL07]. The conference version, which was shortened
due to the space limitations, can be found at [LL10]. The current full version provides additional details.

Notation. Throughout this paper, k denotes the security parameter, {Ak} is a shorthand for a non-uniform
adversary. The shorthand t(k) ∈ poly(k) denotes that t(k) can be bounded by a polynomial and ε(k) ∈
negl(k) means that ε(k) decreases asymptotically faster than any reciprocal of a polynomial.

2 Definition of Consistent Computations

Achieving security against malicious behavior usually involves a large computational overhead, since one
must provide a universal fraud detection mechanism such that honest parties can detect a fraud even if
it does not affect their concrete private outputs. As a possible trade-off between efficiency and security,
we could protect honest parties only against such actions that alter their outputs. As a result, malicious
adversaries might still cause selective protocol failures, where honest parties fail if their inputs are in a specific
range. In the following, we use the standard ideal versus real world paradigm to formalize this concept of
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P1 TTP P2
x1−−−−−−−−−−−−−−−−−→ x2←−−−−−−−−−−−−−−−−−

π(·)←−−−−−−−−−−−−−−−−−
π(x1, x2)

?
= 0

y2 or ⊥−−−−−−−−−−−−−−−−−→
y1←−−−−−−−−−−−−−−−−− Abort or Proceed←−−−−−−−−−−−−−−−−−

Fig. 1. Ideal world model for consistent two-party computations. A corrupted participant P2 can cause selective
halting by specifying a predicate π(·). In the standard model, the dominant party P2 can cause only a premature
abortion

consistent computations for various protocols. Note that we use standard security definitions [Can00,Gol01]
with modified ideal world implementations, which give additional power to the adversary, see Fig. 1 as an
example.

For clarity, we present the definitions without delving into subtle technical issues. In particular, we have
omitted all low-level details of the ideal and real world executions, as these are thoroughly discussed in
common reference materials [Can00,Gol01]. Other more model specific details are separately discussed at
the end of the section.

Idealized implementations. In an idealized two-party protocol corresponding to consistent computing,
both parties send their inputs x1, x2 to the trusted third party TTP, which computes the corresponding
outputs y1, y2. Next, a corrupted participant sends the description of a randomized halting predicate π(·) to
TTP, who internally computes π(x1, x2). If π(x1, x2) = 1, then TTP halts the computations and sends ⊥ to
the honest participant. If π(x1, x2) = 0, then TTP sends back the outputs yi exactly the same way as in the
standard ideal model. In particular, the corrupted party can still cause a premature abortion and thus still
learn its output.

Generalization to the multi-party setting is straightforward. However, there are two subtle issues con-
nected with fairness and detectability. A protocol guarantees fair selective abortion if an adversary can
specify only a single predicate π(·) such that TTP halts the computations and sends ⊥ to all participants
iff π(x1, . . . , xn) = 1. Alternatively, corrupted participants can separately specify different halting predicates
πi(·) for each party Pi and thus some parties might get their outputs while others do not. Also, note that
the identity of the malicious coalition might remain hidden for multi-party protocols, whereas this cannot
happen in a two-party protocol. A consistent protocol provides detectability if TTP sends ⊥ to Pi together
with the identity of a corrupted participant who specified the halting predicate whenever πi(x1, . . . , xn) = 1.

Consistency can also be formalized for adaptive computations, where the outputs of each round can
depend on the inputs submitted in previous rounds. For the sake of brevity, we define consistency only for
client-server protocols, where the server initially commits to his or her input, and after that the client can
issue various oblivious queries. This model covers many practical settings such as selling digital goods and
private inference control [AIR01,WS04]. To start such a protocol, a server sends his or her input x to TTP.
After that the client(s) can adaptively issue various queries qi to TTP. When a query qi arrives, TTP sends
a notification message to the server who can then specify a description of a halting predicate πi(x1, . . . , xi).
Next, TTP evaluates the predicate and sends f(qi, x) back to the client if πi(q1, . . . , qi) = 0, otherwise the
client receives ⊥. As a small subtlety, note that the ability to issue halting predicates one-by-one is needed
only in the adaptive corruption model, where there are many clients and the server might become corrupted
in the middle of computations.

Formal security definition. As usual, we define security of a protocol by comparing its output distribution
in the standalone setting with the corresponding output distribution in the ideal world. More formally, fix
a security parameter k and let Dk denote the input distribution of all parties including the adversary Ak.
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Without loss of generality, we assume that each input is a pair (φi, xi), where the auxiliary input φi models
the internal state of the participant before the protocol and xi is the actual protocol input. Now, if we fix
the exact details how protocols are executed and what the plausible attacks are, then a protocol instance
Πk and an adversary Ak together determine uniquely a joint output distribution RealDk

(Ak,Πk) of all
parties including Ak. Let IdealDk

(A◦k,Π◦k) denote the joint output distribution determined by the ideal
world adversary and the corresponding ideal world implementation Π◦k. We say that the protocol family
{Πk} securely implements {Π◦k} if for any non-uniform polynomial-time adversary {Ak} there exists a non-
uniform polynomial-time adversary {A◦k} such that for any input distribution family {Dk}, the output
distributions RealDk

(Ak,Πk) and IdealDk
(A◦k,Π◦k) are computationally indistinguishable. If the output

distributions are statistically indistinguishable or coincide, then we can talk about statistical and perfect
security. Finally, a protocol family {Πk} correctly implements {Π◦k} if for any input distribution family {Dk}
the output distributions coincide provided that the adversaries remain inactive (corrupt nobody) in both
worlds.

Basic properties. Note that the only difference between the formal definitions of consistency and security
in the malicious model is in the description of the ideal world execution. Hence, we can treat a consistent
protocol as a secure implementation of a modified functionality that allows explicit specification of halting
predicates. As a result, standard composability results carry over and each consistent protocol in a sequential
composition can be replaced with the ideal implementation. However, the resulting hybrid protocol does not
necessarily correspond to a consistent ideal world execution. For instance, if we execute two client-server
protocols in a row, then the server’s input is not guaranteed to be the same for both ideal implementations.
Also, a malicious server can specify two halting predicates instead of a single one.

The main advantage of consistent computations over other weakened security models is an explicit correct-
ness guarantee. By the construction of the idealized model of consistent computations, an honest participant
reaches the accepting state if and only if his or her output is consistent with the inputs submitted in the be-
ginning of the protocol. Hence, a successful protocol run provides consistency guarantees in the real world, as
well. Consequently, a non-accepting honest participant can prove without the help of other participants that
a malicious attack was carried out. Moreover, any consistent protocol can be augmented with a complaint
handling mechanism that reveals nothing beyond the validity of the complaint.

Theorem 1. Let a protocol family {Πk} be a correct and consistent implementation of a functionality {Π◦k}
such that all messages are signed by their creators. Then an honest participant can prove the existence of a
malicious attack that alters his or her output without help from others provided that the signature scheme is
secure. The corresponding proof can be converted to a zero-knowledge proof if the messages received by the
honest participant reveal nothing about his or her input.

Proof (Sketch). For the proof, note that by our security assumptions no participant can forge messages sent
by others. Hence, if an honest party reveals his or her input and randomness together with all received
messages, then anybody can verify correctness of her computations. Since the protocol implements correctly
{Π◦k}, semi-honestly behaving participants cannot cause a non-accepting output. This proof can be converted
to a zero-knowledge proof, since it is sufficient to present all received messages and then prove that there exists
a valid input and randomness that leads to the non-accepting state. The corresponding statement belongs to
an NP-language and thus has an efficient zero-knowledge proof. The claim follows as the messages received
by honest party reveal nothing about his or her input. ut

We emphasize that the last assumption in Theorem 1 is not a real restriction and can be easily met by us-
ing a secure public key cryptosystem. Namely, if all messages are encrypted with public keys of corresponding
recipients, then messages leak no information to outside observers but the protocol remains consistent.

However, differently from secure computations, a valid complaint reveals additional information, namely,
the adversary learns that the corresponding halting predicate πi(x1, . . . , xn) holds. On the other hand, a
honest party does not have to issue a complaint and thus the adversary is not guaranteed to learn halting
predicates—in some applications, the honest parties can untraceably recover from protocol failures.
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For all consistent and detectable protocols, such a complaint also reveals the identity of the maliciously
behaving participant. Hence, there is a trade-off between the utility of a single bit πi(x1, . . . , xn) and a
long-term reputation of a participant. As a result, consistency of computations is an adequate protection
mechanism for all settings, where participants are unwilling to cheat if they are caught with high probability
or a single bit leakage is much smaller compared to the amount of information revealed by legitimate protocol
outputs. For instance, the intended output of privacy-preserving data-aggregation is usually several kilobytes
(if not megabytes) long, and therefore the effect of a single bit leakage is likely to be irrelevant.

The same argumentation holds also for consistent protocols without accountability. However, finding the
identity of the culprit is difficult in such settings, because everybody must prove the correctness of their
actions and the corresponding zero-knowledge proofs can be intractable in practice. Finally, note that the
potential damage of a valid complaint depends on the set of possible halting predicates πi. In Section 6, we
study this question explicitly and show how to restrict the class of enforceable predicates.

Relation to other security definitions. The concept of covert corruption is rather old and has been
discussed in many contexts. The earliest definitions were given for the multi-party setting [FY92,CO99] and
only recently modified to work in two-party settings by Aumann and Lindell [AL07]. In particular, note
that the definition of t-detectability given in [FY92] and various definitions of ε-detectability given in [AL07]
guarantee only that malicious behavior, which alters the outputs of honest parties, is detected with notable
probability. However, none of the definitions limit the amount of information acquired during a successful
fraud attempt. Thus, our definition of consistent computations is a natural strengthening of these definitions,
which also guarantees the privacy of inputs. Another related security notion is the k-leakage model [MF06],
where the adversary can learn up to k bits of auxiliary information about the inputs of honest parties.
Similarly to consistent computations, the adversary cannot alter outputs without being detected. However,
differently from consistent computations, the information is guaranteed to reach adversary and such an attack
is undetectable. Hence, the k-leakage model provides less strict security guarantees. Table 1 depicts a more
detailed comparison of various security definitions together with comments on their efficiency and possibility
of detectability, see App. A for the corresponding formal reasoning.

Subtle details. Note that halting predicates must be efficiently computable. Otherwise, participation in
an idealized computation can provide significant gains to the adversary. Hence, we require that for any
adversary {Ak}, the time needed to evaluate halting predicates is polynomial in the running-time of {Ak}.
However, the latter does not mean that the running time of TTP is polynomial. Indeed, different adversaries
can submit predicates with different polynomial time-bounds and consequently no single polynomial-time
algorithm can compute all of these predicates.

Also, observe that many important cryptographic protocols are not secure in the strict sense. The problem
starts with classical zero-knowledge proofs [GMW91,GK96], for which, we know only how to construct
simulators A◦ that work in expected polynomial time. However, a model where ideal world adversaries
have expected polynomial running time causes many technical and philosophical drawbacks [BL04,Gol07].
For instance, we loose sequential composability guarantees. Hence, we use an alternative formalization. A
protocol {Πk} is secure in a weak polynomial security model, if for any time bound t(k) ∈ poly(k), for any
notable difference ε(k) ∈ Ω(k−c), and for any polynomial-time real world adversary {Ak}, there exists an
polynomial-time ideal world adversary {A◦k} such that no non-uniform distinguisher {Bk} with running-
time t(k) that can distinguish RealDk

(Ak,Πk) and IdealDk
(A◦k,Π◦k) with advantage more than ε(k). This

definition has the virtue of being formalized with strict time bounds and thus free of technical issues. In
particular, it is sequentially composable and formalizes our knowledge about the reductions as precisely as
possible.

3 List Commitment Schemes

To achieve consistency, a corrupted participant must be unable to change his or her input during the protocol
without being caught. The latter can be achieved by forcing participants to commit to their inputs. More
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precisely, we need commitment schemes for lists of elements, such that individual elements can later be
decommitted by presenting short certificates. A list commitment scheme is a quadruple of probabilistic
polynomial-time algorithms (gen, com, cert, open) with the following semantics. The key-generator algorithm
gen(1k) is used to generate public parameters ck that fix the message space Mk and the maximal number
of list elements Nk ∈ poly(k). Given a list x = (x1, . . . , xn) ∈Mn with n ≤ Nk, the commitment algorithm
comck(x) outputs a pair (c, d) of commitment and decommitment values. The certificate generation algorithm
certck(d, i) returns a partial decommitment value (certificate) si for the ith element. The verification algorithm
openck(c, s) returns either a pair (i, xi) or ⊥. It is required that openck(c, certck(d, i)) = (i, xi) for all possible
values of ck← gen(1k) and (c, d)← comck(x). We now define various (optional) security properties through
games that are played between a challenger and a nonuniform adversary.

Binding and hiding. A list commitment scheme is computationally binding if for any polynomial-time
adversary {Ak} the probability ε(k) that Ak wins the following game is negligible:

1. Challenger generates ck← gen(1k) and sends ck to Ak.
2. Ak generates a commitment ĉ and two certificates ŝ0 and ŝ1.
3. Ak wins if the commitment can be opened to different values of xi.

That is, locations coincide i0 = i1 but ⊥ 6= x0 6= x1 6= ⊥ for the
openings (i0, x0)← openck(ĉ, ŝ0) and (i1, x1)← openck(ĉ, ŝ1).

A list commitment scheme is statistically hiding if for any non-uniform adversary A the probability ε(k) that
Ak wins the following game is negligibly close to one half:

1. Challenger generates ck← gen(1k) and sends ck to Ak.
2. Ak sends two lists x(0),x(1) ∈Mn with n ≤ Nk to the challenger.
3. Challenger generates a random bit b← {0, 1}, computes the corresponding

commitment (c, d)← comck(x(b)) and sends the commitment value c to Ak.
4. In the next phase, Ak can make a number of oracle queries to certck(d, ·)

provided that x(0)
i = x

(1)
i for any queried index i.

5. Ak wins the game if he or she correctly guesses the bit b.

Equivocality. In several proofs, we use simulators that send a fake commitment value ĉ to the adversary and
then gradually open parts of it according to the instructions sent by TTP. To preserve the closeness of real
and simulated executions in such a setting, the commitment scheme must be equivocal. A list commitment
scheme lc is perfectly equivocal if there exist three additional algorithms gen◦, com◦ and equiv, such that no
unbounded adversary {Ak} can distinguish between the following two experiments:

Normal Execution:

1. Challenger generates ck← gen(1k) and sends ck to Ak.
2. Ak sends x = (x1, . . . , xn) to the oracle O who computes (c, d) ← comck(x), si ← certck(d, i) for
i ∈ {1, . . . , n} and replies with (c, s1, . . . , sn).

Simulated Execution:

1. Challenger generates (ek, ck)← gen◦(1k) and sends ck to Ak.
2. The oracle Ô computes (ĉ, η)← com◦ek(n) and, given x = (x1, . . . , xn)

from Ak, computes ŝi ← equivek(ĉ, η, i, xi) and replies with (ĉ, ŝ1, . . . , ŝn).

One can build non-interactive equivocal commitment schemes based on any one-way functions in the
common reference string (CRS) model [CIO98]. In the standard model, 3 messages are needed to implement
an equivocal commitment scheme. Thus, all subsequent results that use equivocal commitment schemes
require at least 3 messages. However, as the initialization phase can be shared between different runs, the
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round complexity is not a problem in practice. For instance, the Pedersen commitment scheme [Ped91]
is perfectly equivocal in the common reference string model. More precisely, the corresponding CRS is
(G, q, g, h) where G is a group of order q and g 6= h are its two random generators. The equivocation key is
equal to y = logg h. In the standard model, the committer and the receiver jointly compute random g and h.

Extractability. Many commitment schemes have an explicit extraction mechanism such that a person
who possesses some extra information sk can open commitments without decommitment value, see for in-
stance [SCP00,Di 02]. These commitments are often used in simulator constructions, where one has to extract
inputs for committed values. For obvious reasons, such trapdoors do not exist when the final commitment
value is shorter than the total length of a committed string.

Buldas and Laur showed that if the creator of a commitment gets no additional information besides the
commitment parameters ck, then all committed elements are efficiently extractable given white-box access
to the committing algorithm and to the randomness used by it. See the definition of knowledge-binding and
corresponding proofs in [BL07]. However, in the context of two- and multi-party computations, an adversary
always gets additional inputs and thus we must amend the definition.

A list commitment scheme is white-box extractable if for any polynomial-time adversary {Ak} there exists
a polynomial-time extractor machine {KAk

} such that for any input distribution Dk and for any family of
advice strings {ak} the adversary Ak can win the following game with negligible probability. The family of
advice strings {ak} in the game models unknown future events, which might help the adversary to open the
commitments.

1. Challenger generates ck← gen(1k), φ← Dk and a new random tape ω.
2. Ak gets φ and ck as inputs and ω as the random tape and outputs

a list commitment c together with size n, (c, n)← Ak(φ, ck;ω).
3. KAk

gets φ, ck and ω as inputs and outputs (x̂1, . . . , x̂n)← KAk
(φ, ck;ω).

4. Given advice ak, Ak outputs certificates (s1, . . . , sm)← Ak(ak).
5. The adversary wins if Ak outputs at least one certificate that is consistent with the commitment and

that corresponds to a list element, not correctly guessed by the extractor, i.e., if ∃j : ⊥ 6= (i, x∗) =
openck(c, sj) ∧ x∗ 6= x̂i.

Currently it is not know how to construct a non-interactive compressing commitment scheme that is
provably white-box extractable.1 However, if we consider interactive commitment schemes, where a sender
executes a zero-knowledge proof of knowledge that he or she knows how to open all elements under the
list commitment, then we can indeed construct such knowledge extractor by definition. By using suitable
zero-knowledge techniques as detailed in [NN01], it is possible to guarantee that the total communication
between the receiver and the sender is still sublinear, although the computational overhead might be too
large for practical applications.

As the security of proofs of knowledge is often defined in a weaker model [BG92], we also relax other
definitions to be compatible. A list commitment scheme is weakly white-box extractable if for any polynomial-
time adversary {Ak} and an error bound ε(k), there exists a extractor machine {KAk

} such that, for any
input distribution Dk and for any family of advice strings {ak}, the adversary Ak wins the extractability
game with a probability at most ε(k) and the running-time of KAk

is at most O(poly(k)/ε(k)) times slower
than Ak.

Double-layered commitments. There are two principally different ways how to construct a list com-
mitment scheme with extractability and equivocality properties. First, one can commit elements individu-
ally using ordinary commitment scheme with these properties, such as [Di 02]. As a result, we get strong
extractability guarantees but cannot get beyond linear communication complexity. Alternatively, we can
first build a double-layered equivocal commitment scheme, and then add extractability by an interactive
proof of knowledge. A double-layered commitment scheme dlc is specified by a conventional commitment
1 The results of [BL07] assure existence of extractors KAK ,Dk that depend on Dk.
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scheme cs and a list commitment scheme lc. The key-generator procedure dlc.gen runs both key generation
procedures and outputs a pair of resulting public parameters (ck1, ck2). To commit to x = (x1, . . . , xn),
one first computes conventional commitments (ci, di) ← cs.comck1(xi) for i ∈ {1, . . . , n} and then outputs
(c∗, d∗) ← lc.comck2(c1, . . . , cn). To decommit xi one has to first decommit ci by giving lc.certck2(d∗, i) and
then also reveal di so that the receiver could compute cs.openck1

(ci, di). Other operations are defined analo-
gously.

Theorem 2. Let lc be a binding commitment scheme and cs be a conventional commitment scheme. Then
dlc inherits statistical hiding, perfect hiding; computational binding; statistical equivocality and perfect equiv-
ocality from cs.

Proof. Hiding and binding are evident. For the equivocality, note that given the equivocation key ek for cs,
it is possible to use cs.com◦ to generate a list ĉ1, . . . , ĉn of fake commitments for lower level that can be
later opened to any values using the function cs.equivek. Thus, preservation of equivocality follows from the
definition. ut

The list commitment scheme does not have to be hiding. Hence, we can use hash trees to compress large
lists into succinct digests. The corresponding construction is based on a collision-resistant hash function
family {Hk} and the length of certificates is known to be of size O(k log n). The Pedersen commitment
scheme is a good choice for conventional commitment scheme cs, since its public key is a uniformly chosen
group element y ∈ 〈g〉. The corresponding equivocality trapdoor is the discrete log of y. As the first option,
the key can be generated jointly by the sender and the receiver by using a secure three-message multiplication
protocol to multiply two random group elements. Alternatively, the client may specify y since the Pedersen
commitment scheme is perfectly hiding. Then, we lose equivocality unless we are willing to find the discrete
logarithm of y in exponential time.

4 Consistent Adaptive Oblivious Transfer

Oblivious transfer protocols are often used as building blocks for complex protocols. In an adaptive oblivious
transfer protocol, a server has an input database x = (x1, . . . , xn) of `-bit strings and a client can adaptively
query up to m elements from this database. The client should learn nothing beyond xq1 , . . . , xqm

and the the
server should learn nothing. In particular, the client should learn ⊥ if its query is not in the range {1, . . . , n}.
In the asymptotic setting, all parameters m, n, ` must be polynomial in the security parameter k. Two
standard security notions for the oblivious transfer protocol in the malicious model are security and privacy.
In brief, private protocols guarantee only that a malicious client cannot learn anything beyond xq1 , . . . , xqm

but do not assure that an honest client indeed learns xq1 , . . . , xqm
if the server is malicious. As such they are

inapplicable for many practical applications. See App. A for a detailed treatment.
Adaptive oblivious transfer protocols that are secure in the malicious model usually have linear com-

munication, since the server first commits to his or her individual database elements, and then at every
query helps the client to “decrypt” a single database element, see for example [CNS07,PVW08]. A natural
alternative is to use a sublinear-length commitment scheme together with suitable zero-knowledge techniques
as detailed in [NN01]. However, the resulting low-communication protocol is only a theoretical solution with
computational overhead that is too large for practical applications.

As a practical solution, we show how to convert any private oblivious transfer protocol into a consistent
protocol with low computational and communicational overhead, see Prot. 1. By using protocols [GR05,Lip05]
for oblivious transfer, we get an efficient protocol with almost optimal communication. For the sake of
simplicity, we assume that the underlying private 1-out-of-n oblivious transfer protocol ot has 2 moves and is
determined by a triple of algorithms (query, reply, decode) such that for any qi ∈ {1, . . . , n} and x ∈ {0, 1}`×n,
we have decode(qi, reply(x, query(qi))) = xqi

. This assumption is not a big restriction, since most practical
oblivious transfer protocols are in this form, and generalization to multi-round protocols is obvious. As a
second simplification, we use a trusted setup phase for generating the public parameters of a list commitment
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Client’s inputs: adaptively chosen indexes q1, . . . , qm.
Server’s inputs: a database x = (x1, . . . , xn).
Common inputs: a description of lc and ot.

Trusted setup
If needed, the trusted dealer executes the shared setup phase for ot.
The trusted dealer broadcasts public parameters ck← lc.gen(1k) to everybody.

Commitment phase
The server computes (c, d)← lc.comck(x) and sends the commitment (c, n) to the client. Then the server
computes si ← lc.certck(d, i) for each i ∈ {1, . . . , n}, and stores the database of partial decommitment
values s← (s1, . . . , sn).

Query phase. To fetch the qith element form the database:
1. The client sends Qi ← ot.query(qi) to the server.
2. The server returns Ri ← ot.reply(s, Qi).
3. The client computes Ai ← ot.decode(qi, Ri) and (j, x∗)← lc.openck(c, Ai).

If j = qi then the client outputs x∗, otherwise the client outputs ⊥.

Protocol 1: The new consistent adaptive oblivious transfer protocol

scheme. One can eliminate the need for a trusted dealer by running a secure multiparty protocol, but the
explicit use of the trusted setup makes security proofs more modular.

The underlying idea behind the protocol is rather simple. First, the server uses a list commitment scheme
lc to commit all entries of the database x. Then the server computes an intermediate database s = (s1, . . . , sn)
of certificates corresponding to every xj . In an online query phase, the client and the server execute the
oblivious transfer protocol ot with the server’s input s to fetch the qjth partial decommitment value sqj . If
this value opens a database element x∗ that is consistent with the commitment of x and the query qj , then
we output x∗, otherwise we return ⊥. The following security proof requires the number of possible query
combinations to be polynomial. We will consider the general situation later.

Theorem 3. If the oblivious transfer protocol ot is computationally private in the shared setup model and
the list commitment scheme lc is binding and equivocal, then Prot. 1 is a consistent adaptive m-out-of-n
oblivious transfer protocol in the polynomial security model provided that nm ∈ poly(k).

Proof. For the proof, we fix a security parameter k, consider an adversary Ak and show how to convert
it into an ideal world adversary A◦k such that the output distributions are close enough for any input pair
(φc, φs). The latter is sufficient for assuring closeness for any input distribution Dk.
Security of honest client. Let Ak be a corrupted server and Ck an honest client. As the number of
potential queries is polynomial, we can construct a black-box extractor KAk,C that fixes random coins of the
client and the malicious server, and makes all nm queries in order to recover all valid openings (j, x̂j). As the
slowdown is polynomial and the commitment scheme is binding, double openings x̂j 6= x̂′j are revealed with
negligible probability. Hence, we can use KAk,C in the construction of ideal world server. By the definition, the
oblivious transfer protocol ot is private in the shared setup model if for any adaptively chosen inputs vectors
q = (q1, . . . , qm) and q = (q1, . . . , qm) the output distribution of Ak is computationally indistinguishable.
Hence, we can replace the missing messages in the ideal world by simulating the honest receiver with input
q = (1, . . . , 1). We can combine these results and consider the following ideal world adversary A◦k:

1. Run the setup phase to obtain public parameters for lc and ot.
2. Choose randomness ω and store (x̂1, . . . , x̂n)← KAk,Ck(φs, ck;ω).
3. Send (x̂1, . . . , x̂n) to TTP and specify halting predicates π1, . . . , πm through the interaction between the

honest client Ck(q) and the adversary Ak(φs, ck;ω), that is, πi(q1, . . . , qi) = 1 if and only if Ck with input
q1, . . . , qi obtains xqi

6= ⊥.
4. Output whatever Ak(φs, ck;ω) outputs in interaction with Ck(q).

Let (ψc, ψs) denote the outputs of the real execution and (ψ◦c , ψ
◦
s ) the outputs of the ideal execution. W.l.o.g.

we can assume that the output ofAk contains φs, ck, ω and thus given the advice φc we can efficiently compute
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ψc form ψs or ψ◦s . Hence, the distributions (ψc, ψs) and (ψc, ψ◦s ) must be computationally indistinguishable,
or otherwise we can distinguish ψs form ψ◦s , which violates the privacy of ot.

Now note that for fixed (φs, ck, ω) the corresponding outputs ψc and ψ◦c can differ only if the client
recovers xqj

6= x̂qj
. As this can happen with negligible probability, we have established that distributions

(ψc, ψ◦s ) and (ψ◦c , ψ
◦
s ) are computationally indistinguishable and thus also (ψc, ψs) and (ψ◦c , ψ

◦
s ).

Security of honest server. Since the output of the server in the ideal and real model is empty, only the
output of a malicious client Ak must be analyzed. Consider a hybrid implementation of the protocol, where
all instances of ot are replaced with ideal implementations of oblivious transfer protocol with the database
s. Then as the ot protocol is private in the shared setup model, there exists an adversary A∗k such that the
output distributions of Ak and A∗k are computationally indistinguishable.

To complete the proof, we construct a true ideal world adversary A◦k and show that the outputs of A◦k
and A∗k are computationally indistinguishable. Indeed, let the ideal world adversary A◦k proceed as follows:

1. Generate the equivocality key (ek, ck)← lc.gen◦(1k) and broadcast ck.
2. Compute (ĉ, η)← lc.com◦ck,ek(n) and send ĉ to the adversary A∗k.
3. If A∗k queries qj , obtain xqj from TTP and reply ŝj ← lc.equivek(ĉ, η, qj , xqj ).
4. Return whatever the adversary A∗k finally outputs.

Then it is easy to see that in the hybrid world A∗k plays the first equivocality game with the honest server
and in the ideal world A∗k plays the second equivocality game with a challenger consisting of the simulator
A◦k, TTP and the honest server. To nitpick, A∗k does not query all faked decommitment values at once, but
clearly we can write a wrapper that queries all decommitments and then gradually releases them to A∗k.
Thus, the outputs of A∗k and A◦k must be computationally indistinguishable or otherwise A∗k together with
the distinguisher would break the equivocality property. ut

Corollary 1. If ot is (weakly) statistically server-private and lc is statistically equivocal, then Prot. 1 is
(weakly) statistically server-private.

Proof. If ot is statistically private, then for each Ak there exists poly(k) times slower A∗k such that the
output distributions are statistically close. Weak statistical privacy guarantees only the existence of A∗k
without bounds on the running time. Both claims follow as A◦k is only poly(k) times slower than A∗k. ut

The limitation that the number of potential queries must be polynomial in k seems to be essential for
getting a low-communication solution with a small computational overhead. To bypass this restriction, we
can either use list commitment schemes that are both extractable and equivocal or alternatively add a proof
of knowledge session to achieve extractability for a compressing list commitment.

Corollary 2. If the oblivious transfer protocol ot is computationally private in the shared setup model and
the list commitment scheme lc is (weakly) white-box extractable and equivocal, then Prot. 1 is a consistent
adaptive m-out-of-n oblivious transfer protocol in the (weak) polynomial security model.

Proof. Note that the algorithm pair (Ak, Ck) can be treated as a compound adversary, which generates
a list commitment (c, n) and then later opens m elements according to the advice a = (q1, . . . , qm). As
the commitment scheme is white-box extractable, there exists an extractor machine KAk,Ck

that, given
the parameters ck, the server’s input φs and the random tape ω, outputs a list of candidate elements
x̂ = (x̂1, . . . , x̂n) such that at the end of the execution Ck accepts xqj

6= x̂qj
with negligible probability. This

extractor can be used in the simulator construction of Thm. 3 instead of KAk,Ck .
Weak extractability. The same construction is valid for a weakly extractable commitment scheme.
However, in this case for any notable error bound ε(k), we can choose KAk,Ck

such that (ψc, ψ◦s ) and (ψ◦c , ψ
◦
s )

are ε(k)-close. As (ψc, ψs) and (ψc, ψ◦s ) are computationally indistinguishable, we can guarantee that, for
a large enough k, distributions (ψc, ψs) and (ψ◦c , ψ

◦
s ) are computationally 2ε(k)-close. As the slowdown is

O(poly(k)/ε(k)), we have established that for any notable error bound ε(k), we can construct a polynomial-
time ideal world adversary, i.e., the correspondence {Ak} 7→ {A◦k} is valid in the weak polynomial model. ut
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Comparison with other protocols. If nm is polynomial in k, then we can use very communication efficient
list commitments that stretch the input O(k log n). By combining it with the most efficient private oblivious
transfer protocol [GR05] we get a protocol with a communication complexity O(k ·m log2 n). Moreover, if
we neglect the setup, then for the amortized round complexity is two messages per query. The latter is
significantly better than the communication complexity Ω(mn) of the secure adaptive oblivious transfer
protocols [CvdGT95,CD97,CC00,GMY04,OK04] relying on zero-knowledge proofs. With an explicit use of
the PCP theorem one can achieve polylogarithmic communication [NN01] but this approach is only optimal
in the asymptotic sense.

As for the computational complexity, note that additional computational overhead (compared to private
protocols) comes from the commitment phase. If we use collision-resistant hash functions and Merkle trees
to build a double layered list commitment scheme, then the resulting overhead consists of O(n) hashing and
commitment operations. If the number of queries is bounded or nm ∈ poly(k), then there are no additional
costs besides computing the commitment. If the server must handle an unbounded number of queries, the
server has to prove that he or she knows how to open the commitment. In a communication inefficient version
proof, the server sends all lower level commitment values c1, . . . , cn to the client and proves knowledge of
each decommitment value. The client first checks that the root of the Merkle tree is correct and then verifies
individual proofs. Such zero-knowledge proofs are particularly efficient for Petersen commitments. Again the
overhead is O(n) operations. By using suitable conversion methods [NN01] we can achieve polylogarithmic
communication by increasing the computational overhead by a polynomial factor. Although the construction
still relies on the PCP theorem, the underlying proof is much simpler—the server does not have to prove
correctness in the query phases. Some secure oblivious transfer protocols [OK04,CNS07] provide an efficient
trapdoor mechanism for extracting commitments and thus the zero-knowledge proofs are needed only for
the query phase. However, such a construction seems to be possible only if the size of the list commitment
is linear.

Aumann and Lindell described a 1-out-of-2 oblivious transfer protocol [AL07], which is secure in the
covert model. Although the resulting security guarantees are weaker than for the consistent protocol, see
Table 1 and App. A, their protocol still has 7 messages and a much higher communication complexity. To
be fair, three of those messages are used to implement trusted setup for the private oblivious transfer but
there are still 4 messages per query and a malicious sender can change its input during the protocol.

Argument Systems. Argument systems for NP can be seen as an application of consistent adaptive
oblivious transfer protocols. In several well-known argument systems, the prover constructs a PCP proof of
the statement to be proven, see [DL08] for more references. In these proofs, the verifier makes a number of
random queries to the PCP proof, and then decides whether the proof is correct or not. What one needs
here is a consistent protocol for making the queries: the answers to queries should be consistent with each
other, and when they are not the verifier is free to complain because the queries reveal nothing about the
verifier’s inputs. We note that the concrete protocol of [DL08] was influenced by an early version [LL06] of
the current paper.

5 Consistent Conditional Disclosure of Secrets

Let q = (q1, . . . , qn) denote the client’s vector of inputs and let x be a secret possessed by the server. Then
conditional disclosure of secrets (CDS) for a predicate ρ is a protocol, where the client should learn

cdsρ(q, x) =

{
x, if ρ(q) = 1 ,

⊥, otherwise ,

and the server should learn nothing. CDS protocols are often used to convert client-server protocols secure in
a semihonest model to protocols that preserve the privacy of inputs in the malicious model, see [AIR01,LL07]
for the details.
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In the context of the current work, we are more interested in the direct application of CDS protocols.
Namely, note that a CDS protocol provides a way to distribute a secret only if the client’s input satisfies
certain condition, i.e., the client has credentials to access the secret. As an example, consider a video on
demand service, where a client should obtain a key to a video stream only if his or her balance is non-negative:
credit > 0. However, the server should be unable to tell the client’s exact balance. The CDS protocols
described in [AIR01,LL07] consist of two moves and the client’s query consists of additively homomorphic
ciphertexts of q1, . . . , qn. The latter allows the server to do a limited amount of cryptocomputing to form
ciphertexts that decrypt to the secret if the condition ρ is met. For complex predicates, the client must
often send some additional encryptions of auxiliary inputs w1, . . . , wn to bypass these limitations, i.e., q =
(credit, w1 . . . , wn) for our example. Most importantly, note that the encrypted credit can be automatically
decreased by the server and thus the client cannot cheat. However, the server can still refuse to cooperate.
Since the solutions [AIR01,LL07] provide only privacy in the malicious model, the complaint handling requires
participation of both parties and it is difficult for the server to refute false accusations.

Now consider an extended CDS protocol, where the server first publicly commits to x and the CDS
protocol is executed to recover the corresponding decommitment value. As the proof of Thm. 3 and Cor. 2
directly generalizes, the resulting protocol is consistent under the same assumptions. If the set of plausible
client inputs is exponential, the exhaustive knowledge extraction technique from Thm. 3 becomes infeasible
and the construction, where the server proves that he or she knows how to open the commitment is the only
option. The latter is not a big problem, as many conventional commitment schemes have efficient proofs of
knowledge for this. For instance, the equivocal Pedersen commitment scheme has this property. Also, note
that the server does not have to prove knowledge of the decommitment value to everybody. It is sufficient, if
the server proves it to a respected peer during an initialization phase. If we can guarantee that such auditors
are semihonest, then we can further optimize the proof.

Moreover, Thm. 1 assures that the client can prove that the server acts maliciously to third parties. As
anybody can repeat the second phase of a CDS protocol enlisted in [AIR01,LL07] with a different secret x,
the corresponding honest-verifier zero-knowledge proof is very efficient. The complaining client has to reveal
x to the prover and then additionally prove (in zero-knowledge if necessary) that the reply of the server is
invalid.

The ability to complain makes CDS protocols very appealing in TV or military broadcasts with complex
access policy, where credentials are granted by giving out random keys. This problem is commonly known as
private inference control [WS04]. In this setting, a server holds a database of private keys that are used to
encrypt various content, e.g., documents with different confidentiality levels. Clients have acquired different
credentials and the server’s task is to release correct keys. For security reasons, the server should not learn
which documents are accessed by different clients. At the same time, the server should deny access for clients
who do not have appropriate credentials. However, the client should be able to distinguish between denial
of service attacks, where the server acts maliciously, and legitimate denials, where the client has no right
to obtain a corresponding key. Moreover, to make the service accountable against inside attacks the client
should be able to prove to third parties that the denial is illegitimate.

We emphasize that the proofs of knowledge can be skipped if it is possible to force the server to con-
struct commitments of keys semi-honestly during the initialization phase either by organizational means
or by auditing. As efficient CDS protocols exists for all NP/poly predicates [LL07], we have established
that accountable private inference control is possible. More importantly, the solution is really practical if a
complaining client is willing to reveal his input.

6 Discussion And Open Problems

Both solutions for oblivious transfer and conditional disclosure of secrets are based on a simple principle:
the server first creates a list of possible answers and commits to it. Since all answers are independent of each
other and a client can verify that he or she got the correct answer, the server has to prove only that he knows
how to decommit and not that all answers are consistent with some server’s input. As soon as the answers

12



must satisfy a certain constraint or the client cannot check whether he or she obtained a decommitment
value for a correct answer, the construction of a consistent protocol becomes much more complicated.

Nevertheless, any such protocol must give rise to a list commitment scheme. Indeed, we can view any
client-server protocol for computing f(q, x) as a compact commitment to a list with elements xq = f(q, x)
where q takes all plausible values. For three-move protocols, the first message is the commitment and the
second message together with the third corresponds to interactive opening procedure. The second and third
message can be compacted into a single decommitment value provided that a colluding client and server
cannot fool third parties who know the first message. As the query should not leak information about other
entries, construction of such commitment schemes with implicit correctness guarantees seems a highly non-
trivial task. Hence, the question whether one can construct three-move consistent protocols for other tasks
is an interesting question, which might shed a light on what type of restrictions are implicitly enforceable by
the design of a list commitment scheme.

Another open question is how much can be learnt from the complaints and whether is it possible to
limit this exposure. By the definition of consistency the complaint leaks an output of a polynomial-time
randomized predicate. In practice, we can further restrict the set of enforceable predicates π. For instance,
one can force memoryless consistency in the oblivious transfer protocol. Namely, a client-server protocol
is memoryless-consistent if the halting predicates π1, . . . , πm are independent from previous queries, i.e.,
πi(q1, . . . , qi) = πi(qi) and the server cannot relate results of different queries.

Theorem 4. Prot. 1 is memoryless consistent if no instantiations of ot protocols share random variables.

Proof. Assume that an adversary A breaks the memoryless-consistent property of Prot. 1. That is, it can
force the client to abort if and only if a predicate πi holds on client’s queries (q1, . . . , qi) thus far, where πi
is a non-trivial function of at least two different values qa and qb for a < b ≤ i. Since the protocol is stateless
then the adversary can play the role of the client in round b > a, to breach the privacy of the client in round
a: given its knowledge of whether the client aborted in round b, it will have some advantage in guessing qa,
given the value πi(qa, qb). ut

Analogous results can be stated for protocols consisting of several CDS protocols. However, memory-
less consistency has a certain cost. Many efficient protocols for oblivious transfer [Ste98,AIR01,Lip05] and
CDS [AIR01,LL07] are based on homomorphic encryption. In these protocols, the trusted setup phase assures
that the client indeed knows the secret key. In practice, this setup phase is replaced with a corresponding
proof of knowledge. Now, if each sub-protocol has a different key pair, the preprocessing phase becomes
rather complex. Hence, it is beneficial to share the key among many protocol instances. The latter can be
securely done for most such protocols [LL07].

By doing so we loose memoryless consistency and thus a natural question arises: can we still bound the
set of enforceable halting predicates. As all of these protocols send the client input in an encrypted form to
the server and the replies are also encryptions, it is straightforward to force affine predicates. Indeed, given
a list of encryptions Enc(q1), . . . ,Enc(q`), the server can multiply all replies with

Enc((q1α1 + · · ·+ qiαi − β)r) = (Enc(q1)α1 · · ·Enc(qi)αiEnc(−β))r

for a random message space element r. As a result, the replies are unaltered when q1α1 + · · ·+ qiαi = β and
uniformly distributed otherwise. Consequently, the server can easily force halting predicates corresponding
to affine combinations of received ciphertexts πi(q1, . . . , qi) = [q1α1 + · · ·+ qiαi = β]. By multiplying replies
with several such ciphertexts, the server can also force conjunctions of such affine combinations.

Note that these attacks are applicable for any additively homomorphic encryption scheme. Hence, one
can ask whether this is a complete description of halting predicates or not. Of course, this question makes
sense only for deterministic predicates, as any client server interaction can be formalized as a randomized
predicate. For all deterministic predicates, it is reasonable to compare the behavior of a concrete cryptosystem
with its idealized counterpart that is implemented through encryption, decryption and ciphertext-addition
oracles. We say that a homomorphic cryptosystem has special cryptocomputing properties if the malicious
server can force deterministic predicates that cannot be forced if the underlying cryptosystem is ideal. As
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there are cryptosystems that allow to cryptocompute quadratic polynomials [BGN05] and even polynomials
of any length [Gen09], cryptosystems with special properties exist. However, in all of these cases these
properties follow directly from the design of a cryptosystem. Therefore, it is reasonable to assume that
standard additively homomorphic cryptosystems, such as Paillier [Pai99], are without special properties and
the set of enforceable predicates is limited to affine tests and their conjunctions. Any provable rejection to
this fact would be interesting by itself as it would advance the set of cryptocomputable predicates.
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[CvdGT95] Claude Crépeau, Jeroen van de Graaf, and Alain Tapp. Committed Oblivious Transfer and Private
Multi-Party Computation. In Don Coppersmith, editor, CRYPTO 1995, volume 963 of LNCS, pages
110–123, Santa Barbara, USA, August 27–31 1995. Springer-Verlag.

[Di 02] Giovanni Di Crescenzo. Equivocable And Extractable Commitment Schemes. In Stelvio Cimato, Clemente
Galdi, and Giuseppe Persiano, editors, Security in Communication Networks, 3rd International Confer-
ence, SCN 2002, volume 2576 of LNCS, pages 74–87, Amalfi, Italy, September 11–13, 2002. Springer
Verlag.

[DL08] Giovanni Di Crescenzo and Helger Lipmaa. Succinct NP Proofs from An Extractability Assumption. In
Arnold Beckmann, Costas Dimitracopoulos, and Benedikt Löwe, editors, Computability in Europe, CIE
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A Formal Comparison of Security Models

A.1 Privacy and Relaxed Security

Let RealDk
(Ak,Πk) and IdealDk

(A◦k,Π◦k) denote the joint output distributions of all participants including
the adversary in the real and ideal world as defined in Sect. 2. Now let OutDk

(Ak,Πk) and OutDk
(A◦k,Π◦k)

denote the output distributions of the adversaries Ak and A◦k in the real and ideal world. Then a protocol
family {Πk} privately implements {Π◦k} if for any non-uniform polynomial-time adversary {Ak} there ex-
ists a non-uniform polynomial-time adversary {A◦k} such that for any input distribution family {Dk}, the
distributions OutDk

(Ak,Πk) and OutDk
(A◦k,Π◦k) are computationally indistinguishable. For statistical and

perfect privacy, the distributions must be statistically indistinguishable or coincide.
For two-party protocols, it is impossible to achieve statistical privacy for both participants. Hence, one

often talks about statistical client- and server-privacy. In these cases, the statistical indistinguishability is
guaranteed only if the adversary corrupts respectively the client or server. In the context of oblivious transfer,
authors often talk about semi-simulatability or relaxed security [NP99,AIR01]. In brief, the definition of
semi-simulatability is analogous to the privacy, except a simulator construction for A◦k can use an oracle for
extracting the actual input of Ak form the first query message. As a result, the implementation of A◦k without
the oracle might be inefficient. Most protocols that are semi-simulatable in the standard model [AIR01,Lip05]
are private if we use the trusted setup procedure to generate important parameters, see [LL07]. Otherwise,
semi-simulatability with statistical security guarantees against malicious clients can be viewed as a weak form
of statistical security, which does not limit the running-time of A◦k. As a result, the privacy of non-queried
database elements is guaranteed, but a malicious adversary can potentially learn something about queried
database elements which he could not have efficiently computed by himself.

For semihonest adversaries, privacy together with correctness implies also indistinguishability of
RealDk

(Ak,Πk) and IdealDk
(A◦k,Π◦k) and thus security. Let {Bk} be an distinguisher for joint output

distributions (ψa, ψ1, . . . , ψn) and (ψ◦a , ψ
◦
1 , . . . , ψ

◦
n). As the adversary is passive and the protocol is correct

(ψ1, . . . , ψn) and (ψ◦1 , . . . , ψ
◦
n) have coinciding distributions. Hence, we can express the advantage as an

expectation over the distribution of ψ1, . . . , ψn:

Adv(Bk) = E(Pr [Bk(ψa, ψ1, . . . , ψn) = 1]− Pr [Bk(ψ◦a , ψ1, . . . , ψn) = 1])
≤ max
ψ1,...,ψn

Pr [Bk(ψa, ψ1, . . . , ψn) = 1]− Pr [Bk(ψ◦a , ψ1, . . . , ψ
◦
n) = 1] .

Consequently, by hardwiring the maximizing combination of ψ1, . . . , ψn into Bk we obtain a distinguisher
for ψa and ψ◦a , which performs as well as Bk. The claim follows.

The equivalence between privacy and security does not hold for malicious adversaries. In particular,
private protocols sometimes permit selective failures, in which a malicious party can induce protocol failures
that are dependent on the inputs of honest participant. Since there is no protection mechanism against such
attacks, the only way to handle a complaint is to force everybody to prove the correctness of their actions.
Sometimes a malicious participant can bypass such tests by altering its input according to the complaint.
Hence, fair complaint handling might be impossible for private protocols even if we ignore the computational
overhead of zero-knowledge proofs.

Finally, note that a sequential composition of private protocols does not have to be private when the
outputs of the sub-protocols are used to compute inputs for the subsequent protocols. Sequential composition
preserves privacy only if the outputs of corrupted parties reveal no information about the inputs of honest
parties, like in share-computing protocols or in client-server protocols where honest parties have no outputs.
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A.2 Relation between Detectability and Consistency

In many cases, the ability to pin-point malicious participants is enough to prevent such attacks. The cor-
responding cryptographic security notion is known as detectability. The first such a definition was given
in [FY92] for the multi-party setting.

The modernized definition that covers both two- and multi-party settings is from Aumann and Lin-
dell [AL07]. More precisely, they give three different detectability notions (so called covert adversaries)
which form a hierarchy. The strongest of them is like consistency formalized through a slightly modified
ideal world implementation. Namely, all participants send their inputs to TTP. After that, a corrupted
party Pi can either send a special aborti or corruptedi message to TTP. When such a message is received by
TTP, then it stops all computations and broadcasts the special message to everybody. That is, everybody
learns, who caused the protocol failure. Alternatively, a corrupted party Pi can try undetectable cheating
by sending a special cheati to TTP. In that case, TTP sends all received inputs to Pi and with a constant
probability ε broadcasts corruptedi to all participants. Otherwise, it sends success back to Pi and allows the
adversary to determine the outputs of all honest participants.

As the cheating participant can always learn the inputs of all honest parties, then a detectable protocol
is not guaranteed to be private. Indeed, if an adversary learns an input of an honest party that cannot be
deduced from his own output in the ideal world, then one can efficiently distinguish OutDk

(Ak,Πk) and
OutDk

(A◦k,Π◦k). On the other hand, note that consistent two-party protocols are always private, since the
modified ideal world implementation potentially alters only the outputs of honest parties. For multi-party
protocols, a corrupted coalition might learn a few bits revealed by the halting predicates and thus such
protocols are not a priori private. However, the potential leakage is certainly smaller and thus a consistent
protocol that offers detectability is strictly more secure than all covert models specified by Aumann and
Lindell.

Also, note that a cheating participant can specify the outputs of all participants with a notable probability
1 − ε. Consequently, a fair handling of complaints might be impossible for the same reasons as it is for the
private protocols. Hence, the covert adversary model is inferior also in this aspect.

Of course, both formalisms are less secure that the standard security model against malicious behavior,
where the ideal world implementation has no back doors for influencing the output of honest parties. However,
note that secure implementation in the multi-party setting does not a priori mean that honest parties learn
the identities of maliciously behaving parties. The protocol might just compensate the faults if a coalition
of malicious parties is small enough.

A.3 Relation between K-leakage and Consistency

Like consistency the k-leakage model formalized by Mohassel and Franklin [MF06] guarantees correctness
of the outputs. The model is also specified by a modified ideal world implementation. As usual all parties
submit their inputs xi to the trusted party. Next the adversary can query the values of k predicates on the
input data x1, . . . , xn. After that the protocol continues as in the standard ideal model. By the definition
of the model, the adversary is guaranteed to learn the values of the predicates and such attacks remain
undetectable—adversary does not have to crash the protocol in order to learn something useful. As a result,
the k-leakage model provides less strict security guarantees than consistent computations.

A.4 Protocols With Shared Setup

In many security proofs, it is essential that certain instantiation procedures are carried out as specified. For
instance, it is often assumed that a certain public input (common reference string) is correctly generated
and is delivered unaltered to all participants. More generally, a trusted setup is assumed to be carried out
by a trusted party who executes all computations and delivers all necessary parameters to participants. In
reality, such a setup is realized as a two- or multi-party protocol that is run in isolation before the remaining
computations.
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As such a setup step is rather costly, it is reasonable to share the setup between many protocols. For
instance, the same public key of a cryptosystem can be used for several protocols. However, protocols that
are secure in the trusted setup model do not necessarily to remain secure if the setup is shared between
many protocols. For instance, two instances of one-time pad which share the same key are insecure. Hence,
one has to prove security properties for shared setup directly.

The formal security model is the same as for the standard protocols. However, in the real world the
setup phase is run by a trusted party, whereas the simulator construction must simulate this phase for the
adversary. The latter adds extra power to the simulator and makes security proofs more straightforward. If
several protocols share the same setup, then it is possible to run the setup phase only once and after that
the simulation of all protocols must succeed. Oblivious transfer protocols [AIR01,Lip05] that are based on
homomorphic encryption are known to be private in the shared setup model [LL07].

More precisely, if we execute concurrently m instances of oblivious transfer protocols, then for any
polynomial-time real world adversary {Ak} there exists a polynomial-time ideal world adversary {A◦k} such
that for any input distribution {Dk}, the outputs OutDk

(Ak,Πk) and OutDk
(A◦k,Π◦k) are computationally

indistinguishable, where Πk is the compound protocol that also includes the trusted setup and Π◦k is the
corresponding ideal implementation without the trusted setup.
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