
Sequential and Parallel Cascaded Convolutional Encryption

with Local Propagation: Toward Future Directions in

Symmetric Cryptography

Dragoş Trincă
Department of Computer Science & Engineering

University of Connecticut
Storrs, CT 06269, USA

dtrinca@engr.uconn.edu

Abstract

Worldwide symmetric encryption standards such as DES (Data Encryption Standard),
AES (Advanced Encryption Standard), and EES (Escrowed Encryption Standard), have been
– and some of them still are – extensively used to solve the problem of communication over
an insecure channel, but with today’s advanced technologies, they seem to not be as secure
as one would like.

In this paper, we propose efficient alternatives based on special classes of globally invertible
cascaded convolutional transducers. The proposed symmetric encryption techniques have at
least four advantages over traditional schemes based on Feistel ciphers. First, the secret key
of a cascaded convolutional cryptosystem is usually much more easier to generate. Second,
the encryption and decryption procedures are much simpler, and consequentially, much faster.
Third, the desired security level can be obtained by just setting appropriate values for the
parameters of the convolutional cryptosystem. Finally, they are much more parallelizable
than symmetric encryption standards based on Feistel ciphers.

Keywords: Block ciphers; Convolutional codes; Parallel algorithms; Symmetric encryp-
tion

1 Introduction

Symmetric cryptography has been – and still is – extensively used to solve the traditional problem
of communication over an insecure channel. Well-known symmetric encryption standards such as
DES [5], AES [1], and EES [7] have been designed using Feistel ciphers, but they seem to not be
as practical as one would like.

DES was developed at IBM in 1977, and in the same year was adopted by NIST as the standard
data encryption algorithm. It was recertified every five years until 1999, when the key size of 56
bits was considered too vulnerable to attacks. In 2001, DES was replaced by AES, which became
effective May 26, 2002. AES supports key sizes of 128 bits, 192 bits, and 256 bits, in contrast to
the 56-bit key offered by DES, and is intended to remain secure well into the 21st century.

The algorithm at the core of AES, called Rijndael, has been designed to have very strong
resistance against the classical approximation attacks such as linear cryptanalysis and differential
cryptanalysis, but recent advances in applied cryptography seem to reduce significantly its lifetime.
For example, in a recent paper [4] presented at Asiacrypt 2002, Courtois and Pieprzyk describe an
attack that might break AES. Their attack, called XSL, is shown to be faster than the exhaustive
search, and able to break Rijndael 256 bits and Serpent [3] for key lengths 192 and 256 bits. It is
likely that their method will be studied further, and probably many other methods for breaking
AES will appear in the near future. Thus, it is unlikely that AES will remain secure as originally
conceived, and consequentially, there is a growing need of more efficient symmetric cryptosystems.

1

Moreover, even with today’s technology, block ciphers such as DES and AES are not as fast in
software as one would like; this is another reason to seek alternatives for fast software encryption.

In this paper, we propose efficient alternatives based on special classes of globally invertible
cascaded convolutional transducers. Our symmetric encryption techniques have at least four ad-
vantages over traditional schemes based on Feistel ciphers. First, the secret key of a cascaded
convolutional cryptosystem is usually much more easier to generate. Second, the encryption and
decryption procedures are much simpler, and consequentially, much faster. Third, the desired
security level can be obtained by just setting appropriate values for the parameters of the con-
volutional cryptosystem. Finally, they are much more parallelizable than symmetric encryption
standards based on Feistel ciphers.

The presentation is organized as follows. First, we provide a brief introduction to convolutional
codes and show how to use a globally invertible convolutional transducer for data encryption and
decryption (section 2). Second, we propose a new class of cascaded convolutional transducers,
called cascaded convolutional transducers with propagation, and describe a parallel version of the
corresponding encryption procedure using the well-known shared-memory model of computation
(section 3). Then, in section 4, we discuss the security of our cryptosystems and provide ex-
perimental results. As we will see, our cryptosystems are much more faster than standard AES
implementations. Finally, in the last section, we provide some conclusions and future work direc-
tions.

2 Convolutional transducers

Convolutional codes [6, 10, 11] are a well-known class of error-correcting codes, currently used
in practice worldwide to encode digital data before transmission over noisy channels. During
encoding, k input bits are mapped to n output bits to give a rate k/n coded bitstream. At the
receiver, the bitstream can be decoded to recover the original data, correcting errors in the process.
The optimum decoding method is maximum-likelihood decoding, where the decoder attempts to
find the closest “valid” sequence to the received bitstream. The most popular algorithm for
maximum-likelihood decoding is the Viterbi algorithm [12].

Even though convolutional codes have been primarily designed for error detection and correc-
tion, they can be successfully used in related areas such as cryptography, as we will see throughout
this presentation. (Note that there is no previous work on this subject.) The aim of this section
is to provide the reader with a brief introduction to convolutional codes.

As stated in [6], a key step in understanding convolutional codes is to distinguish between the
convolutional encoder, the convolutional encoding operation, and the convolutional code. Rigorous
definitions of all these concepts are provided below.

We denote by Bi×j the set of i × j arrays with binary components. If u ∈ Bi×j , then the
number of components of u is denoted by |u|, i.e., |u| = ij. Also, we denote by u[q,−] the q-th
row of u, and by u[−, q] the q-th column of u. Note that u[q,−] ∈ B1×j and u[−, q] ∈ Bi×1. If u is
a row vector (or a column vector), then we will denote by u[i] the i-th element of u, and by ui:j

the subvector [u[i] . . . u[j]]. If u1, . . . , uh are binary vectors, then we denote by vect(u1, . . . , uh)
the vector consisting of the components of u1, . . . , uh, in the same order. For example, vect([0 0
],[1 1])= [0 0 1 1].

Definition 2.1 Let n, k, and m be nonzero natural numbers. An (n, k,m) convolutional trans-
ducer is a function t : ∪∞i=1B1×ki 7→ ∪∞i=1B1×ni given by

t(u) = uGt,|u|, (1)

where

Gt,kp =

 Gt,0 Gt,1 . . . Gt,m

.
Gt,0 Gt,1 . . . Gt,m



2

is an element of Bkp×(pn+mn), Gt,i ∈ Bk×n for all i ∈ {0, 1, . . . ,m}, and the arithmetic in (1)
is carried out over the binary field GF (2). The entries left blank are assumed to be filled in with
zeros. An (n, k,m) convolutional transducer is usually called a rate k/n convolutional transducer.

Definition 2.2 Let t : ∪∞i=1B1×ki 7→ ∪∞i=1B1×ni be an (n, k,m) convolutional transducer. The
(n, k,m) convolutional code induced by t is the image t(∪∞i=1B1×ki) of t.

Definition 2.3 Let t : ∪∞i=1B1×ki 7→ ∪∞i=1B1×ni be an (n, k,m) convolutional transducer. An
(n, k,m) convolutional encoder is a realization by linear sequential circuits of the semi-infinite
generator matrix Gt associated with t.

For a more detailed introduction to convolutional codes, we refer the reader to [6]. Let us take an
example.

Example 2.1 Let t : ∪∞i=1B1×i 7→ ∪∞i=1B1×2i be a (2, 1, 2) convolutional transducer, with Gt,0 =
[0 1], Gt,1 = [1 0], and Gt,2 = [1 1]. Thus, the number of input bits is k = 1, the number of
output bits is n = 2, and the number of memory registers is km = 2. The associated convolutional
encoder can be represented graphically as in Fig. 1. Note that the two output bits at each step are
serialized using a multiplexer.

u -r r rM1
-M2

⊕

⊕

6

?

-

-

-

-

b
b
@

@ b
�

- v

Figure 1: A (2, 1, 2) convolutional encoder

Let us now describe the encoding mechanism. Let b be the current input bit being encoded, and
let b1 and b2 be the current bits stored in the memory registers M1 and M2, respectively. The first
output bit is

bGt,0[1] + b1Gt,1[1] + b2Gt,2[1] = b1Gt,1[1] + b2Gt,2[1],

whereas the second output bit is

bGt,0[2] + b1Gt,1[2] + b2Gt,2[2] = bGt,0[2] + b2Gt,2[2].

After both output bits have been obtained, b1 is shifted into the memory register M2, and b is shifted
into the memory register M1. Let us assume that the input vector u has length kp. The actual
input vector is u followed by km zeros. Thus, the total length of the output vector is pn + mn.
For example, let us take u = [0 1 0 1] as an input vector. Then, one can verify that the output
vector is t(u) = uGt,4 = [0 0 0 1 1 0 1 0 1 0 1 1], where

Gt,4 =


0 1 1 0 1 1

0 1 1 0 1 1
0 1 1 0 1 1

0 1 1 0 1 1

 .

As usual, the missing entries in Gt,4 are assumed to be zeros. Note that the size of the output
vector t(u) is pn + mn = 8 + 4 = 12.

Throughout this paper, we will be interested only in globally invertible (k, k,m) convolutional
transducers, i.e., convolutional transducers with the property that each output block of k bits can
be uniquely decrypted into the corresponding block of k input bits. Let us explain how we encrypt
an input vector using a globally invertible (k, k,m) convolutional transducer.

3

Example 2.2 Let t1 and t2 be (2, 2, 2) convolutional transducers with

Gt1,0 =
[

1 1
0 1

]
, Gt1,1 =

[
0 0
0 0

]
, Gt1,2 =

[
1 1
0 1

]
,

and

Gt2,0 =
[

1 1
1 1

]
, Gt2,1 =

[
0 0
0 0

]
, Gt2,2 =

[
1 0
1 1

]
.

The corresponding convolutional encoders are represented graphically in Fig. 2 (a) and (b),
respectively. It is easy to see that only t1 is globally invertible. For example, assume that
M1

1 = 0,M1
2 = 1,M2

1 = 0,M2
2 = 1, and the two output bits being decrypted are 0 and 1, re-

spectively. Given that the first output bit depends on M1
2 and the first input bit, we conclude that

the first input bit was a 1. Then, given that we already know the first input bit, we find that the
second input bit was a 0. Thus, we conclude that t1 is globally invertible, since at each step we can
decode uniquely the current block of k output bits. The convolutional transducer t2 is not globally
invertible, since each of the two output bits depends on both input bits. Therefore, the current block
of k output bits cannot be uniquely decoded into the corresponding input block.

M1
1 M1

2 ⊕

⊕

- -

- -

-

-
@

@R

b
bb b

W �

r
r- -u v

?

6

-

-

b
b?

@
@

r
M2

1 M2
2

M1
1 M1

2 ⊕

⊕

- -

- -

-

-
�

��

b
bb b

W �

r
r- -u v

?

6

-

-

b
b6

�
�rM2

1 M2
2

@
@R

(a)

(b)

Figure 2: (a) A globally invertible (2, 2, 2) convolutional encoder, and (b) a (2, 2, 2) convolutional
encoder that is not globally invertible

Let u = [0 1 1 0] be an input vector. More precisely, we have p = 2 blocks of size k = 2 each.
One can verify that t(u) = uGt1,kp = [0 1 1 1 0 1 1 1]. We can encrypt u by v = [0 1 1 1],
i.e., the first kp = 4 bits of t(u). Given that t1 is globally invertible, we can uniquely decrypt v
into u.

Definition 2.4 Let k, m, and q be nonzero natural numbers. A (k, k,m) q-cascaded convolutional
transducer is a function t : ∪∞i=1B1×ki 7→ ∪∞i=1B1×ki given by

t(u) = uG1
t,kpG

2
t,kp+km . . .Gq

t,kp+(q−1)km, (2)

for all u ∈ B1×kp, where Gi
t,kp ∈ Bkp×(kp+mk) for all i ∈ {1, 2, . . . , q}.

3 Sequential and parallel cascaded convolutional encryption
with local propagation

In the previous section, we have described some symmetric encryption schemes based on globally
invertible (k, k,m) (q-cascaded) convolutional transducers. In this section we propose a new class of
convolutional transducers, called cascaded convolutional transducers with local propagation. Unlike
most (if not all) of the symmetric cryptosystems that have been proposed and studied in the
literature, our cryptosystems are dynamic, i.e., their structure changes during the encryption

4

M1
1 M1

2 ⊕

⊕

- -

- -

-

-

b
bb

W

r
r-u

?

6

-

-

b
b6

�
�r@@R

M2
1 M2

2

M1
1 M1

2 ⊕

⊕

- -

- -

-

-
�

��

b
b b

�

r
r -v

?

6

-

-

b
b6

�
�r-

-

M2
1 M2

2

M1
1 M1

2 ⊕

⊕

- -

- -

-

-

b
bb

W

r
r-u

?

6

-

-

b
b@

@R
M2

1 M2
2

M1
1 M1

2 ⊕

⊕

- -

- -

-

-
�

��

b
b b

�

r
r -v

?

6

-

-

b
b6

�
�r-

-

M2
1 M2

2

(a)

(b)

Figure 3: A (2, 2, 2) 2-cascaded convolutional encoder with propagation: (a) the initial structure
of the cascaded encoder, and (b) the structure after encoding the first block [1 0]

procedure. The purpose of adding such properties to a cascaded convolutional transducer is thus
to increase the complexity of linear and differential cryptanalysis attacks (or even to completely
eliminate the possibility of successfully applying such attacks that have been primarily developed in
the context of static cryptosystems). After introducing the new concept, we will describe a parallel
algorithm for cascaded convolutional cryptosystems with local propagation, using the well-known
shared-memory model of computation [8]. As we will see, a cascaded convolutional cryptosystem
with local propagation is highly parallelizable.

Definition 3.1 Let k and m be nonzero natural numbers. A (k, k,m) q-cascaded convolutional
transducer with propagation is an (q + 1)-tuple (t,S1,S2, . . . ,Sq), where t is a function given by

t(u) = uH1
t,kp(v0)H2

t,kp(v1) . . .Hq
t,kp(vq−1), (3)

for all u ∈ B1×kp, where v0 = u, vi = vi−1H
i
t,kp(vi−1) for all i ∈ {1, 2, . . . , q}, Hi

t,kp(w) is the
restriction of

Gi
t,kp(z) =


Gi,0

t,0,z . . . Gi,m
t,m,z

.

Gi,p−1
t,0,z . . . Gi,m+p−1

t,m,z


to the first kp columns, z = vect(w, [0 . . . 0︸ ︷︷ ︸

mk

]), Gi,0
t,j,z = Gi

t,j(0), Gi,r
t,j,z = Gi

t,j(f(r − 1, z)) for all

r ∈ {1, 2, . . . ,m + p− 1},

f(s, z) = (zsk+1:(s+1)k[1] + . . .+zsk+1:(s+1)k[k]) mod 2,

and

Si = {Gi
t,j(0) | j ∈ {0, 1, . . . ,m}} ∪

{Gi
t,j(1) | j ∈ {0, 1, . . . ,m}}

is the set of state matrices corresponding to the i-th transducer of the cascade, i = 1, . . . , q. As
usual, all the operations are performed over the binary field GF (2).

Remark 3.1 For convenience, a q-cascaded convolutional transducer with propagation will be
denoted by the encryption function t.

5

Example 3.1 Let t : ∪∞i=1B1×2i 7→ ∪∞i=1B1×2i be a (2, 2, 2) 2-cascaded convolutional transducer
with propagation, where

G1
t,0(0) =

[
1 1
0 1

]
, G1

t,0(1) =
[

1 1
0 1

]
,

G1
t,1(0) =

[
0 0
0 0

]
, G1

t,1(1) =
[

0 0
0 0

]
,

G1
t,2(0) =

[
1 1
0 1

]
, G1

t,2(1) =
[

1 0
0 1

]
,

G2
t,0(0) =

[
1 0
1 1

]
, G2

t,0(1) =
[

1 1
0 1

]
,

G2
t,1(0) =

[
0 0
0 0

]
, G2

t,1(1) =
[

0 0
0 0

]
,

G2
t,2(0) =

[
1 0
1 1

]
, G2

t,2(1) =
[

1 1
0 1

]
.

The initial structure of the corresponding cascaded convolutional encoder can be represented graphi-
cally as in Fig. 3 (a). By examining the matrices Gi

t,j(b), one can remark that the cascaded encoder
is globally invertible whatever its structure would be at the current step. Let u = [1 0 0 1] be an
input vector. The structure of the encoder after encoding the first block [1 0] is given in Fig. 3
(b). More precisely, the structure of the first encoder in the cascade changes after encoding the first
input block, since the number of 1’s in the first input block is odd. Regarding the second encoder
in the cascade, its structure changes after encoding the first input block, since the number of 1’s
in the first input block is even. (Note that the input to the second encoder in the cascade is the
output of the first encoder.) It is easy to verify that

t(u) = uH1
t,4(v0)H2

t,4(v1) = [0 1 1 1].

Thus, we encrypt u by t(u), and given that t is globally invertible, we can uniquely decrypt t(u)
into u.

As we have already pointed out, we will show that cascaded convolutional transducers with prop-
agation are highly parallelizable. More precisely, we will describe a parallel algorithm for cascaded
convolutional cryptosystems with propagation using the shared-memory model of computation un-
der the asynchronous mode of operation. (For a good introduction to the shared-memory model
of computation, the reader is referred to [8].)

Let t be a globally invertible (k, k,m) q-cascaded convolutional transducer with propagation.
Suppose that we have k processors, denoted p1, p2, . . . , pk, and consider a binary vector u ∈ B1×kp.
The processors work as follows. First, each processor copies (concurrently) the input vector u and
the matrices Gi

t,j(b) from the global memory into its local memory. Second, for all l ∈ {1, 2, . . . , q},
each processor pj computes the columns

H l
t,kp(u)[−, j], . . . ,H l

t,kp(u)[−, j + (p− 1)k],

then computes the products

uH l
t,kp(u)[−, j], . . . , uH l

t,kp(u)[−, j + (p− 1)k],

and finally stores the corresponding output bits into the shared location v. The shared variable
Var ensures that, at any time, each processor either works on the current vector-matrix product
or stays idle. In other words, we do not allow the processors to work on different vector-matrix
products. In line 20, each processor pj copies (concurrently) the current output vector v into its
local memory, since at the next iteration v becomes the new input vector. When the main loop

6

Input: Two binary row vectors u, v of size kp each, and the set of
matrices {Gi

t,j(b) | i ∈ {1, . . . , q}, j ∈ {0, . . . , m}, b ∈ {0, 1}}
stored in the global memory; also, consider a shared variable Var
initially set to 0.
Output: The product uH1

t,kp(v0)H2
t,kp(v1) . . . Hq

t,kp(vq−1)

stored in the shared location v.

1: Xj ← u {concurrent READ}
2: For each i1 ∈ {1, 2, . . . , q} do
3: For each i2 ∈ {0, 1, . . . , m} do
4: For each i3 ∈ {0, 1} do
5: Localji1,i2,i3

← Gi1
t,i2

(i3) {concurrent READ}
6: For l← 1 to q do

7: For i← 1 to p do

8: Compute the (j + (i− 1)k)-th column of Hl
t,kp(Xj)

9: using the matrices Localji1,i2,i3
and store it in the local

10: variable Yj .
11: Zj ← XjYj

12: v[j + (i− 1)k]← Zj [1]
13: Endfor

14: Var ← Var + 1 {concurrent WRITE}
15: If Var = k then {concurrent READ}
16: Var ← 0
17: Else

18: WAIT until Var = 0 {concurrent READ}
19: Endif

20: Xj ← v {concurrent READ}
21: Endfor

Figure 4: Asynchronous parallel cascaded convolutional encryption with propagation

(starting at line 6) is finished, the product uH1
t,kp(v0) . . .Hq

t,kp(vq−1) lies in the shared location v.
A complete description of the parallel encryption algorithm (for processor pj) is provided in Fig.
4. The parallel decryption algorithm is esentially the same sequence of operations, but in reverse
order.

Lines 1,6,14,15,18, and 20 are executed concurrently, whereas the other lines are executed
independently by each processor. Let us denote by W1 the maximum amount of time spent by
each processor to read (concurrently) the vector u (line 1, and also line 20 for v), by W2 the amount
of time spent by each processor to read the matrices Gi

t,j(b) from the global memory (lines 2,3,4,5),
by W3 the maximum amount of time spent by each processor to execute (concurrently) the lines
14–19 at the current iteration, and by Tseq the runtime of the sequential algorithm (esentially, the
time spent to compute equation (3)). Then, the parallel running time is at most

W1 + W2 + q(Tseq/qk + W3 + W1),

since each processor spends at most W1 time to execute line 1, at most W2 time to execute the
lines 2–5, and at each of the q iterations starting at line 6, each processor spends exactly Tseq/qk
time to execute the lines 7–13, at most W3 time to execute the lines 14 through 19, and at most
W1 time to execute line 20.

4 Security and performance

The desired security level can be obtained by just setting appropriate values for the parameters
of the convolutional cryptosystem. More precisely, we have 2q(m + 1) + 3 parameters: k, m, q,
G1

t,0(0),G1
t,0(1),. . . ,G1

t,m(0),G1
t,m(1),. . . ,Gq

t,0(0),Gq
t,0(1), . . . ,Gq

t,m(0),Gq
t,m(1). The highest level of

security is obtained when all the parameters are kept secret, since this increases the complexity
of any cryptanalytic attack. If the input vector has length pk, and if d(pk) denotes the number of

7

Table 1: Comparisons between a cascaded convolutional cryptosystem with propagation (CCCP)
and six well-known AES implementations

Encryption Decryption
Method (bytes/second) (bytes/second)
CCCP 1,521,737,039 1,501,954,457

Intel devine 83,886,080 78,033,563
Xeon gladman 101,680,097 95,869,806
CPU gnupg 45,343,827 44,150,568

@ libtc 98,689,506 101,264,158
2.8GHz mkshen 69,905,067 68,478,433

openssl 108,240,103 39,016,781

Encryption Decryption
Method (bytes/second) (bytes/second)
CCCP 1,116,326,531 1,051,579,592

Intel devine 93,206,756 101,680,097
Pentium 4 gladman 50,840,048 55,924,053

CPU gnupg 37,701,609 37,282,702
@ libtc 74,565,404 90,687,654

2.4GHz mkshen 52,428,800 59,918,629
openssl 98,689,506 95,869,806

divisors of pk that are less than or equal to k, then the maximum number of decoding attempts is

d(pk)∑
i=1

m∑
j=1

q∑
l=1

[2i22l(j+1)+1],

since the maximum number of trials for k is d(pk) and we have 2q(m + 1) binary matrices of size
k2 each. Note that for each of the 2i22l(j+1) maximum trials for fixed values of i, j, and l, we have
maximum two decoding attempts: one attempt for the case in which the number of 1’s in the first
input block is even, and another attempt for the case in which the number of 1’s in the first input
block is odd.

Regarding the runtime, we have made several comparisons between a globally invertible (16, 16, 1)
2-cascaded convolutional transducer t with propagation and the well-known AES Encryption
Benchmark [2], which consists of six AES implementations (some of them have been certified
by the National Institute of Standards and Technology [9]): devine, gladman, gnupg, libtc, mk-
shen, and openssl. The runtimes shown in Table 1 have been obtained using a single Intel Xeon
CPU on a 2.8GHz Linux server, and then a single Intel Pentium CPU on a 2.4GHz Linux server;
the implementation of the cascaded convolutional cryptosystem has been compiled with gcc, v.
3.3.5. Regarding the cascaded convolutional transducer t, we have to mention that k = 16, m = 1,
and q = 2. If these three parameters are kept public, then for an input vector of length 64 the
maximum number of decoding attempts for our cryptosystem is 2[d(pk)]22q(m+1)+1 = 2393. The six
AES implementations have been tested with keys of 256 bits. Thus, our cryptosystem is much
more complex than standard AES implementations, and also much faster. The parallel version (as
described in Fig. 4) of our cryptosystem has been tested on the same platforms mentioned above,
using 2 (and then 4) processors. As one can see, the runtime of the parallel version is reduced
approximately x times, where x is the number of processors used. Thus, we conclude that our
cryptosystems are faster and much more complex than standard AES implementations. Unlike
static cryptosystems like DES, 3DES, and AES, our cryptosystems are dynamic, which means
that standard cryptanalytic attacks such as linear and differential cryptanalysis (which have been
developed in the context of static cryptosystems) are almost impossible to apply in this case.

8

Table 2: Parallel cascaded convolutional encryption/decryption with propagation: runtimes ob-
tained using 2 (respectively 4) CPUs of a multiprocessor Linux server

Parallel CCCP Parallel CCCP
No. of Intel Xeon Encryption Decryption
CPUs @ 2.8GHz (bytes/second) (bytes/second)

2 2,602,170,337 2,493,244,399
4 4,839,123,784 4,731,156,540

Parallel CCCP Parallel CCCP
No. of Intel Pentium 4 Encryption Decryption

CPUs @ 2.4GHz (bytes/second) (bytes/second)

2 1,913,076,391 1,866,841,471
4 3,715,240,974 3,573,255,179

5 Conclusions and future work

We have proposed symmetric encryption schemes based on special classes of globally invertible
cascaded convolutional transducers. The proposed encryption techniques have at least four ad-
vantages over traditional schemes based on Feistel ciphers. First, the secret key of a convolutional
cryptosystem is usually much more easier to generate (just generate the matrices Gi

t,j(b) such
that the cascaded encoder is globally invertible whatever its structure would be at the current
step). Second, the encryption and decryption procedures are much simpler, and consequentially,
much faster. Third, the desired security level can be obtained by just setting appropriate values
for the parameters of the convolutional cryptosystem. Finally, they are much more parallelizable
than symmetric encryption standards based on Feistel ciphers. There are a lot of interesting re-
search directions which can be exploited further, and we mention three of them. First, we plan
to develop special cryptanalytic methods for dynamic cryptosystems. Second, it is interesting to
continue the study of sophisticated convolutional cryptosystems obtained by combining different
classes of globally invertible convolutional transducers. Third, we plan to explore some classes of
cascaded convolutional transducers augmented with error detection capabilities.

References

[1] Advanced Encryption Standard: http://csrc.nist.gov/publications/fips/fips197/fi
ps-197.pdf

[2] AES Encryption Benchmark: http://www.cr0. net:8040/code/crypto/aesbench/

[3] Biham, E., Anderson, R.J., Knudsen, L.R.: Serpent: A New Block Cipher Proposal. In:
Proceedings of the 5th International Workshop on Fast Software Encryption, Paris, France,
LNCS 1372, pages 222–238. Springer-Verlag

[4] Courtois, N., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Systems of
Equations. In: Proceedings of Asiacrypt 2002, LNCS 2501, pages 267–287. Springer-Verlag

[5] Data Encryption Standard: http://csrc.nist.gov/publications/fips/fips46-3/fips4
6-3.pdf

[6] Dholakia, A.: Introduction to Convolutional Codes with Applications. Kluwer (1994)

[7] Escrowed Encryption Standard: http://csrc.nist.gov/publications/fips/fips185/fip
s185.txt

[8] JáJá, J.: An Introduction to Parallel Algorithms. Addison-Wesley (1992)

9

[9] National Institute of Standards and Technology: http://www.nist.gov/

[10] Piret, Ph.: Convolutional Codes: An Algebraic Approach. MIT Press, Cambridge, MA, USA
(1988)

[11] Pless, V.S., Huffman, W.C. (Eds.): Handbook of Coding Theory (2 volumes). Elsevier (1998)

[12] Viterbi, A.J.: Error Bounds for Convolutional Codes and an Asymptotically Optimum De-
coding Algorithm. IEEE Transactions on Information Theory IT-13(2), 260–269 (1967)

10

