
Improved Collision Attack on MD5

Yu Sasaki* Yusuke Naito* Noboru Kunihiro* Kazuo Ohta*

*The University of Electro-Communications, Japan
{ yu339, tolucky } @ice.uec.ac.jp

Abstract

In EUROCRYPT2005, a collision attack on MD5 was proposed by Wang et al. In this
attack, conditions which are sufficient to generate collisions (called “sufficient condition”) are
introduced. This attack raises the success probability by modifing messages to satisfy these con-
ditions. In this attack, 37 conditions cannot be satisfied even messages are modified. Therefore,
the complexity is 237. After that, Klima improved this result. Since 33 conditions cannot be
satisfied in his method, the complexity is 233.

In this paper, we propose new message modification techniques which are more efficient than
attacks proposed so far. In this method, 29 conditions cannot be satisfied. However, this method
is probabilistic, and the probability that this method work correctly is roughly 1/2. Therefore,
the complexity of this attack is 230. Furthermore, we propose a more efficient collision search
algorithm than that of Wang et al. By using this algorithm, the total complexity is reduced
into roughly 5/8.

keywords: MD5, collision attack, message modification, sufficient condition

1 Introduction

MD5 is one of the hash fucntions which compress an arbitrary length message into a defined
length random message. (In case of MD5, the output is 128-bit.) Since hash functions are
composed of addition, XOR, bit-rotation and other light operations, they can be calculated
quickly. One of the important properties of hash functions is called collision resistance. Let x
be a message and h(x) be a hash value of x. Collision resistance means that it is difficult to find
a pair of message (x, y), where h(x) = h(y).

In 1992, Rivest proposed a hash function named MD4 [3]. After that, in 1992, MD5 [4] which
is an improved version of MD4 was proposed by Rivest. Then various hash functions based on
MD4 such as RIPEMD, SHA-0 and SHA-1 were proposed.

In 1996, Dobbertin proposed a collision attack on MD5 [1]. However, since this attack used
modified initial value, this attack was not real attack for MD5. In 2005, Wang et al. proposed
an efficient collision attack on MD5 [6]. This attack is a kind of differential attack. Although
almost all differential attacks use XOR operation to calculate differential value, Wang et al.
uses modular subtraction instead of XOR. In the method of Wang et al, the input differenatial
is decided in advance, and the goal of the attack is finding messages which cancel the input
differential and make a differential of the hashed values of input messages 0. This attack
introduces conditions on chaining variablesto make the output differential 0. These conditions
are called “sufficient condition.” If an input message satisfies all conditions, collision messages
can deterministically be generated. According to [6], the number of conditions is 290. Therefore,

1

the probability that a randomly message satisfies all conditions is 2−290, and this is very small.
However, this probability can be improved by modifying a message to satisfy conditions. In this
attack, message modification techniques which satisfy except for 37 conditions are proposed.
Therefore, the complexity of this attack is 237.

In 2005, Klima improved the attack of Wang et al. [2]. Message modification techniques
discribed in [2] can satisfy except for 33 conditions. Therefore, the complexity of this attack
is 233. In CRYPTO2005, Wang et al. represented an attack to SHA-1 [7]. In this paper, they
claimed that they found a technique to generate collisions of MD5 with complexity 232 though
details are not mentioned.

In this paper, we propose new message modification techniques which can satisfy except for
29 conditions with probability 1/2. Therefore, the complexity of our attack is 230. We also
propose an efficient collision search algorithm which can reduce the complexity into roughly 5/8
compared to an algorithm of Wang et al.

2 Description of MD5

MD5 is a compression function which calculates a 128-bit random value from an arbitrary length
message. When a message M is inputted, the hash value of M is calculated by the following
way:

1. A message M is devided into 512-bit messages.

M = (M0,M1, ..., Mn), |Mi| = 512

2. Let hi be the output of i-th operation. hi is calculated by the MD5 compression function
with Mi−1 and hi−1. Repeat this process from M0 to Mn.
The initial value h0 is defined as follows,
h0 = (0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476).

3. The output of the operation for the last message is the hash value of M .

Compression Function

A message Mj is compressed by the compression function. This operation is called the (j+1)-th
block operation. Each block consists of 64 steps. Step 1 to step 16 are called the first round,
step 17 to step 32 are called the second round, step 33 to step 48 are called the third round and
step 49 to step 64 are called the forth round. In each step, one of the chaining variables a, b, c, d
is calculated. The order of the calculated chaining variables is a1, d1, c1, b1, a2, · · · . The output
of each block hi is hi = (a0 + a16, b0 + b16, c0 + c16, d0 + d16).

Chaining variables are calculated in the following way. First, Mj is devieded into 32-bit
messages m0, . . . , m15. Then, a function ψ is defined as follows,

ψ(x, y, z, w,m, s, t) = y + ((x + φ(y, z, w) + m + t) mod 232) ≪ s,

where m denotes a message inputted in that step. Which m is inputted is defined in advance. s
denotes a number for left cyclic shift defined in each step. t denotes a constant number defined
in each step. φ denotes a non-linear function defined in each round. Details of the function φ
are listed below.

1R : φ(y, z, w) = (y ∧ z) ∨ (¬y ∧ w),
2R : φ(y, z, w) = (y ∧ w) ∨ (z ∧ ¬w),
3R : φ(y, z, w) = y ⊕ z ⊕ w,
4R : φ(y, z, w) = z ⊕ (y ∨ ¬w).

Chaining variables ai, bi, ci, di are calculated in the following way.

2

ai = ψ(ai−1, bi−1, ci−1, di−1,m, s, t),
di = ψ(di−1, ai, bi−1, ci−1,m, s, t),
ci = ψ(ci−1, di, ai, bi−1,m, s, t),
bi = ψ(bi−1, ci, di, ai,m, s, t).

3 Description of the Attack by Wang et al. [6]

3.1 Notation

We define notations which are used in this paper. M = (m0, ...,m15) and M ′ = (m′
0, ...,m

′
15)

are messeages where each mi is 32-bit integer. ∆M = (∆m0, ..., ∆m15) is the differential of
M and M ′, where ∆mi = m′

i −mi. ai, bi, ci, di(1 ≤ i ≤ 16) represent chaining variables, and
ai,j , bi,j , ci,j , di,j(1 ≤ j ≤ 32) represent the j-th bit of respective chaining variables. φi is the
output of the nonlinear function φ in the i-th step, and φi,j denotes the j-th bit of φi. xi[j]
and xi[−j] represent differentials of the j-th bit in chaining variable xi. xi[j] represents that
differential of the j-th bit in xi is 1, that is, x′i,j − xi,j = 1. Whereas, xi[−j] represents that
differential of the j-th bit in xi is −1, that is, x′i,j − xi,j = −1.

3.2 Collision Differentials

The attack of Wang et al. is a differential attack. It generated collision messages by canceling the
input differential, and by making output differential 0. It generated collision messages which
are composed of two 1024-bit messages (M0,M1) and (M ′

0,M
′
1). In this attack, a collision

differential is given in advance. The differential is as follows,

∆H0 = 0
(M0,M ′

0)−→ ∆H1
(M1,M ′

1)−→ ∆H = 0,

where,
∆M0 = M ′

0 −M0

= (0, 0, 0, 0, 231, 0, 0, 0, 0, 0, 0, 215, 0, 0, 231, 0),
∆M1 = M ′

1 −M1

= (0, 0, 0, 0, 231, 0, 0, 0, 0, 0, 0,−215, 0, 0, 231, 0),
∆H1 = (231, 231 + 225, 231 + 225, 231 + 225).

3.3 Sufficient Condition

Sufficient condition is a set of conditions of chaining variables for generating collisions. If all
conditions for compressing M are satisfied, M and M + ∆M becomes a collision pair with
probability 1. According to [6], there are 290 conditions for M0, therefore, the probability that
a randomly chosen message satisfies all conditions is very small. However, it is possible to
drastically raise the probability by modifying a message (Described in 3.5). Conditions in the
first round and in the early steps of the second round are able to be corrected by modifying a
message. However, 37 conditions are not able to be corrected. Therefore, if a random message
does not satisfy all of these conditions, it is necessary to choose another random message and
modify it again.

3.4 Collision Search Algorithm

An algorithm for searching collisions is as follows.

1. Generate a 512-bit random message M0 for the first block.

2. Modify M0 in order to satisfy the sufficient condition for the first block as much as possible.

3

3. If all conditions are satisfied, calculate the output of the first block with the modified
message and the MD5 initial value. If all conditions are not satisfied, randomly rechoose
m14 and m15, and go back to (2).

4. Generate a 512-bit random message M1 for the second block.
5. By the similar way to the first block, calculate the output of the second block. However,

in this time, use the result of the first block instead of using the MD5 initial value.
6. Calculate M ′

0 = M0 + ∆M0, M ′
1 = M1 + ∆M1

7. (M0,M1) and (M ′
0,M

′
1) are the collision messages.

3.5 Message Modification

The purpose of message modification is deterministically (or with very high probability) satisfy-
ing the sufficient condition. There are two kinds of message modification:“single-message modi-
fication” and “multi-message modification”. Single-message modification is a message modifica-
tion for the first round, and multi-message modification is for the second round. Single-message
modification modifies only one message, whereas, multi-message modification affects some mes-
sages. Therefore, to do multi-message modification, we need additional work in order to cancel
the influence to other messages.

3.5.1 Single-Message Modification

Single-message modification is a message modification for satisfying the sufficient condition in
the first round.

For example, we consider the situation where we modify a message in order to satisfy con-
ditions in the third step of the first round. According to [6], there are three conditions on c1:
“c1,8 = 0”,“c1,12 = 0” and “c1,20 = 0”. On the other hand, the expression for calculating c1 is
as follows,

c1 = (d1 + (c0 + φ(d1, a1, b0) + m2 + t) ≪ 17) mod 231.

In order to guarantee that these conditions on c1 are satisfied, we modify m2 by the following
way.

1. Generate a 32-bit random message mold
2 , and calculate the value of cold

1 .
2. Change the value of cold

1 into desirable cnew
1 by the expression below.

cnew
1 ← cold

1 − cold
1,7 · 26 − cold

1,12 · 211 − cold
1,20 · 219

3. Rewrite the m2 in order to guarantee that cnew
1 is always obtained.

mnew
2 ← ((cnew

1 − d1) ≫ 17)− c0 − φ(d1, a1, b0)− t

The similar procedure is applied to all steps in the first round, and all conditions in the first
round are satisfied with high probability.

3.5.2 Multi-Message Modification

Multi-message modification is a message modification for satisfying the sufficient condition in
the second round. Some of the conditions in early steps of the second round can be corrected
by this modification.

For example, we consider the situation where the condition on a5,32 needs to be corrected.
According to [6], the condition on a5,32 is a5,32 = 0. Therefore, if the value of a5,32 is happen
to be 0, a5,32 does not have to be corrected. However, if a5,32 = 1, a5,32 has to be corrected by
the following way:

First, a5 is calculated as follows,

4

a5 ← b4 + (a4 + φ(b4, c4, d4) + m1 + t) ≪ 5

1. Since m1 is used to calculate a5, and the bit rotation number in this step is 5, we modify
the 27-th bit of m1 in order to change a5,32.

2. Since m1 is used not only in the second round but in the first round, the change on m1

affects other steps in the first round. Therefore, we need additional change in the first
round.

Details of the correcting a5,32 are listed in Table 1. Wang et al. claimed that except for 37
conditions can be corrected by single-message modifications and multi-message modifications.

Table 1: The message modification for correcting “a5,32”

step m shift Modify mi Chaining variables
2 m1 12 m1 ← m1 + 226 dnew

1 , a1, b0, c0

3 m2 17 m2 ← ((c1 − dnew
1) ≫ 17)− c0 − φ(dnew

1 , a1, b0)− t c1, d
new
1 , a1, b0

4 m3 22 m3 ← ((b1 − c1) ≫ 22)− b0 − φ(c1, d
new
1 , a1)− t b1, c1, d

new
1 , a1

5 m4 7 m4 ← ((a2 − b1) ≫ 7)− a1 − φ(b1, c1, d
new
1)− t a2, b1, c1, d

new
1

6 m5 12 m5 ← ((d2 − a2) ≫ 12)− dnew
1 − φ(a2, b1, c1)− t d2, a2, b1, c1

4 New Multi-Message Modification

Wang et al. claimed that except for 37 conditions can be corrected. This means that they
succeeded in correcting 6 conditions in the second round. In our research, we found that 14
conditions in the second round could be corrected. In this section, we explain which conditions
can be corrected and how to correct those conditions.

4.1 Extra Condition

To correct many conditions in the second round, it is necessary to make “extra condition”.
Therefore, we first explain the extra condition. The terminology of the “extra condition” was
introduced by Wang et al. [5]. The purpose of setting extra condition is to guarantee that con-
ditions in the second round can be corrected. Extra conditions are not conditions for generating
collisions, therefore, messages do not have to satisfy extra conditions after they are modified in
order to correct unsatisfied sufficient conditions.

Extra conditions in the first round are set together with the sufficient condition in the first
round by the single-message modification. Extra conditions in the second round are set by the
multi-message modification. A collision search algorithm for the first block including the extra
condition is as follows,

1. Generate a random message.

2. Modify the message to satisfy the sufficient condition and the extra condition in the first
round by single-message modification.

3. If the sufficient condition and the extra condition in the second round are not satisfied,
correct them by multi-message modification.

4. If modified message does not satisfy all of the sufficient condition, choose m14 and m15

again, and go back to (2), otherwise, output the calculated value.

A collision search algorithm for the second block is almost same with the first block.

5

4.2 Details of the Multi-Message Modification

In our research, we have found that 14 conditions in the second round are able to be corrected.
Correctable conditions are a5,4, a5,16, a5,18, a5,32, d5,18, d5,30, d5,32, c5,18, c5,32, b5,32, a6,18, a6,32,
d6,32 and c6,32.

4.2.1 Corrections for a5,i(i = 4, 16, 18, 32)

a5 is calculated by the following expression.

a5 = b4 + (a4 + φ(b4, c4, d4) + m1 + t) ≪ 5

The i-th bit of a5 can be corrected by the message modification shown in Table 2.

Table 2: The message modification for correcting “a5,i”

shift Modify mi

2 12 m1 ← m1 ± 2i−6

3 17 m2 ← ((c1 − dnew
1) ≫ 17)− c0 − φ(dnew

1 , a1, b0)− t
4 22 m3 ← ((b1 − c1) ≫ 22)− b0 − φ(c1, d

new
1 , a1)− t

5 7 m4 ← ((a2 − b1) ≫ 7)− a1 − φ(b1, c1, d
new
1)− t

6 12 m5 ← ((d2 − a2) ≫ 12)− dnew
1 − φ(a2, b1, c1)− t

In Table 2, ‘±’ is chosen depending on the value of a chaining variable in the first round.
Since m1 is used to calculate d1 in step 2, the value of d1 is changed. Considered the bit rotation
number in step 2, the value of d1,i+7 is changed. If carry occurs in d1,i+7, upper bits of d1,i+7

are changed, and this may result in breaking conditions in the upper bits of d1,i+7. Therefore,
if d1,i+7 = 0, we choose ‘+’, and if d1,i+7 = 1, we choose ‘−’.

Basically, corrections are done from lower bit in order to avoid undesirable carry. However,
there are some exceptions. From the expression for a5, it can be said that m1,31 is relevant to
a5,4, whereas, according to Table 2, m1,27 is changed when a5,32 is corrected. Therefore, if a5,32

is corrected and the carry is transmitted from m1,27 to m1,31, the condition of a5,4 is broken.
To avoid this, we correct conditions in the following order: i = 16, 18, 32, 4. However, when a5,4

is corrected and the carry is transmitted from a5,4 to a5,16, the condition on a5,16 is broken. To
avoid this, we set extra conditions b4,4 = 1 and d1,11 = 0. By setting b4,4 = 1, the value of a5,4

becomes always 0 when a5,4 is corrected because of a condition a5,4 = b4,4. d1,11 = 0 guarantees
that the carry never occurs in step 2 when a5,4 is corrected.

4.2.2 Corrections for d5,i(i = 18, 30)

d5 is calculated by the following expression.

d5 = a5 + (d4 + φ(a5, b4, c4) + m6 + t) ≪ 9

i-th bit of d5 can be corrected by the message modification shown in Table 3.
Two extra conditions are set in Table 3. The purpose of the extra condition d4,i−9 = 1 is

ignoring the change of c4 in φ17. The purpose of the extra condition a5,i−9 6= b4,i−9 is reflecting
the change of c4 in φ18 in order to make change in d5,i.

4.2.3 A Correction for d5,32

From the expression of calculating d5, if m6,23 is changed, d5,32 is corrected. Table 4 shows how
to cancel the effect of the change of m6,23 in the first round.

6

Table 3: The message modification for correcting “d5,i”

step shift Modify mi Chaining Variables Extra Conditions
15 17 m14 ← m14 ± 2i−27 c4[±i− 9], d4, a4, b4

16 22 m15 ← ((b4 − cnew
4) ≫ 22)− b4 − φ(cnew

4 , d4, a4)− t b4, c4[±i− 9], d4, a4

17 5 a5, b4, c4[±i− 9], d4 d4,i−9 = 1
18 9 d5[±i], a5, b4, c4[±i− 9] a5,i−9 6= b4,i−9

Table 4: The message modification for correcting “d5,32”

step shift Modify mi Chaining Variables Extra Conditions
3 17 m2 ← m2 + 26 c1[23], d1, a1, b0 c1,23 = 0
4 22 b1 ← b1 + 222

m3 ← ((bnew
1 − cnew

1) ≫ 22)− b0 − φ(cnew
1 , d1, a1)− t b1[23], c1[23], d1, a1

5 7 m4 ← ((a2 − bnew
1) ≫ 7)− a1 − φ(bnew

1 , cnew
1 , d1)− t a2, b1[23], c1[23], d1

6 12 m5 ← ((d2 − a1) ≫ 12)− d1 − φ(a2, b
new
1 , cnew

1)− t d2, a2, b1[23], c1[23]
7 17 m6 ← m6 − 222 c2, d2, a2, b1[23] d2,23 = 1
8 22 m7 ← ((b2 − c2) ≫ 22)− b1 − φ(c2, d2, a2)− t b2, c2, d2, a2

In Table 4, the purpose of setting c1,23 = 0 is limiting the direction of change. Since a
sufficient condition b1,23 = c1,23 exists, we have to correct the value of b1,23 after we modify m2.

4.2.4 Corrections for Other Conditions

Corrections for other conditions are shown in Table 5 to Table 11.

Table 5: The message modification for correcting “c5,18”

step shift Modify mi Chaining Variables Extra Conditions
10 12 m9 ← m9 + 223 d3[4], a3, b2, c2 d3,4 = 0
11 17 m10 ← ((c3 − dnew

3) ≫ 17)− c2 − φ(dnew
3 , a3, b2)− t c3, d3[4], a3, b2

12 22 m11 ← m11 − 23 b3, c3, d3[4], a3 c3,4 = 1
13 7 m12 ← ((a4 − b3) ≫ 7)− a3 − φ(b3, c3, d

new
3)− t a4, b3, c3, d3[4]

14 12 m13 ← ((d4 − a4) ≫ 12)− dnew
3 − φ(a4, b3, c3)− t d4, a4, b3, c3

7

Table 6: The message modification for correcting “c5,32”

step shift Modify mi Chaining Variables Extra Conditions

13 7 m12 ← m12 + 25 a4[13], b3, c3, d3 a4,13 = 0

14 12 m13 ← ((d4 − anew
4)o 12)− d3 − φ(anew

4 , b3, c3)− t d4, a4[13], b3, c3

15 17 m14 ← ((c4 − d4)o 17)− c3 − φ(d4, a
new
4 , b3)− t c4, d4, a4[13], b3

b4 ← b4 − 217 + 222

16 22 m15 ← ((bnew
4 − c4)o 22)− b3 − φ(c4, d4, a

new
4)− t b4[−18, 23], c4, d4, a4[13] b4,18 = 1, b4,23 = 0

17 5 a5, b4[−18, 23], c4, d4 d4,23 = 0, (d4,18 = 1)

18 9 d5, a5, b4[−18, 23], c4 c4,18 = 1, c4,23 = 1

19 14 c5[−32, 5], d5, a5, b4[−18, 23]

Table 7: The message modification for correcting “b5,32”

step shift Modify mi Chaining Variables Extra Conditions
13 7 m12 ← m12 + 231 a4[7], b3, c3, d3 a4,7 = 0
14 12 m13 ← ((d4 − anew

4) ≫ 12)− d3 − φ(anew
4 , b3, c3)− t d4, a4[7], b3, c3

15 17 m14 ← ((c4 − d4) ≫ 17)− c3 − φ(d4, a
new
4 , b3)− t c4, d4, a4[7], b3

b4 ← b4 − 211

16 22 m15 ← ((bnew
4 − c4) ≫ 22)− b3 − φ(c4, d4, a

new
4)− t b4[−12], c4, d4, a4[7] b4,12 = 1

17 5 a5, b4[−12], c4, d4 d4,12 = 0
18 9 d5, a5, b4[−12], c4 c4,12 = 1
19 14 c5, d5, a5, b4[−12] d5,12 = a5,12

20 20 b5[−32], c5, d5, a5

Table 8: The message modification for correcting “a6,18”

step shift Modify mi Chaining Variables Extra Conditions

13 7 m12 ← m12 − 225 a4[−1], b3, c3, d3 a4,1 = 1

14 12 m13 ← ((d4 − anew
4)o 12)− d3 − φ(anew

4 , b3, c3)− t d4, a4[−1], b3, c3

15 17 m14 ← ((c4 − d4)o 17)− c3 − φ(d4, a
new
4 , b3)− t c4, d4, a4[−1], b3

16 22 m15 ← ((b4 − c4)o 22)− b3 − φ(c4, d4, a
new
4)− t b4, c4, d4, a4[−1]

17,2 5,12 m1 ← m1 + 1 a5, b4, c4, d4 d1[13], a1, b0, c0 d1,13 = 0

3 17 m2 ← ((c1 − dnew
1)o 17)− c0 − φ(dnew

1 , a1, b0)− t c1, d1[13], a1, b0

4 22 m3 ← ((b1 − c1)o 22)− b0 − φ(c1, d
new
1 , a1)− t b1, c1, d1[13], a1

5 7 m4 ← ((a2 − b1)o 7)− a1 − φ(b1, c1, d
new
1)− t a2, b1, c1, d1[13]

6 12 m5 ← m5 − 212 d2, a2, b1, c1

8

Table 9: The message modification for correcting “a6,32”

step shift Modify mi Chaining Variables Extra Conditions
4 22 m3 ← m3 + 24 b1[27], c1, d1, a1 b1,27 = 0
5 7 m4 ← ((a2 − bnew

1) ≫ 7)− a1 − φ(bnew
1 , c1, d1)− t a2, b1[27], c1, d1

6 12 m5 ← m5 − 226 d2, a2, b1[27], c1 a2,27 = 1
7 17 c2, d2, a2, b1[27] (d2,27 = a2,27)
8 22 m7 ← m7 − 226 b2, c2, d2, a2

Table 10: The message modification for correcting “d6,32”

step shift Modify mi Chaining Variables Extra Conditions
9 7 m8 ← m8 + 215 a3[23], b2, c2, d2 a3,23 = 0
10 12 m9 ← ((d3 − anew

3) ≫ 12)− d2 − φ(anew
3 , b2, c2)− t d3, a3[23], b2, c2

11 17 m10 ← m10 − 222 c3, d3, a3[23], b2 d3,23 = 1
12 22 b3, c3, d3, a3[23] c3,23 = 1
13 7 m12 ← ((a4 − b3) ≫ 9)− anew

3 − φ(b3, c3, d3)− t a4, b3, c3, d3

Table 11: The message modification for correcting “c6,32”

step shift Modify mi Chaining Variables Extra Conditions
11 17 m10 ← m10 + 212 c3[30], d3, a3, b2 c3,30 = 0
12 22 m11 ← m11 − 27 b3, c3[30], d3, a3 d3,30 = a3,30

13 7 m12 ← ((a4 − b3) ≫ 7)− a3 − φ(b3, c
new
3 , d3)− t a4, b3, c3[30], d3

14 12 m13 ← ((d4 − a4) ≫ 12)− d3 − φ(a4, b3, c
new
3)− t d4, a4, b3, c3[30]

15 17 m14 ← m14 + 222 − 229 c4[8], d4, a4, b3 c4,8 = 0
16 22 m15 ← m15 − 27 − 217 b4, c4[8], d4, a4 (a4,8 = 0), (d4,8 = 1)
17 5 a5, b4, c4[8], d4 (d4,8 = 1)
18 9 d5, a5, b4, c4[8] a5,8 = b4,8

19 14 (m11 ← m11 − 27: modified in step 12) c5, d5, a5, b4

4.3 Estimation of the efficiency of corrections

Corrections mentioned in this section are probabilistic. We experimentally confirmed that all
of these 14 conditions are satisfied after the message modifications with probability about 1/2.

Remark
We have found many other modification techniques for the second block. By applying these
modications, 14 conditions in the second round for the second block can be corrected. Therefore,
the complexity of the attack for the second block becomes 223.

9

5 Modification Techniques for Shorten Repetition

In the method of Wang et al, if all of the sufficient condition are not satisfied after messages are
modified, the algorithm goes back to step 15, and restart from randomly choosing m14 and m15.
Therefore, whenever a message does not satisfy all of the sufficient condition, single-message
modification for m14 and m15, multi-message modification and MD5 calculation for step 15 to
step 64 are calculated. This complexity is big. In our research, we have found that it would be
possible to go back to step 25 rather than step 15. This saves us the complexity of single-message
modification, multi-message modification and calculation for step 15 to 24. By our modification,
we estimated that the complexity becomes roughly 5/8 compared to the algorithm of Wang et
al. In this section, we explain how to restart the algorithm from step 25, and the estimation of
the effect.

The calculation of step 25 is as follows,

a7 = b6 + (a6 + φ(b6, c6, d6) + m9 + t) ≪ 5

Therefore, we change several bits of m9 and this results in randomly changing the value of latter
chaining variables. When an i-th bit of m9 is changed, if we modify messages as shown in Table
12, the effect of the change is cancelled.

Table 12: The message modification for shorten repetition

step shift Modify mi Chaining Variables Extra Conditions
9 7 m8 ← m8 + 2i+4 a3[i + 12], b2, c2, d2 a3,i+12 = 0
10 12 m9 ← m9 − 2i−1 d3, a3[i + 12], b2, c2 b2,i+12 = c2,i+12

11 17 c3, d3, a3[i + 12], b2 d3,i+12 = 0
12 22 b3, c3, d3, a3[i + 12] c3,i+12 = 1
13 7 m12 ← ((a4 − b3) ≫ 7)− anew

3 − φ(b3, c3, d3)− t a4, b3, c3, d3

The number of i, where we can set corresponding extra conditions, is 2. Therefore, we can
restart the collision search algorithm from the 25-th step 22 − 1(= 3) times for each message
satisfying all conditions untill step 25. We have estimated that the total complexity from step 15
to step 64 including both message modification would be 81 steps, and the complexity from step
25 to step 64 including our modification technique would be 41 steps. Therefore, the complexity
of the attack by Wang et al. is 81 × 4 = 324 steps, whereas, the complexity of our attack is
81 + 41 × 3 = 204 steps. This indicates that the complexity becomes roughly 5/8 by applying
our modification technique.

Remark
This modifiation technique is more effective for the second block than the first block. The
complexity for the second block will become less than half.

6 Conclusion

In this paper, we proposed the method to correct 14 conditions in the second round. These
corrections are probabilistic. We experimentally confirmed that all of these conditions were
satisfied after the message modifications with probability about 1/2. On the other hand, 29
conditions are remained uncorrectable. Therefore, the complexity of our attack is 230.

We also proposed the more efficient collision search algorithm than that of Wang et al. We
showed that the total complexity of the collision search algorithm would be reduced to roughly
5/8. This result is the best of all existing attacks to MD5.

10

Finally, we show a collision message generated by our proposed method in Table 13. The
message (M0,M1) and (M ′

0,M
′
1) have the same hash value.

Table 13: Generated collision messages in our proposed attack

M0 0xcfdcc99611b8fc4b9dcf1099bab3b0f2c1d51f7112e9d1dc2110fa3e9f01eea5
06332cb1e0f307f88f6cf5ef9fb00f66a65fe4dbf50ed81f553b6443bc59b6e2

M1 0xd958e84d2f5d1b9b53a46fce7ba577da94ac52f6ddc5506ae72e090ca18cf8cc
f37eeff5085695806a77fb8a3e65b89590032d1d9513e57a7d283757ea659e11

M ′
0 0xcfdcc99611b8fc4b9dcf1099bab3b0f241d51f7112e9d1dc2110fa3e9f01eea5

06332cb1e0f307f88f6cf5ef9fb08f66a65fe4dbf50ed81fd53b6443bc59b6e2
M ′

1 0xd958e84d2f5d1b9b53a46fce7ba577da14ac52f6ddc5506ae72e090ca18cf8cc
f37eeff5085695806a77fb8a3e65389590032d1d9513e57afd283757ea659e11

Hash value 0x1afe687725129c5fa5d52829e9bd5080

Acknowledgement

We would like to thank Dr. T. Shimoyama and Mr. J. Yajima at Fujitsu Laboratories, and Dr.
Y. Lisa Yin at Independent Security Consultant for helpful advice.

References

[1] H. Dobbertin: The status of MD5 after a recent attack, CryptoBytes 2 (2), 1996

[2] V. Klima: Finding MD5 Collisions on a Notebook PC Using Multi-message Modifications,
e-Print 102, 2005.

[3] R. Rivest: The MD4 Message Digest Algorithm, CRYPTO’90 Proceedings, 1992,
http://theory.lcs.mit.edu/˜
rivest/Rivest-MD4.txt

[4] R. Rivest: The MD5 Message Digest Algorithm, CRYPTO’90 Proceedings, 1992,
http://theory.lcs.mit.edu/˜
rivest/Rivest-MD5.txt

[5] X. Wang, X. Lai, D. Feng, H. Chen, X. Yu: Cryptanalysis of the Hash Functions MD4 and
RIPEMD, Advances in EUROCRYPT2005, LNCS 3494, pp. 1–18, 2005.

[6] X. Wang, H. Yu: How to break MD5 and Other Hash Functions, Advances in EURO-
CRYPT2005, LNCS 3494, pp. 19–35, 2005.

[7] X. Wang, Y. Lisa Yin, H. Yu: Finding Collisions in the Full SHA-1, Crypto 2005, LNCS
3621, pp. 17-36, 2005

11

