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Abstract. We analyze a generic birthday attack where distinct inputs to some function f are
selected until two of the inputs map through f to the same output, meaning that the attack has
succeeded. We give tight bounds on the probability of attack success after a given number of inputs
are selected as well as tight bounds on the expected number of inputs that must be selected for
the attack to succeed.

The types of functions considered include random functions with uniformly random outputs,
random functions whose outputs have some arbitrary (biased) probability distribution, concrete
functions that are balanced (all outputs have the same number of pre-images), and arbitrary
concrete functions. In each case the bounds are given in terms of the probability (1/β) that a pair
of inputs give the same output, which is different for each type of function. The expected number
of steps required to complete a birthday attack in all cases is between 0.7

√
β and 2

√
β. In some

cases tighter bounds than this are given.
Compared to previous work in this area, the analysis here gives tighter bounds and is more

applicable to the most efficient practical methods used to carry out birthday attacks, such as a
generalization of Pollard’s rho-method and parallel collision search. However, significant challenges
remain in proving bounds for these methods.

Keywords. Birthday attack, hash function.

1 Introduction

Let f be a function (of finite domain) with d inputs and n outputs, f : D → R, R =
{R1, . . . , Rn}. A collision in f is two inputs a, b ∈ D such that a 6= b and f(a) = f(b). A
birthday attack is the process of selecting inputs to f until some pair of them form a colli-
sion. For suitable functions f , such collisions can solve certain cryptanalytic problems such as
computing discrete logarithms and finding hash function collisions to defeat digital signature
schemes. The best techniques known for performing birthday attacks are Teske’s modification [4]
of a generalization of Pollard’s rho-method [2] and parallel collision search [5].

We analyze a generic version of the birthday attack where distinct inputs to f are chosen
randomly until some pair of them produce a collision. Each input to f is assumed to be chosen
uniformly at random among inputs not already chosen. The known efficient methods of finding
collisions choose inputs by repeated iteration of f rather than randomly, and thus significant
challenges remain in proving any bounds for practical birthday attacks. However, all empirical
evidence seems to show that these results hold for the practical methods.

We consider two types of functions: random and concrete. In the random function case, we
treat each output as being randomly-selected according to some probability distribution. The
analysis of this case is divided into the uniform probability distribution and the general case of
any (finite) discrete distribution. In the concrete function case, we have some known function.
The analysis of this case is divided into balanced functions where all outputs Ri have the same
number of inputs that map to Ri, and the general case of any function with a finite number of
inputs and outputs.



In all four cases considered, tight bounds are given on the probability of finding a collision
after a given number of inputs are chosen and on the expected number of inputs that must be
selected to get a collision. Approximate analyses for the uniform case appear in many places
in the literature (e.g., [3, 5]) and the results here prove that these approximate analyses give
accurate results.

Bellare and Kohno also studied this topic for random and concrete functions (balanced
and unbalanced) [1]. A difference in their analysis is that they assumed that inputs were chosen
uniformly at random (with replacement). This means that they had to factor out false collisions
where the same input is chosen twice. Unfortunately, their bounds on the probability of finding
a collision after k steps are not particularly tight, especially as k increases into the range
where the collision is likely to occur. This made it difficult to accurately estimate the expected
number of steps before a collision is found. A restriction in most of their analysis is that d/n ≥ 2
(domain at least twice as large as the range). The reason for this is that the bounds become
progressively less tight as d → n. In practical attacks, the functions used have the same domain
and range (D = R and thus d = n). However, some of the range values have no pre-image and
can be ignored, which reduces the effective n. Thus for practical purposes, as long as f is not
a permutation, d is greater than the effective value of n. In these practical attacks, f is hoped
to be random, and for a random function with domain and range equal, the number of range
elements with no pre-image is about n/e, and if we reduce n by throwing these elements out
of the range, then d/n = 1/(1− 1/e) ≈ 1.58. Thus an analysis that requires d/n ≥ 2 does not
apply particularly well to practical attacks.

A naive analysis of the probability of having no collision after k steps proceeds as follows.
Compute the probability that any particular pair of inputs give a collision. Call this probability
1/β. To have no collision after k steps requires that none of k(k − 1)/2 pairs of inputs give a
collision. If we treat the events that each pair of inputs do not collide as independent (which
they clearly are not), then the probability of no collision is (1− 1/β)k(k−1)/2, which is close to
e−k(k−1)/(2β) for large β. This probability reaches roughly 60% when k reaches

√
β, and thus

the expected number of inputs required to produce a collision is close to
√

β. This paper shows
that despite the obvious flaws in this reasoning, it comes close to giving the correct answer for
both random and concrete functions. In fact, we show that the expected number of steps to
find a collision is always between 0.7

√
β and 2

√
β. In some cases we give much tighter bounds

than this factor of nearly 3.
In the case of random functions, the quantity β is a function of the probability distribution

of the function’s outputs. If A is the random variable for this probability distribution, then we
write β as β(A). In the case of a uniform distribution across n outputs, the probability that two
outputs collide is 1/n, and thus β(A) = n. We assume that all that is known about the random
variable A is the value of β(A). The bounds computed are valid across all random variables
with equal β(A).

In the case of concrete functions, we think of the function as a hash function and call it h
instead of f , and we write β as β(h). Again, we assume that all that is known about the hash
function h is the value of β(h). The bounds computed are valid across all hash functions with
equal β(h). While it may not be possible to fully characterize the nature of some hash function
in terms of how its inputs map to its outputs, there is some hope that one may be able to
compute or place bounds on 1/β(h) which is the probability that two distinct inputs chosen
uniformly at random produce the same output.

An interesting question is whether the random function model or concrete function model
better applies to the case of finding hash function collisions. On the surface, one might think
that the concrete model is better. However, real hash functions have an infinite domain. The
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analysis here applies only to concrete functions with finite domain. Of course the attacker who
wishes to find a hash collision must restrict the domain to some finite space to mount the attack.
If we know what restriction the attacker will use, then the concrete model applies. However, it
seems unlikely that we will know how the attacker restricts the domain. We are then forced to
assume that the attacker chooses some random finite space within the domain. In this case, the
random function model is the better model.

The four cases analyzed in detail are uniformly random functions (Section 2), general random
functions with arbitrary distribution (Section 3), concrete balanced functions (Section 4), and
arbitrary concrete functions (Section 5). The theorem proofs and all supporting lemmas are
deferred to appendices.

2 Uniformly Random Case

This section gives bounds on the probability of collision after k steps and the expected number
of steps to produce a collision for a uniformly random function.

Definition 1. Let Wn be the random variable for the number of iterations in the following
procedure. Repeatedly choose one of n values uniformly at random (with replacement) and stop
when any value is selected a second time (a “collision”).

The following equivalent definition of Wn is more familiar in the context of birthday attacks.
Let FD,R denote the set of all possible functions from D to R, where |D| = d, and |R| = n.
Assume for now that d > n so that there exists a collision in every function in FD,R. Choose
a particular function f : D → R uniformly at random from FD,R and select distinct elements
of D, x1, x2, . . . , until we have a collision among the range elements, f(xi) = f(xj), for some
i 6= j. Wn is the random variable for the number of elements of D selected in this process. Note
that Wn cannot exceed n + 1 because in the worst case the first n inputs will cover all range
elements, and the next one must cause a collision. We can extend this definition to the d = n
case if we define the number of steps to a collision to be n + 1 in the case where no collision
exists, which happens if and only if f is a permutation. In analyzing the run-time of collision
search in the random case, we assume that we do not know which function f is chosen from
FD,R. If we did know the particular f , then we would be in the concrete function case (see
Section 5).

Definition 2. Let Pn,k =
∏k−1

j=0(1 − j
n). This is just the probability that no collision occurs

in the first k steps in the procedure of Definition 1 (i.e., P (Wn > k) = Pn,k). This definition
provides a short-hand notation, but also has the advantage that Pn,k is defined for non-integer
n, which will be useful in later sections.

The probability that two inputs produce a collision is P (Wn = 2) = 1/n. The quantity β is
defined to be the reciprocal of this probability, and thus β = n. Theorem 1 gives tight bounds
on P (Wn > k). The upper bound is valid for all n and k, while the lower bound is valid for
n ≥ 1000 and k well beyond the range where the collision is likely to occur. In fact, the lower
bound becomes invalid after the probability of not having a collision has dropped to 1 in a
million. Theorem 2 gives tight bounds on the expected value E(Wn) that are valid for all n.

Theorem 1. Probability bounds for the uniformly random case.
For integers n > 0 and k ≥ 0, P (Wn > k) ≤ e−

k(k−1)
2n .

If n ≥ 1000, and 0 ≤ k ≤ 2
√

n lnn, P (Wn > k) ≥ e−
k2

2n
− k3

6n2 .
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If n ≥ 1000, and k > 2
√

n lnn, P (Wn > k) < 1
n2 ≤ 10−6.

(See Appendix A for the proof.)

Theorem 2. Expectation bounds for the uniformly random case.

−2
5

< E(Wn)−
√

πn

2
<

8
5
.

(See Appendix A for the proof.)

Example 1. Consider the case of a random function with 160-bit outputs (n = 2160). Then
−2/5 < E(Wn)− 280

√
π/2 < 8/5, and thus E(Wn) ≈ 1.25× 280.

A cryptographer may also be concerned with the number of steps required for the probability
of finding a collision to reach some threshold such as 1%. Solving P (Wn > k) = 1− 0.01 for k
with both bounds in Theorem 1 gives two values for k that are separated by about 1

2 (far more
accuracy than is required) with k ≈ 0.142× 280.

A cryptanalyst who actually performs an attack in practice is more concerned with how
long it will take to have a 99% chance of finding a collision. Solving P (Wn > k) = 1− 0.99 for
k with both bounds gives two values for k separated by about 1

2 with k ≈ 3.03× 280.

3 General Random Case

This section gives bounds on the probability of collision after k steps and the expected number
of steps to produce a collision for a random function in the general case where the probability
distribution is not necessarily uniform.

Definition 3. Let XA be the random variable for the number of iterations in the following
procedure. Let A be a random variable for choosing among elements of a set based on some
probability distribution. Let ai = P (A = Ri), i = 1, . . . , n. Choose among values in this set with
probability distribution determined by A (with replacement) and stop when any value is selected
a second time.

XA is a generalization of Wn that allows for non-uniform random selection of values. If
Un is the random variable for the uniform probability distribution among n range values (i.e.,
P (Un = Ri) = 1/n for i = 1, . . . , n), then XUn = Wn.

An equivalent definition of XA is to think of a random function f whose output probabilities
have bias determined by random variable A. Then repeatedly select distinct inputs to f and
stop when there is a collision in the outputs.

Definition 4. Let β(A) be the reciprocal of the probability that two trials with random variable
A give the same output. Then

β(A) =
1

P (XA = 2)
=

1∑n
i=1 a2

i

.

For the uniform probability distribution, β(Un) = n. For any other distribution, 1 ≤ β(Un) <
n. Theorems 3 and 4 give bounds on P (XA > k) and E(XA) in terms of β(A).
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Theorem 3. Probability bounds for the general random case.
Let A be any finite discrete random variable and k an integer. If k ≥ 1,

P (XA > k) ≤
(

1− 1√
β(A)

)k−1(
1 +

k − 1√
β(A)

)
≤ e

− k−1√
β(A)

(
1 +

k − 1√
β(A)

)
.

If k ≥ 0,
P (XA > k) ≥ Pβ(A),k.

If β(A) ≥ 1000, and 0 ≤ k ≤ 2
√

β(A) ln β(A),

P (XA > k) ≥ e
− k2

2β(A)
− k3

6(β(A))2 .

(See Appendix B for the proof.)

The second upper bound is almost as tight as the first one in the normal range of interest,
and is much easier to work with when seeking the value of k that gives a particular probability
of success in finding a collision.

Theorem 4. Expectation bounds for the general random case.
For any finite discrete random variable A,√

πβ(A)
2

− 2
5

< E(XA) ≤ 2
√

β(A).

(See Appendix B for the proof.)

Theorem 4 shows that in a certain sense, random variable XA acts like Wβ(A), which is the
uniform case with β(A) possible outputs. The upper and lower bounds on E(XA) differ by less
than a factor of 1.6 for large β(A).

The tightness of the bounds in Theorem 3 is not immediately obvious. This is best illustrated
with an example:

Example 2. Consider the case of a random function with 160-bit outputs (n = 2160), and
β(A) = 2128. Then 1.25× 264 < E(XA) ≤ 2× 264.

For the cryptographer who is concerned with the number of steps required for the probability
of finding a collision to reach 1%, solving P (XA > k) = 1 − 0.01 for k with both bounds in
Theorem 3 gives 0.141× 264 < k < 0.149× 264.

For the cryptanalyst who is concerned with the number of steps required for the probability
of finding a collision to reach 99%, solving P (XA > k) = 1 − 0.99 for k with both bounds in
Theorem 3 gives 3.03× 264 < k < 6.64× 264.

4 Balanced Function Case

This section gives bounds on the probability of collision after k steps and the expected number
of steps to produce a collision for a concrete balanced function h.

The function h is balanced if every element Ri of its range has exactly t inputs that map
to it, for some constant t. We denote such a balanced function ht,n. We exclude t = 1 in this
analysis because no collisions exist in h in this case.
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Definition 5. Let Yt,n be the random variable for the number of iterations in the following
procedure. Let h be a balanced function of d = nt inputs and n outputs. Choose distinct inputs
to h one at a time with each input chosen uniformly at random among the inputs that have not
yet been chosen. Stop when any pair of inputs map through h to the same output.

Definition 6. Let βt,n be the reciprocal of the probability that a uniformly randomly selected
pair of distinct inputs to ht,n map to the same output. After the first input is selected, there are
t− 1 of the remaining nt− 1 inputs that would cause a collision. Then

βt,n =
1

P (Yt,n = 2)
=

nt− 1
t− 1

.

On the surface, it may appear that balanced functions should behave the same as uniformly
random functions, but this is not the case because random functions tend to be slightly im-
balanced. We see this in the definition of βt,n where once the first input has produced output
Ri, the second input is less likely to produce Ri than the other possible outputs. But with
uniformly random functions, all outputs are equally likely at each step. Yt,n tends to behave
like Wnt/(t−1).

Theorems 5 and 6 give bounds on P (Yt,n > k) and E(Yt,n) in terms of N = nt/(t − 1) =
βt,n + 1/(t− 1), a very close estimate of βt,n.

Theorem 5. Probability bounds for the balanced function case.
Let t be an integer (t ≥ 2), n a positive integer, N = nt/(t − 1) = βt,n + 1/(t − 1), and k a

nonnegative integer. Then P (Yt,n > k) ≤ e−
k(k−1)

2N .

If n ≥ 1000, and 0 ≤ k ≤ 2
√

N lnN , P (Yt,n > k) ≥ e−
k2

2N
− 2k3

3N2 .
(See Appendix C for the proof.)

Theorem 6. Expectation bounds for the balanced function case.
Let t be an integer (t ≥ 2), n a positive integer, and N = nt/(t− 1) = βt,n + 1/(t− 1).

Then E(Yt,n) <
√

πN
2 + 8

5 . If n ≥ 1000, E(Yt,n) >
√

πN
2 − 3

2 .
(See Appendix C for the proof.)

It is interesting that compared to uniformly random functions, balanced functions are more
resistant to birthday attacks by a factor of approximately

√
t/(t− 1).

Example 3. Consider the case of a balanced function with 161-bit inputs and 160-bit outputs
(n = 2160 and t = 2). Then −3/2 < E(Yt,n)− 280√π < 8/5, and thus E(Yt,n) ≈ 1.77× 280.

For the cryptographer who is concerned with the number of steps required for the probability
of finding a collision to reach 1%, solving P (Yt,n > k) = 1 − 0.01 for k with both bounds in
Theorem 5 gives two values for k that are separated by about 1

2 (far more accuracy than is
required) with k ≈ (0.201)280.

For the cryptanalyst who is concerned with the number of steps required for the probability
of finding a collision to reach 99%, solving P (Yt,n > k) = 1 − 0.99 for k with both bounds in
Theorem 5 gives two values for k separated by about 1

2 with k ≈ 4.29× 280.
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5 General Function Case

This section gives bounds on the probability of collision after k steps and the expected number
of steps to produce a collision for a concrete function h in the general case where h is not
necessarily balanced.

Definition 7. Let Zh be the random variable for the number of iterations in the following
procedure. Let h be a function of d inputs and n outputs such that for i = 1, . . . , n, the number
of inputs that give output Ri is di. Choose distinct inputs to h one at a time with each input
chosen uniformly at random among the inputs that have not yet been chosen. Stop when any
pair of inputs map through h to the same output.

Definition 8. Let β(h) be the reciprocal of the probability that a uniformly randomly selected
pair of distinct inputs to h map to the same output. If the first input maps through h to output
Ri (with probability di/d), the probability that the second input will map to Ri is (di−1)/(d−1).
Then

β(h) =
1

P (Zh = 2)
=

d(d− 1)∑n
i=1 di(di − 1)

.

This definition of β(h) is analogous to Bellare and Kohno’s definition of a quantity (rµ(h) in
their parlance) that is defined to be d2/(

∑n
i=1 d2

i ) [1]. The difference between these two measures
comes from the fact that they did not assume that inputs are chosen to be distinct. In practical
birthday attacks [2, 5] where a function is iterated, an input can be chosen twice, but instead
of leading to a false collision, this leads to finding a real collision. Thus the model where inputs
are chosen to be distinct better reflects how birthday attacks are performed in practice.

Note that if the range of h include outputs that have no corresponding input (di = 0),
β(h) is not affected if we remove these range elements from R and reduce n. To guarantee
that a collision exists, we require that d be greater than this reduced n. This does not affect
the applicability of these results to practical birthday attacks where the domain and range are
equal (d = n) because if any collisions exist, there must be at least one element of R that has
no corresponding input, and then d is greater than the reduced n.

Theorems 7 and 8 give bounds on P (Zh > k) and E(Zh) in terms of β(h). Throughout the
proofs of these theorems, we assume that n has been reduced as described above so that d > n.

Theorem 7. Probability bounds for the general function case.
Let h be any function of d inputs and n outputs, d > n ≥ 2, and k an integer. If k ≥ 1, then

P (Zh > k) ≤
(

1− 1√
β(h)

)k−1(
1 +

k − 1√
β(h)

)
≤ e

− k−1√
β(h)

(
1 +

k − 1√
β(h)

)
.

If k <
√

β(h) + 1, then

P (Zh > k) ≥
(

1 +
1√
β(h)

)k−1(
1− k − 1√

β(h)

)

≥
(

e

(
1− 1

2
√

β(h) + 4
3

)) k−1√
β(h)

(
1− k − 1√

β(h)

)
.

If k ≥
√

β(h) + 1, then P (Zh > k) ≥ 0.
(See Appendix D for the proof.)
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The last lower bound seems vacuous, but it is not possible to do much better. Consider
the case of a function h of d = n + 1 inputs with d1 = 2, and di = 1, i = 2, . . . , n. In this
case, β(h) = n(n + 1)/2, and n ≈

√
2β(h). Because P (Zh > k) = 0 when k > n, we have

P (Zh > k) = 0 for k greater than roughly
√

2β(h).
The second bounds in both the upper and lower bound cases are almost as tight as the first

bounds in the normal range of interest and are much easier to work with when seeking the value
of k that gives a particular probability of success in finding a collision.

Theorem 8. Expectation bounds for the general function case.
For any function h with d inputs and n outputs, d > n ≥ 1,

(e− 2)
√

β(h) < E(Zh) ≤ 2
√

β(h).

(See Appendix D for the proof.)

The tightness of the bounds in Theorem 7 is not immediately obvious. This is best illustrated
with an example:

Example 4. Consider the case of a function with 160-bit outputs and β(h) = 2128. Note that
the actual number of inputs d is not important except to the extent that it affects β(h). Then
0.718× 264 < E(Zh) ≤ 2× 264.

For the cryptographer who is concerned with the number of steps required for the probability
of finding a collision to reach 1%, solving P (Zh > k) = 1 − 0.01 for k with both bounds in
Theorem 7 gives 0.135× 264 < k < 0.149× 264.

For the cryptanalyst who is concerned with the number of steps required for the probability
of finding a collision to reach 99%, solving P (Zh > k) = 1 − 0.99 for k with both bounds in
Theorem 7 gives 0.996× 264 < k < 6.64× 264.

6 Conclusion

We studied generic birthday attacks for finding collisions in a given function f , and gave tight
bounds on the probability of success of the attack after a given number of steps and tight
bounds on the expected number of steps to complete the attack. These bounds are given for
both random and concrete functions. In each case, we gave bounds in terms of the probability
1/β that a pair of distinct uniformly randomly selected inputs to f give the same output.

By Theorems 4 and 8, the expected number of steps required to complete a birthday attack
is always between 0.718

√
β and 2

√
β for both random and concrete functions. In the case of

Theorem 4, the worst case occurs for the lower bound when β(A) = 1. Even in this case, the
expected number of steps is inside the range above. It may seem that this result may not hold
for the uniformly random case (Theorem 2), but uniformly random functions are also part of
the set of random functions with arbitrary probability distribution, and so are also governed
by Theorem 4. Similarly, balanced concrete functions are governed by Theorem 8.

The range given for the expected number of steps is tight at the upper bound, but there
appears to be a small amount of room to improve the lower bound. For the upper bound,
consider a constant concrete function h1 of d ≥ 2 inputs and only one output (n = 1, and
d1 = d). Then E(Zh1) = 2 because the collision must occur on the second input selected. In this
case β(h1) = d(d − 1)/(d1(d1 − 1)) = 1. Therefore, E(Zh1) = 2

√
β(h1). For the lower bound,

the most extreme example we found was a concrete function h2 of n + 1 inputs and n ≥ 2
outputs with d1 = 2, and di = 1, i = 2, . . . , n. We can show that E(Zh2) = 2

3(n + 1), and
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β(h2) = n(n + 1)/2. In the limit as n →∞, E(Zh2) = 2
√

2
3

√
β(h2) ≈ 0.943

√
β(h2). This seems

to leave some room to improve the lower bound. However, the existing bounds are tight enough
for practical purposes. The real challenge that remains is to actually compute β(h) or β(A) for
functions used in birthday attacks on real cryptographic schemes such as hash functions and
signatures schemes based on the difficulty of computing discrete logarithms.
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A Proofs of Theorems 1 and 2

There are a number of supporting lemmas in addition to the theorem proofs. Undoubtedly, some
of the results in this section are not new because the uniform random case has been studied
extensively. We give these results to make this paper self-contained and because these results
get reused in later proofs.

Lemma 1. For m ≥ 0,
∑k−1

j=0 jm ≤ km+1/(m + 1).

Proof. Because m ≥ 0, xm never has negative slope for x ≥ 0. Therefore, jm ≤
∫ j+1
j xmdx,

and applying this inequality for j = 0, . . . , k − 1 and combining the results gives
∑k−1

j=0 jm ≤∫ k
0 xmdx = km+1/(m + 1). ut

Proof of Theorem 1 (see Section 2 for statement of theorem).
Upper bound. The probability that Wn > k is equal to the probability that no collision occurs
after the first k iterations:

P (Wn > k) =
k−1∏
j=0

(
1− j

n

)
.

For the k = 0 case, the product is over zero values, which we define to be equal to 1, the correct
value for P (Wn > 0). For k ≤ n each of the factors in the product is positive, and we can apply
the Taylor series, − ln(1− x) =

∑∞
i=1 xi/i, to get

− ln(P (Wn > k)) =
k−1∑
j=0

∞∑
i=1

ji

ini
=

k−1∑
j=0

(
j

n
+

j2

2n2
+ . . .

)

=
k(k − 1)

2n
+

k(k − 1)(2k − 1)
12n2

+ . . . . (1)

Each of the terms in the sum above is nonnegative, so that if we truncate the series at any
point, we get a lower bound. Therefore,

− ln(P (Wn > k)) ≥ k(k − 1)
2n

, P (Wn > k) ≤ e−
k(k−1)

2n .
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Lower bound. Using
∑k−1

j=0 jm ≤ km+1/(m + 1) from Lemma 1, we can replace all but the
first term of − ln(P (Wn > k)) in equation (1) as follows

− ln(P (Wn > k)) ≤ k(k − 1)
2n

+
k3

3 · 2n2
+

k4

4 · 3n3
+

k5

5 · 4n4
+ . . . .

Change the constants in the denominators of all the terms after the first two to 12 (which leaves
the inequality true because we have not decreased the size of the right hand side), to form a
geometric series:

− ln(P (Wn > k)) ≤ k(k − 1)
2n

+
k3

6n2
+

k4

12n2

(
1 +

k

n
+

k2

n2
+ . . .

)
.

For n ≥ 1000, and k ≤ 2
√

n lnn, k/n will always be less than 1/6, and thus the geometric series
in brackets sums to less than 6/5. Therefore,

− ln(P (Wn > k)) ≤ k(k − 1)
2n

+
k3

6n2
+

k4

10n2

≤ k2

2n
+

k3

6n2
+

k

n

(
k3

10n2
− 1

2

)
.

With the restrictions on n and k, the factor in brackets is always negative, and

− ln(P (Wn > k)) ≤ k2

2n
+

k3

6n2
, P (Wn > k) ≥ e−

k2

2n
− k3

6n2 .

Truncating equation (1) after the second term gives

− ln(P (Wn > k)) ≥ k(k − 1)
2n

+
k(k − 1)(2k − 1)

12n2

≥ k

2n

(
k − 1 +

(k − 1)(2k − 1)
6n

)
.

For n ≥ 1000, and k > 2
√

n lnn, the (k − 1)(2k − 1)/(6n) term is always greater than 1 giving

P (Wn > k) < e−
k2

2n . Substituting k = 2
√

n lnn gives P (Wn > k) < e−2 ln n = 1
n2 ≤ 10−6. ut

Lemma 2. For any random variable V that takes on only positive integer values, the expected
value of V is

E(V ) =
∞∑

k=0

P (V > k).

Proof.

E(V ) =
∞∑

k=1

kP (V = k) =
∞∑

k=1

k(P (V > k − 1)− P (V > k))

=
∞∑

k=1

kP (V > k − 1)−
∞∑

k=1

kP (V > k)

=
∞∑

k=0

(k + 1)P (V > k)−
∞∑

k=0

kP (V > k)

=
∞∑

k=0

P (V > k).

ut
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Lemma 3. If a function g(x) is continuous and is never increasing for x ≥ 0, and
∫∞
0 g(x)dx

converges, then

∞∑
k=1

g(k − 1
2) ≤

∫ ∞

0
g(x)dx + 1

2g(1
2),

m∑
k=0

g(k) ≥
∫ m+1

0
g(x)dx.

Proof. Because g(x) is never increasing, for a, b ≥ 0,

bg(a) ≥
∫ a+b

a
g(x)dx ≥ bg(a + b). (2)

Applying this inequality for a = 0, b = 1/2 gives
∫ 1/2
0 g(x)dx ≥ (1/2)g(1/2), and applying it for

b = 1, and a = 1/2, 3/2, 5/2, . . . gives∫ ∞

1
2

g(x)dx ≥
∞∑

k=2

g(k − 1
2).

Combining these two results and adding g(1
2) to the sum gives

∞∑
k=1

g(k − 1
2) ≤

∫ ∞

0
g(x)dx + 1

2g(1
2).

Applying inequality (2) for b = 1, and a = 0, . . . ,m gives

m∑
k=0

g(k) ≥
∫ m+1

0
g(x)dx.

ut

Lemma 4. For n ≥ 2, ∫ ∞

2
√

n ln n
e−

x2

2n dx ≤ 2
√

n lnn

n2 − 2
.

Proof. Because e−x2/(2n) is never increasing for x ≥ 0, if a ≥ 0 then∫ 2a

a
e−

x2

2n dx ≤ ae−
a2

2n .

Substituting a = 2i
√

n lnn and then replacing n22i−1
with n2i (which leaves the inequality true

if i ≥ 1): ∫ 2i+1
√

n ln n

2i
√

n ln n
e−

x2

2n dx ≤ 2i
√

n lnn

n22i−1 ≤
√

n lnn

(
2
n2

)i

.

Applying this inequality for i = 1, 2, . . ., we get a geometric progression that sums to the
required expression: ∫ ∞

2
√

n ln n
e−

x2

2n dx ≤
√

n lnn
∞∑
i=1

(
2
n2

)i

=
2
√

n lnn

n2 − 2
.

ut
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Proof of Theorem 2 (see Section 2 for statement of theorem).
Upper bound. Begin with the expectation equation in Lemma 2 and use the first probability
bound in Theorem 1:

E(Wn) =
∞∑

k=0

P (Wn > k) = 1 +
∞∑

k=1

P (Wn > k) ≤ 1 +
∞∑

k=1

e−
k(k−1)

2n .

Rewriting k(k − 1) as (k − 1/2)2 − 1/4 gives

E(Wn) ≤ 1 + e
1
8n

∞∑
k=1

e−
(k− 1

2 )2

2n .

Applying the first inequality in Lemma 3 gives

E(Wn) ≤ 1 + e
1
8n

(∫ ∞

0
e−

x2

2n dx +
1
2
e−

1
8n

)
.

The integral is a standard definite integral equal to
√

πn/2, which gives

E(Wn) ≤ 3
2

+ e
1
8n

√
πn

2
.

Because ex ≤ 1 + x + x2 for 0 ≤ x ≤ 1, we can replace e1/(8n) with 1 + 1/(8n) + 1/(64n2):

E(Wn) ≤ 3
2

+
√

πn

2
+
(

1
8n

+
1

64n2

)√
πn

2
.

The final term is always less than 1/10 for n ≥ 3. For n = 1 and n = 2, we have E(W1) = 2
and E(W2) = 2.5, and the bounds in the theorem statement can be verified directly. Thus

E(Wn) <

√
πn

2
+

8
5
.

Lower bound. It is easier to give a proof for n ≥ 1000. So, we computed E(Wn) for n <
1000 using methods that track the maximum error in each variable of a computation to verify
the theorem for these cases. In fact, we showed that for n < 1000 and n = 20, 21, . . . , 264,
0 < E(Wn) − (

√
πn/2 + 2/3) < 1/(9

√
n). For the remainder of the proof of the lower bound,

we assume n ≥ 1000. Begin with the expectation equation in Lemma 2 and truncate it at
m = b2

√
n lnnc so that we can use the second probability bound in Theorem 1:

E(Wn) =
∞∑

k=0

P (Wn > k) ≥
m∑

k=0

P (Wn > k) ≥
m∑

k=0

e−
k2

2n e−
k3

6n2 .

Applying the second inequality in Lemma 3 gives

E(Wn) ≥
∫ m+1

0
e−

x2

2n e−
x3

6n2 dx =
∫ ∞

0
e−

x2

2n e−
x3

6n2 dx−
∫ ∞

m+1
e−

x2

2n e−
x3

6n2 dx.

In the difference of two integrals above, we can drop the e−x3/(6n2) factor in the second integral
because it is less than or equal to 1 and the change increases the value of the integral, which
lowers the lower bound. We can also reduce the lower limit of the second integral to 2

√
n lnn

12



because the change increases the value of the integral. The same factor in the first integral can
be replaced with 1− x3/(6n2) because for all y, e−y ≥ 1− y.

E(Wn) ≥
∫ ∞

0
e−

x2

2n dx−
∫ ∞

0

x3

6n2
e−

x2

2n dx−
∫ ∞

2
√

n ln n
e−

x2

2n dx.

The first integral is a standard definite integral equal to
√

πn/2, the second integral can be
integrated by parts and is equal to 1/3, and the last integral is less than 2

√
n lnn/(n2 − 2) by

Lemma 4. For n ≥ 1000, 1/3 + 2
√

n lnn/(n2 − 2) < 2/5 which gives the lower bound

E(Wn) >

√
πn

2
− 2

5
.

ut

B Proofs of Theorems 3 and 4

There are a number of supporting lemmas and a definition in addition to the theorem proofs.
The exact probability P (XA > k) is determined by summing the probabilities of all possible

ways that the first k outputs can be distinct. For convenience of notation, we will sometimes
think of the random variable A as being equal to the set of its probabilities, A = {a1, . . . , an}.
The following definition provides some useful notation.

Definition 9. Let V = {v1, . . . , vn}, and let Sk(V ) be the sum of products of all subsets of size
k in V :

Sk(V ) =
∑

1≤i1<...<ik≤n

 k∏
j=1

vij

 .

For example, S2({x, y, z}) = xy + xz + yz. Let S0(V ) = 1, and for k > n, Sk(V ) = 0. When
using this definition with a random variable A, one of more of the ai can be excluded from A
with the notation Sk(A\{ai}) or Sk(A\{ai, aj}) for example.

Now we can write P (XA > k) = (k!)Sk(A). The extra factor of k! comes from the fact that
S was defined to include subsets without regard to order, and in the probability that k outputs
are distinct, each k-subset of distinct outputs can occur in all of its k! orderings. Some useful
properties of S are proven in the following lemma.

Lemma 5. For 0 < i, j ≤ n, k > 0,

Sk(A) = aiSk−1(A\{ai}) + Sk(A\{ai}),
Sk(A\{ai})− Sk(A\{aj}) = (aj − ai)Sk−1(A\{ai, aj}),
∂Sk(A)

∂ai
= Sk−1(A\{ai}).

Proof. Sk(A) consists of some terms involving ai and others that do not. The sum of the terms
without ai is just Sk(A\{ai}). There is a term including ai for each (k-1)-subset of A\{ai}.
Therefore,

Sk(A) = aiSk−1(A\{ai}) + Sk(A\{ai}).

13



Applying this rule to separate aj from Sk(A\{ai}), and to separate ai from Sk(A\{aj})
gives

Sk(A\{ai}) = ajSk−1(A\{ai, aj}) + Sk(A\{ai, aj}),
Sk(A\{aj}) = aiSk−1(A\{ai, aj}) + Sk(A\{ai, aj}).

Taking the difference between these two equations gives

Sk(A\{ai})− Sk(A\{aj}) = (aj − ai)Sk−1(A\{ai, aj}).

The final identity follows directly from the first identity by taking partial derivatives with
respect to ai. ut

We now seek bounds on P (XA > k) assuming that β(A) is a known value, say β0. This
situation is a little different from the uniformly random case because the bounds need to be valid
for all random variables A whose distributions are such that β(A) = β0 rather than just being
concerned with the single uniform distribution. A starting point is to find those distributions
that minimize and maximize P (XA > k):

Lemma 6. The minimum and maximum of P (XA > k) across fixed k and varying random
variable A, subject to the constraint β(A) = β0 can be found by considering only those random
variables A such that the probabilities a1, . . . , an take on only two distinct values other than
zero.

Proof. If one or more of the probabilities in A is zero, this is equivalent to a different random
variable with only the non-zero probabilities and a smaller n. Without loss of generality, assume
a1 ≥ . . . ≥ an > 0 for some n > 0.

The k = 0, 1, 2 cases are trivially true because P (XA > 0) = P (XA > 1) = 1, and P (XA >
2) = β0, which are all constants. For the remainder of the proof, assume k ≥ 3.

Using Lagrange multipliers to find the stationary points (including local minima, maxima,
and high-order saddle points) of P (XA > k) subject to the constraints

∑n
i=1 ai − 1 = 0 and∑n

i=1 a2
i − 1/β0 = 0 gives the following equation for some constants λ1 and λ2:

∂P (XA > k)
∂ai

= λ1
∂(
∑n

i=1 ai − 1)
∂ai

+ λ2
∂(
∑n

i=1 a2
i − 1/β0)

∂ai
, i = 1, . . . , n.

Using P (XA > k) = (k!)Sk(A) and applying the third identity in Lemma 5 gives

(k!)Sk−1(A\{ai}) = λ1 + 2λ2ai, i = 1, . . . , n. (3)

The only way for all ai to be equal is if β0 = n, in which case the probabilities are fully
determined to be a1 = . . . = an = 1/n. This lemma is trivially true in this case. For the rest of
this proof, assume that aj−1 > aj for some j, 1 < j ≤ n. Let m be such that 1 ≤ m < j. Then
by the earlier assumption about the probabilities being in descending order, and aj−1 > aj , we
have am > aj . Apply equation (3) for the i = m and i = j cases, and solve for λ1:

λ1 = (k!)Sk−1(A\{am})− 2λ2am = (k!)Sk−1(A\{aj})− 2λ2aj .

Rearranging this equation and applying the second identity in Lemma 5 gives

2λ2(am − aj) = (k!)(Sk−1(A\{am})− Sk−1(A\{aj}))
= (k!)(aj − am)Sk−2(A\{am, aj})).
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Because am 6= aj , we can cancel out the factors of (am − aj) to get

Sk−2(A\{am, aj})) = −2λ2

k!
, m = 1, . . . , j − 1.

Using this equation for m = u and m = v, 1 ≤ u, v < j, and taking the difference between the
equations gives

Sk−2(A\{au, aj}))− Sk−2(A\{av, aj})) = 0.

Applying the second identity in Lemma 5 gives

(av − au)Sk−3(A\{au, av, aj})) = 0.

For k ≥ 3, Sk−3(A\{au, av, aj}) > 0 because it is equal to 1 for k = 3, and is the sum of products
of positive probabilities for k > 3. Thus, au = av, and because this is true for 1 ≤ u, v < j, the
am are all equal for 1 ≤ m < j. By similar reasoning, the am are all equal for j ≤ m ≤ n. The
stationary points occur when a1 = . . . = aj−1 > aj = . . . = an. Therefore, the stationary points
of P (XA > k) occur when a1, . . . , an take on at most two distinct non-zero values.

The maximum and minimum of P (XA > k) must occur at one of the stationary points or
on the boundary of the region where a1, . . . , an satisfy the constraints that their sum is 1, and
β(A) = β0. At all points on this boundary, one or more of the ai is zero, or at least one pair of
probabilities in A are equal. To see this, consider any A that satisfies the constraints, but has no
zero probabilities and all probabilities are distinct. Because there are two constraint equations,
only n−2 of the probabilities are independent. We can make independent infinitesimal changes
to any n − 2 of the probabilities, and still be able to adjust the final two probabilities to
satisfy the constraint equations without using negative or complex values. Thus the case where
there are no zero probabilities and all probabilities are distinct is not a boundary case. So,
the boundary cases to consider are those with one or more zero probabilities or one or more
subsets of the probabilities constrained to be equal. The case with the zeros can be eliminated
because this is just the same as having no zeros with a smaller value of n. When one or more
subsets of the probabilities are constrained to be equal, we can repeat the Lagrange multiplier
analysis with more constraint equations. Suppose that for some constants j and m, j < m, the
probabilities aj , aj+1, . . . , am are constrained to be equal. Then we have the extra constraint
equations aj − aj+1 = 0, aj+1 − aj+2 = 0, . . ., am−1 − am = 0. Let µj , . . . , µm−1 be the
constants associated with these equations when we use Lagrange multipliers. Then equation (3)
for i = j, . . . , m becomes

(k!)Sk−1(A\{aj}) = λ1 + 2λ2aj + µj ,

(k!)Sk−1(A\{ai}) = λ1 + 2λ2ai,+µi − µi−1, i = j + 1, . . . ,m− 1,

(k!)Sk−1(A\{am}) = λ1 + 2λ2am − µm−1. (4)

Note that even if another subset of probabilities outside of aj , . . . , am were constrained to be
equal, it would not affect these equations because the partial derivatives for the additional
constraint equations with respect to each of aj , . . . , am would be zero. Because aj = . . . = am,
the left hand sides of all equations in (4) are equal. The terms involving λ1 and λ2 are also
equal in all equations. Thus µj = µj+1 − µj = µj+2 − µj+1 = . . . = µm−1 − µm−2 = −µm−1.
The only solution to this set of equations is µj = µj+1 = . . . = µm−1 = 0. If another subset
of probabilities were constrained to be equal, the constants associated with their constraint
equations would be zero as well. Thus the equations in (3) are not affected by the additional
constraints, and the final conclusion remains the same: all stationary points of P (XA > k)
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occur when a1, . . . , an take on at most two distinct non-zero values. Therefore, the maximum
and minimum of P (XA > k) must occur among the cases where a1, . . . , an take on at most two
distinct non-zero values. ut

Lemma 7. Given a triple of real numbers (t1, t2, t3) such that t1 = t2 > 0 and t3 > 0, there
exists another triple (u1, u2, u3) such that u1, u2, u3 > 0, u1 + u2 + u3 = t1 + t2 + t3 and
u2

1 +u2
2 +u2

3 = t21 + t22 + t23. If t3 > t1 there exists a triple (u1, u2, u3) with the additional property
that u1u2u3 < t1t2t3, and if t3 < t1 there exists a triple (u1, u2, u3) with the additional property
that u1u2u3 > t1t2t3.

Proof. Write (t1, t2, t3) in the form (a, a, a(1 + b)), a > 0, b > −1. Let

(u1, u2, u3) = (a(1 + bε), a(1 + b(1− ε− c)/2), a(1 + b(1− ε + c)/2)),

where c =
√

(1 + ε)2 − 4ε2, for some ε, 0 < ε < 1, and ε < 1/|b|. Note that because 0 < ε < 1, c
is real, and 0 < c < 1 + ε. With simple (but messy) algebra, one can verify that u1 + u2 + u3 =
t1 + t2 + t3 and u2

1 + u2
2 + u2

3 = t21 + t22 + t23, and show that

δ = u1u2u3 − t1t2t3 = a3b3ε2(ε− 1).

What remains to be shown is that u1, u2, u3 > 0, and for the t3 > t1 (b > 0) case, δ < 0, and
for the t3 < t1 (b < 0) case, δ > 0. For brevity, the rest of this proof uses the inequalities a > 0,
b > −1, 0 < ε < 1, ε < 1/|b|, and 0 < c < 1 + ε without stating them.

Case 1: b > 0.

u1 = a(1 + bε) > 0.

u2 = a(1 + b(1− ε− c)/2) > a(1 + b(1− ε− (1 + ε))/2) = a(1− bε) > 0.

u3 = a(1 + b(1− ε + c)/2) > a(1 + b(1− ε)/2) > 0.

δ = a3b3ε2(ε− 1) < 0.

Case 2: b < 0.

u1 = a(1 + bε) > a(1− b/b) = 0.

u2 = a(1 + b(1− ε− c)/2) > a(1 + b(1− ε)/2) > a(1 + b) > 0.

u3 = a(1 + b(1− ε + c)/2) > a(1 + b(1− ε + (1 + ε))/2) = a(1 + b) > 0.

δ = a3b3ε2(ε− 1) > 0.

ut

Lemma 8. Given a triple of real numbers (t1, t2, t3) such that t1 = 0 and t3 > t2 > 0, there
exists another triple (u1, u2, u3) such that u1, u2, u3 > 0, u1+u2+u3 = t1+t2+t3, u2

1+u2
2+u2

3 =
t21 + t22 + t23, and u1u2u3 > t1t2t3.

Proof. Write (t1, t2, t3) in the form (0, a, a(1 + 2b)), a, b > 0. Let

(u1, u2, u3) = (2aε, a(1 + b− ε− c), a(1 + b− ε + c)),

where c =
√

(b + 3ε)(b− ε) + 2ε, for some ε, 0 < ε < 1/4, and ε < b/4. With these restrictions on
ε, c > 0, and rewriting c as c =

√
(b + ε + 1/2)2 − 4ε2 − (b− ε)− 1/4, we see that c < b+ε+1/2.
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One can verify that u1 + u2 + u3 = t1 + t2 + t3 and u2
1 + u2

2 + u2
3 = t21 + t22 + t23. What remains

to be shown is that u1, u2, u3 > 0, and δ = u1u2u3 − t1t2t3 > 0:

u1 = 2aε > 0.

u2 = a(1 + b− ε− c) > a(1 + b− ε− (b + ε + 1/2)) = a(1− 4ε)/2 > 0.

u3 = a(1 + b− ε + c) > a(1 + b− ε) > a(1 + (3/4)b) > 0.

Because t1 = 0 and u1, u2, u3 > 0, we have t1t2t3 = 0, u1u2u3 > 0, and δ > 0. ut

Lemma 9. Let n ≥ k ≥ 3. Let A be a random variable containing the subset of probabilities
{t1, t2, t3} and such that A\{t1, t2, t3} is either empty or contains at least k− 3 nonzero proba-
bilities. Let A′ be a member of the set of random variables such that β(A′) = β(A).
(1) If t1 = t2 and t3 > t1 > 0, A′ exists such that P (XA′ > k) < P (XA > k).
(2) If t1 = t2 and t1 > t3 > 0, A′ exists such that P (XA′ > k) > P (XA > k).
(3) If t1 = 0 and t3 > t2 > 0, A′ exists such that P (XA′ > k) > P (XA > k).

Proof. Permuting the probabilities in A does not affect P (XA > k), and thus without loss of
generality, we can assume that if a subset {t1, t2, t3} of probabilities are in A, they occur in the
first three positions (a1, a2, a3). Let B = A\{a1, a2, a3}. Repeated use of the first identity in
Lemma 5 gives

Sk(A) = (a1a2a3)Sk−3(B) + (a1a2 + a1a3 + a2a3)Sk−2(B) +
(a1 + a2 + a3)Sk−1(B) + Sk(B). (5)

Suppose that random variable A′ differs from A only in the first three probabilities (a′1, a
′
2, a

′
3

replace a1, a2, a3). Suppose also that a′1+a′2+a′3 = a1+a2+a3 so that all the probabilities in A′

sum to 1, and a′21+a′22+a′23 = a2
1+a2

2+a2
3 so that β(A′) = β(A). The identity a1a2+a1a3+a2a3 =

((a1+a2+a3)2−(a2
1+a2

2+a2
3))/2 means that we also have a′1a

′
2+a′1a

′
3+a′2a

′
3 = a1a2+a1a3+a2a3.

Referring to equation (5), Sk(A′) and Sk(A) differ only in the first term, which gives

P (XA′ > k)− P (XA > k) = (k!)(a′1a
′
2a
′
3 − a1a2a3)Sk−3(B).

Note that because B is either empty or contains at least k−3 nonzero probabilities (by assump-
tion in the lemma statement), Sk−3(B) > 0, and thus the sign of P (XA′ > k)− P (XA > k) is
the same as the sign of a′1a

′
2a
′
3 − a1a2a3. Parts (1) and (2) of this lemma follow from Lemma 7,

and part (3) follows from Lemma 8. ut

Lemma 10. Consider the set of random variables A than consist of at most n probabilities
(n > 1), and have β(A) = β0 for some constant β0. P (XA > k) is a maximum across this set
when A = Amax, where

P (Amax = R1) = (1 +
√

((n/β0)− 1)(n− 1))/n,

P (Amax = Ri) = (1−
√

((n/β0)− 1)/(n− 1))/n, i = 2, . . . , n,

and is a minimum when A = Amin, where m = dβ0e and

P (Amin = R1) = (1−
√

((m/β0)− 1)(m− 1))/m,

P (Amin = Ri) = (1 +
√

((m/β0)− 1)/(m− 1))/m, i = 2, . . . ,m,

P (Amin = Ri) = 0, i = m + 1, . . . , n.
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Proof. This lemma is trivially true if n = 2 or β0 = 1 or β0 = n because in each of these cases
there is only one random variable A that satisfies β(A) = β0. If n = 2, then a1 and a2 are fixed
by β0. If β0 = 1, then one of the ai is 1 and the rest are zero. If β0 = n, then a1 = . . . = an = 1/n.
This lemma also is trivially true if k < 3 or k > n because then P (XA > k) is a fixed constant.
P (XA > 0) = P (XA > 1) = 1, P (XA > 2) = 1/β0, and if k > n, then P (XA > k) = 0. Assume
n ≥ k ≥ 3 and 1 < β0 < n for the rest of this proof.

By Lemma 6, the maximum and minimum values of P (XA > k) occur when A contains at
most two distinct probabilities other than zero. Because 1 < β0 < n, there must be exactly two
distinct nonzero probabilities. Let the two probabilities be x and y, y > x > 0.

Maximum case. We seek a random variable A that maximizes P (XA > k). We can eliminate
any random variable that does not have at least k nonzero probabilities because in this case
P (XA > k) = 0 which cannot be larger than P (XAmax > k). This handles the requirement
concerning nonzero probabilities in Lemma 9. If the y probability appears more than once in
A, then {y, y, x} is a subset of A and we can increase P (XA > k) by changing A as explained
in case (2) of Lemma 9. Therefore, the maximum occurs when A contains exactly one copy
of y. If a zero probability appears in A, then {0, x, y} is a subset of A and we can increase
P (XA > k) by changing A as explained in case (3) of Lemma 9. Therefore, the maximum
occurs when A contains one copy of y and n − 1 copies of x. These probabilities must sum
to 1, and their squares must sum to 1/β0, which gives y = (1 +

√
((n/β0)− 1)(n− 1))/n and

x = (1−
√

((n/β0)− 1)/(n− 1))/n as required.
Minimum case. We seek a random variable A that minimizes P (XA > k). If β(A) = β0,

then A must have at least m = dβ0e nonzero probabilities because it is not possible for fewer
than m real numbers to have a sum of 1 and the sum of their squares less than 1/m. Amin is
an example of a random variable with m nonzero probabilities and β(Amin) = β0. For k > m,
P (XAmin > k) = 0, which is the minimum, and we need only consider the case where k ≤ m.
This handles the requirement concerning nonzero probabilities in Lemma 9. If the x probability
appears more than once in A, then {x, x, y} is a subset of A and we can decrease P (XA > k)
by changing A as explained in case (1) of Lemma 9. Therefore, the minimum occurs when A
contains exactly one copy of x. If there are a total of m′ nonzero probabilities in A (one x and
m′ − 1 copies of y), then x + (m′ − 1)y = 1 and x2 + (m′ − 1)y2 = 1/β0. If m′ > m, then
x ≤ 0, which contradicts the initial assumption that x > 0. Therefore, m′ ≤ m. If m′ < m,
then x is a complex number. Therefore, m′ = m, x = (1 −

√
((m/β0)− 1)(m− 1))/m, and

y = (1 +
√

((m/β0)− 1)/(m− 1))/m, as required. ut

Lemma 11. Let n and k be integers, n ≥ k > 1. Let u and v be real numbers, with v =√
1/n2 + (1− 1/n2)u2. Let g(u) = (1 − u)k−1(1 + (k − 1)u) . Over the range 0 ≤ u < 1,

g(v)/g(u) is a minimum of (1− 1/n)k−1(1 + (k − 1)/n) when u = 0 and v = 1/n.

Proof. Because 0 ≤ u < 1, we have 1/n ≤ v < 1, and thus the derivative

d(g(v)/g(u))
du

=
u(n2 − 1)(1− v)k−2k(k − 1)(k − 2)

n4(1− u)k−2(1 + (k − 1)u)2(v + 1− (1− u)(1− 1/n2))

is never negative, and g(v)/g(u) is a minimum when u is at its minimum (u = 0). ut

Lemma 12. Let n and k be integers, n > 1, k ≥ 2, β0 a real number, 1 ≤ β0 ≤ n, and
αn =

√
((n/β0)− 1)/(n− 1). Then p(n) = (1 − αn)k−1(1 + (k − 1)αn)Pn,k never decreases as

n increases.
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Proof. If β0 = 1 or k > n, then p(n) = 0 and this lemma is trivially true. Assume that β0 > 1
and n ≥ k ≥ 2 for the rest of this proof. Consider the ratio p(n + 1)/p(n). We can apply
Lemma 11 with u = αn, v = αn+1, g(u) = p(n)/Pn,k, and g(v) = p(n + 1)/Pn+1,k, because
the required relationship v =

√
1/n2 + (1− 1/n2)u2 holds. Then p(n + 1)/p(n) is a minimum

across varying β0 when αn = 0 and β0 = n, and thus

p(n + 1)
p(n)

≥
(

n− 1
n

)k−1 (n + (k − 1)
n

)
Pn+1,k

Pn,k
.

Because Pn,k = (1− 1/n)(1− 2/n) . . . (1− (k − 1)/n), we can show that

Pn+1,k =
(

n

n− (k − 1)

)(
n

n + 1

)k−1

Pn,k.

Then
p(n + 1)

p(n)
≥
(

n− 1
n + 1

)k−1 (n + (k − 1)
n− (k − 1)

)
.

Differentiating the right hand side with respect to n gives

−
2
(

n−1
n+1

)k
k(k − 1)(k − 2)

(n− 1)2(n− k + 1)2

which is never positive for n ≥ k ≥ 2. Thus the lower bound on p(n + 1)/p(n) is minimized as
n →∞.

lim
n→∞

(
n− 1
n + 1

)k−1 (n + (k − 1)
n− (k − 1)

)
= 1.

This means p(n + 1)/p(n) ≥ 1, and thus p(n) never decreases as n increases. ut

Lemma 13. Let β0 > 1, m = dβ0e, and δ = m − β0, 0 ≤ δ < 1. Let 0 ≤ k ≤ m, and
α =

√
((m/β0)− 1)/(m− 1). Then (1 + α)k−1(1− (k − 1)α)Pm,k ≥ Pβ0,k.

Proof. We proceed by induction on k. When k = 0 or k = 1, (1 + α)k−1(1− (k− 1)α) = 1, and
the inequality to be proven reduces to Pm,k ≥ Pβ0,k, which is true because m−1 < β0 ≤ m, and
when k ≤ n + 1, Pn,k never decreases as n increases. The induction assumption is to assume
that this lemma is true for k = i− 1, for some i, 2 ≤ i ≤ m:

(1 + α)i−2(1− (i− 2)α) ≥ Pβ0,i−1/Pm,i−1.

Then to show this lemma is true, it is sufficient to show that

(1 + α)i−1(1− (i− 1)α)
(1 + α)i−2(1− (i− 2)α)

≥ Pβ0,i/Pm,i

Pβ0,i−1/Pm,i−1

because this result combined with the induction assumption implies that this lemma is true for
k = i. Because Pn,k/Pn,k−1 = 1− (k − 1)/n, this simplifies to having to show that

(1 + α)(1− (i− 1)α)
1− (i− 2)α

≥ 1− (i− 1)/β0

1− (i− 1)/m
= 1− (i− 1)δ

β0(m− (i− 1))
.

Substituting m = β0 +δ into the definition of α gives α2 = δ/(β0(m−1)). Because δ < 1, we
have β0 > m−1 and α < 1/(m−1). Multiplying both sides of this inequality by −(i−2)(m−1)
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and adding m− 1 gives (m− 1)(1− (i− 2)α) ≥ m− (i− 1). Inverting both sides, multiplying
by δ/β0, and using α2 = δ/(β0(m− 1)) gives

α2

1− (i− 2)α
≤ δ

β0(m− (i− 1))
.

Negating both sides, multiplying by i− 1, and adding 1 gives the required result:

(1 + α)(1− (i− 1)α)
1− (i− 2)α

≥ 1− (i− 1)δ
β0(m− (i− 1))

.

ut

Proof of Theorem 3 (see Section 3 for statement of theorem).
Let n be the number of possible outputs of A. If n = 1, then β(A) = 1, and this theorem is
trivially true. Assume n > 1 for the rest of this proof.

Upper bound. Let α =
√

((n/β(A))− 1)/(n− 1)). Note that 0 ≤ α ≤ 1 because 1 ≤
β(A) ≤ n. Let x = (1−α)/n, y = (1+(n−1)α)/n, and define random variable Amax as follows:
P (Amax = R1) = y, and P (Amax = Ri) = x for i = 2, . . . , n. By Lemma 10, P (XA > k) is a
maximum when A = Amax. The event that there are no collisions after k outputs of Amax can be
split into two disjoint cases. In the first case, there are no outputs equal to R1, and all k outputs
are different. The probability of this case is (1− y)k times the probability that all outputs are
different given that no output is equal to R1. The probabilities of the remaining n− 1 outputs
are all equal which is just the uniform case. The conditional probability is Pn−1,k, and the
probability of this case is (1 − y)kPn−1,k. In the second case, there is one output equal to R1,
and all k−1 remaining outputs are different. The probability of this case is ky(1−y)k−1Pn−1,k−1.
This gives

P (XAmax > k) = (1− y)kPn−1,k + ky(1− y)k−1Pn−1,k−1

= (1− y)k−1((1− y)Pn−1,k + kyPn−1,k−1).

Because Pn,k = (1− 1/n)(1− 2/n) . . . (1− (k − 1)/n), we can show that

Pn−1,k−1 =
(

n

n− 1

)k−1

Pn,k, Pn−1,k =
(

n− k

n− 1

)(
n

n− 1

)k−1

Pn,k.

These equations and y = (1 + (n− 1)α)/n lead to

P (XAmax > k) =
(

(1− y)
n

n− 1

)k−1 (
(1− y)

n− k

n− 1
+ ky

)
Pn,k

= (1− α)k−1(1 + (k − 1)α)Pn,k.

By Lemma 12, P (XAmax > k) never decreases as n increases, and is maximized as n →∞.

lim
n→∞

α =
1√

β(A)
, lim

n→∞
Pn,k = 1.

Then the upper bound for P (XA > k) is

lim
n→∞

P (XAmax > k) =

(
1− 1√

β(A)

)k−1(
1 +

k − 1√
β(A)

)
.
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For large β(A), a close upper bound on (1− 1/
√

β(A)) is e−1/
√

β(A):

P (XA > k) ≤
(

1− 1√
β(A)

)k−1(
1 +

k − 1√
β(A)

)
≤ e

− k−1√
β(A)

(
1 +

k − 1√
β(A)

)
.

Lower bound. The lower bounds are trivially true if k < 2 because P (XA > 0) = P (XA >
1) = 1. For the rest of this proof, assume k ≥ 2. Let m = dβ(A)e, and redefine α, x, and y as
follows: α =

√
((m/β(A))− 1)/(m− 1)), x = (1− (m− 1)α)/m, and y = (1 + α)/m. Because

x ≥ 0, we have α ≤ 1/(m − 1). Define Amin as follows: P (Amin = R1) = x, P (Amin = Ri) = y
for i = 2, . . . ,m, and P (Amin = Ri) = 0 for i = m + 1, . . . , n. By Lemma 10, P (XA > k) is a
minimum when A = Amin. The event that there are no collisions after k outputs of Amin can
be split into two disjoint cases. In the first case, there are no outputs equal to R1, and all k
outputs are different. The probability of this case is (1 − x)kPm−1,k. In the second case, there
is one output equal to R1, and all k− 1 remaining outputs are different. The probability of this
case is kx(1− x)k−1Pm−1,k−1. Proceeding similarly to the upper bound case,

P (XAmin > k) = (1− x)kPm−1,k + kx(1− x)k−1Pm−1,k−1

= (1 + α)k−1(1− (k − 1)α)Pm,k.

By Lemma 13, P (XA > k) ≥ P (XAmin > k) ≥ Pβ(A),k. Theorem 1 gave a lower bound on Pn,k

and this proof is valid for non-integer n. Thus if β(A) ≥ 1000, and 0 ≤ k ≤ 2
√

β(A) ln β(A),

P (XA > k) ≥ e
− k2

2β(A)
− k3

6(β(A))2 .

ut
Proof of Theorem 4 (see Section 3 for statement of theorem).
Upper bound. Begin with the expectation equation in Lemma 2 and use the first probability
bound in Theorem 3:

E(XA) =
∞∑

k=0

P (XA > k) = 1 +
∞∑

k=1

P (XA > k)

≤ 1 +
∞∑

k=1

(
1− 1√

β(A)

)k−1(
1 +

k − 1√
β(A)

)
.

≤ 1 +
∞∑

k=0

(
1− 1√

β(A)

)k

+
1√

β(A)

∞∑
k=0

k

(
1− 1√

β(A)

)k

.

Using the identities
∞∑

k=0

xk =
1

1− x
,

∞∑
k=0

kxk =
x

(1− x)2
, 0 ≤ x < 1,

for x = 1− 1/
√

β(A), we get

E(XA) ≤ 1 +
1
1√
β(A)

+
1√

β(A)

1− 1√
β(A)

1
β(A)

 = 2
√

β(A).

Lower bound. By Theorem 3, P (XA > k) ≥ Pβ(A),k. The proof in Theorem 2 of the lower
bound case when n ≥ 1000 works equally well for non-integer n, and thus the lower bound in the
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theorem statement is true when β(A) ≥ 1000. For the β(A) < 1000 case, we begin by observing
that because Pβ(A),k ≥ Pbβ(A)c,k, we have E(XA) ≥ E(Wbβ(A)c). The proof of Theorem 2 states
that we proved by computer computation that for integers n < 1000, E(Wn) >

√
πn/2 + 2/3.

Thus E(XA) >
√

πbβ(A)c/2+2/3. The right hand side of this inequality is always greater than√
πβ(A)/2− 2/5 for β(A) ≥ 1, and thus

E(XA) >

√
πβ(A)

2
− 2

5
.

ut

C Proofs of Theorems 5 and 6

There are a number of supporting lemmas in addition to the theorem proofs.

Lemma 14. If t ≥ 2, n ≥ 1000, N = nt/(t − 1), and 0 ≤ k ≤ 2
√

N lnN , then k/(tn) < 1/8,
and k/N < 1/6.

Proof. The ratio k/(tn) is maximized when k is at its maximum:

k

tn
≤ 2

√
N lnN

tn
= 2

√
ln(tn/(t− 1))

tn(t− 1)
.

The right hand side is at its maximum when t is at its minimum (t = 2):

k/(tn) ≤ 2
√

(ln(2n))/(2n).

The derivative of the right hand side with respect to n is negative for n > e/2. Therefore, we
find the maximum value of k/(tn) when n is its minimum of 1000:

k/(tn) ≤ 2
√

(ln 2000)/2000 < 0.124 < 1/8.

The ratio k/N is maximized when k is at its maximum:

k/N ≤ 2
√

N lnN/N = 2
√

(lnN)/N.

The right hand side decreases for N > e and thus is maximized when N is its minimum of 1000
when n = 1000 and t →∞:

k/N ≤ 2
√

(ln 1000)/1000 < 0.1663 < 1/6.

ut

Lemma 15. If t ≥ 2, n > 0, N = nt/(t− 1), and 0 ≤ k ≤ n, then

k−1∑
j=0

j(t− 1)
tn− j

≥ k(k − 1)
2N

.

If t ≥ 2, n ≥ 1000, and 0 ≤ k ≤ 2
√

N lnN , then

k−1∑
j=0

j(t− 1)
tn− j

≤ k2

2N
+

8k3

21N2
.
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Proof. Start by using the identity j/(tn − j) =
∑∞

m=1(j/(tn))m and separate out the m = 1
terms:

k−1∑
j=0

j(t− 1)
tn− j

= (t− 1)
k−1∑
j=0

∞∑
m=1

(
j

tn

)m

= (t− 1)
k−1∑
j=0

j

tn
+ (t− 1)

k−1∑
j=0

∞∑
m=2

(
j

tn

)m

.

Use the identity
∑k−1

j=0 j = k(k − 1)/2 on the first sum. Because the second sum consists of
nonegative terms, this establishes the lower bound in the lemma statement. Continuing with
the upper bound, for the second sum we know that j/(tn) < 1/8 by Lemma 14 and the fact
that j < k:

k−1∑
j=0

j(t− 1)
tn− j

≤ k(k − 1)
2N

+ (t− 1)
k−1∑
j=0

∞∑
m=2

(
j

tn

)2 (1
8

)m−2

.

For the first term replace k − 1 with k, and for the sum, the powers of 1/8 sum to 8/7, and∑k−1
j=0 j2 = k(k − 1)(2k − 1)/6:

k−1∑
j=0

j(t− 1)
tn− j

≤ k2

2N
+

8
7

(
t− 1
(nt)2

)
k(k − 1)(2k − 1)

6
.

Multiply the second term by t− 1, and replace k(k − 1)(2k − 1) with 2k3 to get

k−1∑
j=0

j(t− 1)
tn− j

≤ k2

2N
+

8k3

21N2
.

ut

Lemma 16. If t ≥ 2, n ≥ 1000, N = nt/(t− 1), and 0 ≤ k ≤ 2
√

N lnN , then

k−1∑
j=0

∞∑
i=2

1
i

(
j(t− 1)
tn− j

)i

≤ 32k3

119N2
.

Proof. Using Lemma 14 and the fact that j < k,

tn− j = tn

(
1− j

tn

)
> tn

(
1− k

tn

)
>

7
8
tn.

Using this inequality and reversing the order of summation,

k−1∑
j=0

∞∑
i=2

1
i

(
j(t− 1)
tn− j

)i

≤
∞∑
i=2

1
i

(
8(t− 1)

7tn

)i k−1∑
j=0

ji.

Using Lemma 1,
k−1∑
j=0

∞∑
i=2

1
i

(
j(t− 1)
tn− j

)i

≤
∞∑
i=2

1
i

(
8

7N

)i ki+1

i + 1
.

Pull a factor of k/(i(i + 1)) out of the sum, and replace i(i + 1) with 6 in the denominator
(because i ≥ 2) to get

k−1∑
j=0

∞∑
i=2

1
i

(
j(t− 1)
tn− j

)i

≤ k

6

∞∑
i=2

(
8k

7N

)2 ( 8k

7N

)i−2

.
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By Lemma 14, k/N < 1/6, 8k/(7N) < 4/21, and the sum of powers of 4/21 is 21/17:

k−1∑
j=0

∞∑
i=2

1
i

(
j(t− 1)
tn− j

)i

≤ k

6

(
8k

7N

)2 21
17

=
32k3

119N2
.

ut

Proof of Theorem 5 (see Section 4 for statement of theorem).
If the first j outputs have not produced a collision, there are n− j remaining outputs that have
not appeared yet and t(n − j) possible inputs corresponding to those outputs. The number of
remaining inputs is tn − j, and thus the probability that the next output does not produce a
collision is t(n − j)/(tn − j) = 1 − j(t − 1)/(tn − j). The probability that Yt,n > k is equal to
the probability that no collision occurs after the first k iterations:

P (Yt,n > k) =
k−1∏
j=0

(
1− j(t− 1)

tn− j

)
.

For the k = 0 case, the product is over zero values, which we define to be equal to 1, the correct
value for P (Yt,n > 0). For k ≤ n each of the factors in the product is positive, and we can apply
the Taylor series, − ln(1− x) =

∑∞
i=1 xi/i, to get

− ln(P (Yt,n > k)) =
k−1∑
j=0

∞∑
i=1

1
i

(
j(t− 1)
tn− j

)i

.

Separating the i = 1 terms gives

− ln(P (Yt,n > k)) =
k−1∑
j=0

j(t− 1)
tn− j

+
k−1∑
j=0

∞∑
i=2

1
i

(
j(t− 1)
tn− j

)i

. (6)

Using the fact that the second sum consists of nonnegative terms along with the first inequality
in Lemma 15 gives

− ln(P (Yt,n > k)) ≥ k(k − 1)
2N

,

which establishes the upper bound in the theorem statement. Applying the second inequality
of Lemma 15 to the first term of equation (6), and Lemma 16 to the second term gives

− ln(P (Yt,n > k)) ≤ k2

2N
+

8k3

21N2
+

32k3

119N2
.

Grouping the last two terms and observing that 8/21 + 32/119 < 2/3 establishes the lower
bound in the theorem statement. ut

Proof of Theorem 6 (see Section 4 for statement of theorem).
We begin with the probability bounds in Theorem 5 and proceed almost exactly as we did in
Theorem 2. For the upper bound, the logic is the same except that N is used in place of n, and
this gives

E(Yt,n) <

√
πN

2
+

8
5
.
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as required. For the lower bound, N is used in place of n, and the probability expression uses
the constant 2/3 instead of 1/6: e−k2/(2N)−2k3/(3N2) instead of e−k2/(2n)−k3/(6n2). This gives

E(Yt,n) >

√
πN

2
− 4

3
− 2

√
N lnN

N2 − 2
.

If n ≥ 1000, the final term never exceeds 1/6, and thus

E(Yt,n) >

√
πN

2
− 3

2
.

ut

D Proofs of Theorems 7 and 8

There are a number of supporting lemmas in addition to the theorem proofs.

Lemma 17. Let h be a function of d inputs and n outputs (d > n), such that for i = 1, . . . , n,
there are di inputs that map to the ith output Ri. Let A be a random variable such that P (A =
Ri) = di/d, i = 1, . . . , n. Let k be an integer, 0 ≤ k ≤ n. Then P (Zh > k) = P (XA > k)/Pd,k.

Proof. To get P (Zh > k) we need to sum the probabilities corresponding to the possible sets
of non-colliding outputs (see Definition 9):

P (Zh > k) =
(k!)Sk({d1, . . . , dn})

d(d− 1) . . . (d− k + 1)
.

But Sk({d1, . . . , dn}) = dkSk(A), and P (XA > k) = (k!)Sk(A):

P (Zh > k) =
dkP (XA > k)

d(d− 1) . . . (d− k + 1)
.

But Pd,k = d(d− 1) . . . (d− k + 1)/dk, and the statement of this lemma follows. ut

Lemma 18. Consider the set of functions h of d inputs and at most n outputs (n > 1) such
that β(h) = β0 for some constant β0. Let di be the number of inputs that map to Ri, the ith

output of h. Then P (Zh > k) is some function Q of k and d1, . . . , dn. Let β1 = dβ0/(d−1+β0).
If we generalize Q to permit non-integer values for d1, . . . , dn, then Q is a maximum across the
set of functions h when h = hmax, where

dmax
1 = d(1 +

√
((n/β1)− 1)(n− 1))/n,

dmax
i = d(1−

√
((n/β1)− 1)/(n− 1))/n, i = 2, . . . , n,

and is a minimum when h = hmin, where m = dβ1e and

dmin
1 = d(1−

√
((m/β1)− 1)(m− 1))/m,

dmin
i = d(1 +

√
((m/β1)− 1)/(m− 1))/m, i = 2, . . . ,m,

dmin
i = 0, i = m + 1, . . . , n.
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Proof. Consider the random variable A such that P (A = Ri) = di/d. Then

β(A) =
1∑n

i=1

(
di
d

)2 =
d∑n

i=1

(
di
d + di(di−1)

d

) =
d

1 + (d− 1)
∑n

i=1
di(di−1)
d(d−1)

=
d

(d− 1) 1
β0

+ 1
=

dβ0

d− 1 + β0
= β1.

Because β0 and d are constants, β1 is also a constant. By Lemma 17, P (Zh > k) = P (XA >
k)/Pd,k. Because d, k, and β(A) = β1 are constants, minimizing or maximizing P (XA > k) is
the same as minimizing or maximizing P (Zh > k). The statement of this lemma follows from
Lemma 10. ut

Lemma 19. Let d, n, and k be positive integers, d > n ≥ k ≥ 2, β0 a real number, β1(d) =
dβ0/(d − 1 + β0), 1 ≤ β0 ≤ n(d − 1)/(d − n), and αd =

√
((n/β1(d))− 1)/(n− 1). Then

p(d) = (1− αd)k−1(1 + (k − 1)αd)/Pd,k never increases as d increases.

Proof. If β0 = 1, then p(d) = 0 and this lemma is trivially true. Assume that β0 > 1 for the
rest of this proof. Consider the ratio p(d)/p(d + 1). We can apply Lemma 11 with d used in
place of n, u = αd+1, v = αd, g(u) = p(d + 1)Pd+1,k, and g(v) = p(d)Pd,k because the required
relationship αd =

√
1/d2 + (1− 1/d2)α2

d+1 holds. (This is a little confusing because the n in
this lemma has no connection with the n in Lemma 11.) Then p(d)/p(d + 1) is a minimum
across varying β0 when αd+1 = 0 and αd = 1/d and thus

p(d)
p(d + 1)

≥
(

d− 1
d

)k−1 (d + (k − 1)
d

)
Pd+1,k

Pd,k
.

Because Pd,k = (1− 1/d)(1− 2/d) . . . (1− (k − 1)/d), we can show that

Pd+1,k =
(

d

d− (k − 1)

)(
d

d + 1

)k−1

Pd,k.

Then
p(d)

p(d + 1)
≥
(

d− 1
d + 1

)k−1 (d + (k − 1)
d− (k − 1)

)
.

The expression on the right hand side (with d in place of n) was shown in Lemma 12 to have a
lower bound of 1. This means p(d)/p(d+1) ≥ 1, and thus p(d) never increases as d increases. ut

Lemma 20. (1 + 1/x)x > e(1− 1/(2x + 4/3)) for all positive real x.

Proof. (1 + 1/x)x = ex ln((x+1)/x) = e−x ln(x/(x+1)) = e−x ln(1−u), where u = 1/(x + 1). From the
Taylor series of − ln(1−u), if u > 0 then − ln(1−u) > u+u2/2+u3/3. Thus (1+1/x)x > e1−v,
where v = (3x2 + 7x + 6)/(6(x + 1)3). From the Taylor series of e−v, if v > 0, then e−v >
1− v + v2/2− v3/6. With some algebra, this gives (1 + 1/x)x > e(1− 1/(2x + 4/3) + w), where

w =
486x8 + 2889x7 + 7587x6 + 11889x5 + 12831x4 + 10114x3 + 5508x2 + 1728x + 216

1296(3x + 2)(x + 1)9
.

Because w is clearly positive for x > 0, the lemma statement follows. ut
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Proof of Theorem 7 (see Section 5 for statement of theorem).
Let β1 = dβ(h)/(d− 1 + β(h)). β1 = β(A) for the random variable A corresponding to function
h (see proof of Lemma 18).

Upper bound. If k > n, the upper bound is trivially true because P (Zh > k) = 0. For the rest
of the upper bound proof, assume k ≤ n. Let α =

√
((n/β1)− 1)/(n− 1)). Let x = (1− α)/n,

y = (1+(n−1)α)/n, and define function hmax as follows: dmax
1 = y, and dmax

i = x for i = 2, . . . , n.
By Lemma 18, P (Zh > k) is a maximum when h = hmax. Using Lemma 17 and proceeding
similarly to the upper bound proof of Theorem 3,

P (Zhmax > k) = (1− α)k−1(1 + (k − 1)α)Pn,k/Pd,k.

By Lemma 19, P (Zhmax > k) never increases as d increases, and is maximized when d is its
minimum value (d = n + 1). With some algebra, this gives β1 = (n + 1)β(h)/(n + β(h)),
α =

√
((n2/β(h))− 1)/(n2 − 1)), Pn,k/Pd,k = (1 + 1/n)k−1(1− (k − 1)/n), and thus

P (Zhmax > k) ≤ (1− α)k−1(1 + (k − 1)α)
(

1 +
1
n

)k−1 (
1− k − 1

n

)
. (7)

The derivative of the right hand side of (7) with respect to n is k(k − 1) times itself times

1
n(n + 1)(n− (k − 1))

− (1− 1/β(h))n
(1− α)(1 + (k − 1)α)(n2 − 1)2

.

This derivative is minimized by minimizing k. With a little algebra, one can show that when k
is at its minimum of 2, the derivative goes to zero. Thus the derivative is never negative and
the right hand side of inequality (7) is a maximum as n →∞. As n →∞, the last two factors
become 1, limn→∞ α = 1/

√
β(h), and the inequality becomes

P (Zh > k) ≤
(

1− 1√
β(h)

)k−1(
1 +

k − 1√
β(h)

)
≤ e

− k−1√
β(h)

(
1 +

k − 1√
β(h)

)
.

The second upper bound is based on e−x > 1− x for x > 0.
Lower bound. The lower bound is trivially true if k < 2 because P (Zh > 0) = P (Zh > 1) = 1.

For the rest of this proof, assume k ≥ 2. Let m = dβ1e, and redefine α, x, and y as follows:
α =

√
((m/β1)− 1)/(m− 1)), x = (1 − (m − 1)α)/m, and y = (1 + α)/m. Because x ≥ 0, we

have α ≤ 1/(m− 1). Define hmin as follows: dmin
1 = x, dmin

i = y for i = 2, . . . ,m, and dmin
i = 0

for i = m + 1, . . . , n. By Lemma 18, P (Zh > k) is a minimum when h = hmin. Using Lemma 17
and proceeding similarly to the lower bound proof of Theorem 3,

P (Zh > k) ≥ Pβ1,k/Pd,k.

Let g(d) be the right hand side of the last inequality:

g(d) =
Pβ1,k

Pd,k
=

k−1∏
i=0

(
1− i

β1

1− i
d

)
.

Recalling that β1 = dβ(h)/(d− 1 + β(h)), and taking the derivative of g(d), we find

∂g(d)
∂d

=
(d− β1)g(d)

d(d− 1)

k−1∑
i=0

i(i− 1)
(β1 − i)(d− i)

.
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This derivative is nonnegative for d > β1 and k < β1 + 1. However, d ≥ n + 1, n ≥ m, m ≥ β1,
and thus d ≥ β1 + 1. Therefore, g(β1 + 1) is a lower bound on g(d):

P (Zh > k) ≥ Pβ1,k

Pβ1+1,k
=
(

1 +
1
β1

)k−1 (
1− k − 1

β1

)
.

Recall that this inequality is only valid if k − 1 < β1. For k > m, P (Zh > k) = 0 . This occurs
because there might exist a function h with only m outputs that has the required β(h) and
thus must have a collision after selecting m + 1 inputs. Solving β1 = dβ(h)/(d− 1 + β(h)) with
d = β1+1 gives β1 =

√
β(h). Replacing β1 with

√
β(h) in the last inequality gives the first lower

bound in the theorem statement. The second lower bound comes from applying Lemma 20 with
x =

√
β(h). ut

Proof of Theorem 8 (see Section 5 for statement of theorem).
For the n = 1 case this theorem is true because the collision always occurs on the second input,
and β(h) = 1. For the rest of this proof assume n > 1.

Upper bound. Use the probability upper bound in Theorem 7 and proceed in the same
manner as in the proof of Theorem 4 to show that E(Zh) ≤ 2

√
β(h).

Lower bound. Begin with the expectation equation in Lemma 2 and use the probability
lower bound in Theorem 7. Let m = d

√
β(h)e, b =

√
β(h), and δ = m− b, 0 ≤ δ < 1. Because

the lower bound is zero for k > m, the sum must be stopped at m:

E(Zh) =
∞∑

k=0

P (Zh > k) ≥ 1 +
m∑

k=1

P (Zh > k)

≥ 1 +
m−1∑
k=0

(
1 +

1
b

)k (
1− k

b

)
.

Using the identities

m−1∑
k=0

xk =
xm − 1
x− 1

,
m−1∑
k=0

kxk =
xm(m(x− 1)− x) + x

(x− 1)2

with x = 1 + 1/b and using some algebra, we get E(Zh) ≥ (1 + 1/b)b+δ(b− δ + 1)− 2b. Because
δ < 1, we have (

1 +
1
b

)δ

=

(
1

1− 1
b+1

)δ

≥ 1
1− δ

b+1

=
b + 1

b− δ + 1
,

which gives E(Zh) ≥ (1 + 1/b)b(b + 1) − 2b. By Lemma 20, (1 + 1/b)b > e(1 − 1/(2b + 4/3)).
With some algebra this gives

E(Zh) > (e− 2)b +
e(3b + 1)
2(3b + 2)

.

The final term is always positive, and thus E(Zh) > (e− 2)
√

β(h). ut
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