
On the Hardware Implementation of the MICKEY-128 Stream Cipher

Paris Kitsos2

2Digital Systems and Media Computing Laboratory
School of Science & Technology
Hellenic Open University
Patras, Greece
e-mail: pkitsos@ieee.org

ABSTRACT
Encryption algorithms are becoming more necessary to
ensure the securely transmitted data over insecure
communication channels. MICKEY-128 is a recently
developed stream cipher with two major advantages: (i)
the low hardware complexity, which results in small area and
(ii) the high level of security. FPGA device was used for the
performance demonstration. Some of the first results of
implementing the stream cipher on an FPGA are reported.
A maximum throughput equal to 170 Mbps can be
achieved, with a clock frequency of 170 MHz.

1. INTRODUCTION
The new applications that are generated create new
problems in communication systems. Many times these
systems demand high-speed requirements and other times
demand low hardware complexity. In wired applications,
for example ISDN, these systems usually have to operate
with high-speed. In wireless applications, for example
mobile phones, the systems require low hardware
resources. In all cases, the most critical parameter is the
security level that provided by the encryption algorithms
are used by the communication systems.
 The continuous growing of mobility necessitate to the
scientists to design new encryption algorithms with
special care in speed, security and simplicity. The
simplicity of the algorithms design is major factor that is
simple in software implementation but in the hardware
implementation might be quite complex. RFID tags,
Smart cards and Bluetooth are typical examples of
products where the amount of memory and power is very
limited. The hardware implementations of today’s
algorithms, such as AES cipher, are inefficient for devices
with limited hardware area. So, stream ciphers are used in
cases that the low hardware complexity is necessitated.
 Figure 1 shows the general diagram of the cipher
process with stream cipher. The stream cipher usually
take two parameters, the secret key, K, and the
initialization vector, IV, and produce keystream bits, zt. In
stream encryption each plaintext symbol, Pt, is encrypted
by applying a group operation with a keystream symbol,
zt,,, resulting in a ciphertext symbol ct. In modern cipher
the operation is the simple bitwise XOR.

Figure1: The Cipher Process

Decryption takes the subtraction of the keystream symbol
from the ciphertext symbol. With the bitwise XOR this is
the same operation:

ttt zcm ⊕=
 In this paper the implementation on hardware of a new
stream cipher called MICKEY-128 [1] is investigated.
This cipher has been submitted and it has been under
consideration from the ECRYPT (European Network of
Excellence for Cryptology), project [2]. The stream
cipher MICKEY-128 (which stands for Mutual Irregular
Clocking KEYstream generator) with a 128-bit key is
aimed at area-restricted hardware environments where a
key size of 128 bits is required.

The following of this document is structured as
follows: After an introduction of MICKEY-128 cipher,
the hardware design and architecture approach are
presented. In this section, synthesis results and
comparisons with previous published stream ciphers are
given. Finally, section 4 concludes the paper.

2. MICKEY-128 STREAM CIPHER
MICKET-128 stream cipher is intended to have low
complexity in hardware, while providing a high level of
security. It uses irregular clocking of shift registers, with
some novel techniques to balance the need for guarantees
on period and pseudorandomness against the need to
avoid certain cryptanalytic attacks.
 MICKEY-128 takes two input parameters, the 128-bit
secret key, K, and an initialization variable, IV, anywhere
between 0 and 128-bit in length. Two 128-bit registers R
and S are used in order to build it. The R register is a
Linear Feedback Shift Register (LFSR) and the S register
is a Non-linear Feedback Shift Register (NFSR). Two

mailto:pkitsos@ieee.org

variables are defined. The Control_bit_R and the
Control_bit_S. The Control_bit_R is defined as s43 xor r85
and the Control_bit_S is defined as s85 xor r42 where s43,
s85, r42 and r85 are 42nd bit and 85th bit of the register R,
the 43rd bit and 85th bit of the register S. When
Control_bit_R=0 the register R is a standard LFSR as the
figure 2 shows.

Figure2: The Register R with Control_bit_R=0

When Control_bit_R=1, as well as shifting each bit in the
register to the right, we also XOR it back into the current
stage, as shown in Figure 3. This corresponds to
multiplication by x+1.

Figure3: The Register R with Control_bit_R=1

The figure 4 shows the design of the NFSR S register. The
variables FB0i and FB1i, the transformation tr and the
mathematical equations that the register S uses for each
building can be found in reference [1].

Figure4: The Register S

The overall diagram of MICKEY-128 stream cipher is

shown in figure 5.

Figure5: The MICKEY-128 Block Diagram

3. ARCHITECTURES

3.1. Design Implementation
MICKEY-128 has been designed with dedicated
hardware implementation. The architecture that performs
the MICKEY-128 stream cipher is shown in figure 6.
This architecture consists of the registers R and S
following the specifications demand. It is obvious the way
that the Control_bit_R and the Control_bit_S variables
are defined. Also, the multiplexer MUX it is shown that is
needed in order to the data values are forced in the
registers. Finally, the keystream bits are produced by the
XORing of the r0 and s0 bits.

Figure6: The MICKEY-128 Stream Cipher Architecture

 The register R implementation is illustrated in figure
7.

Figure7: The Implementation of Register R

The Control_bit_R signal helps each AND gate in order
to configure the register and works either in normal mode
or multiplied the current stage with x+1 polynomial.
 For the register S a straightforward implementation
was used.

3.2. Design Results
The proposed architecture (Figure 6) was captured by
using VHDL with structural description logic. The VHDL
code was synthesized for Xilinx (Virtex) FPGA device
[3]. The synthesis results and performance analysis are
shown in Table 1 indicating the number of D Flip-Flops
(DFFs), Configurable Logic Blocks (CLBs) slices and
Function Generators (FGs).

Table 1: Synthesis Results
Resources Use

d
Available Utilization

Device XCV50ECS144
I/Os 6 94 5 %
FGs 333 1536 21.6 %

CLB slices 167 768 21.7 %
DFFs 235 1818 12.9 %

Freq. F (MHz) 170
Throughput

(Mbps) 170

The throughput is estimated after the initialization phase.
The smallest FPGA device with low hardware resources
utilization by the FPGA family was used. Similar
measurements may be done with different FPGA families.

Performance comparisons between the proposed
system and previous published architectures are shown in
Table 2. No other implementation of the MICKET-128
stream cipher has been previously published. So,
comparisons with others synchronous stream ciphers [4-6]
are given in order to have a fair and detailed comparison
of the proposed system.

In [4], a hardware implementation of the well-known
A5/1 cipher is presented, which is used in GSM mobile
phones. The W7 stream cipher in [4] is a synchronous
stream-cipher optimized for efficient hardware
implementation at very high data rates. Finally, the RC4

is used in IEEE 802.11b. In [5], the E0 algorithm that
Bluetooth system used is presented.

Table 2: Hardware Performance Comparisons

Stream
Cipher FPGA Device F (MHz) Throughput

(Mbps)
A5/1 [4] 2V250FG25 188.3 188.3
W7 [4] 2V250FG25 96 768
RC4 [4] 2V250FG25 60.8 121
E0 [5] 2V250FG25 189 189

WG [6] ASIC 1000 125
Proposed XCV50ECS14

4
170 170

In [6] the hardware implementation of a new stream
cipher, the WG, is shown. This cipher has been shown in
the latest stream cipher workshop [2].

As the above table illustrates the proposed cipher
implementation achieves competitive frequency and some
times better performance compared with the others. All in
all the cipher achieves a low level of FPGA utilization,
complimentary hardware efficiency and its synthesis
results proves that is suitable for area restricted hardware
implementations.

4. CONCLUSIONS
An efficient hardware implementation of the new stream
cipher MICKEY-128 was presented in this paper. This
cipher has been submitted and has been under
consideration from the ECRYPT project. Two are the
major advantages of the cipher: (i) the low hardware
complexity and (ii) provide high level of security. The
synthesis results prove that the MICKEY-128 cipher is
suitable for FPGA implementation. In addition, the
proposed implementation is suitable for migrations to
other technologies, such as smart cards or RFID tags.

5. REFERENCES
[1] Steve Babbage, Matthew Dodd, “The stream cipher
MICKEY-128”, (ECRYPT) Stream Cipher Project Report
2005/016.
[2] ENCRYPT - European Network of Excellence in
Cryptology, “Call for Stream Cipher Primitives”, Scandinavian
Congress Center, Aarhus, Denmark, 26-27 May 2005,
http://www.ecrypt.eu.org/stream/
[3] Xilinx, San Jose, California, USA, Virtex, 2.5 V Field
Programmable Gate Arrays, 2005, www.xilinx.com.
[4] M. D. Galanis, P. Kitsos, G. Kostopoulos, N. Sklavos, and
C. E. Goutis, “Comparison of the Hardware Implementation of
Stream Ciphers”, accepted for publication in The International
Arab Journal of Information Technology (IAJIT), Colleges of
Computer and Information Society, 2005.
[5] P. Kitsos, N. Sklavos, K. Papadomanolakis and O.
Koufopavlou, “Hardware Implementation of Bluetooth
Security”, IEEE Pervasive Computing, vol. 2, no.1, pp. 21-29,
January-March 2003.
[6] D. Gligoroski, S. Markovski, L. Kocarev and M. Gusev,
“Edon80 - Hardware Synchronous Stream Cipher”, Symmetric
Key Encryption Workshop (SKEW), Scandinavian Congress
Center, Aarhus, Denmark, 26-27 May 2005.

http://www.ecrypt.eu.org/stream/
http://www.xilinx.com

