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Abstract

So far there is no systematic attempt to construct Boolean functions with maxi-
mum annihilator immunity. In this paper we present a construction keeping in mind
the basic theory of annihilator immunity. This construction provides functions with
the maximum possible annihilator immunity and the weight, nonlinearity and alge-
braic degree of the functions can be properly calculated under certain cases. The
basic construction is that of symmetric Boolean functions and applying linear trans-
formation on the input variables of these functions, one can get a large class of
non-symmetric functions too. Moreover, we also study several other modifications
on the basic symmetric functions to identify interesting non symmetric functions
with maximum annihilator immunity. In the process we also present an algorithm to
compute the Walsh spectra of a symmetric Boolean function with O(n2) time and
O(n) space complexity.

Keywords: Algebraic Attack, Algebraic Degree, Algebraic Immunity, Annihilator, Anni-
hilator Immunity, Balancedness, Boolean Functions, Krawtchouk Polynomials, Nonlinear-
ity, Symmetric Boolean Functions.

1 Introduction

Algebraic attack (that uses overdefined systems of multivariate equations to recover the
secret key) has received a lot of attention recently [1,2,8,9,11–13,19,23] in studying security
of the cryptosystems. This adds a new cryptographic property for designing Boolean
functions to be used as building blocks in cryptosystems which is known as algebraic
immunity [3–5, 7, 14, 15, 23]. Later, in Remark 1, we will discuss some problem about the

∗We use the term “Annihilator Immunity” instead of “Algebraic Immunity” referred in the recent
papers [3–5,7, 14,15]. Please see Remark 1 for the details of this notational change.
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term “algebraic immunity” and use the term “annihilator immunity” instead of the earlier
term.

Given an n-variable Boolean function f , different cases related to low degree multiples
of f have been studied in [12, 23]. The main objective is to find out minimum (or low)
degree annihilators of f and 1 + f , i.e., to find out minimum (or low) degree n-variable
nonzero functions g1, g2 such that f ∗ g1 = 0 and (1 + f) ∗ g2 = 0. To mount the algebraic
attack, one needs the low degree linearly independent annihilators [12,23] of f and 1 + f .

Though there are increasing interest in construction of Boolean functions with good
annihilator immunity [3–5,7,14,15], so far there is only one construction method [15] that
can achieve the maximum possible annihilator immunity dn

2
e for an n-variable function.

The heart of the construction in [15] was a function φ2k on even (2k) number of variables
with maximum possible annihilator immunity k. The main problem with φ2k is that no clear
intuition has been provided how one can land into such a complicated structure. Further,
the other cryptographic properties, such as weight, nonlinearity or algebraic degree of the
function φ2k are yet to be answered and only a few experimental results have been provided
in [15] for k = 1, . . . , 8. Also the functions φ2k are not balanced.

In this paper we explain a generic construction idea of functions with maximum anni-
hilator immunity that comes from the basic theory. Most importantly, the cryptographic
properties of our constructions, such as nonlinearity, algebraic degree etc., are theoretically
proved for certain subcases that could not be done for the construction in [15]. Interest-
ingly, for this subcase of our construction with even n, the weight and nonlinearity (both
2n−1−

(
n−1

n
2

)
, we provide exact proofs) matches with the experimental data provided on φ2k

in [15] (no proof). However our functions (in the subcase) are not linear transformation of
φ2k as the algebraic degree of our construction (2blog2 nc) is different from the experimental
results available in [15].

We also provide a large class of balanced Boolean functions with maximum possible
annihilator immunity having nonlinearity ≥ 2n−1 −

(
n
n
2

)
. Under experimental set up, with

a simple heuristic, we show that actually one can achieve much better nonlinearity than
this lower bound (in fact very close to 2n−1 −

(
n−1

n
2

)
). For odd n our construction provides

balanced functions directly with nonlinearity 2n−1 −
(

n−1
n−1

2

)
and algebraic degree (2blog2 nc).

As our basic construction starts from symmetric Boolean functions and the Walsh
spectra of Boolean functions are related to Krawtchouk Polynomials, we need to use the
properties of Krawtchouk Polynomials extensively. In the process we identify an interesting
inequality as explained in Lemma 5. Further, we present an algorithm for calculating the
Walsh spectra of symmetric Boolean functions. This requires O(n2) time and O(n) space
complexity for a symmetric Boolean function on n variables. To the best of our knowledge,
this algorithm is novel and it is not easy to improve it further. The algorithm does not
only use the direct relationship between Walsh spectra of symmetric Boolean function
and Krawtchouk polynomial, but we need to integrate different properties of Krawtchouk
polynomial to get the optimized algorithm.

It is well known that the annihilator immunity (also algebraic degree and nonlinearity)
of a Boolean function is invariant under linear transformation on the input variables. Thus
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one can easily apply linear transformation to get a wider class of functions (which are not
symmetric) from our construction achieving the maximum possible annihilator immunity
(with same algebraic degree and nonlinearity).

Note that there is much scepticism towards using symmetric Boolean functions in cryp-
tosystems. Moreover, the other cryptographic properties of the Boolean functions (whether
symmetric or not) that we consider here are not very good (these functions may be composed
with other functions with different cryptographic properties to get a secondary construction
and those functions may be used in a cryptosystem). Thus, in no way, we are proposing
these functions for direct use in cryptosystems. The motivation of this paper is systematic
theoretical study of Boolean functions with maximum possible annihilator immunity (see
also Remark 1).

The organization of the paper is as follows. In the following section we present the
basic theory behind the construction of Boolean functions with maximum possible annihi-
lator immunity and present a specific construction. In Section 3, we consider symmetric
functions with maximum possible annihilator immunity and calculate the algebraic degree
and nonlinearity of the functions. Some extensions and comparison of the parameters with
a very recent construction method [15] is presented in Section 4. In Section 5, we discuss
the algorithm for calculating Walsh spectra of a symmetric Boolean function. Section 6
concludes the paper.

2 Construction using the Basic Theory

Let us denote the set of n-variable Boolean functions by Bn. The support of a Boolean
function f ∈ Bn is defined as supp(f) = {(x1, . . . , xn)|f(x1, . . . , xn) = 1}. The weight of a
function f ∈ Bn is wt(f) = |supp(f)|. A function f ∈ Bn is balanced if wt(f) = 2n−1.

Any f ∈ Bn can be uniquely represented as a multivariate polynomial over GF (2),
called the algebraic normal form (ANF), as

f(x1, . . . , xn) = a0 +
∑

1≤i≤n

aixi +
∑

1≤i<j≤n

ai,jxixj + . . .+ a1,2,...,nx1x2 . . . xn,

where the coefficients a0, ai,j, . . . , a1,2,...,n ∈ {0, 1}. The algebraic degree, deg(f), is the
number of variables in the highest order term with non zero coefficient. A Boolean function
is affine if there exists no term of degree > 1 in the ANF and the set of all affine functions
is denoted by An. An affine function with constant term equal to zero is called a linear
function.

A Boolean function should be of high algebraic degree to be cryptographically se-
cure [17]. Further, to resist algebraic attack, the function should not have a low degree
multiple [12,23]. It is shown [12] that given any n-variable Boolean function f , it is always
possible to get a Boolean function g with degree at most dn

2
e such that f ∗ g is of degree

at most dn
2
e. Here the functions are considered to be multivariate polynomials over GF (2)

and f ∗ g is the polynomial multiplication over GF (2). Thus while choosing an f , the
cryptosystem designer should be careful that it should not happen that degree of f ∗ g

3



falls much below dn
2
e. Towards defining annihilator immunity [12,14,15,23], it is now clear

that one needs to consider the annihilators of both f, 1 + f . In that line we present the
following definition.

Definition 1

1. Given f ∈ Bn, a nonzero function g ∈ Bn is called an annihilator of f if f ∗ g = 0.
By AN(f) we mean the set of annihilators of f .

2. Given f ∈ Bn, the annihilator immunity of f , denoted by AIn(f) = deg(g), where
g ∈ Bn is the minimum degree nonzero function such that either f ∗ g = 0 or (1 +
f) ∗ g = 0.

It is known [12,23] that for f ∈ Bn, AIn(f) ≤ dn
2
e and in this paper we present construc-

tions achieving the maximum value.

Remark 1 At this point we like to discuss on the term “algebraic immunity” of a Boolean
function. Recently there are many works in the area of algebraic attacks and some of the
initial and important papers are [11–13]. It is now clear that a Boolean function or its
complement, used in a cryptosystem, should not have a low degree annihilator. However,
the algebraic normal form (ANF) of the annihilators are also important. It may very well
happen that an annihilator with higher degree may have a few terms and on the other hand
an annihilator with lower degree may have many more terms in the ANF and in certain
cases, it may be better to use the high degree annihilator with fewer terms than the low
degree annihilator with more terms for the algebraic attack. Thus increase in the degree of
annihilator (of the Boolean function) may not be the only measure in terms of resistance
of a cryptosystem (that uses the Boolean function) against algebraic attack. Based on the
existing research so far, it is difficult to formalize or quantify the measure of resistance of
a Boolean function used in a cryptosystem against algebraic attack. It clearly depends on
how the Boolean function is used in the construction of cryptosystem and how the algebraic
attack is designed against the complete scheme. These arguments go against using the term
“algebraic immunity”.

On the other hand, if one just concentrates on a Boolean function, then it is meaningful
to consider the annihilators of f, 1 + f to study its resistance against algebraic attack and
one would always like to get a Boolean function f , such that both f and 1 + f do not have
any annihilator with degree < dn

2
e. Further, if one considers the algebraic degree of an n-

variable Boolean function, then it may very well happen that the function f(x1, x2, . . . , xn)
is of very good algebraic degree, but if one conditions one variable, say f(x1 = 0, x2, . . . , xn),
the degree falls drastically. However, this is not true in terms of algebraic immunity. It
can be checked that if f has algebraic immunity t, then after conditioning any k variables,
the algebraic immunity of the subfunction on n − k variables will be ≥ t − k. This is
clearly a stronger property than the algebraic degree of a Boolean function. Based on these
arguments and as the term has already been appeared in many papers [3–5, 7, 14, 15], one
may be tempted to use the term “algebraic immunity”.
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To get out of this confusion, in this paper we use the term “annihilator immunity” as
this clearly quantifies the measure how good a Boolean function is in terms of not having
low degree annihilators, and we feel this is also a properly definable necessary (may not be
sufficient) condition for a Boolean function with respect to the resistance against algebraic
attack. As long as no better (and properly quantifiable) definition related to Boolean func-
tion is proposed in terms of resistance against algebraic attack, “annihilator immunity”
of Definition 1(2) remains an important topic to study in the field of cryptographically
significant Boolean functions.

The idea of our construction comes from the following.

Construction 1 Let f, f1, f2 ∈ Bn with the following conditions.

1. There is no annihilator of f1, f2 having degree < dn
2
e.

2. supp(f) ⊇ supp(f2) and supp(1 + f) ⊇ supp(f1).

Then we have the following important result.

Lemma 1 Let f ∈ Bn be a function as described in Construction 1. Then AIn(f) = dn
2
e.

Proof: As supp(1 + f) ⊇ supp(f1), AN(1 + f) ⊆ AN(f1) and as supp(f) ⊇ supp(f2),
AN(f) ⊆ AN(f2). Since there is no annihilator of f1, f2 having degree < dn

2
e, neither f

nor 1 + f can have any annihilator of degree < dn
2
e. Thus AIn(f) = dn

2
e.

Now we present the other direction.

Lemma 2 Let f ∈ Bn and AIn(f) = dn
2
e. Then there exist f1, f2 ∈ Bn with supp(f1) ⊆

supp(1 + f) and supp(f2) ⊆ supp(f) such that wt(f1) = wt(f2) =
∑dn

2
e−1

i=0

(
n
i

)
and f1, f2

have no annihilator of degree < dn
2
e.

Proof: Since AIn(f) = dn
2
e, f has no annihilator of degree < dn

2
e. That is, there cannot

be any g(x1, . . . , xn) = a0 +
∑n

i=0 aixi + · · ·+
∑

1≤i1...≤idn
2 e−1≤n ai1...idn

2 e−1
xi1 · · ·xidn

2 e−1
such

that g(x1, . . . , xn) = 0 where f(x1, . . . , xn) = 1. That is there is no nonzero solution of
the system of homogeneous linear equations g(x1, . . . , xn) = 0 for (x1, . . . , xn) ∈ supp(f)

on ai’s, i.e., this system has full rank (
∑dn

2
e−1

i=0

(
n
i

)
). So, there must be

∑dn
2
e−1

i=0

(
n
i

)
many

linearly independent equations. Now we construct f2 such that supp(f2) is the set of input

vectors corresponding to
∑dn

2
e−1

i=0

(
n
i

)
many linearly independent equations. So, f2 has no

annihilator of degree < dn
2
e. Similarly, we can construct f1 considering (1 + f) has no

annihilator of degree < dn
2
e.

Based on Lemma 1 and Lemma 2, we get a clear idea of a construction strategy for a
function with maximum possible annihilator immunity.

For odd n, there is no option other than f1 = f and f2 = 1+ f to have maximum anni-

hilator immunity for f , since wt(f1) + wt(f2) = 2
∑dn

2
e−1

i=0

(
n
i

)
= 2n. This fact also follows

from [14, Corollary 1] that a function on odd number of variables must be balanced (weight
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2n−1 for n-variable function) to achieve the maximum possible annihilator immunity. Also
recently it has been shown [6] that for balanced functions on odd number of variables, it is
enough to consider the annihilators of f (the case for 1+ f will automatically be deduced)
in terms of maximum annihilator immunity. The exact result is as follows.

Proposition 1 [6] Let ψ ∈ Bn (n odd) be balanced function and it does not have any
annihilator with algebraic degree < dn

2
e. Then 1 + ψ has no annihilator with algebraic

degree < dn
2
e. Consequently, AIn(ψ) = dn

2
e.

However, for even n, wt(f1)+wt(f2) = 2
∑dn

2
e−1

i=0

(
n
i

)
= 2n−

(
n
n
2

)
. So, a part of remaining(

n
n
2

)
output points can be chosen randomly to get different functions f without affecting

the annihilator immunity. Hence for even n case this restriction is not as strict as odd n
case.

2.1 A construction for maximum Annihilator Immunity

Let us now present the application of the basic theory for a concrete construction of func-
tions having optimal annihilator immunity.

Construction 2 Let f ∈ Bn.

1. If n is odd then

f(x1, . . . , xn) = 0 for wt(x1, . . . , xn) ≤ bn
2
c,

= 1 for wt(x1, . . . , xn) ≥ dn
2
e.

2. If n is even then

f(x1, . . . , xn) = 0 for wt(x1, . . . , xn) <
n

2
,

= 1 for wt(x1, . . . , xn) >
n

2
,

= b ∈ {0, 1} for wt(x1, . . . , xn) =
n

2
.

Lemma 3 Define two functions f1, f2 ∈ Bn as follows.

f1(x1, . . . , xn) = 1 for wt(x1, . . . , xn) < dn
2
e,

= 0 for wt(x1, . . . , xn) ≥ dn
2
e.

f2(x1, . . . , xn) = 0 for wt(x1, . . . , xn) ≤ dn
2
e,

= 1 for wt(x1, . . . , xn) > dn
2
e.

Then f1, f2 have no annihilator of degree < dn
2
e.
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Proof: We first show that f1 has no annihilator of degree < dn
2
e. Suppose f1 has a nonzero

annihilator g ∈ Bn having degree < dn
2
e of the form

a0 +
n∑

i=0

aixi + · · ·+
∑

1≤i1<...<idn
2 e−1≤n

ai1,...,idn
2 e−1

xi1 · · ·xidn
2 e−1

,

where a’s are in {0, 1}, but not all of them are zero. As g is an annihilator of f1,
g(x1, . . . , xn) = 0 when f1(x1, . . . , xn) = 1. Hence solving the system of homogeneous
linear equations (considering a’s as the variables) formed by g(x1, . . . , xn) = 0 when
f1(x1, . . . , xn) = 1, we must get a nontrivial (not all zero) solution on a’s.

Let us consider an input (x1, . . . , xn), where xi1 , . . . , xit are 1 (t < dn
2
e) and the rest

are 0 with f1(x1, x2, . . . , xn) = 1. Then for this input, we have the homogeneous linear
equation of the form

∑
I⊆{i1,...,it} aI = 0, i.e., ai1,...,it =

∑
I⊂{i1,...,it} aI .

Since f1(0, . . . , 0) = 1, we must have g(0, . . . , 0) = 0, i.e., a0 = 0. As f1(x) = 1 for
wt(x) = 1, we have ai = a0 = 0. Following the same process we have all a’s in g are 0.
Thus g becomes a zero function, which is a contradiction as we have started with nonzero
g. Thus f1 has no annihilator of degree < n

2
.

Now we show that f2 has no annihilator of degree < dn
2
e. Suppose f2 has an an-

nihilator h of degree < dn
2
e. That is, f2(x1, · · · , xn) ∗ h(x1, · · · , xn) = 0. Note that

f1(x1, · · · , xn) = f2(1+x1, · · · , 1+xn), i.e., f2(x1, · · · , xn) = f1(1+x1, · · · , 1+xn). Thus,
f1(1+x1, · · · , 1+xn)∗h(x1, · · · , xn) = 0. Define h′ as h′(x1, · · · , xn) = h(1+x1, · · · , 1+xn),
i.e., h(x1, · · · , xn) = h′(1 + x1, · · · , 1 + xn). This gives deg(h′) = deg(h) < dn

2
e. Hence, we

have f1(1+x1, · · · , 1+xn)∗h′(1+x1, · · · , 1+xn) = 0, i.e., f1(x1, . . . , xn)∗h′(x1, . . . , xn) = 0.
So, f1 has an annihilator of degree < dn

2
e, which is a contradiction.

Thus we get the following theorem.

Theorem 1 Let f(x1, . . . , xn) ∈ Bn constructed by Construction 2. Then AIn(f) = dn
2
e.

Proof: First we prove for odd n. Here supp(1 + f) = supp(f1) and supp(f) = supp(f2),
where f1, f2 are as described in Lemma 3. Thus from Lemma 1 we have the proof for odd
n. Now we will prove for n even. It can be checked that supp(1 + f) ⊇ supp(f1) and
supp(f) ⊇ supp(f2), where f1, f2 are as described in Lemma 3. This, using Lemma 1, gives
the proof for n even.

3 Algebraic Degree and Nonlinearity for a subcase

(Symmetric Functions) of Construction 2

Given the function f in Construction 2, we can consider a special case where f is as follows.

Construction 3

f(x1, . . . , xn) = 0 for wt(x1, . . . , xn) ≤ bn
2
c,

= 1 for wt(x1, . . . , xn) > bn
2
c.
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Note that in this case f is a symmetric Boolean function. A Boolean function is called
symmetric if it outputs the same value for all the inputs of same weight. Thus it is clear
that one can represent an n-variable symmetric Boolean function f(x1, . . . , xn) in a reduced
form by n+ 1 bits string ref such that ref (i) = f(x1, . . . , xn) when wt(x1, . . . , xn) = i. It
is also clear that in the algebraic normal form, a symmetric Boolean function will either
contain all the terms of the same degree monomial or none of them. Thus we can present the
algebraic normal form in a reduced form by n+1 bits string raf such that raf (i) = 1, when
all the i degree monomials are present and raf (i) = 0, when all the i degree monomials are
absent. Thus for an n-variable symmetric Boolean function f , both ref , raf can be seen
as mappings from {0, 1, . . . , n} to {0, 1}.

Now we exactly calculate the algebraic degree, weight and nonlinearity of the functions
in Construction 3.

3.1 Algebraic Degree

The relationship between ref , raf have been presented in [22, Theorem 3] as

ref (i) = (
i∑

k=0

raf (k)

(
i

k

)
) mod 2, (1)

where 0 ≤ i ≤ n. From [10, Page 85], for two integer sequences p, q,

pi =
i∑

k=0

qk

(
i

k

)
iff qi =

i∑
k=0

pk(−1)i−k

(
i

k

)
. (2)

From Equation 1 and Equation 2 we get

Proposition 2 raf (i) = (
i∑

k=0

ref (k)

(
i

k

)
) mod 2.

Proposition 3 Suppose n and k are nonnegative integers with n ≥ k. Let n = 2t+ l where
0 ≤ l < 2t and t ≥ 0. Then we have

1. Let k = 2t + l1 where l1 ≤ l. Then
(

n
k

)
is even iff

(
l
l1

)
is even.

2. Let k = 2t−1 + l2 where l2 < 2t−1. Then
(

n
k

)
is even.

Proof: Define T (x) = a for any integer x = 2ab where b is an odd integer. It can be
checked that T ((2m)!) =

∑m−1
i=0 2i = 2m − 1. For 0 ≤ j < 2m, T ((2m + j)!) = T ((2m)!) +

T ((2m + 1)(2m + 2) · · · (2m + j)) = 2m − 1 + T (1 · 2 · · · j) = 2m − 1 + T (j!).
For item 1, we have k = 2t+l1 where l1 ≤ l. So, T (

(
n
k

)
) = T (n!)−(T (k!)+T ((n−k)!)) =

T ((2t + l)!)− (T ((2t + l1)!)+T ((l− l1)!)) = 2t− 1+T (l!)− (2t− 1+T (l1!)+T ((l− l1)!)) =
T (l!)− (T (l1!) + T ((l − l1)!)) = T (

(
l
l1

)
).
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For item 2, we have k = 2t−1 + l2 where l2 < 2t−1. So, T (
(

n
k

)
) = T ((2t + l)!)−(T ((2t−1 +

l2)!) + T ((2t−1 + l − l2)!)) = 2t − 1 + T (l!)− (2t−1 − 1 + T (l2!) + 2t−1 − 1 + T ((l − l1)!)) =
1 + T (l!)− (T (l1!) + T ((l − l1)!)) = 1 + T (

(
l
l1

)
) ≥ 1. So,

(
n
k

)
is even.

The following result provides the algebraic normal form and degree of f .

Theorem 2 Let f ∈ Bn a symmetric function as given in Construction 3. Then,

1. raf (i) = 0 for i ≤ bn
2
c,

2. raf (bn
2
c+ 1) = 1,

3. raf (i) =
∑i

k=bn
2
c+1

(
i
k

)
mod 2, for i ≥ bn

2
c+ 2,

4. deg(f) = 2blog2 nc.

Proof: Given the function f , it is clear that ref (i) = 0 for 0 ≤ i ≤ bn
2
c and ref (i) = 1

for bn
2
c + 1 ≤ i ≤ n. Thus from raf (i) = (

∑i
k=0 ref (k)

(
i
k

)
) mod 2 (Proposition 2), we get

raf (i) = 0 for i ≤ bn
2
c and raf (bn

2
c+ 1) = 1. So we get the proofs of items 1 and 2.

The item 3 follows from Proposition 2 considering the result from item 1 and using
ref (k) = 1 for k ≥ bn

2
c+ 1.

Suppose t = blog2 nc and l = n − 2t, i.e., n = 2t + l where 0 ≤ l < 2t and t ≥ 0.
For item 4 we need to show that raf (i) = 1 for i = 2t = 2blog2 nc and raf (i) = 0 for
all i > 2t. Now raf (i) =

∑i
k=bn

2
c+1

(
i
k

)
mod 2. Here n = 2t + l, i.e., bn

2
c + 1 = 2t−1 +

b l
2
c + 1. Suppose i = 2t + l1 where 0 ≤ l1 ≤ l. So following the fact

(
i
k

)
= 0 mod 2

for 2t−1 ≤ k < 2t in Proposition 3 (item 2) we have raf (i) =
∑i

k=2t

(
i
k

)
mod 2. Then

raf (i) =
∑l1

j=0

(
2t+l1
2t+j

)
mod 2 as i = 2t + l1. Then following Proposition 3 (item 1) we have

raf (i) =
∑l1

j=0

(
l1
j

)
mod 2 = 2l1 mod 2. Thus, raf (2

t) = 1 as l1 = 0 and raf (i) = 0 for

i > 2t as l1 > 0.

3.2 Nonlinearity

In this section we will analyse the nonlinearity of the function f as explained in Construc-
tion 3. Nonlinearity is one of the most important cryptographic properties of Boolean
functions which is used in cryptosystems to prevent linear attacks [17]. Moreover, this
property is also very interesting from combinatorial point of view.

The nonlinearity of an n-variable function f, denoted as nl(f), is the minimum distance
from the set of all n-variable affine functions, i.e.,

nl(f) = min
g∈A(n)

(d(f, g)).

Walsh transform is a very useful tool in analysing Boolean functions. Let x = (x1, . . . , xn)
and ω = (ω1, . . . , ωn) both belonging to {0, 1}n and x · ω = x1ω1 + . . .+ xnωn. Let f(x) be
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a Boolean function on n variables. Then the Walsh transform of f(x) is an integer valued
function over {0, 1}n which is defined as

Wf (ω) =
∑

x∈{0,1}n

(−1)f(x)+x·ω.

A Boolean function f is balanced iff Wf (0) = 0. The nonlinearity of f is given by

nl(f) = 2n−1 − 1

2
max

ω∈{0,1}n
|Wf (ω)|.

As the function f explained in Theorem 2 is a symmetric Boolean function, we here
concentrate on the Walsh spectra of this class. The Walsh spectra of symmetric Boolean
functions have very nice combinatorial properties related to Krawtchouk polynomial [24].

Krawtchouk polynomial [20, Page 151, Part I] of degree i is given by

Ki(x, n) =
i∑

j=0

(−1)j

(
x

j

)(
n− x

i− j

)
, i = 0, 1, . . . , n. (3)

It is known that for a fixed ω, such that wt(ω) = k,∑
wt(x)=i

(−1)ω·x = Ki(k, n).

Thus it can be checked that if f ∈ Bn is symmetric, then for wt(ω) = k,

Wf (ω) =
n∑

i=0

(−1)ref (i)Ki(k, n).

It is also known that for a symmetric function f ∈ Bn and α, β ∈ {0, 1}n, Wf (α) = Wf (β),
if wt(α) = wt(β). Thus it is enough to calculate the Walsh spectra for the inputs of n+ 1
different weights. Keeping this in mind, given a symmetric Boolean function f ∈ Bn, we
denote rwf (i) = Wf (ω), such that wt(ω) = i. Thus rwf can be seen as a mapping from
{0, . . . , n} to Z.

Let us now list some known results in this area [18,20].

Proposition 4

1. K0(k, n) = 1, K1(k, n) = n− 2k,

2. (i+ 1)Ki+1(k, n) = (n− 2k)Ki(k, n)− (n− i+ 1)Ki−1(k, n),

3. Ki(k, n) = (−1)kKn−i(k, n) (for n even and k odd, Kn
2
(k, n) = 0),

4.
(

n
k

)
Ki(k, n) =

(
n
i

)
Kk(i, n),

10



5. Ki(k, n) = (−1)iKi(n− k, n), (for n even and i odd, Ki(
n
2
, n) = 0),

6. (n− k)Ki(k + 1, n) = (n− 2i)Ki(k, n)− kKi(k − 1, n),

7. (n− i+ 1)Ki(k, n+ 1) = (3n− 2i− 2k + 1)Ki(k, n)− 2(n− k)Ki(k, n− 1).

Proposition 5 For n even, Ki(
n
2
, n) =

{
0 for odd i.

(−1)
i
2

(n
2
i
2

)
for even i.

Proof: For odd i, it is proved in Proposition 4. Now we will prove for even i using induction
on i. For the base step, i.e., i = 0, we have K0(

n
2
, n) =

(n
2
0

)
= 1. We will prove inductive

step. Suppose it is true for i = l, i.e., Kl(
n
2
, n) = (−1)

l
2

(n
2
l
2

)
. Now we will prove for i = l+2.

Following Proposition 4(item 2), we have (l + 2)Kl+2(
n
2
, n) = −(n − l)Kl(

n
2
, n) (in the

proposition, we put l + 1 instead of i). So, Kl+2(
n
2
, n) = (−1)

l
2
+1 n−l

l+2

(n
2
l
2

)
= (−1)

l
2
+1

( n
2

l
2
+1

)
.

Hence proved.

Let us now concentrate on the Walsh spectra of the symmetric function f as explained
in Construction 3.

Lemma 4 Consider the function f on n number of variables as given in Construction 3.

1. For k even, rwf (k) =

{
Kn

2
(k, n) for even n.

0 for odd n.

2. For k odd, rwf (k) = 2
∑bn−1

2
c

i=0 Ki(k, n).

3. rwf (1) = 2
(

n−1
bn

2
c

)
.

4. rwf (n) =

{
(−1)

n
2

(
n
n
2

)
for even n.

(−1)
n−1

2 2
(

n−1
n−1

2

)
for odd n.

5. For even n, rwf (
n
2
) =

{
(−1)

n
4

(n
2
n
4

)
for even n

2
.

2
∑n−2

4
i=0 (−1)i

(n
2
i

)
for odd n

2
.

Proof: From Proposition 4(3), we have Ki(k, n) = (−1)kKn−i(k, n), i.e., if k is even,
Ki(k, n) = Kn−i(k, n). Now

rwf (k) =
n∑

i=0

(−1)ref (i)Ki(k, n) =

bn
2
c∑

i=0

Ki(k, n)−
n∑

i=bn
2
c+1

Ki(k, n),

as

ref (i) = 0 for 0 ≤ i ≤ bn
2
c and

= 1 for bn
2
c < i ≤ n.
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Moreover,
n∑

i=bn
2
c+1

Ki(k, n) =

dn
2
e−1∑

j=0

Kj+bn
2
c+1(k, n) =

dn
2
e−1∑

j=0

Kn−j(k, n) =

dn
2
e−1∑

i=0

Ki(k, n) =

bn−1
2

c∑
i=0

Ki(k, n). Hence, rwf (k) = Kn
2
(k, n) for even n and rwf (k) = 0 for odd n. This

proves the first item.
For the second item, note that Ki(k, n) = −Kn−i(k, n) as k is odd. Following the proof

of item 1, we get rwf (k) = 2
∑bn−1

2
c

i=0 Ki(k, n) (the even n and odd k case is handled under
the same formula as Kn

2
(k,n) = 0). So, we prove the second item.

For the third item, note that, Ki(1, n) =
(

n−1
i

)
−

(
n−1
i−1

)
. Thus, following item 2, rwf (1) =

2
∑dn

2
e−1

i=0 (
(

n−1
i

)
−

(
n−1
i−1

)
) = 2

(
n−1

dn
2
e−1

)
. So, for odd n, rwf (1) = 2

(
n−1
n−1

2

)
and for even n,

rwf (1) = 2
(

n−1
n
2
−1

)
= 2

(
n−1

n
2

)
. Therefore for any n, rwf (1) = 2

(
n−1
bn

2
c

)
.

For the fourth item, note that, Ki(n, n) = (−1)iKi(0, n) = (−1)i
(

n
i

)
. For n even,

following item 1, rwf (n) = Kn
2
(n, n) = (−1)

n
2Kn

2
(0, n) = (−1)

n
2

(
n
n
2

)
. For odd n, following

item 2, rwf (n) = 2
∑n−1

2
i=0 (−1)i

(
n
i

)
= 2

∑n−1
2

i=0 (−1)i(
(

n−1
i

)
+

(
n−1
i−1

)
) = ±2

(
n−1
n−1

2

)
(positive when

n = 1 mod 4, negative when n = 3 mod 4).
For fifth item, following item 1 of this lemma and Proposition 5 the case n

2
even is

proved. Similarly, following item 2 of this lemma and Proposition 5 the case n
2

odd is
proved.

Lemma 5 For 1 ≤ k ≤ bn−1
2
c and 0 ≤ i ≤ bn−1

2
c, Ki(1, n) ≥ |Ki(k, n)|.

Proof: Note that, Ki(1, n) =
(

n−1
i

)
−

(
n−1
i−1

)
≥ 0 for 0 ≤ i ≤ bn−1

2
c and that implies

|Ki(1, n)| = Ki(1, n) in 0 ≤ i ≤ bn−1
2
c.

First, we will prove it for i ≥ k using induction on k. In this direction for the base step
we need to show Ki(1, n) ≥ |Ki(1, n)| (which is obvious) and Ki(1, n) ≥ |Ki(2, n)|. Now
Ki(2, n) =

(
n−2

i

)
− 2

(
n−2
i−1

)
+

(
n−2
i−2

)
and Ki(1, n) =

(
n−1

i

)
−

(
n−1
i−1

)
=

(
n−2

i

)
+

(
n−2
i−1

)
−

(
n−2
i−1

)
−(

n−2
i−2

)
=

(
n−2

i

)
−

(
n−2
i−2

)
. If Ki(2, n) ≥ 0 then Ki(1, n) − Ki(2, n) = 2(

(
n−2
i−1

)
−

(
n−2
i−2

)
) ≥ 0

as (i − 1) ≤ bn−2
2
c. If Ki(2, n) ≤ 0 then Ki(1, n) + Ki(2, n) = 2(

(
n−2

i

)
−

(
n−2
i−1

)
) ≥ 0 for

i ≤ bn−2
2
c. Note that, bn−1

2
c = bn−2

2
c when n is even and

(
n−2

i

)
−

(
n−2
i−1

)
= 0 for i = bn−1

2
c

when n is odd. Therefore, |Ki(1, n)| ≥ |Ki(2, n)|, i.e., Ki(1, n) ≥ |Ki(2, n)|. Thus the base
steps are proved.

Suppose for some 1 ≤ k < bn−1
2
c, Ki(1, n) ≥ |Ki(j, n)| for all j, 1 ≤ j ≤ k. Now we

will prove Ki(1, n) ≥ |Ki(k + 1, n)|. From Proposition 4(6), we have
(n− k)Ki(k + 1, n) = (n− 2i)Ki(k, n)− kKi(k − 1, n),
i.e., (n− k)|Ki(k + 1, n)| ≤ (n− 2i)|Ki(k, n)|+ k|Ki(k − 1, n)|,
i.e., (n− k)|Ki(k + 1, n)| ≤ (n− 2i)Ki(1, n) + kKi(1, n),
i.e., |Ki(k + 1, n)| ≤ n−2i+k

n−k
Ki(1, n),

i.e., |Ki(k + 1, n)| ≤ Ki(1, n), since n−2i+k
n−k

≤ 1 for i ≥ k. So, the proof is completed for

j = k + 1. Hence, Ki(1, n) ≥ |Ki(k, n)| for 0 ≤ i ≤ bn−1
2
c, 1 ≤ k ≤ bn−1

2
c and i ≥ k.
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Now we will prove for 0 ≤ i < k ≤ bn−1
2
c. Since k > i, following the above proof,

we have Kk(1, n) ≥ |Kk(i, n)| by interchanging the role of k and i. Thus,
(

n
i

)
Kk(1, n) ≥(

n
i

)
|Kk(i, n)|. Now following Proposition 4(4), we have

(
n
i

)
Kk(1, n) ≥

(
n
k

)
|Ki(k, n)|, i.e.,(

n
i

)(
n
k

)Kk(1, n) ≥ |Ki(k, n)|. (4)

Further, following Proposition 4(4), we have Kk(1, n) =
(n

k)
(n

1)
K1(k, n) =

(n
k)
n

(n − 2k) and

Ki(1, n) =
(n

i)
n

(n − 2i). So, Kk(1,n)
Ki(1,n)

=
(n

k)(n−2k)

(n
i)(n−2i)

, i.e., Kk(1, n) =
(n

k)(n−2k)

(n
i)(n−2i)

Ki(1, n). Now

putting the value of Kk(1, n) in Equation 4, we have n−2k
n−2i

Ki(1, n) ≥ |Ki(k, n)|, i.e.,

Ki(1, n) ≥ |Ki(k, n)|, since n−2k
n−2i

< 1 as i < k. Hence the proof.

In the next corollary we extend the range of i and k.

Corollary 1

1. For odd n, |Ki(1, n)| ≥ |Ki(k, n)| where 0 ≤ i ≤ n and 1 ≤ k ≤ n− 1.

2. For even n, |Ki(1, n)| ≥ |Ki(k, n)| where 0 ≤ i ≤ n and 1 ≤ k ≤ n− 1 except i = n
2

or k = n
2
.

Proof: The proof for 0 ≤ i ≤ bn−1
2
c and 1 ≤ k ≤ bn−1

2
c is done in Lemma 5. The

remaining part can be proved using the symmetry relations Ki(k, n) = (−1)kKn−i(k, n)
and Ki(k, n) = (−1)iKi(n− k, n) in Proposition 4(item 3 and item 5).

When n is even the relation proved above is not true for i = n
2

and even k, since
Kn

2
(1, n) = 0 and Kn

2
(k, n) is a non zero number for even k.

Theorem 3 Consider the functions f ∈ Bn, as explained in Construction 3. Then nl(f) =
2n−1 −

(
n−1
bn

2
c

)
.

Proof: First we prove that rwf (1) is maximum among all rwf (k) in 0 ≤ k ≤ n.
Case 1. Let n be odd. First we show that |rwf (k)| ≤ rwf (1) for all k in the range

1 ≤ k ≤ n − 1. We know, |rwf (k)| = |2
∑bn−1

2
c

i=0 Ki(k, n)| ≤ 2
∑bn−1

2
c

i=0 |Ki(k, n)|. From
Lemma 5 we have, Ki(1, n) ≥ |Ki(k, n)| for 1 ≤ k ≤ n− 1, and 0 ≤ i ≤ bn−1

2
c. This gives,

|rwf (k)| ≤ 2
∑bn−1

2
c

i=0 Ki(1, n) = rwf (1). Again from Lemma 4 we have, rwf (1) = |rwf (n)|.
Finally rwf (0) = 0. Hence rwf (1) ≥ |rwf (k)| for 0 ≤ k ≤ n.

Case 2. Let n be even. Let us first consider that k is odd and in 1 ≤ k ≤ n − 1

except k = n
2
. From Lemma 4 we get that |rwf (k)| = |2

∑bn−1
2

c
i=0 Ki(k, n)|. So following the

same argument used in the previous case, we get |rwf (k)| ≤ rwf (1). For k = n
2

odd, from

Lemma 4(item 5) we have |rwf (
n
2
)| = |2

∑n−2
4

i=0 (−1)i
(n

2
i

)
| ≤ 2

∑n−2
4

i=0

(n
2
i

)
= 2

n
2 . By induction

on n it can be proved that 2
n
2 ≤ 2

(
n−1

n
2

)
= rwf (1). So, for k odd and 1 ≤ k ≤ n−1, the proof
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is done. When k even and 2 ≤ k ≤ n− 2, we have from Lemma 4 that rwf (k) = Kn
2
(k, n).

Now Kn
2
(k, n) =

∑n
2
j=0(−1)j

(
k
j

)(
n−k
n
2
−j

)
≤

∑n
2
j=0

(
k
j

)(
n−k
n
2
−j

)
=

(
n
n
2

)
= rwf (1). Further, since

Kn
2
(0, n) =

(
n
n
2

)
= |Kn

2
(n, n)|, we get, rwf (1) = rwf (0) = |rwf (n)|. Thus |rwf (k)| ≤

rwf (1) for all k in 0 ≤ k ≤ n.
So for any n, nl(f) = 2n−1 − 1

2
|rwf (1)| = 2n−1 −

(
n−1
bn

2
c

)
.

Now we would like to present a few observations.

1. We have checked for odd n up to n = 11, the function we have constructed in
Construction 3, is the only function with maximum possible annihilator immunity
among the symmetric functions. There is no other symmetric Boolean function on
odd number of variables that are of annihilator immunity dn

2
e as far as we have

experimented. This is an important open question to be proved or disproved.

2. For even n, we have found that there are symmetric functions with full annihilator
immunity other than what we have presented in Construction 3. In fact so far we
have experimented, up to n = 12, we found functions with full annihilator immunity
n
2

and nonlinearity greater than that of the function constructed in Construction 3.
In Table 2, we present the maximum nonlinearity available for symmetric Boolean
functions on even number of variables having maximum possible annihilator immu-
nity. This we found by computer search by writing computer program. It will be
interesting to characterize the symmetric functions on even number of variables with
maximum possible nonlinearity and maximum possible annihilator immunity n

2
.

n 4 6 8 10 12
nonlinearity of Construction 3 5 22 93 386 1586

maximum nonlinearity (by exhaustive search) 6 26 94 394 1630

Table 1: Nonlinearity of symmetric Boolean functions on even number of variables by
Construction 3 and maximum nonlinearity by exhaustive search.

4 Results comparing that of φ2k in [15]

We have proved that the nonlinearity of these functions are same as the weight. Most
interestingly they are also same with what observed (not proved) for the function φ2k

in [15] for k = 1, . . . , 8. However, our functions can not always be linear transformation of
φ2k as the algebraic degree of our functions are different from that of φ2k as available in
Table 2.

Let us now concentrate on construction of balanced f with maximum possible annihi-
lator immunity for even n. Refer to the general form of f as given in Construction 2. If b is
so chosen that out of

(
n
n
2

)
inputs, half of the corresponding outputs are 1 and the other half
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n = 2k 2 4 6 8 10 12 14 16
deg(φ2k) 2 4 5 8 9 11 13 16
deg(f) 2 4 4 8 8 8 8 16

Table 2: Comparison of algebraic degree.

are 0, then f will be balanced. To formalize it, consider two sets Sn, Tn ⊂ {x|wt(x) = n
2
},

Sn ∩ Tn = ∅, |Sn| = |Tn| = 1
2

(
n
n
2

)
. Note that there are

( (n
n
2
)

1
2(

n
n
2
)

)
=

( (n
n
2
)

(n−1
n
2

)

)
many different

options to choose any Sn and correspondingly a Tn.
Now we have the following result.

Proposition 6 Let F be an n-variable balanced function (n even) as follows.

F (x1, . . . , xn) = 0 for wt(x1, . . . , xn) <
n

2
,

= 1 for wt(x1, . . . , xn) >
n

2
,

= 0 for (x1, . . . , xn) ∈ Sn,

= 1 for (x1, . . . , xn) ∈ Tn.

Then nl(F ) ≥ 2n−1 −
(

n
n
2

)
.

Proof: Consider the function f in Construction 3. It is clear that 1
2

(
n
n
2

)
many output points

in the truth table of f need to be toggled to get the function F . Thus nl(F ) ≥ nl(f)− 1
2

(
n
n
2

)
.

From Theorem 3, nl(f) = 2n−1−
(

n−1
n
2

)
. Thus nl(F ) ≥ 2n−1−

(
n−1

n
2

)
− 1

2

(
n
n
2

)
= 2n−1− 1

2

(
n
n
2

)
−

1
2

(
n
n
2

)
= 2n−1 −

(
n
n
2

)
.

However, we now show a heuristic construction with which we can really get much
better value of nonlinearity of the balanced functions. Note that we do not present any
theoretical proof here, but only list the experimental results.

For that we first refer to Maiorana-McFarland type of bent functions. The Maiorana-
McFarland class of bent function is as follows [16]. Consider n-variable Boolean functions
on (X, Y ), where X, Y ∈ {0, 1}n

2 of the form f(X, Y ) = X · π(Y ) + g(Y ) where π is a
permutation on {0, 1}n

2 and g is any Boolean function on n
2

variables. The function f
can be seen as concatenation of 2

n
2 distinct (up to complementation) affine function on

n
2

variables. For our purpose we consider π as an identity permutation, g as a constant
zero function and refer to this function on n variables as b(x1, . . . , xn), for n even. Now we
construct an n-variable function G as follows.

G(x1, . . . , xn) = 0 for wt(x1, . . . , xn) <
n

2
,

= 1 for wt(x1, . . . , xn) >
n

2
,

= b(x1, . . . , xn) for wt(x1, . . . , xn) =
n

2
.
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Experimentally we observe that nl(G) = nl(f), for even n up to 16, where f is the function
as described in Construction 3. Note that G is much closer to balancedness than the
function f .

1. If wt(G) < 2n−1, then we choose 2n−1 − wt(G) points randomly from the inputs
having weight n

2
and output 0 of G and toggle those outputs to 1.

2. If wt(G) > 2n−1, then we choose wt(G) − 2n−1 points randomly from the inputs
having weight n

2
and output 1 of G and toggle those outputs to 0.

After this change G will become balanced. Experimentally we get the following result for
the function G in Table 3. We execute 100 runs for each n and take the best result among
the runs in terms of nonlinearity. We also observe that algebraic degree of the reported
functions is the maximum possible, i.e., n− 1.

n = 2k 4 6 8 10 12 14 16

2n−1 −
(

n−1
n
2

)
5 22 93 386 1586 6476 26333

nl(G) 4 22 92 384 1582 6468 26316

4(2n−3 −
(

n−3
n−2

2

)
) 4 20 88 372 1544 6344 25904

Table 3: Comparison of nonlinearities.

We have also checked that G is always the maximum possible, i.e., n−1, for a balanced
function.

As by itself the function φ2k was not balanced, the construction of balanced function
that has been mentioned in [15] with full annihilator immunity is basically x1 + x2 +
φ2k−2, where φ2k−2 was on the variables x3, . . . , x2k. The nonlinearity of this function is
4nl(φ2k−2) = 4(2n−3−

(
n−3
n−2

2

)
). That is also presented in the last line of Table 3. Clearly our

heuristic construction presents better nonlinearity than the balanced functions presented
in [15].

5 Computing Walsh spectra of Symmetric Boolean

Functions

Here we present an algorithm to calculate rwf from ref for a symmetric function f ∈ Bn.
Note that in [21, Page 33] it has been mentioned that calculating the Walsh spectra for
an n-variable symmetric function requires O(n3) time and O(n2) space. In that case∑

wt(x)=i(−1)ω·x = Ki(k, n), has been stored in the (i, k)-th location of an (n + 1) ×
(n+ 1) integer matrix (O(n2) space) and getting the value of each location required O(n)
operations. Thus O(n3) time is spent. Then for each weight k the value of rwf (k) is
calculated in O(n) time and this is again done for (n + 1) different weights [0, . . . , n].
This takes additional O(n2) steps. However, we here show that using the properties of
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Krawtchouk polynomial [18,20] this can be done in O(n2) time and O(n) space. The basic
idea is as follows:

1. (a) At the same step, once we get Ki(k, n) we can calculate Kn−i(k, n) using Propo-
sition 4(3). Thus in the calculation of rwf (k), we can add these two values at
the same time, i.e., we get (−1)ref (i)Ki(k, n) + (−1)ref (n−i)Kn−i(k, n). To get
the complete value of rwf (k), we need to apply this for i = 0 to n−1

2
for n odd.

If n is even, one more step is required where the value (−1)ref (n
2
)Kn

2
(k, n) will

also be added.

(b) At the same step, once we get Ki(k, n) we can calculate Ki(n − k, n) using
Proposition 4(5) and then Kn−i(n − k, n) using Proposition 4(3). Thus in the
calculation of rwf (n − k), we can add these two values at the same time, i.e.,
we get (−1)ref (i)Ki(n− k, n) + (−1)ref (n−i)Kn−i(n− k, n). To get the complete
value of rwf (n − k), we need to apply this for i = 0 to n−1

2
for n odd. If n is

even, one more step is required where the value (−1)ref (n
2
)Kn

2
(n−k, n) will also

be added.

Thus at the same time rwf (k), rwf (n− k) are calculated for 0 ≤ k ≤ n−1
2

, when n is
odd. If n is even, we need to calculate rwf (

n
2
) separately. Thus if Ki(k, n) values are

available in constant time (see below), then calculation of complete Walsh spectra
requires O(n2) time.

2. From Proposition 4(1), we get K0(k, n) = 1, K1(k, n) = n − 2k as the initial val-
ues. Then given Ki−1(k, n) and Ki(k, n), it is possible to get Ki+1(k, n) by Proposi-
tion 4(2). Thus, just by storing two old values and keeping one temporary variable,
it is possible to get Ki(k, n) for each i in constant time.

Moreover, it is clear that apart from storing (n+1) Walsh spectra value, the number
of other variables to be used are constant. Thus the space complexity is O(n).

The exact C program like algorithm (Algorithm 1) is presented below.

Algorithm 1 Algorithm to calculate the Walsh spectra of a Symmetric Boolean function.
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input: number of variables n, symmetric function ref ;
output: Walsh spectra rwf ;
for (k = 0 to bn−1

2
c){

v1 = (−1)ref (0) + (−1)ref (n)+k;
v2 = (−1)ref (0) + (−1)ref (n)+n−k;
p = n− 2k, q = 1;
for (i = 1 to bn−1

2
c){

v1 = v1 + ((−1)ref (i) + (−1)ref (n−i)+k)p;
v2 = v2 + ((−1)ref (i)+i + (−1)ref (n−i)+i+n−k)p;

r = (n−2k)p−(n−i+1)q
i+1

;

q = p, p = r;
}
if n is even{

i = n
2
;

v1 = v1 + (−1)ref (i)p;
v2 = v2 + (−1)ref (i)+ip;

}
rwf (k) = v1, rwf (n− k) = v2;

}
if (n is even){

k = n
2
;

v1 = (−1)ref (0) + (−1)ref (n)+k;
p = n− 2k, q = 1;
for (i = 1 to bn−1

2
c){

v1 = v1 + ((−1)ref (i) + (−1)ref (n−i)+k)p;

r = (n−2k)p−(n−i+1)q
i+1

;

q = p, p = r;
}
i = n

2
;

v1 = v1 + (−1)ref (i)p;
rwf (k) = v1;

}

6 Conclusion

In this paper we could identify the basic theory towards the construction of Boolean func-
tions with full annihilator immunity. Based on the theory we present some concrete con-
struction ideas. Further we could study the other cryptographic properties like nonlinearity
and algebraic degree theoretically. Our work compares favourably than what has been pre-
sented in a recent paper [15].

Examples are now available [14, Section 4.1] that there exist Boolean functions having
optimum parameters in terms of different cryptographic properties such as balancedness,
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nonlinearity, algebraic degree, annihilator immunity and correlation immunity. However,
there is no such constructions yet in that direction. The existing constructions, that achieve
optimization in terms of the parameters balancedness, nonlinearity, algebraic degree, and
correlation immunity, do not provide maximum possible annihilator immunity. This is an
important open area of research.
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