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Abstract. We examine the role of session key construction in provably-
secure key establishment protocols. We revisit an ID-based key establish-
ment protocol due to Chen & Kudla (2003) and an ID-based protocol
2P-IDAKA due to McCullagh & Barreto (2005). Both protocols carry
proofs of security in a weaker variant of the Bellare & Rogaway (1993)
model where the adversary is not allowed to make any Reveal query.
We advocate the importance of such a (Reveal) query as it captures
the known-key security requirement. We then demonstrate that a small
change to the way that session keys are constructed in both protocols
results in these protocols being secure without restricting the adversary
from asking the Reveal queries in most situations. We point out some
errors in the existing proof for protocol 2P-IDAKA, and provide proof
sketches for the improved Chen & Kudla’s protocol. We conclude with a
brief discussion on ways to construct session keys in key establishment
protocols.

1 Introduction

Key establishment protocols are used for distributing shared keying material
in a secure manner. For example, today’s cryptosystems, such as AES, use key
establishment schemes to establish shared keying material. However, despite
their importance, the difficulties of obtaining a high level of assurance in the
security of almost any new, or even existing, protocols are well illustrated with
examples of errors found in many such protocols years after they were pub-
lished [1,12,13,22–25].

The treatment of computational complexity analysis adopts a deductive rea-
soning process whereby the emphasis is placed on a proven reduction from the
problem of breaking the protocol to another problem believed to be hard. Such
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an approach for key establishment protocols was made popular by Bellare &
Rogaway [4] who provided the first formal definition for a model of adversary
capabilities with an associated definition of security (which we refer to as the
BR93 model in this paper). Since then, many research efforts have been oriented
towards this end which have resulted in numerous protocols with accompanying
computational proofs of security proposed in the literature. In 1995, Bellare and
Rogaway analysed a three-party server-based key distribution (3PKD) proto-
col [5] using an extension to the BR93 model. A more recent revision to the
BR93 model was proposed in 2000 by Bellare, Pointcheval and Rogaway [3].
In independent yet related work, Bellare, Canetti, & Krawczyk [2] built on the
BR93 model and introduced a modular proof model. However, some drawbacks
with this formulation were discovered and this modular proof model was sub-
sequently modified by Canetti & Krawczyk [9], and will be referred to as the
CK2001 model in this paper.

Protocols in the BR93 Model. The BR93 model is probably one of the most
widely used proof models in the computational complexity approach for protocol
analysis. In the model, the probabilistic polynomial-time (PPT) adversary con-
trols all the communications that take place between parties via a pre-defined
set of oracle queries, namely: Send, Reveal, and Corrupt. The Reveal query allows
an adversary to expose session keys for uncorrupted parties, whilst the Corrupt
query allows the adversary to corrupt any principal at will, and thereby learn
the complete internal state of the corrupted principal. We observe that several
protocols proven secure in the BR93 model restrict the adversary from asking
the Reveal query. However, we argue that such a query is realistic in a real-world
implementation as an adversary is often assumed to have the capability to ac-
quire session keys. Such a (Reveal) query is essential as it allows us to model
the scenario whereby each session key generated in one protocol round is inde-
pendent and determines whether the particular session key will be exposed if
other secret keys are compromised. In other words, the Reveal query captures
the known-key security requirement in key establishment protocols, whereby a
protocol should still achieve its goal in the face of a malicious adversary who has
learned some other session keys [7,15]. In addition, omission of the Reveal query
to the owner of the Test session in the proof model could also result in protocols
vulnerable to reflection attacks being proven secure in such a model.

Case Studies. We revisit an ID-based key establishment protocol due to Chen
& Kudla [10] and an ID-based protocol 2P-IDAKA due to McCullagh & Bar-
reto [20]. Both protocols are role-symmetric and carry proofs of security in the
BR93 model. However, the existing proofs of both protocols restrict the ad-
versary from asking any Reveal query. Their arguments follow on from earlier
work of Blake-Wilson, Johnson, & Menezes [6] who pointed out that it does not
seem possible for role-symmetric protocols to be secure in the BR93 model if
the Reveal query is allowed. In recent work, Jeong, Katz, & Lee [16] present two
protocols T S1 and T S2, both with proofs of security in the BR93 model. This
work contradicts the claim of Blake-Wilson et al. [6] as both protocols T S1 and



T S2 are similar to the protocols analysed by Blake-Wilson et al. [6] in the BR93
model, but without restricting the adversary from asking the Reveal query.

We examine the existing arguments on the restriction of the Reveal query.
We then demonstrate that by making a simple change to the construction of the
session key (and not changing the protocol details), we are able to prove Chen &
Kudla’s protocol secure in an intermediate variant of the BR93 model whereby
the adversary, A, is allowed to ask all the queries available in the model except
asking Reveal queries to the sessions owned by the partner of the target Test
session. Although we are unable to prove the improved protocol secure in the
BR93 model without restricting A from asking the Reveal query due to some
technicality, the improved protocol does not appear to be suffering from any
insecurities even if we allow A to ask any Reveal queries to the perceived partner
of the target Test session. Furthermore, by allowing A to ask Reveal queries
directed at the owner of the Test session in our proof, effectively means that
the improved Chen & Kudla’s protocol is secure against reflection attacks. We
reveal some errors in the existing proof of protocol 2P-IDAKA [20] as well as
the observation that the proof is in a restricted BR93 model whereby A does
not generate the input to the Test session, which is not a normal assumption in
the Bellare–Rogaway models [3–5].

The Importance of Session Key Construction. We observe that there is
neither a formal definition of session key construction in the proof models nor the
existence of a rule of thumb on how session keys in key establishment protocols
should be constructed. Our case studies illustrate that the way session keys are
constructed can have an impact on the security of the protocol in the model. It
appears that certain ways of constructing a session key may contribute to the
security of a key establishment protocol.

Surprisingly, no one has pointed out the importance of session key construc-
tion despite its significance to the security of key establishment protocols. Of
course, we do not claim that session keys constructed in our proposed fashion
will necessarily result in a provably-secure protocol as the security of the protocol
is based on many other factors, such as the underlying cryptographic primitives
used. However, we do claim that having a sound construction of session keys will
reduce the number of possible attacks on the key establishment protocol.

Main Contributions. We regard the main contributions of this paper to be
of three-fold significance:

1. demonstrating that the ID-based protocols of Chen & Kudla and McCullagh
& Barreto can be proven secure in an intermediate BR93 model whereby the
restriction of the Reveal query is only on the responder partner and the owner
of the Test session respectively,

2. identifying the importance of session key constructions in key establishment
protocols and contributing towards a better understanding of how to con-
struct secure session keys in key establishment protocols, and

3. identifying errors in the existing proof of protocol 2P-IDAKA [20].



Organization. Section 2 provides an informal overview of the BR93 model. Sec-
tion 3 revisits the Chen–Kudla ID-based key establishment protocol. We present
the arguments of the existing proof on why the Reveal query is not allowed, and
present an improved protocol. We then explain why the Reveal query cannot
be answered if the adversary A ask any Reveal queries to the partner player of
the target Test session. We conclude this section with a sketch of the proof for
the improved protocol. Section 4 revisits the McCullagh–Barreto protocol 2P-
IDAKA. Similarly to Section 3, we present the arguments of the existing proof on
why the Reveal query is not allowed. We also identify some errors in the existing
proof of the protocol. We then present an improved protocol. Section 5 presents
our proposal on how session keys should be constructed. Section 6 presents the
conclusions.

2 The BR93 Model

In this section, a brief overview of the BR93 model is provided primarily for the
benefit of the reader in understanding the model [4].

2.1 Adversarial Powers

The adversary A is defined to be a probabilistic machine that is in control of all
communications between parties by interacting with two sets, Πi

U1,U2
and Ψ j

U1,U2

of oracles (Πi
U1,U2

is defined to be the ith instantiation of a principal U1 in a
specific protocol run and U2 is the principal with whom U1 wishes to establish
a secret key). The predefined oracle queries are as follows:

– Send(U1, U2, i,m) query computes a response according to the protocol spec-
ification and decision on whether to accept or reject yet, and returns them
to A.

– The client oracle, Πi
U1,U2

, upon receiving a Reveal(U1, U2, i) query, and if it
has accepted and holds some session key, will send this session key back to
A.

– Corrupt(U1,KE) query allows A to corrupt the principal U1 at will, and
thereby learn the complete internal state of the corrupted principal. Note
that such a query does not exist in the original BR93 model, but generally
added by those using this model. In the Bellare & Rogaway (1995) model [5],
the corrupt query also gives A the ability to overwrite the long-lived key of
the corrupted principal with any value of her choice (i.e. KE).

– Test(U1, U2, i) query is the only oracle query that does not correspond to any
of A’s abilities. If Πi

U1,U2
has accepted with some session key and is being

asked a Test(U1, U2, i) query, then depending on a randomly chosen bit b, A
is given either the actual session key or a session key drawn randomly from
the session key distribution.



2.2 Definition of Partnership

Partnership is defined using the notion of matching conversations, where a con-
versation is defined to be the sequence of messages sent and received by an
oracle. The sequence of messages exchanged (i.e., only the Send oracle queries)
are recorded in the transcript, T . At the end of a protocol run, T will contain
the record of the Send queries and the responses as shown in Figure 1. Defini-
tion 1 gives a simplified definition of matching conversations for the case of the
protocol shown in Figure 1.

Definition 1 (BR93 Definition of Matching Conversations [4]) Let n be
the maximum number of sessions between any two parties in the protocol run.
Run the protocol shown in Figure 1 in the presence of a malicious adversary A
and consider an initiator oracle Πi

A,B and a responder oracle Πj
B,A who engage

in conversations CA and CB respectively. Πi
A,B and Πj

B,A are said to be partners
if they both have matching conversations, where

CA = (τ0,
′ start′, α1), (τ2, β1, α2)

CB = (τ1, α1, β1), (τ3, α2, ∗), for τ0 < τ1 < . . .

PSfrag replacements

Πi
A,B

Πj
B,A

‘start’
α1

α1

β1

β1

α2

α2

*
time τ0

time τ1

time τ2

time τ3

Note that the construction of conversation
shown in Definition 1 depends on the number
of parties and the number of message flows.
Informally, both Πi

A,B and Πj
B,A are said to

be BR93 partners if each one responded to a
message that was sent unchanged by its part-
ner with the exception of perhaps the first and
last message.

Fig. 1. Matching conversation [4]

2.3 Definition of Freshness

The notion of freshness is used to identify the session keys about which A ought
not to know anything because A has not revealed any oracles that have accepted
the key and has not corrupted any principals knowing the key. Definition 2 de-
scribes freshness in the BR93 model, which depends on the notion of partnership
in Definition 1.

Definition 2 (Definition of Freshness) Oracle Πi
A,B is fresh (or it holds a

fresh session key) at the end of execution, if, and only if, oracle Πi
A,B has ac-

cepted with or without a partner oracle Πj
B,A, both oracle Πi

A,B and its partner



oracle Πj
B,A (if such a partner oracle exists) have not been sent a Reveal query,

and the principals A and B of oracles Πi
A,B and Πj

B,A (if such a partner exists)
have not been sent a Corrupt query.

2.4 Definition of Security

Security is defined using the game G, played between a malicious adversaryA and
a collection of Πi

Ux,Uy
oracles for players Ux, Uy ∈ {U1, . . . , UNp} and instances

i ∈ {1, . . . , Ns}. The adversary A runs the game G, whose setting is explained
in Table 1.

Stage 1: A is able to send any oracle queries at will.
Stage 2: At some point during G, A will choose a fresh session on which to be tested

and send a Test query to the fresh oracle associated with the test session.
Depending on the randomly chosen bit b, A is given either the actual session
key or a session key drawn randomly from the session key distribution.

Stage 3: A continues making any oracle queries at will but cannot make Corrupt
and/or Reveal that trivially expose the test session key.

Stage 4: Eventually, A terminates the game simulation and outputs a bit b′, which
is its guess of the value of b.

Table 1. Setting of game G

Success of A in G is quantified in terms of A’s advantage in distinguishing
whether A receives the real key or a random value. A wins if, after asking a
Test(U1, U2, i) query, where Πi

U1,U2
is fresh and has accepted, A’s guess bit b′

equals the bit b selected during the Test(U1, U2, i) query. Let the advantage
function of A be denoted by AdvA(k), where AdvA(k) = 2× Pr[b = b′]− 1. De-
finition 3 describes security for the BR93 model.

Definition 3 (BR93 Definition of Security [4]) A protocol is secure in the
BR93 model if for all PPT adversaries A,

1. if uncorrupted oracles Πi
A,B and Πj

B,A complete with matching conversa-
tions, then the probability that there exist i, j such that Πi

A,B accepted and
there is no Πj

B,A that had engaged in a matching session is negligible.
2. AdvA(k) is negligible.

If both requirements of Definition 3 are satisfied, then Πi
A,B and Πj

B,A will also
have the same session key.

3 Chen–Kudla ID-Based Protocol

Figure 2 describes protocol 2 of Chen & Kudla [10]. There are two entities in
the protocols, namely initiator, A, and responder, B. The notation used in the



protocols is as follows: SA = sQA and SB = sQB denote the private keys of
A and B respectively, H denotes some secure hash function, QA = H(IDA),
QA = H(IDB), WA = aQA and WB = bQB where WA and WB denote the
ephemeral public keys of A and B respectively, and a and b are the ephemeral
private keys of A and B respectively. At the end of the protocol execution, both
A and B accept the session key SKAB = H(ê(SA,WB + aQB)) and SKBA =
H(ê(WA + bQA, SB)) respectively.

A B

a ∈R Z∗q
WA = aQA−−−−−−−→ b ∈R Z∗q

KAB = ê(SA, WB + aQB)
WB = bQB←−−−−−−− KBA = ê(WA + bQA, SB)

KAB = KBA = ê(QA, QB)s(a+b)

SKAB = H(KAB) = SKBA = H(KBA)

Fig. 2. Chen–Kudla Protocol 2

3.1 Existing Arguments on the Restriction of Reveal Query

In the existing proof by Chen & Kudla [10, Proof of Theorem 1], they indicated
that no Reveal query is allowed due to the description provided in Figure 3, where
Figure 3 describes the execution of the protocol in the presence of a malicious
adversary, A.

A A B

a ∈R Z∗q
WA = aQA−−−−−−−→ Intercept

c ∈R Z∗q
WA + cQA−−−−−−−→

WB + cQB←−−−−−−− Intercept
WB = bQB←−−−−−−− b ∈R Z∗q

KAB = ê(SA, WB + cQB + aQB) KBA = ê(WA + bQA + cQA, SB)

KAB = KBA = ê(QA, QB)s(a+b+c)

SKAB = H(KAB) = SKBA = H(KBA)

Fig. 3. Execution of Chen-Kudla protocol 2 in the presence of a malicious adversary

At the end of the protocol execution, neither A nor B are partnered since they do
not have matching conversations (as described in Definition 1 in Section 2), as A’s
transcript is (WA,WB+cQB) whilst B’s transcript is (WA+cQA,WB). However,
both A and B accept the same session key KAB = KBA = ê(QA, QB)s(a+b+c).
Therefore, A is able to trivially expose a fresh session key by asking a Reveal



query to a non-partner oracle. Therefore, the protocol will not be secure if A
is allowed access to a Reveal query. Similar arguments apply for the remaining
three protocols of Chen & Kudla [10].

3.2 Improved Chen–Kudla Protocol

Let A’s transcript be denoted by TA and B’s transcript be denoted by TB .
Consider the scenario whereby session keys of A and B (denoted as SKAB and
SKBA respectively) are constructed as

SKAB = H(KAB) = H(A||B||TA||ê(SA,WB + aQB))
= H(A||B||TA||ê(QA, QB)s(a+b)),

SKBA = H(KBA) = H(A||B||TB ||ê(WA + bQA, SB)
= H(A||B||TB ||ê(QA, QB)s(a+b)) = SKAB

instead. Evidently, the attack outlined in Figure 3 will no longer work since a
non-matching conversation (i.e., TA 6= TB) will also mean that the session key is
different, as shown below:

SKAB = H(KAB) = H(A||B||aQA||(b + c)QB ||ê(SA,WB + aQB)),
SKBA = H(KBA) = H(A||B||(a + c)QA||bQB ||ê(WA + bQA, SB)) 6= SKAB .

Similarly, a reflection attack or an unknown key share attack would not work
against the protocol since the construction of the session key introduces role
asymmetry and the identities of the participants. In other words, session keys
will be different when the roles of the same principal switch. Therefore,A appears
to be unable to gain information about such fresh session key(s).

3.3 Sketch of New Proof

At first glance, it would seem that by fixing the attack outlined in Section 3.1, we
have addressed the reasons why no Reveal query was allowed that was outlined in
the existing proofs, and would be able to prove the improved protocol secure in
the unrestricted BR93 model. However, we demonstrate that this is not possible
unless we restrict the adversary from asking any Reveal queries to the partner of
the Test session, as explained in Figure 4. However, by allowing the adversary
to ask Reveal queries directed at the owner of the Test session (in our proof), we
effectively prove the improved protocol secure against reflection attacks.

Recall that the general notion of the proof is to assume that there exists an
adversary A who can gain a non-negligible advantage in distinguishing the test
key in the game described in Section 2.4, and use A to break the underlying
BDH problem. In other words, we build an adversary, ABDH, against the BDH
problem using A. The objective of ABDH is to compute and output the value



ê(P, P )xyz ∈ G2 when given a bilinear map ê, a generator of P of G1, and a
triple of elements xP, yP, zP ∈ G1 with x, y, z ∈ Z∗q , where q is the prime order
of the distinct groups G1 and G2.

Let oracle Πu
A,B be the initiator associated with the target Test session,

and oracle Πv
B,A be the responder partner to Πu

A,B . ABDH needs to simulate
all responses to queries from A, including the random oracle, H. The proof
specifies that ABDH can create all public/private key pairs for all players, except
a randomly chosen player J . Let (QU , SU ) denote the public/private keys of
players U other than J (where SU = xQU ). ABDH is unable to compute the
private key of J because ABDH is trying to solve the BDH problem, which is
embedded in the public key of J .

Figure 4 shows a possible sequence of adversary actions and the responses
generated by ABDH. It can be seen that A will be able to distinguish between
the simulation provided by ABDH and the actual protocol if it carries out this
sequence of actions, since with overwhelming probability, v 6= SKBC (recall that
v is randomly chosen). Hence, ABDH cannot answer any Reveal directed at the
partner of the target Test session.

ABDH A

b ∈R Z∗r
Send(B, C, j, cQC)
←−−−−−−− c ∈R Z∗r

bQB−−−−−−−→
Reveal(B, C, j)
←−−−−−−−

ABDH is supposed to respond with H(B||C||j||be(cQC +bQC , SB)), but ABDH does not
know SB , and thus cannot know the input for its simulation of H.

v ∈R {0, 1}k v−−−−−−−→
Corrupt(C)
←−−−−−−−

ABDH returns all internal states of C, including SC = sQC .
SC−−−−−−−→ Compute SKBC = H(C||B||i||be(SC , bQB + cQB))

Verify whether v
?
= SKBC

Fig. 4. An example simulation of Chen–Kudla protocol 2

Theorem 1 The improved Chen–Kudla protocol 2 is a secure authenticated key
establishment protocol in the sense of Definition 3 if the Bilinear Diffie-Hellman
(BDH) problem is hard and the hash function, H, is a random oracle, and the
adversary A does not ask any Reveal queries to any sessions owned by the partner
player associated with the Test session.

The proof of Theorem 1 generally follows that of Chen & Kudla [10, Proof of
Theorem 1], except that we allow A to ask Reveal queries (but not to the partner



player of the Test session). The details of the game simulation remain unchanged
to that presented by Chen & Kudla [10, Proof of Theorem 1], except that we
allow A to ask Reveal queries (but not to the partner player of the Test session),
as given in Figure 5.

Queries Actions

Send(U1, U2, i) ABDH answers all Send queries in the same fashion as the proof
simulation presented by Chen & Kudla.

Corrupt(U, K) ABDH answers all Corrupt queries in the same fashion as the proof
simulation presented by Chen & Kudla.

Test(U1, U2, i) ABDH answers the Test query in the same fashion as the proof
simulation presented by Chen & Kudla.

H(U1||U2||i||te(m)) ABDH will return a random value, v ∈R {0, 1}k where k is the
security parameter and store m in a list of tuples.

Reveal(U1, U2, i) If oracle Πi
U1,U2 is not an oracle associated with the test session

(or partner of such an oracle), and U1 is not player J where
ABDH did not generate the contents of the Send query to Πi

U1,U2 ,
then ABDH returns the associated session key. Otherwise ABDH
terminates and halts the simulation. We observe that if ABDH
halts because U1 = J , the Test session chosen by A must be
different to that desired by ABDH, so even if the simulation had
not halted here, it would have halted later.

Fig. 5. ABDH simulates the view of A by answering all Send, Reveal, Corrupt, and Test
oracle queries of A.

Hence, ABDH is able to simulate the view of A perfectly by answering all oracle
queries of A as specified in Figure 5. Upon the conclusion of the game (i.e.,
A is done), ABDH chooses a random element in the list of tuples and outputs
it. The probability that ABDH did not abort at some stage and produces the
correct output remains non-negligible. This concludes the sketch of the proof of
the theorem.

4 2P-IDAKA Protocol

In recent work, McCullagh & Barreto [20] proposed a two-party ID-based au-
thenticated key agreement (2P-IDAKA) protocol with a proof of security in
a weaker variant of the BR93 model whereby the adversary is not allowed to
ask Reveal queries. Figure 6 describes the 2P-IDAKA protocol. There are two
entities in the protocol, namely an initiator player A and a responder player
B. Notation used in the protocols is as follows: (s + a)P denotes the public
key of A, Apri = ((s + a))−1P denotes the private key of A, (s + b)P de-
notes the public key of B, and Bpri = ((s + b))−1P denotes the private key
of B. At the end of the protocol execution, both A and B accept session keys
SKAB = ê(BKA, Apri)xa = ê(P, P )xaxb = SKBA.



A B

xa ∈R Z∗
r

AKA = xa(s + b)P
−−−−−−−→ xb ∈R Z∗

r

ê(BKA, Apri)
xa = ê(P, P )xaxb

BKA = xb(s + a)P
←−−−−−−− ê(AKA, Bpri)

xb = ê(P, P )xaxb

Fig. 6. McCullagh–Barreto 2P-IDAKA protocol

4.1 Why Reveal Query is Restricted

No Reveal query is allowed on the 2P-IDAKA protocol [11] due to the description
provided in Figure 7.

A A B

xa ∈R Z∗r
AKA = xa(s + b)P
−−−−−−−→ Intercept

xE ∈E Z∗
r

Impersonate A AKA · xE−−−−−−−→ xb ∈R Z∗r

Intercept
BKA = xb(s + a)P
←−−−−−−−

BKA · xE←−−−−−−− Impersonate B

SKA = ê(xb(s + a)P · xE , Apri)
xa = ê(P, P )xaxbxE = SKB

Fig. 7. Execution of 2P-IDAKA protocol in the presence of a malicious adversary

In the protocol execution shown in Figure 7, both A and B have accepted the
same session key (i.e., SKA = SKB). However, both A and B are non-partners
since they do not have matching conversations as A’s transcript is (AKA, BKA ·
xE) whilst B’s transcript is (AKA ·xE , BKA). By sending a Reveal query to either
A or B, A is able to trivially expose a fresh session key by asking a Reveal query
to either A or B. Hence, the 2P-IDAKA protocol shown in Figure 6 is not secure
since A is able to obtain the session key of a fresh oracle of a non-partner oracle
by revealing a non-partner oracle holding the same key, in violation of the key
establishment goal.

4.2 Errors in Existing Proof

The general notion of the existing proof of McCullagh & Barreto [20, Proof
of Theorem 1], to assume that there exists an adversary A who can gain a
non-negligible advantage in distinguishing the test key in the game described in
Section 2.4, and use A to break the underlying Bilinear Inverse Diffie–Hellman
Problem (BIDHP). In other words, an adversary, ABIDHP , against the BIDHP
is constructed using A. The objective of ABIDHP is to compute and output the
value ê(P, P )α−1β when given P, αP, βP for x, y, z ∈ Z∗r .



Error 1: In the existing proof, the public and private key pairs for some player,
Ui, are selected as ((u− s)P ,u−1P ), in contradiction to their description in the
protocols where ((s + u)P ,(s + u)−1P ) is given instead. The adversary, A, is
then able to tell that the public and private key pairs do not match by simply
corrupting any player, as shown in Figure 8.

ABIDHP A

Return all internal state of U,
Corrupt(U)
←−−−−−−−

including (u)−1P u−1P−−−−−−−→ Compute be(uP − sP, (u)−1P )

Fig. 8. Illustration of error 1

We can check whether a public and private key pair match by computing
ê((s + u)P, (s + u)−1P ) = ê((P, P )(s+u)(s+u)−1

= ê(P, P ). However, as outlined
in Figure 8, when A computes the public and private key pair of U , ê(uP −
sP, (u)−1P ) = ê((u − s)P, u−1P ) = ê(P, P )(u−s)u−1

= ê(P, P )1−su−1 6= ê(P, P ).
A trivially knows that the public and private key pairs of U do not match. Hence,
the existing proof is invalidated.

Error 2: We observed that the parameter βP = xjαP given in the existing proof
should be βP = xj(yi − s)P instead, as explained in Figure 9. In Figure 9, we
assume that error 1 has been fixed. The public/private key pair of I (the partner
player associated with the Test session is ((yi − s)P, (yi − s)−1P ), the public key
of J (the owner of the Test session) is αP , and the private key of J (i.e., α−1P ))
is unknown to both ABIDHP and A. It is obvious from Figure 9 that we cannot

ABIDHP A

xi ∈R Z∗r
Send(J, I, i,′ start′)
←−−−−−−−

xiP−−−−−−−→ A is given βP = xjαP as input from j

xiP = xt(αP )
Send(I, J, j, βP )
←−−−−−−−

Fig. 9. Illustration of error 2

have the values of both xiP and xjP computed using the public key of J , αP
(at least one of xiP and xjP have to be computed using the public key of I).
To check, we compute ê(P, P )xtxj = ê(P, P )xiα

−1βα−1 6= ê(P, P )α−1β , which is
what ABIDHP is trying to solve. Hence, the correct value for βP = xjαP given
in the existing proof should be βP = xj(yi − s)P instead.



Further remarks: We observe that for the existing proof to work, we would have
to assume that the inputs to the Test session originated with the simulator,
ABIDHP , and not the adversary, A. However, this is not a normal assumption
and resricts the BR93 model. In fact, if a slightly different assumption were made
in the proof of the improved Chen & Kudla’s protocol in Section 3.3, namely that
if B is the partner of the Test session, then all Send query inputs to sessions of
B that are later revealed were generated by ABDH, then the proof in Section 3.3
would not have to restrict Reveal queries to B.

Consequences of errors in security proofs: Protocol implementers (usually non-
specialists and/or industrial practitioners) will usually plug-and-use existing
provably-secure protocols without reading the formal proofs of the protocols [17].
Errors in security proofs or specifications themselves certainly will certainly un-
dermine the credibility and trustworthiness of provably-secure protocols in the
real world.

4.3 Improved 2P-IDAKA Protocol

Let A’s transcript be denoted by TA and B’s transcript be denoted by TB .
Consider the scenario whereby session keys of A and B are constructed as

SKAB = H(A||B||TA||ê(BKA, Apri)xa) = H(A||B||TA||ê(P, P )xaxb),
SKBA = H(A||B||TB ||ê(AKA, Bpri)xb) = H(A||B||TB ||ê(P, P )xaxb) = SKAB

instead. Evidently, the attack outlined in Figure 7 will no longer be valid since
a non-matching conversation (i.e., TA 6= TB) will also mean that the session key
is different, as shown below:

SKAB = H(A||B||xa(s + b)P ||(xb · xE)(s + a)P ||ê(BKA, Apri)xa),
SKBA = H(A||B||(xa · xE)(s + b)P ||xb(s + a)P ||ê(AKA, Bpri)xb) 6= SKAB .

Therefore, A is unable to gain information about any fresh session key(s). Fig-
ure 10 illustrates why Reveal queries directed at the owner of the Test session
cannot be answered by ABDH. Note that Πj

J,C is not the target Test session.
From Figure 10, it can be seen that A will be able to distinguish between the
simulation provided by ABIDHP and the actual protocol if it carries out this
sequence of actions, since with overwhelming probability, v 6= SKBC (recall that
v is randomly chosen). Hence, ABIDHP cannot answer any Reveal directed at the
owner of the target Test session, J , unless we made a similar type of assumption
in the existing proof outlined in Section 4.2 that all Send query inputs to sessions
of J that are later revealed were generated by ABIDHP .



ABIDHP A

xb ∈R Zr∗
Send(J, C, j, (xc(s + b)P ))

←−−−−−−− xc ∈R Zr∗
(xb(s + b)P )
−−−−−−−→

Reveal(J, C, j)
←−−−−−−−

ABIDHP is supposed to respond with H(J ||C||j||be(xc(s+b)P, Jpri)), but ABIDHP does
not know Jpri, and thus cannot know the input for its simulation of H.

v ∈R {0, 1}k v−−−−−−−→
Corrupt(C)
←−−−−−−−

ABIDHP returns all internal states of C, including Cpri = (s + c)−1P.
Cpri−−−−−−−→ SKBC = H(C||B||i||be(xc(s + b)P, Cpri))

Verify if v
?
= SKBC

Fig. 10. An example simulation of McCullagh–Barreto 2P-IDAKA protocol

5 A Proposal for Session Key Construction

In this section, we present our proposal on how session keys should be con-
structed. Although we do not claim that session keys constructed in this fashion
will result in a secure protocol (as the security of the protocol is based on many
other factors, such as the underlying cryptographic primitives used), we do claim
that having a sound construction of session keys may reduce the number of pos-
sible attacks on the protocol.

We propose that session keys in key establishment protocols should be con-
structed in the following fashion, as shown in Table 2. The inclusion of

– the identities of the participants and their roles provides resilience against
unknown key share attacks and reflection attacks since the inclusion of both
the identities of the participants and role asymmetry effectively ensures some
sense of direction. If the role of the participants or the identities of the (per-
ceived) partner participants change, the session keys will also be different,

– the unique session identifiers (SIDs) ensures that session keys will be fresh,
and if SIDs are defined as the concatenation of messages exchanged during
the protocol execution, messages altered during the transmission will result
in different session keys (providing data origin authentication), and

– some other ephemeral shared secrets and/or long-term (static) shared secrets
depending on individual protocols, ensures that the session key is only known
to the protocol participants.

Note that including session identifiers in key derivation function would prevent
the key-replication attack1 in the Bellare–Rogaway and Canetti–Krawczyk mod-
els.
1 A key-replication attack [19] occurs when an adversary, A, succeeds in forcing the

establishment of a session, S1, other than the Test session or its matching session



Session key input Properties

Identities of the participants
and their roles

Resilience against unknown key share attacks [8,
Chapter 5.1.2] and reflection attacks [18].

Unique session identifiers
(SIDs)

Freshness and data origin authentication (assuming
SIDs defined to be the concatenation of exchanged
messages).

Ephemeral shared secrets
and/or long-term (static)
shared secrets

If the identities of the (perceived) partner participants
change, the session keys will also be different.

Table 2. Construction of session key in key establishment protocols

6 Conclusion

By making a small change to the way session keys are constructed in the Chen–
Kudla protocol 2 and McCullagh–Barreto protocol 2P-IDAKA, we demonstrated
that the existing attacks no longer work. In addition, both protocols’ proof were
improved to be less restrictive with regard to the Reveal queries allowed2. We
also found some errors in the McCullagh–Barreto proof, as well as observing that
it is in a restricted version of the BR93 model that assumes that the adversary
does not generate the input to the Test session.

As a result of our findings, we would recommend that all provably secure
protocols should construct session keys using materials comprising the identities
of the participants and roles, unique session identifiers (SIDs), and some other
ephemeral shared secrets and/or long-term (static) shared secrets. We hope that
this work contributes towards a better understanding on how to construct secure
session keys in key establishment protocols.
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