
Public Key Encryption with Keyword Search

Revisited

Joonsang Baek, Reihaneh Safiavi-Naini,Willy Susilo
University of Wollongong

Northfields Avenue
Wollongong NSW 2522, Australia

Abstract

The public key encryption with keyword search (PEKS) scheme recently proposed by
Boneh, Di Crescenzo, Ostrovsky, and Persiano enables one to search encrypted keywords
without compromising the security of the original data. In this paper, we address three
important issues of a PEKS scheme, “refreshing keywords”, “removing secure channel”, and
“processing multiple keywords”, which have not been considered in Boneh et. al.’s paper.
We argue that care must be taken when keywords are used frequently in the PEKS scheme
as this situation might contradict the security of PEKS. We then point out the inefficiency
of the original PEKS scheme due to the use of the secure channel. We resolve this problem
by constructing an efficient PEKS scheme that removes secure channel. Finally, we propose
a PEKS scheme that encrypts multiple keywords efficiently.

Key words: Public Key Encryption with Keyword Search, Removing Secure Channel,
Refreshing Keywords, Multiple Keyword Search

1 Introduction

1.1 Basic Concept

The Public Key Encryption with Keyword Search (PEKS) scheme proposed by Boneh et al.
[6] realizes the following scenario. Suppose Alice, who is a manager of a bank, is having a
holiday and away from work. She is equipped with a smart phone that can be used to check her
important emails, in case there is an urgent email that requires her attention. In this scenario,
Alice should be able to select her important emails to be read during her holiday, but not all
of them. Due to the importance of her email, all the emails sent to her will be encrypted
using her public key. This ensures that nobody else, other than Alice, will be able to retrieve
the emails directed to Alice. To enable Alice to select her important emails, she must send a
“trapdoor” to the server, so that the server can use this information to select the emails that
Alice wants to read. For instance, when Alice wants to read any “urgent” emails, a trapdoor
for the keyword “urgent” will be created and sent to the server. Hence, whenever someone, say
Bob, would like to send an email to Alice, he needs to encrypt his email using a standard public
key encryption scheme, and then appends to the resulting ciphertext one or more what we call
“PEKS ciphertexts” of each keyword, to allow Alice to select the appropriate emails.

In short, PEKS provides a mechanism that allows Alice to have the email server extract
emails that contain a particular keyword by providing a trapdoor corresponding to the keyword,
while the email server and other parties excluding Alice do not learn anything else about the
email.

1

1.2 Related Work and Our Contributions

In the literature, there are a large number of research works related to the privacy of database
data. However, as noted in [6], PEKS is different from the previous solutions in the sense that
the data collected by the server is from the third parties and the data is not public, which
excludes the solutions of Public Information Retrieval (PIR).

There are few papers directly related to PEKS. Shortly after Boneh et al.’s work [6], Waters
et al. [12] showed that the PEKS scheme based on the bilinear pairing can be applied to build
encrypted and searchable audit logs.

We note that although Boneh et al.’s [6] solution for realizing PEKS is elegant, there remained
some important issues regarding the use of PEKS, which were not addressed in their paper. The
issues are the following.

(1) To enable the server to perform the test on a received ciphertext for a particular keyword,
Alice will provide some trapdoor information to the server. PEKS ensures that without this
trapdoor information, the server does not learn anything about the category of the email.
Also, the trapdoor of a keyword does not reveal anything about the category of any other
keywords. In practice the system will be used over many rounds. In its current model of
PEKS, a server that has received the trapdoor for a keyword w can store the trapdoor and
use it to learn all future emails with that category. In other words the current version of
PEKS is a one-time system. One may assume that the server can not memorize trapdoors
but this is a very restrictive assumption and not easy to implement in practice. The paper
does not specify what happens if the server memorizes the trapdoor information related to
the keyword sent by Alice, and the protection against this situation is not discussed.

(2) The scheme in [6] uses a secure (encrypted and authenticated) channel between Alice and
the email server. This is certainly not suitable for some applications as building a secure
channel is usually expensive.

(3) In many situations the search will be on multiple keywords that are connected through
conjunctive or disjunctive logical connectives. For example an email that contains the
words “urgent” and/or “Monday” is looked for. However, it was not discussed how one
can formalize the concept of the multiple keywords search and create the PEKS ciphertexts
for multiple keywords efficiently, and what caution must be exercised when conjunctive or
disjunctive search is conducted.

In this paper, we discuss the above issues and propose provably secure solutions that remove
secure channel and make efficient multiple keywords encryption.

2 Preliminaries

2.1 Definition of PEKS

In PEKS, three parties called “sender”, “receiver”, and “server” are involved. The sender is
a party that creates and sends encrypted keywords, which we call “PEKS ciphertexts”. The
server is a party that receives PEKS ciphertexts and performs search upon receiving trapdoors
from the receiver. The receiver is a party that creates trapdoors and sends them to the server
to find the data that it wants. In what follows, we review the formal definition of PEKS given
in [6].

2

Definition 1 (PEKS) A public key encryption with keyword search (PEKS) scheme consists of
the following algorithms.

• A Receiver Key Generation Algorithm KeyGenReceiver(k): Taking a security parameter
k ∈ IN as input, this algorithm generates a private and public key pair (skR, pkR) of the
receiver. Note that pkR includes the security parameter, descriptions of a finite keyword
space and a PEKS ciphertext space.
• A PEKS Algorithm PEKS(pkR, w): Taking a receiver’s public key pkR and a keyword w
as input, this algorithm generates a PEKS ciphertext S which is a searchable encryption
of w. We write S = PEKS(pkR, w).
• A Trapdoor Generation Algorithm Trapdoor(skR, w): Taking a receiver’s private key
skR and a keyword w as input, this algorithm generates a trapdoor Tw for the keyword w.
• A Test Algorithm Test(Tw, S): Taking a trapdoor Tw for a keyword w and a PEKS
ciphertext S = PEKS(pk, w′), this algorithm returns a symbol “Correct” if w = w′ and
“Incorrect” otherwise.

In [6], a security notion for PEKS schemes, “indistinguishability of PEKS against chosen keyword
attack” was introduced. This notion, which we call “IND-CKA”, is reviewed in Appendix A.

2.2 The Bilinear Pairing and Bilinear Diffie-Hellman Problem

We now review the bilinear pairing which plays an important role in constructing the efficient
PEKS scheme proposed in [6].

Definition 2 (Bilinear Pairing [5]) The bilinear pairing ê [5] is defined over two groups of
the same prime-order q denoted by G1 and G2 in which the Computational Diffie-Hellman prob-
lem is intractable. We will use an additive notation to describe the operation in G1 while we will
use a multiplicative notation for the operation in G2. In practice, the group G1 is implemented
using a group of points on certain elliptic curves, each of which has a small MOV exponent [11],
and the group G2 will be implemented using a subgroup of the multiplicative group of a finite
field. The admissible bilinear map has the following properties.

1) Bilinear: ê(aR1, bR2) = ê(R1, R2)ab, where R1, R2 ∈ G1 and a, b ∈ ZZ∗q ;
2) Non-degenerate: ê does not send all pairs of points in G1 × G1 to the identity in G2.
(Hence, if R is a generator of G1 then ê(R, R) is a generator of G2)
3) Computable: For all R1, R2 ∈ G1, the map ê(R1, R2) is efficiently computable.

We now review the definition of the Bilinear Diffie-Hellman (BDH) problem associated with
the bilinear pairings [5].

Definition 3 (BDH) Let G1 and G2 be two groups of order q, where q > 2k is a prime. Let
P be a generator of G1. Suppose that there exists a bilinear map ê : G1 × G1 → G2. Let A be
an attacker modelled as a probabilistic Turing machine, whose running time is bounded by t
which is polynomial in a security parameter k. A tries to solve the following problem: Given
(P, aP, bP, cP) for a, b, c ∈ ZZ∗q, compute the BDH key ê(P, P)abc.

We define A’s success by SuccBDH
G1,A (k) = Pr[A(P, aP, bP, cP) = ê(P, P)abc]. The BDH prob-

lem is said to be computationally intractable if SuccBDH
G1,A (k) is negligible in k.

3

3 Refreshing Keywords

In PEKS, trapdoors should be generated for each keyword and if this trapdoor is not released,
the server will not be able to decide which PEKS ciphertext encrypts which keyword. If we
removed this condition, we could simply encrypt a keyword using the receiver’s public key and
the receiver can send the matching private key (through secure channel) to the server. Note
that the “IND-CKA” notion (reviewed in Appendix A) indeed reflects this.

However, a contradictory situation may occur when even provably secure PEKS is used
in practice. As a natural (not artificial) example, assume that there are three keywords, say
“high priority”, “normal”, and “less priority” that are frequently used in the system. Now,
assume that whenever the receiver sends a trapdoor, the server stores it in its memory. Then,
at some point, the server gets trapdoors for all the keywords used within the system and can
decide which PEKS ciphertext encrypts which keyword without receiving trapdoors from the
receiver. Since the storage capacity of computers are increasing rapidly these days, even if more
keywords are used, say 100, the server can store all the trapdoors generated by the receiver and
can conduct search by itself.

In theory, one can avoid this problem by using a keyword only once. However, this is
impractical since in many situations, users want to reuse their keywords. For example, Alice
may want to encrypt a keyword “Alice” whenever she sends a message to Bob. One may
consider another alternative that when the sender encrypts a keyword with some kind of nonce,
but this makes it impossible for the receiver to generate a trapdoor if the sender does not give
the receiver the nonce used when the PEKS ciphertext is created. Since one of the aims of PEKS
is to make keyword search possible without interaction between the sender and receiver, this is
also not a right solution.

Nevertheless, one possible solution for the above problem is to refresh the frequently-used
keywords by attaching time period information to them. For example, a keyword w = Urgent
now becomes w′ = Urgent||01/07/04, where 01/07/04 denotes “1 July 2004”. Note that the
more the time period is fine grained, the better security can be achieved: In the above example,
once the receiver releases a trapdoor, the server can search PEKS ciphertexts that correspond
to w′ without receiving a trapdoor for it until the end of “day”. However, if the time frame is
divided by, say, a “5 hours”, the server only can do so during 5 hours.

Notice that the above method essentially makes the size of a keyword space infinite and
makes it useless for the server to keep trapdoors. Hence, the security notion for PEKS schemes,
IND-CKA, now becomes meaningful in reality.

4 Removing Secure Channel

In the example given in Section 1.1, the connection between Alice’s smart phone to the email
server is through an insecure communication channel, for example via the GPRS network. How-
ever, in PEKS schemes, trapdoors cannot be sent via public channel. This is another drawback
of PEKS as heavy computational and communication loads are normally required to setup se-
cure channel such as “Secure Socket Layer (SSL)” between the server and the receiver. In this
section, we propose a mechanism to remove the secure channel in a very efficient way.

4.1 Formal Model and Security Notion

The basic idea is to make the server to keep its own private and public key pair. In order to create
a PEKS ciphertext, the sender uses the server’s public key as well as the receiver’s public key.

4

The receiver then can send a trapdoor to retrieve data associated with the encrypted keyword
as usual, but at this time, he can send it via a public channel. Upon receiving the trapdoor, the
server can test whether given PEKS ciphertexts match the trapdoor using its private key. In
what follows, we formally define this model.

Definition 4 (SCF− PEKS) A Secure Channel Free Public Key Encryption with Keyword
Search (SCF-PEKS) scheme consists of the following algorithms.

• A Common Parameter Generation Algorithm KeyGenParam(k): Taking a security param-
eter k ∈ IN as input, this algorithm generates a common parameter cp.
• A Server Key Generation Algorithm KeyGenServer(cp): Taking a common parameter cp
as input, this algorithm generates a private and public key pair (skS , pkS) of the server.
• A Receiver Key Generation Algorithm KeyGenReceiver(cp): Taking a common parameter
cp as input, this algorithm generates a private and public key pair (skR, pkR) of the
receiver.
• A Secure Channel Free PEKS Algorithm SCF− PEKS(cp, pkS , pkR, w): Taking a com-
mon parameter cp, a server’s public key pkS , a receiver’s public key pkR and a keyword w
as input, this algorithm returns a PEKS ciphertext S which is a searchable encryption of
w. We write S = SCF− PEKS(cp, pkS , pkR, w).
• A Trapdoor Generation Algorithm Trapdoor(cp, skR, w): Taking a common parameter
cp, a receiver’s private key skR and a keyword w as input, this algorithm generates a
trapdoor Tw for w.
• A Test Algorithm Test(cp, Tw, skS , S): Taking a common parameter cp, a trapdoor
Tw for the keyword w, the server’s private key skS , and a PEKS ciphertext S =
SCF− PEKS(pkS , pkR, w′), this algorithm returns a symbol “Correct” if w = w′ and “In-
correct” otherwise.

Note that the common parameter generation algorithm is run by a third party, e.g, a system
administrator, to generate a long-term parameter that will be used within the system.

Now, we formally define a security notion for SCF-PEKS, which we call “indistinguishability
of secure channel free PEKS against chosen keyword attack (IND-SCF-CKA)”. Informally, IND-
SCF-CKA guarantees that the server that has not obtained the trapdoors for given keywords
cannot tell which PEKS ciphertext encrypts which keyword, and the outside attacker that has
not obtained the server’s private key cannot make any decisions about the PEKS ciphertexts
even though the attacker gets all the trapdoors for the keywords that it holds. (That is, the
attacker can see all the trapdoors including targeting ones being sent through public channel).
Note that the attack model for these two types of attackers is describe as “Game 1” and “Game
2” respectively in the following definition.

Definition 5 (IND-SCF-CKA) Let A be an attacker whose running time is bounded by t
which is polynomial in a security parameter k. We consider the following two games:

Game 1: A is assumed to be a server.

5

Phase 1-1: The common parameter generation algorithm KeyGenParam(k), the two key
generation algorithms KeyGenReceiver(k) and KeyGenServer(k) are run. A common param-
eter cp, private and public key pairs of the receiver and the server, which we denote by
(skR, pkR) and (skS , pkS) respectively, are then generated. cp, pkR, skS , and pkS are given
to A while skR is kept secret from A.
Phase 1-2: A queries a number of keywords, each of which is denoted by w, to the
trapdoor generation oracle Trapdoor and obtains a corresponding trapdoor Tw.
Phase 1-3: A outputs a target keyword pair (w∗0, w

∗
1). Upon receiving this, the PEKS

oracle PEKS chooses β ∈ {0, 1} uniformly at random and creates a target PEKS ciphertext
S∗ = SCF− PEKS(cp, pkS , pkR, w∗β) and returns it to A.
Phase 1-4: A issues a number of trapdoor extraction queries as in Phase 1-2. The
restriction here is that w∗0 and w∗1 are not allowed to be queried as trapdoor extraction
queries.
Phase 1-5: A outputs its guess β′ ∈ {0, 1}.

We define A’s success in Game 1 by SuccGame 1
A (k) = 2 Pr[β′ = β]− 1.

Game 2: A is assumed to be an outside attacker (including the receiver).

Phase 2-1: The common parameter generation algorithm KeyGenParam(k), the two key
generation algorithms KeyGenReceiver(k) and KeyGenServer(k) are run. A common param-
eter cp, private and public key pairs of the receiver and the server, which we denote by
(skR, pkR) and (skS , pkS) respectively, are then generated. cp, pkR, skR, and pkS are
given to A while skS is kept secret from A.
Phase 2-2: A queries a number of keywords, each of which is denoted by w to the trapdoor
generation oracle Trapdoor and obtains a corresponding trapdoor Tw.
Phase 2-3: A outputs a target keyword pair (w∗0, w

∗
1). Upon receiving this, the PEKS

oracle PEKS chooses β ∈ {0, 1} uniformly at random and creates a target PEKS ciphertext
S∗ = SCF− PEKS(cp, pkS , pkR, w∗β) and returns it to A.
Phase 2-4: A issues a number of trapdoor extraction queries as in Phase 2-2. Differently
from Game 1, w∗0 and w∗1 are allowed to be queried as trapdoor extraction queries.
Phase 2-5: A outputs its guess β′ ∈ {0, 1}.

We define A’s success in Game 2 by SuccGame 2
A (k) = 2 · Pr[β′ = β]− 1.

The SCF− PEKS scheme is said to be IND-SCF-CKA secure if SuccIND−MK−CKA
PEKS,A (k) def=

SuccGame i
A (k), where i is either 1 or 2, is negligible in k.

4.2 Proposed Scheme

In this section we describe our secure channel free PEKS scheme based on the aggregation
technique proposed in [7]. We then provide a security proof for the scheme in the random oracle
model [3].

4.2.1 Description of the Scheme

The secure channel free PEKS scheme consists of the following algorithms:

6

• KeyGenParam(k): Choose two groups G1 = 〈P 〉 and G2 of the same prime order q ≥ 2k.
Construct a bilinear pairing ê : G1 × G1 → G2. Specify hash functions H1 : {0, 1}∗ → G∗1
and H2 : G2 → {0, 1}k. Return cp = (q, G1, G2, ê, P , H1, H2, dW) as a common parameter,
where dW denotes a description of a keyword space.
• KeyGenServer(cp): Choose x ∈ ZZ∗q uniformly at random and compute X = xP . Choose
Q ∈ G∗1 uniformly at random. Return pkS = (cp, Q, X) and skS=(cp, x) as the server’s
public and private key respectively.
• KeyGenReceiver(cp): Choose y ∈ ZZ∗q uniformly at random and compute Y = yP . Return
pkR = (pkS , Y) and skR=(pkS , y) as the receiver’s public and private key respectively.
• SCF− PEKS(cp, pkS , pkR, w): Choose r ∈ ZZ∗q and compute S = (U, V) such that
(U, V) = (rP, H2(κ)), where κ = (ê(Q,X)ê(H1(w), Y))r. Return S as a PEKS cipher-
text.
• Trapdoor(cp, skR, w): Compute Tw = yH1(w). Return Tw as a trapdoor for w.
• Test(cp, Tw, skS , S): Check if H2(ê(xQ + Tw, rP)) = V . If the equation holds return
“Correct” and “Incorrect” otherwise.

Compared with the original PEKS scheme proposed in [6], the above scheme needs only one more
exponentiation in group G2 in the PEKS ciphertext generation process and one more addition in
group G1 in the Test process as the value “ê(Q, X)” and “xQ” can be precomputed by the sender
and the server respectively. We note that the above scheme gives a better performance than the
original PEKS scheme that uses secure channel, (even though the sender should conduct one
more exponentiation) as the communication between the server and the receiver need not be
encrypted, which usually involves SSL-like protocol otherwise.

4.2.2 Security Analysis

We now presents the results on the security of the above scheme. The analysis of Game 1 is
similar to the one given in [6], so we only provide analysis of Game 2 in the following. (The
analysis of Game 1 can be found in Appendix B).

Theorem 1 The above scheme is IND-SCF-CKA secure in the random oracle model assuming
that the BDH problem is intractable.

Proof. Suppose that the attacker B whose running time is bounded by t′ is given (q, G1, G2, ê,
P , aP , bP , cP), where q ≥ 2k as an instance for the BDH problem. B’s task is to compute a
BDH key ê(P, P)abc of aP , bP , and cP using the capability of the IND-CCA attacker A which
makes qH1 and qH2 random oracle queries and qT trapdoor extraction queries within running
time t. B simulates each phase of Game 2 of IND-SCF-CKA as follows.
Simulation of Phase 2-1. B sets Q = bP , X = cP , and chooses two random oracles H1 and H2,
which will be specified shortly. It chooses y ∈ ZZ∗q uniformly at random and compute Y = yP .
It returns (q,G1,G2, ê, P,H1,H2) as a common parameter, returns (Q, X) as a public key of the
server. It also returns Y and y as public and private keys of the receiver respectively. The
random oracles H1 and H2 are controlled by B as follows:

At any time A queries wi to the random oracle H1, B chooses li ∈ ZZ∗q at random, computes
Li = liP and return it as answer. If A queries κi to the random oracle H2, B chooses Vi ∈ {0, 1}k

at random and returns it as answer. Note that B keeps query-answer lists for these random
oracles.

7

Simulation of Phase 2-2. If A queries wi to the trapdoor generation oracle, B computes Twi =
yH1(wi) and returns it as answer. (Note that B does know y).
Simulation of Phase 2-3. Upon receiving (w∗0, w

∗
1) from A, B chooses R ∈ {0, 1}k at random and

creates a target PEKS ciphertext S∗ as follows.

S∗ = (U∗, V ∗) = (aP,R).

B then defines R = H2((ê(Q, X)ê(H(w∗β), Y))a). Note that by definition of Q, X, and Y , we
have

(ê(Q,X)ê(H(wβ)∗, Y))a = ê(bP, cP)aê(lP, yP)a = ê(P, P)abcê(lP, aP)y

Simulation of Phase 2-4. B answers A’s queries to the random oracles and trapdoor oracle as in
the simulation of Phase 2-2. (Note that B can even answer A’s trapdoor extraction queries for
the target keywords w∗0 and w∗1 as it knows y).
Simulation of Phase 2-5. When A outputs its guess β′ ∈ {0, 1}, B picks κ in the query-answer
list for the random oracle H2 and return κ/ê(lP, aP)y as a BDH key.
Analysis. From the specification of the simulations given above, we know that B perfectly
simulates the real attack game of Game 2 of IND-SCF-CKA. Let AskW be an event that A asks
either κ∗0 = H2

(
(ê(Q,X)ê(H1(w∗0), Y))r

)
or κ∗1 = H2

(
(ê(Q,X)ê(H1(w∗1), Y))r

)
to the random

oracle H2 during the real attack. Notice that if AskW does not happen, the probability that A’s
guess β′ equals to β is at most 1/2. Hence, applying Bayes’ rule, we have

Pr[β′ = β] = Pr[β′ = β|AskW] Pr[AskW] + Pr[β′ = β|¬AskW] Pr[¬AskW]

≤ Pr[AskW] +
1
2

Pr[¬AskW] =
1
2

+
1
2

Pr[AskW].

By definition of the success probability of A in Game 2 of IND-SCF-CKA, we then get

1
2

+
1
2
SuccGame 2

A (k) ≤ 1
2

+
1
2

Pr[AskW] ⇐⇒ SuccGame 2
A (k) ≤ Pr[AskW].

In the mean time, when AskW happens, B can solve the BDH problem with probability at
least by picking κ∗β = (ê(Q,X)ê(H1(w∗0), Y))a = ê(P, P)abcê(lP, aP)y from the queries to the
random oracle H2 and computing κ∗β/ê(lP, aP)y. Since qH2 queries are made to the random
oracle H2, we consequently have

SuccBDH
G1,A (k) ≥ 1

qH2

Pr[AskW] ≥ 1
qH2

SuccGame 2
A (k).

Note that the running time of B is bounded by t′ = t + (qT + qH1 + 2)O(k3). ut

5 Handling Multiple Keywords

In practice, one may need to relate multiple keywords to one message. As Boneh et al. [6] sug-
gested, one can achieve this by simply creating E(pkR,M)||PEKS(pkR, w1)|| . . . ||PEKS(pkR, wn),
where E denotes a secure public key encryption function. Note, however, that no formalization,
efficient construction, and issues related to disjunctive and conjunctive search were given in [6].
In this section, we deal with these problems.

8

5.1 Formal Model and Security Notion

First, we formally define a PEKS scheme with multiple keywords as follows.

Definition 6 (MPEKS) A public key encryption with keyword search scheme consists of the
following algorithms.

• A Key Generation Algorithm KeyGen(k): This is the same as the “Key Generation”
algorithm for PEKS.
• A Randomized MPEKS Algorithm MPEKS(pk,w): Taking a receiver’s public key pk
and a multiple keyword w = (w1, . . . , wn) as input, this algorithm returns a MPEKS
ciphertext S which is a searchable encryption of w. We write S = MPEKS(pk,w).
• A Trapdoor Generation Algorithm Trapdoor(sk, is, w): This is the same as the “Trapdoor
Generation” algorithm for PEKS.
• A Test Algorithm Test(Tw, S): This is the same as the “Test” algorithm for PEKS.

Now, we define a security notion for MPEKS, which we call “indistinguishability of PEKS
with multiple keyword search against chosen keyword attack (IND-MK-CKA)”.

Definition 7 (IND-MK-CKA) Let A be an attacker whose running time is bounded by t
which is polynomial in a security parameter k. We consider the following game:

Phase 1: The key generation algorithm KeyGenReceiver(k) is run. A private and public
key pair (skR, pkR) is then generated. pkR is given to A while skR is kept secret from A.
Phase 2: A queries a number of keywords, each of which is denoted by w to the trapdoor
generation oracle Trapdoor and obtains a corresponding trapdoor Tw.
Phase 3: A outputs a new target keyword-vector pair (w∗

0,w∗
1), where w∗

0 =
(w∗01, . . . , w

∗
0n) and w∗

1 = (w∗11, . . . , w
∗
1n), all of which components have not been queried in

Phase 2. Upon receiving this, the MPEKS oracle MPEKS chooses β ∈ {0, 1} uniformly at
random and creates a target PEKS ciphertext vector S∗β = MPEKS(pk,w∗

β) and returns
it to A.
Phase 4: A issues a number of trapdoor extraction queries as in Phase 3. The restriction
here is that the target keyword-vectors w∗

0 and w∗
1 are not allowed to be queried as

trapdoor extraction queries.
Phase 5: A outputs its guess β′ ∈ {0, 1}.

We define the attacker A’s success by SuccIND−MK−CKA
MPEKS,A (k) = 2 · Pr[β′ = β] − 1. The MPEKS

scheme is said to be IND-MK-CKA secure if SuccIND−MK−CKA
MPEKS,A (k) is negligible in k.

5.2 Proposed Scheme

The possible construction for MPEKS given in [6] is inefficient in terms of computation and
communication overhead in that the first term “rP” should be computed n times (a number of
keywords) and the length of ciphertext also increases. Using the “randomness re-use” technique
for multiple recipient public key encryption proposed by Kurosawa [10], we can design an efficient
PEKS scheme with multiple keywords search as follows.

5.2.1 Description of the Scheme

The scheme consists of the following algorithms:

9

• KeyGenReceiver(k): Choose two groups G1 = 〈P 〉 and G2 of the same prime order q ≥ 2k.
Construct a bilinear pairing ê : G1 × G1 → G2. Choose y ∈ ZZ∗q uniformly at random
and compute Y = yP . Additionally, specify hash functions H1 : {0, 1}∗ → G∗1 and
H2 : G2 → {0, 1}k. Return pkR = (q, G1, G2, ê, P , Y , H1, H2) and skR=(q, G1, G2, ê, P ,
y, H1, H2), as receiver’s public and private key respectively.
• MPEKS(pk,w) where w = (w1, . . . , wn): Choose r ∈ ZZ∗q uniformly at random and
compute S = (U, V1, . . . , Vn) such that

U = rP, V1 = H2(ê(H1(w1), Y)r), . . . , Vn = H2(ê(H1(wn), Y)r)

Return S as a MPEKS ciphertext.
• Trapdoor(sk, w): Compute Tw = yH1(w). Return Tw as a trapdoor for a keyword w.
• Test(Tw, (U, Vi)) for some i ∈ {1, . . . , n}: Check if H2(ê(Tw, U)) = Vi. If the equation
holds, return “Correct” and “Incorrect” otherwise.

5.2.2 Security Analysis

Theorem 2 The above scheme is IND-MK-CKA secure in the random oracle model assuming
that the BDH problem is intractable.

The proof is given in Appendix C.

5.3 Discussion on Disjunctive and Conjunctive Search

In some cases, it would be necessary for Alice to use some variations of the keywords, for
example “urgent” and “from the CEO”, or “urgent” or “invitation”. We refer this type of
search as conjunctive and disjunctive search, respectively.

Notice that the construction given in Section 5.2.1 naturally brings disjunctive keyword
search: The receiver simply sends trapdoors which are combined by a special symbol “or”, say,
[yH1(wi1) “or” yH1(wi2) “or”,... “or” yH1(win)] to the server. Upon receiving this, the server
checks which PEKS ciphertexts match yH1(wi1) or yH1(wi2) or ... or yH1(win).

One might think that conjunctive keyword search can be realized in a similar way by send-
ing [yH1(wi1) “and” yH1(wi2) “and”,... “and” yH1(win)] to the server. However, as observed
by Golle, Sttadon, and Waters [9], this method has a security problem as it leaks unneces-
sary information to the server. As an example, assume that the server holds three entries
[E(pk, M1), U ′′, V1, V2], [E(pk, M2), U ′, V2, V3], and [E(pk, M3), U ′′′, V1, V3] in its database. (Note
that U ’s and V ’s are as defined in 5.2.1. In particular, V1, V2, and V3 correspond to keywords
w1, w2, and w3 respectively). Assume that we want to find a ciphertext that corresponds to
keywords w2 “and” w3. As mentioned earlier, if the receiver releases [yH1(w2) “and” yH1(w3)],
the server can not only learn that “E(pk, M2) matches w2 and w3” but also that “E(pk,M1)
matches w2” and “E(pk, M3) matches w3”.

To avoid the above problem, the sender can create a PEKS ciphertext (rP,H2(ê(H1(w2) +
H1(w2), Y)r)) for keyword w2 and w3. However, if a number of keywords increases, this becomes
impractical as there will be a large number of combination – 2n where n is a number of keywords.

6 Concluding Remarks and Open Problems

In this paper, we discussed three issues related to PEKS and proposed provably secure PEKS
schemes that remove secure channel and encrypt multiple keywords efficiently.

10

An interesting open problem is to design a PEKS scheme based on a primitive other than
the BDH problem. As discussed in [6], the computational primitive used to construct Cock’s
identity-based encryption scheme turns out to be insecure. One may think that Boneh and
Boyen’s [4] new identity-based encryption (IBE) scheme based on the Bilinear Diffie-Hellman
Inversion problem could bring a new PEKS scheme1, but we were able to show that this is not
the case: Note that in Boneh and Boyen’s new IBE scheme, a message M under the public key
ID ∈ ZZ∗q is encrypted to a ciphertext C as follows. C = (sIDP + sX, sY, ê(P, P)sM), where
X = xP and Y = yP for random x, y,∈ ZZ∗q . However, the first part sIDP + sX, does not
hide information about “ID” since one can check whether ê(sIDP + sX, Y) = ê(IDβP +X, sY)
where β ∈ {0, 1}. (Note that the Decisional Diffie-Hellman problem in this group is easy.)

The server’s attack by storing trapdoors seems to be inherent weakness of PEKS. Another
open problem is to find a more efficient and convenient way to refresh frequently-used keywords
than the one proposed in this paper.

References

[1] M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval, Key-Privacy in Public-Key Encryption, In
Asiacrypt ’01, LNCS 2248, pages 566–582, Springer-Verlag, 2001.

[2] M. Bellare, A. Boldyreva, and S. Micali, Public-key Encryption in a Multi-User Setting: Security
Proofs and Improvements, In Eurocrypt 2000, LNCS 1807, pp. 259–274, Springer-Verlag, 2000.

[3] M. Bellare and P. Rogaway, Random Oracles are Practical: A Paradigm for Designing Efficient
Protocols, In ACM CCCS, pages 62–73, 1993.

[4] D. Boneh and X. Boyen, Efficient Selective-ID Secure Identity Based Encryption Without Random
Oracles, In Eurocrypt 2004, LNCS 3027, pages 223–238, Springer-Verlag, 2004.

[5] D. Boneh and M. Franklin, Identity-Based Encryption from the Weil Pairing, In CRYPTO 2001,
LNCS 2139, pages 213–229, Springer-Verlag, 2001.

[6] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, Public Key Encryption with Keyword
Search, In Eurocrypt 2004, LNCS 3027, pages 506–522, Springer-Verlag, 2004.

[7] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, Aggregate and Verifiably Encrypted Signatures from
Bilinear Maps, In Eurocrypt 2001, LNCS 2656, pages 416–432, Springer-Verlag, 2003.

[8] C. Cocks, An Identity Based Encryption Scheme Based on Quadratic Residues, In IMA 2001, LNCS
2260, pages 360–363, Springer-Verlag, 2001.

[9] P. Golle, J. Staddon, and B. Waters, Secure Conjunctive Search over Encrypted Data, In ACNS
2004, LNCS 3089, pages 31–45, Springer-Verlag, 2004.

[10] K. Kurosawa, Multi-Recepient Public-Key Encryption with Shortened Ciphertext, In PKC 2002,
LNCS 2274, pages 48–63, Springer-Verlag, 2002.

[11] A. J. Menezes, T. Okamoto, and S. A. Vanstone: Reducing Elliptic Curve Logarithms to a Finite
Field, IEEE Tran. on Info. Theory, Vol. 31, pages 1639–1646, IEEE, 1993.

[12] B. Waters, D. Balfanz, G. Durfee, and D. Smetters, Building an Encrypted and Searchable Audit
Log , In Network and Distributed System Security Symposium (NDSS 2004), 2004.

1Indeed, it was shown in [6] that constructing a PEKS scheme is a harder problem than constructing an IBE
scheme. But, as stated in the same paper, investigating existing IBE schemes could be a starting point.

11

A Security of PEKS against Chosen Keyword Attack

Defined in the following is the security of PEKS against chosen keyword attack, which is similar
to the “key privacy” notion for public key encryption defined in [1].

Definition 8 (IND-CKA) Let A be an attacker assumed to be a probabilistic Turing machine,
whose running time is bounded by t which is polynomial in a security parameter k. We now
consider the following game:

Phase 1: The key generation algorithm KeyGenReceiver(k) is run. A private and public
key pair (skR, pkR) of the receiver is then generated. pkR is given to A while skR is kept
secret from A.
Phase 2: A queries a number of keywords, each of which is denoted by w to the trapdoor
generation oracle Trapdoor and obtains a corresponding trapdoor Tw.
Phase 3: A outputs a target keyword pair (w∗0, w

∗
1). Upon receiving this, the PEKS

oracle PEKS chooses β ∈ {0, 1} uniformly at random and creates a target PEKS ciphertext
S∗ = PEKS(pkR, pkS , w∗β) and returns it to A.
Phase 4: A issues a number of trapdoor extraction queries as in Phase 3. The restriction
here is that w∗0 and w∗1 are not allowed to be queried as trapdoor extraction queries.
Phase 5: A outputs its guess β′ ∈ {0, 1}.
We define the attacker A’s success by SuccIND−CKA

PEKS,A (k) = 2 · Pr[β′ = β] − 1. The PEKS

scheme is said to be IND-CKA secure if SuccIND−CKA
PEKS,A (k) is negligible in k.

B Analysis of Game 1

Proof.
Suppose that the attacker B is given (q,G1,G2, ê, P, aP, bP, cP), where q ≥ 2k, as an instance

for the BDH problem. B’s task is again to compute a BDH key ê(P, P)abc of aP , bP , and cP
using the capability of the IND-SCF-CKA attacker A.
Simulation of Phase 1-1. B sets Y = cP . It chooses x ∈ ZZ∗q uniformly at random and compute
X = xP . It also chooses Q ∈ G∗1 uniformly at random. It returns (q,G1,G2, ê, P, H1,H2) as a
common parameter and returns (Q, X) and x as public and private keys of the server respectively.
It also returns Y as a public key of the receiver. The random oracles H1 and H2 are controlled
by B as follows.

At any time A queries wi to the random oracle H1, B does the following:

• Search H1List for an entry (wi, Li, li, δi). If it exists, return Li as answer. Otherwise,
conduct the following:

– Choose a random coin δi so that Pr[δi = 0] = 1/(qT + 1).

– Choose li ∈ ZZ∗q uniformly at random and compute Li = bP + liP if δi = 0 and
Li = liP if δi = 1.

– Return Li as answer and put (wi, Li, li, δi) into H1List.

If A queries κi to the random oracle H2, B searches H2List for an entry (κi, Vi). If it exists,
return Vi as answer. Otherwise, it chooses Vi ∈ {0, 1}k at random and return it as answer and
put (κi, Vi) into H1List.
Simulation of Phase 1-2. If A queries wi to the trapdoor generation oracle, B does the following:

12

• Conduct the above procedure for simulating the random oracle H1 to get a tuple (wi, Li, li, δi).
If δi = 0, output “Abort” and terminate. Otherwise, do the next step.

• Compute Twi = liY and return it as answer. Note that Twi is a correct trapdoor with
respect to the receiver’s public key Y = cP as Twi = liY = licP = cliP = cLiP = cH1(wi).

Simulation of Phase 1-3. Upon receiving (w∗0, w
∗
1) from A, B does the following.

• Run the above procedure for simulating the random oracle H1 to get tuples (w∗0, L
∗
0, l

∗
0, δ

∗
0)

and (w∗1, L
∗
1, l

∗
1, δ

∗
1). If both δ∗0 and δ∗1 are equals to 1, output “Abort” and terminate.

Otherwise, do the next step.

• Pick β ∈ {0, 1} at random such that δ∗β = 0.

• Choose R ∈ {0, 1}k at random and creates a target PEKS ciphertext S∗ as follows.

S∗ = (U∗, V ∗) = (aP, R).

• Define R = H2((ê(Q,X)ê(H(wβ)∗, Y))a).

Note that by definition of Q, X, and Y , we have

(ê(Q,X)ê(H(wβ)∗, Y))a = ê(Q, xP)aê(bP + l∗βP, cP)a = ê(Q, aP)xê(P, P)abcê(aP, cP)l∗β .

Simulation of Phase 1-4. B answers A’s queries to the random oracles and trapdoor generation
oracle as in the simulation of Phase 1-2.
Simulation of Phase 1-5. When A outputs its guess β′ ∈ {0, 1}, B picks κ in the query-answer
list for the random oracle H2 and return κ

ê(Q,aP)xê(aP,cP)
l∗
β

as a BDH key.

Derivation of the security bound is similar to the one given in [1]. So it is omitted here. ut

C Proof of Theorem 2

Proof. Suppose that the attacker B is given (q,G1,G2, ê, P, aP, bP, cP), where q ≥ 2k, as an
instance for the BDH problem. B’s task is again to compute a BDH key ê(P, P)abc of aP , bP ,
and cP using the capability of the IND-MK-CKA attacker A.
Simulation of Phase 1. B sets Y = cP and returns (q,G1,G2, ê, P, Y, H1,H2) as the public key
of the receiver, where H1 and H2 are random oracles controlled by B as follows.

At any time A queries wi to the random oracle H1, B does the following:

• Search H1List for an entry (wi, Li, li, δi). If it exists, return Li as answer. Otherwise, do
the following:

– Choose a random coin δi so that Pr[δi = 0] = 1/(qT + 1).

– Choose li ∈ ZZ∗q uniformly at random and compute Li = bP + liP if δi = 0 and
Li = liP if δi = 1.

– Return Li as answer and put (wi, Li, li, δi) into H1List.

13

If A queries κi to the random oracle H2, B searches H2List for an entry (κi, Vi). If it exists,
return Vi as answer. Otherwise, it chooses Vi ∈ {0, 1}k at random and return it as answer and
put (κi, Vi) into H1List.
Simulation of Phase 2. If A queries wi to the trapdoor generation oracle, B does the following:

• Run the above algorithm for simulating random oracle H1 to get a tuple (wi, Li, li, δi). If
δi = 0, output “Abort” and terminate. Otherwise, do the following:

– Compute Twi = liY and return it as answer. Note that Twi is a correct trapdoor with
respect to the receiver’s public key Y = cP as Twi = liY = licP = cliP = cLiP =
cH1(wi).

Simulation of Phase 3. Upon receiving a target keyword-vector pair (w∗
0,w∗

1), where w∗
0 =

(w∗01, . . . , w
∗
0n) and w∗

1 = (w∗11, . . . , w
∗
1n), B does the following.

• Choose i ∈ {1, . . . , n} at random.

• Run the above algorithm for simulating the random oracle H1 to get tuples (w∗0i, L
∗
0i, l

∗
0i, δ

∗
0i)

and (w∗1i, L
∗
1i, l

∗
1i, δ

∗
1i) corresponding to (w∗0i, w

∗
1i). If both δ∗0i = δ∗1i = 1, output “Abort”

and terminate. Otherwise, do the following (We know that at least one of δ∗0i and δ∗1i is
equal to 0).:

– Run the above algorithm for simulating the random oracle H1 (2n− 2 times) to get
two vectors of tuples ((w∗01, L

∗
01, l

∗
01, δ

∗
01), . . . , (w

∗
0i−1, L

∗
0i−1, l

∗
0i−1, δ

∗
0i−1), (w∗0i+1, L∗0i+1,

l∗0i+1, δ∗0i+1), . . ., (w∗0n, L∗0n, l∗0n, δ∗0n)) and ((w∗11, L
∗
11, l

∗
11, δ

∗
11), . . . , (w

∗
1i−1, L

∗
1i−1, l

∗
1i−1, δ

∗
1i−1),

(w∗1i+1, L∗1i+1, l∗1i+1, δ∗1i+1), . . ., (w∗01, L
∗
1n, l∗1n, δ∗1n)). If both δ∗0j and δ∗1j are not equal

to 1 for all j = 1, . . . , i − 1, i + 1, . . . , n, output “Abort” and terminate. Otherwise,
do the following:

∗ Pick β ∈ {0, 1} uniformly at random such that δ∗βi = 0.

∗ Choose Ri ∈ {0, 1}k uniformly at random and define Ri = H2(ê(H(w∗βi), Y)a).
create a target MPEKS ciphertext S∗ as follows.

S∗ = (U∗, V ∗
1 , . . . , V ∗

n)
= (aP, H2(ê(aP, Y)l∗β1), . . . , H2(ê(aP, Y)l∗βi−1), Ri,

H2(ê(aP, Y)l∗1−βi+1), . . . , H2(ê(aP, Y)l∗1−βn).

∗ Define Ri = H2(ê(H(w∗βi), Y)a).

Note that by definition of Q and Y , we have

ê(H(w∗βi), Y)a = ê(bP + l∗βiP, cP)a = ê(bP, cP)aê(l∗βiP, cP)a = ê(P, P)abcê(aP, cP)l∗βi .

Note also that

ê(aP, Y)l∗γj = ê(l∗γjP, cP)a = ê(H1(w∗γj), cP)a

for j = 1, . . . , i− 1, i + 1, . . . , n and γ ∈ {β, 1− β}.
Simulation of Phase 4. B answers A’s trapdoor generation queries as in the simulation of Phase
2.

14

Simulation of Phase 5. When A outputs its guess β′ ∈ {0, 1}, B picks κ∗βi in the H2List and

return
κ∗βi

ê(aP,cP)
l∗
βi

as a BDH key.

Analysis. The analysis is based on the hybrid argument [2].
First, let E1 and E2 be events that B does not abort during the simulation of the trapdoor

queries and the simulation of the target MPEKS ciphertext respectively. The probability that
E1 happens is at least

(
1− 1

qT +1

)qT ≥ 1
e . Meanwhile, the probability that E2 happens is at least(

1− 1
qT +1

)2n−2{(
1

qT +1

)2+2
(
1− 1

qT +1

)(
1

qT +1

)} ≥ (qT
qT +1

)2n−2 1
qT +1 . Since A never issues trapdoor

queries for target keyword vectors, E1 and E2 are independent. Hence, the probability that B
does not abort during the entire simulation, that is Pr[E1 ∧ E2], is at least 1

e(qT +1)

(qT
qT +1

)2n−2.
Now, let Hybridi be an event that in the above simulation, A outputs β′ such that β′ = β,

where i ∈ {1, . . . , n} is uniformly chosen at random. In other words, Hybridi denotes an event
that A successfully guesses the keyword of the left part of a “hybrid” MPEKS ciphertext formed
with i coordinates from wβ followed by (n− i) coordinates from w1−β.

As long as B does not abort, A’s view in the above simulation is identical to its view in the
real attack. Since i is uniformly chosen, we get

Pr[AskW] ≥ 1
n

Pr[E1 ∧ E2]
n∑

i=1

(
Pr[Hybridi]− Pr[Hybridi−1]

)
,

where AskW denotes an event that A asks either κ∗0i = ê(H(w∗0i), Y)r or κ∗1i = ê(H(w∗1i), Y)r to
the random oracle H2 during the real attack.

But, when AskW happens, B can solve the BDH problem by picking picking κ∗βi in the H2List

and computing
κ∗βi

ê(aP,cP)
l∗
βi

. Since qH2 queries are made to the random oracle H2, SuccBDH
G1,A (k) ≥

1
qH2

Pr[AskW]. Now that
∑n

i=1

(
Pr[Hybridi] − Pr[Hybridi−1]

)
= Pr[Hybridn] − Pr[Hybridn] =

SuccIND−MK−CKA
MPEKS,A (k). Consequently, we have

SuccBDH
G1,B (k) ≥ 1

en(qT + 1)
(qT

qT + 1
)2n−2SuccIND−MK−CKA

MPEKS,A (k).

Note that the running time of B is bounded by t′ = t + (qT + qH1 + 2n)O(k3). ut

15

