
Secure Delegation of Elliptic-Curve Pairing

Benôıt Chevallier-Mames1, Jean-Sébastien Coron2, Noel McCullagh3⋆,
David Naccache2, and Michael Scott3⋆

1 Gemplus Card International
Applied Research & Security Centre

Avenue des Jujubiers, La Ciotat, F-13705, France
benoit.chevallier-mames@gemplus.com

2 Gemplus Card International
Applied Research & Security Centre 34 rue Guynemer, 92447 Issy-les-Moulineaux, France

{jean-sebastien.coron, david.naccache}@gemplus.com
3 School of Computing
Dublin City University

Glasnevin
Dublin 9, Ireland

{noel.mccullagh, mike}@computing.dcu.ie

Abstract. In this paper we describe a simple protocol for secure delegation of the
elliptic-curve pairing. A computationally limited device (typically a smart-card) will
delegate the computation of the pairing e(A, B) to a more powerful device (for example
a PC), in such a way that 1) the powerful device learns nothing about the points A and
B, and 2) the limited device is able to detect when the powerful device is cheating.

Key-words: Elliptic-curve pairing, secure delegation protocol, Boneh-Franklin
IBE.

1 Introduction

Since the discovery of the first practical identity-based cryptosystem based on the
elliptic-curve pairing [1], pairing-based cryptography has become a very active research
area. Many pairing-based protocols have been proposed with novel and attractive
properties, for example for key-exchange [6] and digital signatures [3].

The increasing popularity of pairing-based cryptosystems and their foreseeable
deployment in computationally constrained devices such as smart-cards and dongles
spurred recent research in the implementation of pairing (e.g. [8]). Unfortunately,
although pairing is a cubic-time operation, pairing implementation attempts in limited
devices such as smart-cards reveal that the embedded code may be slow, resource-
consuming and tricky to program.

Given that several PC-based pairing libraries exist, it seems natural to find-out
whether a smart-card could interact with such packages to privately compute the
elliptic-curve pairing. Note that beyond preserving operands from preying eyes, the
card must also ascertain that bogus libraries don’t mislead it into generating wrong
results.

⋆ These authors are presently also at NoreTech.



In this paper, we propose a simple protocol for secure delegation of elliptic-curve
pairing. A computationally limited device (for example a smart-card) will delegate
the computation of the elliptic-curve pairing e(A,B) to a more powerful device (for
example a PC), in such a way that 1) the powerful device learns nothing about the
points A and B, and 2) the limited device is able to detect when the powerful device
is cheating. The limited device will restrict itself to simple curve or field operations.
We also describe some efficient variants of our protocol if one of the points A and B or
both are already publicly known, or when the point A can be considered as constant,
as it is the case for the Boneh-Franklin identity-based encryption scheme [1].

2 Preliminaries

2.1 Bilinear Map

Our protocol for secure pairing delegation is actually more general than just elliptic-
curve pairing : as most pairing-based cryptosystems, it works for any bilinear map.
Therefore, we briefly review the basic facts about bilinear maps. We follow the nota-
tions in [2]. We refer the reader to [7] for an extensive background on elliptic-curve
pairing.

1. G1 and G2 are two (additive) cyclic groups of prime order p;

2. G1 is a generator of G1 and G2 is a generator of G2;

3. ψ is a computable isomorphism from G1 to G2 with ψ(G1) = G2;

4. e is a computable bilinear map e : G1 × G2 → GT ;

5. GT is a multiplicative cyclic group of order p.

A bilinear map is a map e : G1 × G2 → GT with the following properties :

1. Bilinear: for all U ∈ G1, V ∈ G2 and a, b ∈ ZZ, e(a · U, b · V ) = e(U, V )a·b

2. Non-degenerate: e(G1, G2) 6= 1

Note that the previous conditions imply that e(G1, G2) is a generator of GT .

2.2 Computational Indistinguishability

We recall the notion of computational indistinguishability [5], which will be used in the
definition of secure pairing delegation. Two distribution ensemble X = {Xn}n∈N and

Y = {Yn}n∈N are said to be computationally indistinguishable and denoted X
c
≡ Y if

for every (probabilistic) polynomial-time algorithm A, and every c > 0, there exists
an integer N such that for all n > N

|Pr[A(Xn) = 1] − Pr[A(Yn) = 1]| <
1

nc



3 Secure Pairing Delegation

In this section, we formalize the security notions for secure pairing delegation. Our
setting is the following : a computationally limited device, called the card and denoted
C, will delegate the computation of the pairing e(A,B) to a more powerful device,
called the terminal and denoted T . Both devices C and T are actually probabilistic
polynomial-time Turing machines. We denote by ViewT (A,B) the terminal’s view
when interacting with C with pointsA,B. The terminal’s view includes the randomness
used by the terminal, and the data received from the card.

The security notions could be formalized in the general framework of secure multi-
party computation (for standard definitions, see for example [4]). However, we observe
that our setting is much simpler than for general secure multiparty computation : the
terminal has no secret and outputs nothing; moreover only the terminal can be mali-
cious. Therefore, we adapt the general notions for secure multiparty computation to
our restricted setting. We obtain that a protocol for pairing delegation is secure if it
satisfies the three following security notions :

Completeness : after completion of the protocol with an honest terminal, the card
obtains e(A,B), except with negligible probability.

Secrecy : a (possibly cheating) terminal should not learn any information about the
points A and B. More formally, for any malicious terminal T , there exists a simulator
S such that for any A,B, the output of S is computationally indistinguishable from
the terminal’s view :

S
c
≡ ViewT (A,B)

Note that the simulator S is not given A,B as input.

Correctness : The card should be able to detect a cheating terminal, except with
negligible probability. More formally, for any cheating terminal T and for any A,B,
the card outputs either ⊥ or e(A,B), except with negligible probability.

4 Our Protocol

In order to delegate the pairing computation, one could think of the following protocol.
On input A,B, the card could generate random x, y and ask the terminal to compute
the pairing :

α = e(x ·A, y ·B)

The card would then recover e(A,B) by simply computing :

e(A,B) = α(x·y)−1

However, it is easy to see that this is not a secure pairing delegation protocol. Namely,
although the terminal learns nothing about A,B, the card cannot detect a cheating
terminal. Namely, if the terminal outputs αr for some r instead of α, the card will
obtain e(A,B)r instead of e(A,B), and will not be able to detect the cheating terminal.
In the following, we describe a secure pairing delegation protocol, such that if the
terminal is cheating, then the card outputs either the correct e(A,B) or nothing with
overwhelming probability.



4.1 Description

The card and the terminal are given as input a description of the groups G1, G2 and
GT , and a description of the bilinear map e : G1×G2 → GT . The card and the terminal
receive the generators G1 and G2; we also assume that the card receives e(G1, G2).
The card is given as input the points A and B and must eventually output e(A,B).
Recall that G1, G2 and GT are additive groups of order p.

1. The card generates a random g1 ∈ ZZp and a random g2 ∈ ZZp, and queries the
three following pairings to the terminal :

α1 = e(A+ g1.G1, G2), α2 = e(G1, B + g2.G2)

α3 = e(A+ g1.G1, B + g2.G2)

2. The card checks that α1, α2, α3 ∈ GT , by checking that (αi)
p = 1 for i = 1, 2, 3.

Otherwise, the card outputs ⊥ and halts.

3. The card computes a purported value for e(A,B):

eAB = α−g2

1 · α−g1

2 · α3 · e(G1, G2)
g1g2 (1)

4. The card generates four random values a1, r1, a2, r2 ∈ ZZp and queries the pairing :

α4 = e(a1.A+ r1.G1, a2.B + r2.G2)

5. The card computes :

α′

4 = (eAB)a1a2 · (α1)
a1r2 · (α2)

a2r1 · e(G1, G2)
r1r2−a1g1r2−a2g2r1 (2)

and checks that α′

4 = α4. In this case, the card outputs eAB; otherwise it outputs
⊥.

4.2 Security Proof

The following theorem shows that our protocol is secure :

Theorem 1. The previous protocol is a secure pairing delegation protocol.

Proof. The completeness property is easily established. We obtain from the bilinear
property :

e(A+ g1.G1, B + g2.G2) = e(A,B) · e(A,G2)
g2 · e(G1, B)g1 · e(G1, G2)

g1g2

Then, for an honest terminal, we have :

α1 = e(A+ g1.G1, G2) = e(A,G2) · e(G1, G2)
g1 (3)

α2 = e(G1, B + g2.G2) = e(G1, B) · e(G1, G2)
g2 (4)

α3 = e(A+ g1.G1, B + g2.G2) (5)



Combining the four previous equations, we obtain :

α3 = e(A,B) · (α1)
g2 · (α2)

g1 · e(G1, G2)
−g1g2

which, using (1), shows that the card computes the correct eAB = e(A,B). Moreover,
using :

α4 = e(a1.A+ r1.G1, a2.B + r2.G2)

= e(A,B)a1a2 · e(A,G2)
a1r2 · e(G1, B)r1a2 · e(G1, G2)

r1r2

we obtain from equations (3) and (4) :

α4 = (eAB)a1a2 · (α1)
a1r2 · (α2)

r1a2e(G1, G2)
r1r2−a1g1r2−a2g2r1

which, using (2), gives α4 = α′

4 and shows that the card eventually outputs the correct
eAB = e(A,B).

The secrecy property follows from the fact that the terminal receives only random,
independently distributed points in the groups G1 and G2. Therefore, the simulator
S simply consists in running the terminal T with randomly generated points. The
simulator’s output and the terminal’s view when interacting with C are then identically
distributed.

The correctness property is established as follows : we show that if the value eAB

computed by the card at step 3 is not equal to e(A,B), then the element α′

4 computed
by the card at step 5 has a nearly uniform distribution in GT , independent from the
terminal’s view. Then, the probability that α4 = α′

4 at step 5 will be roughly 1/p.
Therefore, the card will output ⊥, except with negligible probability.

We let U = a1.A + r1.G1 and V = a2.B + r2.G2. Moreover, we let a, b, u, v ∈ ZZp

be such that A = a.G1, B = b.G2, U = u.G1, V = v.G2, which gives :

u = a1 · a+ r1 (6)

v = a2 · b+ r2 (7)

The card checks that α1, α2, α3 ∈ GT . Therefore, we must have eAB ∈ GT , and since
e(G1, G2) is a generator of GT , we can let β1, β2, β3 ∈ ZZp be such that :

α1 = e(A,G2) · e(G1, G2)
g1+β1 (8)

α2 = e(G1, B) · e(G1, G2)
g2+β2 (9)

eAB = e(A,B) · e(G1, G2)
β3 (10)

Therefore, the value eAB is correct iff β3 = 0.
From the previous observation, we also have α′

4 ∈ GT . Therefore, we can assume
that α4 ∈ GT , since otherwise α′

4 6= α4 and the card outputs ⊥. Then we can let
β4, β

′

4 ∈ ZZp be such that :

α4 = e(U, V ) · e(G1, G2)
β4 (11)

α′

4 = e(U, V ) · e(G1, G2)
β′

4 (12)



Therefore, the card outputs eAB iff β4 = β′4.

In the following, we assume that u 6= 0 and v 6= 0. Since (u, v) is uniformly
distributed in ZZp, this happens with probability (1 − 1/p)2 ≥ 1 − 2/p.

We show that if β3 6= 0, then β′4 has a nearly uniform distribution in ZZp, in-
dependent from the terminal’s view, and therefore β4 = β′4 happens with negligible
probability.

From equations (2), (8), (9), (10) and (12), we obtain :

β′4 = a1a2β3 + a1r2β1 + a2r1β2 (13)

The terminal’s view includes the points A+g1.G1, B+g2.G2, U and V and the group
elements α1, α2, α3 and α4. Therefore, the terminal’s view is entirely determined by
(β1, β2, β3, β4, u, v, r), where r is the randomness used by the terminal. Moreover, given
(β1, β2, β3, β4, u, v, r), the element (a1, a2) is uniformly distributed over ZZ

2
p.

From equations (6), (7) and (13), we obtain :

β′4 = a1a2(β3 − bβ1 − aβ2) + a1(vβ1) + a2(uβ2)

Lemma 1. Let p be a prime integer and let a, b, c, d ∈ ZZ such that (a, b, c) 6= (0, 0, 0).
Then the number of solutions (x, y) ∈ ZZ

2
p to the polynomial equation a · xy+ b · x+ c ·

y + d = 0 mod p is at most 2p− 1.

Proof. The proof is straightforward and is therefore omitted.

Since u, v 6= 0, then β3 6= 0 implies (β3 − bβ1 − aβ2, vβ1, uβ2) 6= (0, 0, 0). Then using
the previous lemma, for any γ ∈ ZZp, the probability over (a1, a2) ∈ ZZ

2
p that β′4 = γ is

such that :

Pr[β′4 = γ] ≤
2p− 1

p2
≤

2

p

Therefore, if β3 6= 0, the probability that β′4 = β4 is at most 2/p.

Since we have that u = 0 or v = 0 with probability at most 2/p, we conclude that
if eAB 6= e(A,B), then the card outputs ⊥, except with probability at most 4/p. ⊓⊔

Note that the security of the protocol is not based on any computational assump-
tion; namely the protocol achieves unconditional security.

4.3 Efficiency

Our protocol requires a total of 4 scalar multiplications in G1 and G2, and a total of
10 exponentiations in GT . Our protocol is actually a one-round protocol since the four
pairing queries can be performed in the same round.

5 Efficient Variants with Public A or B

In this section, we describe more efficient variants of our protocol, when one of the
points A and B or both are already publicly known.



For example, when decrypting with Boneh and Franklin’s identity-based encryp-
tion scheme [1], the point A is the user’s private key, and the point B is some part of
the ciphertext. Therefore, the point B is already publicly known and does not need
to be protected. Similarly, when encrypting with Boneh and Franklin’s scheme, the
point A is the recipient’s identity, and the point B is the trusted party’s public-key.
Therefore, both points A and B are already publicly known and don’t need to be
protected.

When the point B is publicly known, the definition of the secrecy property is
modified by simply giving B to the simulator. When both points A and B are publicly
known, the secrecy property is not necessary anymore.

5.1 Secure Pairing Delegation with Public B

The protocol is the same as the protocol described in the previous section, except that
we can take g2 = 0 since the point B does not need to be protected.

1. The card generates a random g1 ∈ ZZp and queries the three following pairings to
the terminal :

α1 = e(A+ g1.G1, G2), α2 = e(G1, B), α3 = e(A+ g1.G1, B)

2. The card checks that α1, α2, α3 ∈ GT , by checking that (αi)
p = 1 for i = 1, 2, 3.

Otherwise, the card outputs ⊥ and halts.

3. The card computes a purported value for e(A,B):

eAB = (α2)
−g1 · α3 (14)

4. The card generates four random values a1, r1, a2, r2 ∈ ZZp and queries the pairing :

α4 = e(a1.A+ r1.G1, a2.B + r2.G2)

5. The card computes :

α′

4 = (eAB)a1a2 · (α1)
a1r2 · (α2)

a2r1 · e(G1, G2)
r1r2−a1g1r2 (15)

and checks that α′

4 = α4. In this case, the card outputs eAB; otherwise it outputs
⊥.

The protocol is more efficient than the protocol of Section 4 since only 3 scalar
multiplications in G1 and G2, and 8 exponentiations in GT are required.

Theorem 2. The previous protocol with public B is a secure pairing delegation pro-

tocol.

Proof. The proof is similar to the proof of theorem 1 and is therefore omitted.



5.2 Secure Pairing Delegation with Public A and B

The protocol is similar to the previous protocol except that we can also take g1 = 0
since A does not need to be protected.

1. The card queries the three following pairings to the terminal :

α1 = e(A,G2), α2 = e(G1, B), α3 = e(A,B)

2. The card checks that α1, α2, α3 ∈ GT , by checking that (αi)
p = 1 for i = 1, 2, 3.

Otherwise, the card outputs ⊥ and halts.

3. The card computes a purported value for e(A,B):

eAB = α3

4. The card generates four random values a1, r1, a2, r2 ∈ ZZp and queries the pairing :

α4 = e(a1.A+ r1.G1, a2.B + r2.G2)

5. The card computes :

α′

4 = (eAB)a1a2 · (α1)
a1r2 · (α2)

a2r1 · e(G1, G2)
r1r2

and checks that α′

4 = α4. In this case, the card outputs eAB; otherwise it outputs
⊥.

The protocol is more efficient than the protocol of Section 4 since only 2 scalar
multiplications in G1 and G2, and 7 exponentiations in GT are required.

Theorem 3. The previous protocol with public A and B is a secure pairing delegation

protocol.

Proof. The proof is similar to the proof of theorem 1 and is therefore omitted.

6 Efficient Variant for Constant Point

In this section, we provide two efficient variants of the previous protocol, when the
point A can be considered as constant. In the first protocol, both points A and B are
public, whereas in the second protocol, A is private whereas B is public.

Those two variants are particularly useful for Boneh and Franklin’s identity-based
encryption scheme [1]. Namely, when encrypting with Boneh and Franklin’s IBE, the
point B is the trusted server public-key, and the point A is the receiver’s identity-
based public-key. Therefore, B can be considered as constant, and both A and B are
public. This corresponds to the first protocol (with constant B instead of constant A,
but the protocol modification is straightforward).

Moreover, when decrypting with Boneh and Franklin’s IBE, the point A is the
user’s private key, and the point B is some part of the ciphertext. Therefore, A can
be considered as constant and private, whereas B can be considered as public. This
corresponds to the second protocol.



6.1 Efficient Variant for constant A and public A, B

As in the previous protocol, the card and the terminal are given as input a description
of the groups G1, G2 and GT , and a description of the bilinear map e : G1 × G2 → GT .
Moreover, the card receives e(A,Q) for some random Q ∈ G2. The point Q and
e(A,Q) are kept private by the card. The card is given as input the point B and must
eventually output e(A,B).

1. The card generates a random r ∈ ZZp and queries the following pairings to the
terminal :

α1 = (A,B), α2 = e(A, r ·B +Q)

2. The card checks that

(α1)
r · e(A,Q) = α2 (16)

and that (α1)
p = 1. In this case, it outputs α1, otherwise it outputs ⊥.

The protocol is more efficient than the protocol of section 5.2 since it requires only
one scalar multiplication and 2 exponentiations in GT .

Theorem 4. The previous protocol with constant public A and public B is a secure

pairing delegation protocol.

Proof. The completeness property is straightforward to establish. The protocol’s cor-
rectness is showed as follows :

Let b be such B = b ·G2. Let q be such that Q = q ·G2. Let

u = r · b+ q mod p

which gives r ·B+Q = u ·G2. We have that the terminal’s view is entirely determined
by (b, u) and by the randomness used by T . Since r and q are randomly generated in
Zp, we obtain that the distribution of r is independent from the terminal’s view. Let
β1, β2 be such that :

α1 = e(A,B) · e(A,G2)
β1

α2 = e(A, r ·B +Q) · e(A,G2)
β2

We have that β1, β2 are a function of the terminal’s view, and that α1 = e(A,B) if
β1 = 0. Moreover, we obtain from (16) that the card outputs α1 iff :

r · β1 = β2 mod p (17)

Assume now that β1 6= 0. Then since β1 and β2 are a function of the terminal’s view,
and the distribution of r is independent from the terminal’s view, equality (17) holds
with probability at most 1/p. Therefore, for any cheating terminal, the card outputs
either ⊥ or the correct e(A,B), except with probability at most 1/p. ⊓⊔



6.2 Efficient variant for constant private A and for public B

As in the previous protocol, the card and the terminal are given as input a description
of the groups G1, G2 and GT , and a description of the bilinear map e : G1 × G2 → GT .
Moreover, the card receives e(A,Q) for some random Q ∈ G2. The points A, Q and
the value e(A,Q) are kept private by the card. The card is given as input the point
B and must eventually output e(A,B).

1. The card generates random x, y, z ∈ Zp and queries the following pairings to the
terminal :

α1 = e(x ·A,B), α2 = e(y ·A, z · (B +Q))

2. The card computes :

eAB = (α1)
x−1

, α3 = (α2)
(yz)−1

3. The card checks that
eAB · e(A,Q) = α3 (18)

and that (eAB)p = 1. In this case, it outputs eAB; otherwise it outputs ⊥.

The protocol is more efficient than the protocol of section 5.1 as it requires only 3
scalar multiplications and 3 exponentiations in GT .

Theorem 5. The previous protocol with constant private A and public B is a secure

pairing delegation protocol.

Proof. The protocol’s completeness is easily established. The protocol’s secrecy fol-
lows from the fact that the terminal receives only randomly distributed points. The
protocol’s correctness is established as follows :

Let b be such B = b ·G2. Let q be such that Q = q ·G2. Let

u = z · (b+ q) mod p

which gives z · (B + Q) = u · G2. The terminal’s view is then entirely determined
by (b, u, x · A, y · A) and by the randomness used by T . Since z and q are randomly
generated in Zp, we obtain that the distribution of z is independent from the terminal’s
view.

Let β1, β2 be such that :

α1 = e(x ·A,B)1+β1

α2 = e(y ·A, z · (B +Q))1+β2

We have that β1 and β2 are a function of the terminal’s view. Moreover, we obtain :

eAB = e(A,B)1+β1

α3 = e(A,B +Q)1+β2

Therefore, eAB = e(A,B) iff β1 = 0. Moreover, we obtain from (18) that the card
outputs eAB if :

e(A,B +Q)β1 = e(A,B)β2



which gives :
b · β1 = (b+ q) · β2 mod p (19)

Then since b, β1, β2 are a function of the terminal’s view, and the distribution of q
is uniform in Zp, independent of the terminal’s view, we obtain that if β1 6= 0, the
equality (19) holds with probability at most 1/p. Therefore, for any cheating terminal,
the card outputs either ⊥ or the correct e(A,B), except with probability 1/p. ⊓⊔

7 Conclusion

In this paper we have described a simple protocol for secure delegation of elliptic-curve
pairing. Our protocol allows a computationally limited device (for example a smart-
card) to delegate the computation of the pairing e(A,B) to a more powerful device
(for example a PC), in such a way that 1) the powerful device learns nothing about
the points A and B, and 2) the limited device is able to detect when the powerful
device is cheating. We have also described more efficient variants of our protocol when
one of the points or both are already publicly known, and when one of the points can
be considered as constant.

We observe that our protocols achieve unconditional security. An interesting re-
search direction would be to further optimize the protocols by trading-off uncondi-
tional security against computational security.

References

1. D. Boneh and M. Franklin, Identity based encryption from the Weil pairing, SIAM J. of Com-
puting, Vol. 32, No. 3, pp. 586-615, 2003. Extended abstract in proc. of Crypto ’2001, LNCS Vol.
2139, Springer-Verlag, pp. 213-229, 2001.

2. D. Boneh, H. Shacham and B. Lynn, Short signatures from the Weil pairing. In proceedings of
Asiacrypt ’01, LNCS Vol. 2248, Springer-Verlag, pp. 514-532, 2001.

3. D. Boneh and X. Boyen, Short Signatures Without Random Oracles. In proceedings of Eurocrypt
2004, LNCS 3027, pp. 56-73, 2004.

4. R. Canetti, Security and Composition of Multiparty Cryptographic Protocols, Journal of Cryp-
tology, (2000) 13: pp. 143–202.

5. S. Goldwasser and S. Micali, Probabilistic Encryption, JCSS, vol. 28, No. 2, 1984, pp. 270-299.
Previous version in STOC 2002.

6. A. Joux, A one round protocol for tripartite Diffie-Hellman. In proceedings of ANTS IV, LNCS
vol 1838, pp. 385–394. Springer-Verlag, 2000.

7. A. Menezes, Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers, 1993.

8. M. Scott and P. Barreto, Compressed Pairings, Proceedings of Crypto 2004, LNCS vol. 3152,
2004.


