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Abstract 
In this paper, we summarize the results achieved during our brief three months long research on collisions of the 
MD5 hash function. Being inspired by the results announced by Wang et al. [1] we independently developed 
methods for finding collisions which work for any initialization value and which are quicker than the methods 
presented in [1, 8]. It enables us to find a MD5 collision on a standard notebook PC roughly in 8 hours [7]. 
Independently on [1, 8], we discovered and propose several multi-message modification methods, which are 
more effective than methods described in [1, 8]. We show their principle. 
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1 Introduction 
One of the major cryptographic “break-through” of the recent years was a discovery of collisions for a set of hash 
functions (MD4, MD5, HAVAL-128, RIPEMD) by the Chinese cryptographers in August 2004 [1]. Their 
authors (Wang et al.) kept the algorithm secret, however. During October 2004, the Australian team (Hawkes et 
al.) tried to reconstruct the methodology in their great work [3]. The most important "Chinese trick" was not 
discovered, although they succeeded in describing a differential scheme of conditions that hold for the published 
collisions. Nevertheless, fulfilling the conditions of this scheme was still considerably computationally difficult in 
comparison to what the results of [1] showed. 

2 Results of our Research [7] 
During our research [7], we also analyzed the available data using differential cryptanalysis. We found a way to 
generate the first message block of the collision about 1000 - 2000 times faster than the Chinese team - that 
corresponds to reaching the first colliding block in 2 minutes using a notebook PC. The same computation phase 
took the Chinese team about an hour using an IBM P690 supercomputer. On the other hand, the Chinese team 
was 2 - 80 times faster when computing the second message block of their collisions. Therefore, our and the 
Chinese methods probably differs in several details in both parts of the computation. Overall, our method is about 
3 - 6 times faster. More specifically, finding the first (complete) collision took 8 hours using a notebook PC (Intel 
Pentium 1.6 GHz). Note that our method works for any initialization vector. It can be abused in forging 
signatures of software packages and digital certificates as some papers show ([4], [5], [6]). We showed that it is 
possible to find MD5 collisions using an ordinary home PC. That should be a warning towards persisting usage 
of MD5. In the appendix, we show new examples of collisions for a standard and chosen initialization values. 

                                                           
1 This research was done during Christmas vacation and during January - March 2005. At that time, the author 
was working for the company LEC, s.r.o., Prague, Czech Republic which supported the project by material and 
financial means. 
2 This paper will be presented at 3rd International Scientific Conference Security and Protection of Information, 
Brno, Czech Republic, May 3 - 5, 2005, http://www.unob.cz/spi/defaulten.asp. 

http://cryptography.hyperlink.cz/
http://www.unob.cz/spi/defaulten.asp
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3 Results of Wang et al. [1] 
Hash functions are very useful cryptographic tool. To be one-way and collision-free, the hash functions have to 
be very robust and complex. Therefore, it is always exciting when a collision is found. One of the most important 
cryptanalytic articles of the last year was precisely the work of the Chinese team [1]. MD5 was the most 
challenging hash function, so we will further focus on this function only. 

Let us remind that there was no algorithm nor explanation in [1] as to how to find the collisions, only some brief 
data was provided which we shall recall now: The colliding pair of messages (M, N) and (M', N') consists of two 
message blocks. The first blocks differ only in a predefined constant vector C1 (M' = M + C1) and the second 
blocks also differ only in a predefined constant vector C2 = -C1 mod 232 (N' = N + C2) whereas MD5(M, N) = 
MD5(M', N'). 

Wang et al. stated that it takes about an hour to find the block M using their supercomputer IBM P690. Finding N 
then takes only 15 seconds to 5 minutes. In the first version of [1], two pairs of the colliding messages were 
presented. The initialization vector (IV) value the authors chose, however, was not the one used in MD5 
algorithm, since the order of bytes was reversed (little-endian vs. big-endian). In the corrected version of the 
paper, Wang et al. showed two pairs of colliding messages for MD5, with the right IV that time. They made a 
remark that their attack works for any initialization value IV. 

3.1 Collision Abuse 

After having published their results, we had only four pairs of the colliding messages. Nevertheless, it was shown 
that even these data could be used to mount a successful attack [4], [5]. It is shown in [4] that a single collision is 
enough to create a pair of different self-extracting archives with an identical hash value. It can be abused, for 
example, to put backdoors into large software packages during their distribution. Furthermore, it was shown in 
cooperation with one of the authors of [1], how to forge a digital certificate using the ability of making a collision 
for any initialization vector, too [6]. 

4 An Attempt to Unveil the Chinese Trick 
A great work by Hawkes et al. [3] was published in October 2004. The authors tried to unveil the "Chinese 
method" basing on the raw data provided in [1]. In this work, they inspect inner differences and conditions for 
messages to hold in order to create a collision using the Chinese method. It was the first rigorous analysis and 
attempt to explain the Chinese method. Basing on one pair of colliding messages (with the correct IV), the 
authors described the differential scheme that the published collision (the one with correct IV) satisfies. This 
scheme was probably in the background of the collision design. However, they did not manage to explain how 
this schema was created. Furthermore, they described what conditions must hold for one message of the colliding 
pair so that the differential scheme is fulfilled. A long list of conditions was acquired. The first set of conditions 
(so called ft- and Tt-conditions) comes up by the first block passing the 64 steps of MD5. 

If the conditions are met in the first 16 steps (more than 200 conditions) by selecting an appropriate M block, 39 
ft-conditions and "3.2" Tt-conditions are left to be fulfilled in the remaining steps. These conditions are met only 
on probabilistic basis. To sum it up, we need to generate about 242.2 messages M to find the one, such that it 
meets all the ft- and Tt- conditions from steps 17 - 64. Similarly, to fulfill the ft- and Tt- conditions for the second 
block N, it is necessary to generate 242.2 messages. The overall complexity is then 243. Hawkes et al. judged that 
the complexity was too large for the collision to be computed in one hour. Basing on that observation, they 
concluded that Wang et al. must have used another trick. Obviously, this trick is the key trick. 

5 Our Method 
In our research [7], we started by the results of [3] and observed the differential scheme from the point of 
additive differences (arithmetic difference modulo 232) and binary differences (xor, modulo 2), in the same way 
as in [3]. Furthermore, we examined other colliding pair, which was the one with wrong IV. We verified that the 
differential scheme holds for both colliding pairs, however there was no more data available. In our research, it 
emerged that some of the ft- and Tt- conditions could have been met in different ways than those Hawkes et al. 
chose. That could theoretically decrease the computational complexity. However, it would lead to increasing the 
complexity of the collision-finding program and its memory demands. Therefore, we did not go this way. Yet, the 
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analysis of ft- and Tt- conditions has shown that the real complexity of collisions finding could be smaller than 
the one in the theoretical model. As the research went further, we found our multi-message modification method 
to generate the first blocks of colliding messages very quickly (independently on [8], which was published later). 
Using a standard PC notebook it took 2 minutes to find the first block of the message whereas it took one hour 
using the supercomputer in [1]. Due to the briefness of research we did not go further in speeding up the search 
for second blocks as we did for the first one, even though we reached the complexity significantly lower than 242 
according to [3] and lower than 232 according to [8]. The fact that we are able to find the collision in 8 hours 
using the PC notebook attests that. According to [1], the search for the second block should be 12 - 240 times 
faster than searching for the first block. That would yield a collision in 2 minutes instead of 8 hours on a 
notebook. So there are reserves in finding second block of the collision.  

5.1 Results of Our Experiments 

We did not use any supercomputer to find the collisions, just ordinary desktop computers. The author conducted 
his experiments on his notebook where he found tens of thousands of collisions for the first block and 
subsequently complete MD5 collisions for both original IV and chosen IVs. To test the program functionality, 
the author asked a few friends to try it on their own computers. In this way, during a week of experimentation, 
tens of thousands first-block collisions and a few dozens of full collisions were found. 

The results obtained using an ordinary notebook (Acer Travelmate 450 LMi, Intel Pentium 1.6 GHz) are as 
follows: During 8 hours, 331 collisions of first block were found and one complete collision was reached. 
According to the fact that it took the Chinese team one hour to find the first block collision, searching for 331 of 
these collisions would take 331 hours, which is 40 times more. It is hard to compare the power of a notebook and 
a supercomputer due to different architectures, but if we take to account that the IBM P690 is about 25 - 50 times 
faster than the notebook (estimate provided by Ondrej Mikle based on simple bogomips ratio) we get the result 
that our method of searching for first-block collision is 1000 - 2000 times faster than the one in [1]. On the other 
hand, the searching for second-block collision is 2 - 80 times slower. Overall, if we compare the time to find a 
complete collision by the Chinese team (1 - 1.08 hour) with us (8 hours) on 25 - 50 times slower machine, our 
method is 3 - 6 times faster. All these comparisons are for illustrational purposes only and the author makes no 
claim about their accuracy (except for the time values). 

5.2 Principle of the Chinese Trick 

Results of our research [7] were published before the papers [8] and [9] were placed on the web. The "trick" of 
finding collisions was described in [8], but without details, enabling to program and reconstruct it. We can recall 
the key ideas from [8] here and explain the differences between our and the Chinese method. 

5.3 The Choice of a Difference Between Message Blocks 

The starting point of [8] was a decision to find collisions for two-block messages and a choice of the particular 
difference between message words. According to [8], the differences were chosen to increase the probability of 
the differential in rounds 3 and 4 of MD5. Let us note that there are also other such basic differences leading to 
effective differential schemes. 

5.4 Variables Q (Q*), Stationary Conditions and the Differential Scheme 

Let us denote M and M* the first blocks of colliding messages and let Q and Q* be the corresponding variables 
according to [3]. Q[1] (resp. Q*[1] ) denotes the first value which is calculated in the first step of processing the 
block M (resp. M*) in MD5. Q[64] (resp. Q*[64]) is the last such value. Denote x[i], i = 0,..., 15 the particular 
words of the block M. According to [3], we get the following relationships between Q and x. At the end of the 
equations for Q[17 - 20] bellow, we note the number of conditions to be fulfilled according to the differential 
scheme of [3]. By RL and RR, we denote a cyclic rotation to the left and to the right, respectively. 

 
Q[ 1]=Q[0 ]+RL(F(Q[0 ],Q[-1],Q[-2])+Q[-3]+x[0 ]+0xd76aa478, 7);

Q[ 2]=Q[1 ]+RL(F(Q[1 ],Q[0 ],Q[-1])+Q[-2]+x[1 ]+0xe8c7b756,12);

Q[ 3]=Q[2 ]+RL(F(Q[2 ],Q[1 ],Q[0 ])+Q[-1]+x[2 ]+0x242070db,17);
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Q[ 4]=Q[3 ]+RL(F(Q[3 ],Q[2 ],Q[1 ])+Q[0 ]+x[3 ]+0xc1bdceee,22);

Q[ 5]=Q[4 ]+RL(F(Q[4 ],Q[3 ],Q[2 ])+Q[1 ]+x[4 ]+0xf57c0faf, 7);

Q[ 6]=Q[5 ]+RL(F(Q[5 ],Q[4 ],Q[3 ])+Q[2 ]+x[5 ]+0x4787c62a,12);

Q[ 7]=Q[6 ]+RL(F(Q[6 ],Q[5 ],Q[4 ])+Q[3 ]+x[6 ]+0xa8304613,17);

Q[ 8]=Q[7 ]+RL(F(Q[7 ],Q[6 ],Q[5 ])+Q[4 ]+x[7 ]+0xfd469501,22);

Q[ 9]=Q[8 ]+RL(F(Q[8 ],Q[7 ],Q[6 ])+Q[5 ]+x[8 ]+0x698098d8, 7);

Q[10]=Q[9 ]+RL(F(Q[9 ],Q[8 ],Q[7 ])+Q[6 ]+x[9 ]+0x8b44f7af,12);

Q[11]=Q[10]+RL(F(Q[10],Q[9 ],Q[8 ])+Q[7 ]+x[10]+0xffff5bb1,17);

Q[12]=Q[11]+RL(F(Q[11],Q[10],Q[9 ])+Q[8 ]+x[11]+0x895cd7be,22);

Q[13]=Q[12]+RL(F(Q[12],Q[11],Q[10])+Q[9 ]+x[12]+0x6b901122, 7);

Q[14]=Q[13]+RL(F(Q[13],Q[12],Q[11])+Q[10]+x[13]+0xfd987193,12);

Q[15]=Q[14]+RL(F(Q[14],Q[13],Q[12])+Q[11]+x[14]+0xa679438e,17);

Q[16]=Q[15]+RL(F(Q[15],Q[14],Q[13])+Q[12]+x[15]+0x49b40821,22);

Q[17]=Q[16]+RL(G(Q[16],Q[15],Q[14])+Q[13]+x[1 ]+0xf61e2562, 5); 4 conds

Q[18]=Q[17]+RL(G(Q[17],Q[16],Q[15])+Q[14]+x[6 ]+0xc040b340, 9); 3 conds

Q[19]=Q[18]+RL(G(Q[18],Q[17],Q[16])+Q[15]+x[11]+0x265e5a51,14); 2 conds

Q[20]=Q[19]+RL(G(Q[19],Q[18],Q[17])+Q[16]+x[0 ]+0xe9b6c7aa,20); 1 cond 

 

Let us consider first the differential scheme in the first block. Both papers [3] and [8] present similar differential 
scheme from which a lot of conditions for bits of variables Q[1 - 64] follow, together with four further 
intermediate values (between the first and the second block). Some bits of Q are set to the value of one or zero; 
some have to fulfill the relation of equality or negation. We call these conditions stationary conditions. Their are 
chosen in [3] and [8] to be the sufficient conditions for reaching the differential scheme in steps 1 - 64. The entire 
message block pairs M and M*, where M fulfills the stationary conditions and M* differs from M in a defined 
way in x[1] (by 231), x[4] (by 215) and x[11] (by 231), will fulfill the whole differential scheme. 

We note that there are other ways on how to fulfill the differential scheme, therefore the (slightly different) 
schemes from [3] and [8] are just only two examples of possible solutions. Actually, there are a lot of differential 
schemes.  

5.5 Fulfilling the Stationary Conditions 

Our procedure is general and independent on a particular differential scheme chosen. In our method, we choose 
variables Q[1 - 16] arbitrarily, but satisfying the stationary conditions. From them, we derive x[0 - 15] and check 
if the other stationary conditions for Q[17 - 64] are fulfilled (we have 36 conditions and 7 more conditions for 
four sums between the first and the second block). These conditions are fulfilled with a certain probability only. 
According to [8], the complexity of this procedure is 243. 

Our goal is, therefore, to find such values x[0 - 15] that conditions Q[1 - 16] and as many as possible of 
conditions for Q[17], Q[18], ... are fulfilled deterministically. 

In [8], they state that it is possible to fulfill 6 stationary conditions in Q[17], Q[18], .... by the multi-message 
modifications in the first block. The collision complexity then decreases from 243 to 237 in the first block. 

Our method [7], developed independently on [8], decreases the complexity to 233, because it fulfills 10 conditions 
in steps Q[17 - 20] deterministically.  

5.6 Our Multi-message Modification Method in the First Block 

In our multi-message modification method, we fulfill conditions Q[1 - 20] deterministically. The remaining 31 
conditions are then fulfilled in a probabilistic manner. 

Procedure: 
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1. We choose Q[3 - 16] fulfilling stationary conditions. 

2. We compute x[6 - 15] : 
x[ 6]=RR(Q[7 ]-Q[6 ],17)-F(Q[6 ],Q[5 ],Q[4 ])-Q[3 ]-0xa8304613;

x[ 7]=RR(Q[8 ]-Q[7 ],22)-F(Q[7 ],Q[6 ],Q[5 ])-Q[4 ]-0xfd469501;

x[ 8]=RR(Q[9 ]-Q[8 ], 7)-F(Q[8 ],Q[7 ],Q[6 ])-Q[5 ]-0x698098d8;

x[ 9]=RR(Q[10]-Q[9 ],12)-F(Q[9 ],Q[8 ],Q[7 ])-Q[6 ]-0x8b44f7af;

x[10]=RR(Q[11]-Q[10],17)-F(Q[10],Q[9 ],Q[8 ])-Q[7 ]-0xffff5bb1;

x[11]=RR(Q[12]-Q[11],22)-F(Q[11],Q[10],Q[9 ])-Q[8 ]-0x895cd7be;

x[12]=RR(Q[13]-Q[12], 7)-F(Q[12],Q[11],Q[10])-Q[9 ]-0x6b901122;

x[13]=RR(Q[14]-Q[13],12)-F(Q[13],Q[12],Q[11])-Q[10]-0xfd987193;

x[14]=RR(Q[15]-Q[14],17)-F(Q[14],Q[13],Q[12])-Q[11]-0xa679438e;

x[15]=RR(Q[16]-Q[15],22)-F(Q[15],Q[14],Q[13])-Q[12]-0x49b40821;

3. We change Q[17] until conditions Q[17 - 19] are fulfilled. When necessary, it is also possible to change Q[3 
- 16].  

Q[18]=Q[17]+RL(G(Q[17],Q[16],Q[15])+Q[14]+x[6 ]+0xc040b340, 9),
Q[19]=Q[18]+RL(G(Q[18],Q[17],Q[16])+Q[15]+x[11]+0x265e5a51,14).

Then we compute 
x[1]=RR(Q[17]-Q[16], 5)-G(Q[16],Q[15],Q[14])-Q[13]-0xf61e2562;

and 
x[2]=RR(Q[3]-Q[2],17)-F(Q[2],Q[1],Q[0])-Q[-1]-0x242070db;

x[3]=RR(Q[4]-Q[3],22)-F(Q[3],Q[2],Q[1])-Q[0]-0xc1bdceee;

x[4]=RR(Q[5]-Q[4], 7)-F(Q[4],Q[3],Q[2])-Q[1]-0xf57c0faf;

x[5]=RR(Q[6]-Q[5],12)-F(Q[5],Q[4],Q[3])-Q[2]-0x4787c62a;

4. All stationary conditions Q[3 - 19] are fulfilled now. Moreover, we have free value x[0].  

5. We choose Q[20] arbitrarily, but fulfilling the one stationary conditions for it. Then we compute x[0]:  
x[0]=RR(Q[20]-Q[19],20)-G(Q[19],Q[18],Q[17])-Q[16]-0xe9b6c7aa;

6. The remaining 33 conditions are fulfilled probabilistically. We have 231 possible values for Q[20]. If we 
don't find a collision, we return to the point 3 and continue by choosing a new value of Q[17]. With the 
complexity of 233, we find a collision of the first block (including four conditions for four sums between the 
first and second block).  

Note.  If we would describe the method as in [8], it would not be very transparent. In our way, we can see the 
goal of multi-message modifications obviously. Anyway, there are two multi-message modifications. The first 
modification consists of changing x[1], x[6], and x[11] simultaneously to fulfill conditions Q[17 - 19]. 
Furthermore, we modify x[0] to fulfill the condition for Q[20].  

 

5.7 Our Multi-Message Modification Method in the Second Block 

Now, we present a method which is not optimal, but which was used in [7]. We will present a multi-message 
modification methods then which are quicker, but which were not experimentally verified. 

Our multi-message modification method consists of deterministically fulfilling conditions for Q[1 - 18]. The 
remaining 29 conditions are fulfilled in a probabilistic manner. 

Procedure: 

1. We choose Q[3 - 16] fulfilling stationary conditions. 

2. We change arbitrarily the bit number 22 (weight 222) of variables Q[4 - 16]. 
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3. We choose the value Q[1] arbitrarily, but fulfilling stationary conditions (we have here at minimum 224 
possible values of Q[1]) 

4. We compute x[0], x[7 - 15] : 
x[0]=RR(Q[1]-Q[0],7)-F(Q[0],Q[-1],Q[-2])-Q[-3]-0xd76aa478;

x[7]= RR(Q[8 ]-Q[7 ],22)-F(Q[7 ],Q[6 ],Q[5 ])-Q[4 ]-0xfd469501;

x[8]= RR(Q[9 ]-Q[8 ], 7)-F(Q[8 ],Q[7 ],Q[6 ])-Q[5 ]-0x698098d8;

x[9]= RR(Q[10]-Q[9 ],12)-F(Q[9 ],Q[8 ],Q[7 ])-Q[6 ]-0x8b44f7af;

x[10]=RR(Q[11]-Q[10],17)-F(Q[10],Q[9 ],Q[8 ])-Q[7 ]-0xffff5bb1;

x[11]=RR(Q[12]-Q[11],22)-F(Q[11],Q[10],Q[9 ])-Q[8 ]-0x895cd7be;

x[12]=RR(Q[13]-Q[12], 7)-F(Q[12],Q[11],Q[10])-Q[9 ]-0x6b901122;

x[13]=RR(Q[14]-Q[13],12)-F(Q[13],Q[12],Q[11])-Q[10]-0xfd987193;

x[14]=RR(Q[15]-Q[14],17)-F(Q[14],Q[13],Q[12])-Q[11]-0xa679438e;

x[15]=RR(Q[16]-Q[15],22)-F(Q[15],Q[14],Q[13])-Q[12]-0x49b40821;  

5. We choose Q[2] arbitrarily, but fulfilling stationary conditions (we have here at minimum 212 possible 
values). 

6. We compute x[1] from Q[1 - 2] and check if the four stationary conditions for Q[17] are fulfilled:  
x[1]=RR(Q[2]-Q[1],12)-F(Q[1],Q[0],Q[-1])-Q[-2]-0xe8c7b756,

Q[17]=Q[16]+RL(G(Q[16],Q[15],Q[14])+Q[13]+x[1]+0xf61e2562, 5). 

If they are not, we go to step 5 and choose a new Q[2] (if necessary, it is possible to go to step 3 and choose a 
new value for Q[1]).  

7. We set two lower bits of Q[3] as in Q[2] according to appropriate stationary conditions. 

8. From Q[3 - 7] we compute x[2 - 6]  
x[2]=RR(Q[3]-Q[2],17)-F(Q[2],Q[1],Q[0])-Q[-1]-0x242070db;

x[3]=RR(Q[4]-Q[3],22)-F(Q[3],Q[2],Q[1])-Q[0 ]-0xc1bdceee;

x[4]=RR(Q[5]-Q[4], 7)-F(Q[4],Q[3],Q[2])-Q[1 ]-0xf57c0faf;

x[5]=RR(Q[6]-Q[5],12)-F(Q[5],Q[4],Q[3])-Q[2 ]-0x4787c62a;

x[6]=RR(Q[7]-Q[6],17)-F(Q[6],Q[5],Q[4])-Q[3 ]-0xa8304613;  

and we check if the conditions for Q[18] are fulfilled. If they are not, we go back in step 5 to choose a new value 
for Q[2] (resp. Q[1] in step 3). According to the terminology of [8], we use the multi-message modifications of 
x[2 - 6]. 

9. Now, all the conditions for Q[1 - 18] are fulfilled. 

10. The remaining 29 conditions (according to [8]), resp. 27 conditions (according to [3]) are fulfilled 
probabilistically. If we do not find a collision, we have more than 229 possibilities of choices of Q[1 - 2], 
eventually with further choices of 22nd bits of Q[3 - 16]. With the complexity of 229 (227) we find a collision 
of the second block. We note that, according to [8], the complexity of finding the collision of the second 
block is 230. 

 

5.8 Another Multi-Message Modification Methods in the Second Block 

5.8.1 Fulfilling Stationary Conditions Q[1 - 19] Deterministically 

We propose another procedure, consisting of fulfilling conditions Q[1 - 19] deterministically.  

1. We choose Q[1 - 16] arbitrarily, but fulfilling stationary conditions. 

2. We compute x[0 - 15]. 
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3. We change Q[2] until the conditions for Q[17] are fulfilled (we compute x[1 - 5] and we check if x[1] 
corresponds with Q[17]). 

4. We change Q[7] until conditions for Q[18] are fulfilled (we compute x[6 - 10] and we check if x[6] 
corresponds with Q[18]). 

5. We change Q[12] until conditions for Q[19] are fulfilled (we compute x[11 - 15] and we check if x[11] 
corresponds with Q[19]). 

Now, all conditions for Q[1 - 19] are fulfilled deterministically. The remaining 27 conditions according to [8] 
(resp. 25 conditions according to [3]) are fulfilled probabilistically. We have more than 227 choices of Q[1 -16]. 
With the complexity of 227 we find a collision of the second block. This is a further reduction of the complexity. 
This procedure was not experimentally verified. 

5.8.2 Fulfilling Stationary Conditions Q[1 - 21] Deterministically 

We propose another procedure, consisting of fulfilling conditions Q[1 - 21] deterministically.  

1. We choose Q[2 - 16] arbitrarily, but fulfilling stationary conditions.  

2. We compute x[5 -15]. 

3. We change Q[1] until the conditions for Q[17 - 21] are fulfilled (From Q[1] we compute new x[0 - 4]). 

4. Now we change Q[8 - 12] (fulfilling stationary conditions) in such a way that x[11] remains unchanged. 
Because the values x[1, 6, 11, 0, 5] remain unchanged, the conditions Q[17 - 21] remain fulfilled. We 
compute x[7 -15]. The remaining 24 stationary conditions are fulfilled probabilistically.  

We have more than 224 choices of Q[8 -12]. With the complexity of 224 we find a collision of the second block. 
This is a further reduction of the complexity. 

This procedure was not experimentally verified. 

6 Conclusion  
 

We proposed new methods for MD5 collisions finding, independently on a description of the method by Wang et 
al. [1, 8]. Our methods are quicker. We reached complexity 233 vs. 237 in the first block and  229 (or even 224) vs. 
230 in the second block. It enables us to find collisions on a standard notebook PC in several hours. Furthermore, 
they work for arbitrarily chosen initialization value. 
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hours 11 minutes) than on the author's notebook. 
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7 Appendix: Examples 

7.1 Example: MD5 Collision with the Standard IV 

IV according to [2]:  
context->state[0] = 0x67452301;

context->state[1] = 0xefcdab89;

context->state[2] = 0x98badcfe;

context->state[3] = 0x10325476; 

First message: 
0xA6,0x64,0xEA,0xB8,0x89,0x04,0xC2,0xAC,

0x48,0x43,0x41,0x0E,0x0A,0x63,0x42,0x54,

0x16,0x60,0x6C,0x81,0x44,0x2D,0xD6,0x8D,

0x40,0x04,0x58,0x3E,0xB8,0xFB,0x7F,0x89,

0x55,0xAD,0x34,0x06,0x09,0xF4,0xB3,0x02,

0x83,0xE4,0x88,0x83,0x25,0x71,0x41,0x5A,

0x08,0x51,0x25,0xE8,0xF7,0xCD,0xC9,0x9F,

0xD9,0x1D,0xBD,0xF2,0x80,0x37,0x3C,0x5B,

0x97,0x9E,0xBD,0xB4,0x0E,0x2A,0x6E,0x17,

0xA6,0x23,0x57,0x24,0xD1,0xDF,0x41,0xB4,

0x46,0x73,0xF9,0x96,0xF1,0x62,0x4A,0xDD,

0x10,0x29,0x31,0x67,0xD0,0x09,0xB1,0x8F,

0x75,0xA7,0x7F,0x79,0x30,0xD9,0x5C,0xEB,

0x02,0xE8,0xAD,0xBA,0x7A,0xC8,0x55,0x5C,

0xED,0x74,0xCA,0xDD,0x5F,0xC9,0x93,0x6D,

0xB1,0x9B,0x4A,0xD8,0x35,0xCC,0x67,0xE3. 

 

Second message: 
0xA6,0x64,0xEA,0xB8,0x89,0x04,0xC2,0xAC,

0x48,0x43,0x41,0x0E,0x0A,0x63,0x42,0x54,

0x16,0x60,0x6C,0x01,0x44,0x2D,0xD6,0x8D,

0x40,0x04,0x58,0x3E,0xB8,0xFB,0x7F,0x89,

0x55,0xAD,0x34,0x06,0x09,0xF4,0xB3,0x02,

0x83,0xE4,0x88,0x83,0x25,0xF1,0x41,0x5A,

0x08,0x51,0x25,0xE8,0xF7,0xCD,0xC9,0x9F,

0xD9,0x1D,0xBD,0x72,0x80,0x37,0x3C,0x5B,

0x97,0x9E,0xBD,0xB4,0x0E,0x2A,0x6E,0x17,

0xA6,0x23,0x57,0x24,0xD1,0xDF,0x41,0xB4,

0x46,0x73,0xF9,0x16,0xF1,0x62,0x4A,0xDD,

0x10,0x29,0x31,0x67,0xD0,0x09,0xB1,0x8F,
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0x75,0xA7,0x7F,0x79,0x30,0xD9,0x5C,0xEB,

0x02,0xE8,0xAD,0xBA,0x7A,0x48,0x55,0x5C,

0xED,0x74,0xCA,0xDD,0x5F,0xC9,0x93,0x6D,

0xB1,0x9B,0x4A,0x58,0x35,0xCC,0x67,0xE3.

 

Common MD5 hash:  
0x2B,0xA3,0xBE,0x5A,0xA5,0x41,0x00,0x6B,

0x62,0x37,0x01,0x11,0x28,0x2D,0x19,0xF5. 

7.2 Example: MD5 Collision with a Chosen IV 
context->state[0] = 0xabaaaaaa;

context->state[1] = 0xaaacaaaa;

context->state[2] = 0xaaaadaaa;

context->state[3] = 0xaaaaaaea; 

 

First message: 
0x9E,0x83,0x2A,0x4C,0x95,0x64,0x5E,0x2B,

0x2E,0x1B,0xB0,0x70,0x47,0x1E,0xBA,0x13,

0x7F,0x1A,0x53,0x43,0x22,0x34,0x25,0xC1,

0x40,0x04,0x58,0x3E,0xB8,0xFB,0x7F,0x89,

0x55,0xAD,0x34,0x06,0x09,0xF4,0xB3,0x02,

0x83,0xE4,0x88,0x83,0x25,0x71,0x41,0x5A,

0x08,0x51,0x25,0xE8,0xF7,0xCD,0xC9,0x9F,

0xD9,0x1D,0xBD,0xF2,0x80,0x37,0x3C,0x5B,

0x89,0x62,0x33,0xEC,0x5B,0x0C,0x8D,0x77,

0x19,0xDE,0x93,0xFA,0xA1,0x44,0xA8,0xCC,

0x56,0x91,0x9E,0x47,0x00,0x0C,0x00,0x4D,

0x40,0x29,0xF1,0x66,0xD1,0x09,0xB1,0x8F,

0x75,0x27,0x7F,0x79,0x30,0xD5,0x5C,0xEB,

0x42,0xE8,0xAD,0xBA,0x78,0xCC,0x55,0x5C,

0xED,0xF4,0xCA,0xDD,0x5F,0xC5,0x93,0x6D,

0xD1,0x9B,0x0A,0xD8,0x35,0xCC,0xE7,0xE3.

 

Second message: 
0x9E,0x83,0x2A,0x4C,0x95,0x64,0x5E,0x2B,

0x2E,0x1B,0xB0,0x70,0x47,0x1E,0xBA,0x13,

0x7F,0x1A,0x53,0xC3,0x22,0x34,0x25,0xC1,

0x40,0x04,0x58,0x3E,0xB8,0xFB,0x7F,0x89,

0x55,0xAD,0x34,0x06,0x09,0xF4,0xB3,0x02,

0x83,0xE4,0x88,0x83,0x25,0xF1,0x41,0x5A,

0x08,0x51,0x25,0xE8,0xF7,0xCD,0xC9,0x9F,

0xD9,0x1D,0xBD,0x72,0x80,0x37,0x3C,0x5B,
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0x89,0x62,0x33,0xEC,0x5B,0x0C,0x8D,0x77,

0x19,0xDE,0x93,0xFA,0xA1,0x44,0xA8,0xCC,

0x56,0x91,0x9E,0xC7,0x00,0x0C,0x00,0x4D,

0x40,0x29,0xF1,0x66,0xD1,0x09,0xB1,0x8F,

0x75,0x27,0x7F,0x79,0x30,0xD5,0x5C,0xEB,

0x42,0xE8,0xAD,0xBA,0x78,0x4C,0x55,0x5C,

0xED,0xF4,0xCA,0xDD,0x5F,0xC5,0x93,0x6D,

0xD1,0x9B,0x0A,0x58,0x35,0xCC,0xE7,0xE3.

 

Common hash: 
0xef,0x2e,0xae,0x54,0xe0,0x34,0x70,0x7c,
0xa2,0x6e,0xb0,0x9b,0x45,0xc7,0xe4,0x87. 
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