Time-Data-Memory Trade-Off Based Cryptanalysis of
Certain Broadcast Encryption Schemes

Miodrag J. Mihaljevi¢!, Marc P.C. Fossorier? and Hideki Imai?

! Mathematical Institute, Serbian Academy of Sciences and Arts
Kneza Mihaila 35, 11001 Belgrade, Serbia and Montenegro
Email: miodragm@turing.mi.sanu.ac.yu

2 Department of Electrical Engineering, University of Hawaii,
540 Dole St., Holmes Hall 483, Honolulu, HI 96822, USA
Email: marc@spectra.eng.hawaii.edu

3 University of Tokyo, Institute of Industrial Science,
4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505 Japan
Email: imai@iis.u-tokyo.ac.jp

Abstract

This paper points out to a generic vulnerability of certain broadcast encryption schemes. This
vulnerability can be effectively explored assuming chosen plaintext attacks, and in some cases
even under ciphertext only attack. The developed methods for cryptanalysis are based on an
attacking approach not taken into account in the security evaluations of the reported broadcast
encryption schemes. The proposed attacks are based on employment of a dedicated time-data-
memory trade-off approach for cryptanalysis. Two algorithms for cryptanalysis are proposed
and their main characteristics regarding the complexity and required sample are pointed out.
The algorithms are applied for cryptanalysis of particular recently reported broadcast encryption
schemes implying that their security is far below the claimed ones.

Keywords: broadcast encryption, key management, cryptanalysis, time-memory-data trade-off.

1 Introduction

Broadcast encryption (BE), initially reported in [2] and [4], is a cryptographic method for providing
the conditional data access distributed via the public channels. BE schemes employ the following
approach for controlling the access privileges: the data are encrypted and only legitimate users
are provided with the information on how to decrypt them (for some recent issues and particular
applications see [9], [14] and [10] for example). The data encryption is performed based on a sym-
metric cipher and the secret session encrypting key (SEK). Ensuring that only the valid members
of the group have the SEK at any given time instance is the key management problem. To make
this updating possible, another set of keys called the key-encrypting keys (KEKSs) is involved. The
KEKs are used to encrypt and deliver the updated SEK to the valid members of the group only.
In order to obtain the desired security, the KEKs must be kept in a protected storage.

The underlying BE paradigm is to represent any privileged set of users as the union of s subsets
of users of a particular form. A different key is associated with each one of these sets, and a user
knows a key if and only if he belongs to the corresponding set. The broadcaster encrypts SEK s
times employing the KEKSs associated with the set in the cover. Consequently, each privileged user
can easily access the data, but even a coalition of the non-privileged users cannot.

Security of the reported BE schemes was mainly considered via possible impacts of colluding
the revoked users under assumption that the employed encryption techniques are secure ones.

Motivation for the Work. The main intention of this work was to consider some alternative attacking
scenarios motivated by the following two issues: (i) KEKs have static nature - they are given to
users at the very beginning and used later on during the entire “working life” of the system; (ii) a
same SEK is encrypted a huge (usually) number of times by different KEKs and the corresponding
ciphertexts are publicly available. As a result, knowledge of only one KEK can compromise the
security of the entire BE system.

Particularly, a motivation was consideration of BE schemes resistance against dedicated time-
data-memory trade-off attacks.

Contributions of the Paper. This paper points out to a generic vulnerability of certain BE schemes.
This vulnerability can be effectively explored assuming chosen plaintext attacks, and in some cases
even under ciphertext only attack. The developed methods for cryptanalysis are based on an attack-
ing approach not taken into account in the security evaluations of the reported BE schemes. The
proposed attacks are based on employment of a dedicated time-data-memory trade-off approach for
cryptanalysis. Two algorithms for cryptanalysis are proposed, one related to the chosen plaintext
attack scenario, and the other related to the ciphertext only scenario. The main characteristics of
both algorithms are given regarding the required sample, and time and space complexities. The
algorithms are employed for cryptanalysis some of the currently most interesting BE schemes show-
ing that their security level is significantly below the claimed one. One of the main consequences
of the proposed methods for cryptanalysis is the impact regarding the design requirements of the
BE schemes in order to avoid the identified vulnerabilities.

Organization of the Paper. Section 2 contains a summary, relevant for this paper, of the background
on BE and time-memory-data trade-off approaches for cryptanalysis. The attacking model and
scenarios are specified in Section 3. Two developed algorithms for cryptanalysis are proposed in
Section 4 including statements on theirs complexity and required sample. The evaluations of the
currently most interesting BE schemes employing the proposed algorithms for cryptanalysis are
given in Section 4 and high vulnerability of these schemes are pointed out. A concluding discussion
is given in Section 5. The main characteristics of the particular BE schemes considered in Section
4 are summarized in Appendix A.

2 Background

2.1 Broadcast Encryption

Let KEK; denotes a KEK employed in the system, and let ID; denotes its name, i.e. its identifi-
cation (ID). BE is based on the following approach. The system center generates all the employed
KEKs. A user of the BE system is in advance provided with a subset of all KEKs employed in the
system. Note that different users can have overlapping subsets of KEKSs, but no one pair of users
have the identical subset.

The BE procedures at the center and each of the users are based on the following. When the
current SEK should be updated, the center finds a subset I of KEKs { K EK;};cr such that each
of the legitimate users possesses at least one of these keys and none of the un-legitimate users
possesses any of these keys. The center encrypts the data with SEK, generates encrypted forms of
SEK employing all KEK;, i € I, and broadcasts the following

< [header); Espk (data) > = < [{ (ID;, Exgpk,;(SEK)) }ierl; Esek (data) >, (1)

where for simplicity we assume that the same encryption algorithm FE(-) is employed for encryption
of the data and KEKs.

Upon receiving (1), a legitimate receiver is able to find ID; in its possession and based on the
pair (ID;, Exrk,(SEK)) it can recover SEK and the data based on the following:

SEK = Eypg (Expk,(SEK)) (2)

data = Egp 1 (Espr(data)) (3)

where E~1(-) denotes the decryption algorithm.
Note that the well recognized BE schemes reported in [13] and [7] follow the above paradigm,
as well as the very recently reported BE scheme [8].

2.2 Time-Memory-Data Trade-Off Attack

This section yields an overview of the time-memory-data trade-off concept according to [6] and [3].
Let f(-) denote a one-way function, and K a secret key. Computing f(K) is simple, but
computing K from f(K) is equivalent to cryptanalysis.
The time-memory trade-off concept is based on the following two phases: the precomputation
phase which should be performed only once, and the processing phase which should be performed
for reconstruction of a particular secret key.

SP e = e — — e EP
S Py e — e — — e EPR,

m m
StartPoints - - - - -+ EndPoints
SP,, e = e — — e EP,,

length ¢

Figure 1: The underlying matrix for time-memory trade-off.

As part of the precomputation, the cryptanalyst chooses m starting points, SPy, SPs, ..., SPp,,
each an independent random variable drawn uniformly from the key space {1,2,...,N}. For 1 <
17 < m he lets

Xio = SP; (4)

and computes
Xij = f(Xij-1), 1<j<t, (5)

following the scheme given in Fig. 1. The parameters m and ¢ are chosen by the cryptanalyst to
trade-off time against memory.
The last element or endpoint in the ith chain (or row) is denoted by EP;. Clearly,

EP; = f'(SP) , (6)

where f!- denotes the corresponding self-composition of f(-).

The complexity to construct the table is mt. However, to reduce memory requirements, the
cryptanalyst discards all intermediate points as they are produced and sorts {SP;, EP;}7", on the
endpoints. The sorted table is stored as the result of this precomputation.

Now we explain how the above table can be employed for the cryptanalysis of a known encryption
algorithm Ey () where K denotes the employed secret key. Suppose that the cryptanalyst has
obtained the pair (Y, Py) where

Yo = Ex () - (7)

Accordingly, we consider the problem of recovering the secret key K when the encryption E(-) and
corresponding decryption D(-) algorithms, the ciphertext Yy, and the corresponding plaintext P
are known to the cryptanalyst.
Suppose that the following is valid
Yi = f(K) . (8)

Note that the cryptanalyst can check if Y; is an endpoint in one ”operation” because the
{(SP;, EF;)} are sorted on the endpoints. Accordingly, note the following:

e If Y] is not an endpoint, the key is not in the next to the last column in Fig. 1. (If it is there,
Y7, which is its image under f, would be an endpoint.)

o If Yy = EP,, either K = X;; ; (i.e., K is in the next to last column of Fig. 1), or EP; has
more than one inverse image. We refer to this latter event as a false alarm. If Y7 = EP;,
the cryptanalyst therefore computes X;; 1 and checks if it is the key, for example by seeing
if it deciphers Yy into Py. Because all intermediate columns in Fig. 1 were discarded to save

memory, the cryptanalyst must start at SP; and recompute X, 1, X; 2, ..., etc. until he reaches
Xit—1.

e If Y7 is not an endpoint or a false alarm occurred, the cryptanalyst computes

and checks if it is an endpoint. If it is not, the key is not in the (¢ — 2)-th column of Fig. 1,
while if Y5 = E'P; the cryptanalyst checks if X;; o is the key.

e In a similar manner, the cryptanalyst computes
Y3 = f(YQ)a (R Yi = f(thfl)
to check if the key is in the (¢ — 3)-th, ..., or 1-st column of Fig. 1.

If all mt elements in the 1-st through ¢-th columns of Fig. 1 are different and if K is chosen
uniformly from all possible values, the probability of success Pr(S) would be mt/N. Ounly 2m
words of memory and t operations are required, so the time-memory product has come into play.
An exhaustive search with ¢ operations has only Pr(S) = ¢/N, while a table lookup with m words
of memory has only Pr(S) =m/N.

If the matrix in Fig. 1 has some overlap, but a fixed fraction of distinct elements, the probability
of success is only lowered by the same fixed fraction. A mild amount of overlap therefore can be
tolerated in the matrix without affecting the basic gain inherent in the time-memory trade-off. The
analysis also neglects other constant and logarithmic factors (e.g., it counts an encipherment and
check for Y7 equal to an endpoint as one operation).

Finally, suppose that the secret key K initializes the internal state of a stream cipher, that this
state has the same dimension as K, and that we have D different ciphertexts obtained by a stream
cipher. The attack is successful if any one of the D given outputs can be found in the matrix
corresponding to Fig. 1. Accordingly we can reduce the total number of points covered by the

matrix from about N to N/D, and still get (with high probability) a collision between the stored
and actual states, obtaining a time-memory-data trade-off.

Assuming that P denotes the pre-processing complexity, the time-memory-data trade-off attack
on stream ciphers proposed in [3] satisfies the following relation P = N/D, tm2D? = N? for any
D? <t < N. A typical point on this trade-off relation is P = N2/3 pre-processing time, t = N2/3
attack time, m = N'/3 memory space, and D = N'/3 available data. For N = 2!9 the parameters
P =1t=25 and m = D = 233 are all (barely) feasible, [3].

3 Model and Scenarios for Cryptanalysis of Broadcast Encryption
Schemes

3.1 Model under Cryptanalysis

We assume that the key management in the considered BE schemes is based on the following
paradigm. In order to provide the legitimate users with the decryption key SEK; at the time
instance j, the following set of pairs H; is publicly available

Hj ={(ID;, Ci;j)}ier(j) » Y

where

Cij = Exepk,(SEKj)) , (11)

and ID; is the name of the key KEK; employed for encryption of SEK; using the symmetric
encryption algorithm E(-), and I(j) is a time dependent subset of integers {1,2,...,T}.

Note that in the considered model E(-) could be a block-cipher or a stream-cipher.

Also, we assume that the following is valid:

e Foreachi=1,2,...,I,
- KEK; is a randomly generated binary vector of dimension L and 2" >> I;
- ID; only indicates that the encrypted form Expk,(SEK;) of SEK; is obtained employing
the key K EK; and does not provide any information on the binary vector K FK;;

e Foreach j=1,2,...,
- SEKj is a binary vector of dimension L;
- each I(j) is a different subset of {1,2,...,I};
- a certain overlapping between different sets I(j) could occur;

e The employed encryption algorithm FE(-) is a secure one so that any C;; = Expk;(SEKj))
does not yield any information on K EK; and SEK;.

3.2 Scenarios under Cryptanalysis

The attacker’s knowledge is limited as follows:

- The attacker knows the entire structure of the BE scheme under cryptanalysis including the
employed encryption algorithm FE(-);

- The attacker does not know any of the keys KEK;, i = 1,2, ..., 1, employed in the considered BE
scheme.

The goal of the attacker is to recover at least one of the secret keys KEK;, i = 1,2,.... M,
employed in the BE scheme. We emphasize this last point as it constitutes the main difference in
comparison with recovery of a single key employed in a block or stream cipher, and it is one of the
main origins for the weaknesses pointed out in this paper.

3.2.1 Scenario A

In this scenario, it is assumed that the attacker has the following data for cryptanalysis
(H;,SEK; = SEK), j=1,2,...,J .

This scenario corresponds to the chosen plaintext based cryptanalysis.

3.2.2 Scenario B

In this scenario, it is assumed that the attacker has the following data for cryptanalysis
(H;,SEKj;), j=1,2,...,J.

This scenario corresponds to the ciphertext only based cryptanalysis assuming that the attacker is
a legitimate user of the system.

4 Novel Methods for Cryptanalysis of Broadcast Encryption Schemes

4.1 Underlying Ideas

The main origins for developing the attacks are the following characteristics of the BE schemes:
(a) the entire secret key of a BE scheme, known only to the broadcasting center, consists of a huge
number of the particular secret keys { K EK;}i—1;

(b) in a BE scheme, each session key is encrypted a number of times employing different KEKs;
(c) any user of a BE system does not know any of the assigned keys because they are in a tamper
resistant storage, and accordingly the system should be considered as broken even if a user can
recover only one of the KEKs employed in the system.

Illustrative Example. The CST BE [13] is based on a secret key corresponding to a binary balanced
tree in which each KEK is assigned to a node of this tree as illustrated in Fig. 2. The secret
key consists of 2N — 1 = 63 KEKSs, and it is assumed that there are N = 32 receiving entities.
Accordingly, the secret key consists of 2N — 1 independent parts which could be considered as the
randomly generated ones.

KEK,
KEK, KEK,

KEK, KEK, KEK, KEK,

KEKg, KEKg,

Figure 2: An illustration of the secret key employed in certain BE schemes.

The above characteristics of BE open a door for developing cryptanalytic methods based on an
attacking approach not taken into account in the reported security evaluations of the schemes.

The developed cryptanalysis could be called “list cryptanalysis” following the term “list de-
coding” and its related similarity. Recall that “list decoding” assumes that we have succeeded in
decoding if the codeword is in the list of the candidate codewords. In our cryptanalysis we assume
that the goal is achieved if it is possible to recover at least one key from the list of the all KEKs
employed in the BE scheme.

This paper proposes dedicated time-memory-data trade-off based methods for cryptanalysis of
the BE key management scheme. The proposed methods employ the following underlying ideas:

e develop a dedicated time-memory-data trade-off based cryptanalysis assuming the chosen
plaintext attack corresponding to the attacking Scenario A;

e develop a dedicated time-data trade-off based cryptanalysis assuming the ciphertext only
attack corresponding to the attacking Scenario B.

These approaches are different from reported ones related to the time-memory trade-off based
cryptanalysis of block ciphers and time-memory-data trade-off based ones for stream ciphers. The
differences are consequences of the attacking nature regarding BE schemes on one hand side and
block or stream ciphers on the other hand. Regarding these issues, as an illustration note the
following;:

- the time-memory trade-off based cryptanalysis of block ciphers [6] (see [15], as well) assumes that
the attacker’s goal is to recover the employed secret key when at least one plaintext-ciphertext pair
is known; in the BE setting with a block cipher, the cryptanalysis is based on a collection of the
ciphertext of a same message generated employing different secret keys, and the attacker’s goal is
to recover at least one of these employed secret keys;

- the time-memory-data trade-off cryptanalysis of the stream ciphers [3] assumes that all the issues
are related to recovering an internal state of the considered stream cipher; in the BE case even if
the employed E(-) is a stream cipher, again the entire consideration is related to the secret key
only, i.e. the internal state evolution appears as not relevant.

Particularly note the following differences:

- when a block cipher is employed as the algorithm E(-) in the BE scheme, the developed methods
provide a gain proportional to the number of available plaintext-ciphertext pairs; on the other hand
note that the a time-memory trade-off attack [6] does not provide any additional gain when more
than only one ciphertext-plaintext pair is available;

- when a stream cipher is employed in the BE scheme, the developed time-memory-data trade-off
based attack is related only to the stream cipher secret key and not to its internal state; on the
other hand, the time-memory-data trade-off based attacks reported in [3] are related to the internal
state of the cipher and they become infeasible when the internal state size is much larger than the
employed key.

4.2 Attacking Scenario A

The algorithm for cryptanalysis of BE schemes under the attacking Scenario A (a particular chosen
plaintext attack) consists of the following two main phases:
e pre-processing phase with the following main characteristics:
- it should be done only once;
- it depends on the employed encryption E(-) and the chosen SEK;
- it is independent of the secret keys KEKs employed in the system;
e processing phase with the following main characteristics:

- it should be performed for attacking a particular BE scheme where the employed set of keys
{KEK;}!_, is unknown assuming that a certain sample is available;

- it employs the output of the pre-processing phase; and

- it yields, as the expected output, in recovering at least one of the employed KEKs.

4.2.1 Algorithm for Cryptanalysis
Algorithm A

e Pre-Processing

— Input Data: SEK, and the algorithm parameters M and T

— Pre-Processing Steps
For m =1,2,..., M, do the following:
1. randomly select an L-dimensional binary vector X,,(0)
2. For t =1,2,...,T, perform the following recursive calculation

Xm(t) = Ex,,-1)(SEK) (12)

3. Memorize the pair X,,(0), X, (T).

— Qutput: The two-column matrix of the pairs memorized in the pre-processing step 3.

e Processing

— Input Data: sequence of D different values C;; = Expk,(SEK)) ,i € I(j) , j =
1,2,..,.J .

— Processing Steps
For each i,j,i € I(j), j =1,2,...,J, do the following:

1. Set t =0 and X; = Ci,j-

2. Check the identity of the considered X to any of the second column elements X, (T')
of the matrix generated in the pre-processing phase; if for some index m the identity
appears, go to the processing step 4; otherwise go to the processing step 3.

3. If t < T, calculate X;11 = Ex,(SEK) and go to the processing step 2; if t > T', go
to the processing step 5.

4. (a) Select the corresponding X,,(0) and set Xy = X,,,(0);

(b) perform the following iterative calculation: X;1; = Ex, (SEK) until X;; =
Cigs
(c) memorize the pair (X, C; ;).
5. Select a previously not considered Cj; ; and go to the processing step 1.

— QOutput: Set of the recovered KEKs obtained via the memorized pairs in the processing
step 3.

Remark 1. For the simplicity of presentation, it is assumed that the sample for cryptanalysis
Cij = Expr,(SEK)) ,i € I(j) , j = 1,2,...,J , is available before the processing phase starts,
but this is not necessary, and the processing can work in the same manner when the data are
available sequentially, i.e. the processing starts when C;1 = Expi,(SEK)) ,i € I(1), is available
and continues when a new sample becomes available.

4.2.2 Complexity of Cryptanalysis

This section yields the complexity analysis of the proposed Algorithm A assuming that the expected
number of KEKSs it recovers is equal to k, and that D is the expected cardinality of the union of
the sets I(j), j =1,2,...,J.

According to the Algorithm A structure and the results reported in [6] and [3], the following
statements can be proved.

Proposition 1. The pre-processing phase time complexity of Algorithm A is O(k2" D).
Proposition 2. The processing phase time complexity of Algorithm A is O(k?22:M~2D~2).

Proposition 3. Algorithm A provides different possible trade-offs between the required memory
M, sample dimension D and time complexity of the processing T', assuming that the following
trade-off condition holds:

TM?D? = k2221, (13)

Remark 2. Note that k¥ = D corresponds to [6] as our scheme can be viewed as [6] with kN/D
instead of N.

4.3 Attacking Scenario B

For this attacking scenario, the developed algorithm for cryptanalysis does not require pre-processing
phase. In fact, the pre-processing phase of the attacking Scenario A becomes now, the main pro-
cessing phase. The main phases of this algorithm are: (i) sample collection; (b) processing over
collected samples.

4.3.1 Algorithm for Cryptanalysis
Algorithm B

e Input Data:
- sequence of D different values C;; = Exgpr,(SEK;)) ,i € I(j) , 7 = 1,2,...,J , where
SEK; , j=1,2,...,J, are known;
- algorithm parameter T'.

e Processing Steps
For each SEK;, j=1,2,...,J, do the following:

1. Select a previously not considered SE K, set t = 0 and randomly select an L-dimensional
vector Xj.

2. Calculate X;11 = Ex,(SEKj).

3. Compare X1 with all C; ;:

a t+1 1s identical to C; ; for some i, memorize the corresponding pair (X, C; ;);
If X, is identical to C; ; f ' ize th di ir (X¢,Cj
(b) If t < T, set t - t+ 1, and go to the processing step 2;

(c) If £ > T go to the processing step 1.

e Qutput: Set of the recovered KEKs obtained via the memorized pairs in the processing step
3(a).

4.3.2 Complexity of Cryptanalysis
According to the Algorithm B processing steps the following statements can be directly proved.

Proposition 4. Assuming that Algorithm B should recover £ KEKs the processing time complexity
is O(k2"D~') where D is the expected cardinality of the union of the sets I(j), j = 1,2,..., J.

Proposition 5. Algorithm B provides different possible trade-offs between the required sample di-
mension D and time complexity of the processing T', assuming that the following trade-off condition
holds:

TD = 2%k . (14)

Remark 3. Note that kK = D corresponds to the preprocessing cost [6].

5 Vulnerability of Particular Broadcast Encryption Schemes CST,
SD and LSD

The popular Complete Sub-Tree (CST), Subset Difference (SD) and Layered Subset Difference
(LSD) based key management schemes have been reported in [13] and [7], and a number of related
applications have been discussed in [9] and [10]. The main characteristics of these schemes are
summarized in Appendix A.

This section shows that these schemes are vulnerable under the attacking Scenarios A and B,
and it yields complexity of theirs cryptanalysis employing the proposed Algorithms A and B.

The results on the communications overhead of CST, SD and LSD, reported in [13] and [7],
respectively, imply the following proposition.

Proposition 6. Assuming that there are J sessions of SEK updating, and that each of these
sessions assumes R random revocations from a set of IV users, the sample available for cryptanal-
ysis of CST, SD and LSD based BE schemes is upper-bounded by JRlogy(N/R), 2JR and 4JR,

respectively.

According to Propositions 1, 2, 4 and 6, when £ = 1, the complexities of cryptanalysis of
CST, SD and LSD based key management schemes for BE are summarized in Table 1 and Table 2
regarding the attacking Scenarios A and B, respectively, assuming the following:

- the schemes include N users in total;

- each of the employed KEKs and SEKs consists of L bits;

- the sample for cryptanalysis is obtained from J sessions of SEK updating, and each of these
sessions assumes R random revocations.

[lustrative numerical examples related to Tables 1 and 2 are given in Tables 3 and 4, respec-
tively.

6 Concluding Discussion

The vulnerabilities of BE schemes identified in this paper originate from the following generic
characteristics of these schemes: (i) BE schemes employ ”internal” secret key consisting of a huge
number of independent static components (KEKs); (ii) BE schemes encrypt the session key (SEK)
a huge number of times employing different KEKs and these ciphertexts are publicly available; (iii)
the possibility for recovering one active KEK, a part in use in the internal BE secret key implies
weakness of the entire scheme.

10

Table 1: Attacking Scenario A (chosen plaintext attack): Complexity of recovering one KEK (k=1)
in CST, SD and LSD based key management schemes assuming that the schemes include N users
in total, each of the employed KEKs and SEKs consists of L bits, the sample for cryptanalysis is
obtained from J sessions of SEK updating and each of these sessions assumes R random revocations,
and a memory of dimension M is available.

pre-processing processing
time time
complexity complexity

CST [13] || O(2% (JRlog,(N/R))™*) | O(2** (M JRlog,(N/R))™>)

SD [13] 02¥(2JR)™") 0(2°* (2M JR)™?)

LSD [7] 02" (4JR)™Y) O(2°"(4MJR)™?)

Table 2: Attacking Scenario B (ciphertext only attack): Complexity of recovering one KEK (k =
1)in CST, SD and LSD based key management schemes assuming that the schemes include N users
in total, each of the employed KEKs and SEKs consists of L bits, the sample for cryptanalysis is
obtained from J sessions of SEK updating and each of these sessions assumes R random revocations.

processing
time
complexity

CST [13] || O(2%(JRlog,(N/R))~")

SD [13] O(2¥(2JR)™Y)

LSD [7] O@2Y(4JR)™Y)

This paper proposes methods for cryptanalysis of BE schemes via KEK by KEK recovering with
complexity significantly lower than an exhaustive search over all KEK possibilities. The developed
methods for cryptanalysis are based on the dedicated time-data-memory and time-data trade-off
approaches employing chosen plaintext and ciphertext only attacks, respectively.

The proposed algorithms for cryptanalysis are employed for security evaluation of the currently
most interesting BE schemes, CST [13], SD [13] and LSD [7], and it is shown that these schemes
are highly vulnerable, implying that the security level of these schemes are far below the claimed
one, and at least from the information-theoretic point of view they appear as insecure ones. Also
note that the very recently reported scheme [8] suffers from the same vulnerability as the CST, SD
and LSD based schemes.

The developed methods for cryptanalysis indicate requests for developing improved BE schemes
which should be resistant against the proposed attacking approaches.

11

Table 3: Attacking Scenario A (chosen plaintext attack): Illustrative numerical examples on com-
plexity of recovering one KEK (k = 1)in CST, SD and LSD based key management schemes
assuming that the schemes include N = 108 users in total, each of the employed KEKs and SEKs
consists of L = 128 bits, the sample for cryptanalysis is obtained from J = 1000, 10000, sessions of
SEK updating and each of these sessions assumes R = 10% random revocations, and a memory of
dimension M = 2°7 is available.

pre-processing time complexity | processing time complexity

J = 1000 | J =10000 J = 1000 | J = 10000
CST [13] ~ 2% ~ 2% ~ 269 ~ 262
SD [13] ~ 2104 ~ 2101 ~ 280 ~ 273
LSD [7] ~ 2103 ~ 2100 ~ 279 ~ 272

Table 4: Attacking Scenario B (ciphertext only attack): Tllustrative numerical examples on com-
plexity of recovering one KEK (k = 1)in CST, SD and LSD based key management schemes
assuming that the schemes include N = 10° users in total, each of the employed KEKs and SEKs
consists of L = 64,128 bits, the sample for cryptanalysis is obtained from J = 1,100, 1000 sessions
of SEK updating and each of these sessions assumes R = 10* random revocations.

processing time complexity

L =164 L =128
J=1[J=100] J=1000 | J=1 [J =100 | J = 1000
CST [13] ~ 244 ~ 238 ~ 235 ~ 2108 ~ 2102 ~ 299
SD [13] ~ 250 ~ 244 ~ 241 ~ 2114 ~ 2108 ~ 2105
L.SD [7] ~ 249 ~ 243 ~ 240 ~ 2113 ~ 2107 ~ 2104
References

[1] M. Abdalla, Y. Shavitt and A. Wool, ”Key management for restricted multicast using broad-
cast encryption”, IEEE/ACM Trans. Networking, vol. 8, pp. 443-454, Aug. 2000.

[2] S. Berkovits, "How to broadcast a secret”, EUROCRYPT '91, Lecture Notes in Computer
Science, vol. 547, pp. 536-541, 1991.

[3] A. Biryukov and A. Shamir, ”Cryptanalytic time/memory/data tradeoffs for stream ciphers”,
ASTACRYPT 2000, Lecture Notes in Computer Science, vol. 1976, pp. 1-13, 2000.

[4] A. Fiat and M. Naor, ”Broadcast encryption”, Advances in Cryptology - CRYPTO93, Lecture
Notes in Computer Science, vol. 773, pp. 480-491, 1994.

[5] A. Fiat and M. Naor, "Rigorous time/space trade-offs for inverting functions”, SIAM J. Com-
puting, vol. 29, pp. 790-803, 1999.

[6] M.E. Hellman, ”A cryptanalytic time-memory trade-off”, IEEE Trans. Inform. Theory, vol.
IT-26, pp. 401-406, July 1980.

[7] D. Halevy and A. Shamir, ”The LCD broadcast encryption scheme”, CRYPTO 2002, Lecture
Notes in Computer Science, vol. 2442, pp. 47-60, 2002.

12

[8] N. Jho, J. Y. Hwang, J. H. Cheon, M-H. Kim, D. H. Lee, E. S. Yoo, ”One-
way chain based broadcast encryption scheme”, EUROCRYPT 2005, Lecture Notes
in Computer Science, accepted for publication. (preliminary paper version available at
http://eprint.iacr.org/2005/073b.pdf)

[9] J. Lotspiech, S. Nusser and F. Prestoni, ”"Broadcast encryption’s bright future”, IEEE Com-
puter, vol. 35, pp. 57-63, Aug. 2002.

[10] J. Lotspiech, S. Nusser and F. Prestoni, ” Anonymous trust: Digital rights management using
broadcast encryption”, Proc. IEEE, vol. 92, pp. 898-909, June 2004.

[11] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone, Handbook of Applied Cryptography. Boca
Roton: CRC Press, 1997.

[12] J. Mitra and P. Sarkar, ” Trade-Off Attacks on Multiplications and T-Functions”, ASTACRYPT
2004, Lecture Notes in Computer Science, vol. 3329, pp. 468-482, Dec. 2004.

[13] D. Naor, M. Naor and J. Lotspiech, "Revocation and tracing schemes for stateless receivers”,
CRYPTO 2001, Lecture Notes in Computer Science, vol. 2139, pp. 41-62, 2001.

[14] D. Naor and M. Naor, ”Protecting cryptographic keys: The trace-and-revoke approach”, IEEE
Computer, vol. 36, pp. 47-53, July 2003.

[15] P. Oechslin, "Making a Faster Cryptanalytic Time-Memory Trade-Off”’, CRYPTO 2003, Lec-
ture Notes in Computer Science, vol. 2729, pp. 617-630, 2003.

7 Appendix A: Background on CST, SD and LSD Key Manage-
ment Schemes

In [13], a generic framework, is given by encapsulating several previously proposed revocation
methods called Subset-Cover algorithms. These algorithms are based on the principle of covering
all non-revoked users by disjoint subsets from a predefined collection, together with a method
for assigning the ”static” keys to subsets in the collection. An important consequence of this
framework is the separation between long-lived keys (KEKs) and short-term keys (SEKs). Two
types of revocation schemes in the subset-cover framework, are proposed in [13] with a different
performance tradeoff. Both schemes are tree-based, namely the subsets are derived from a virtual
tree structure imposed on all receivers in the system. The first proposed scheme, Complete Sub-
Tree (CST) scheme, requires a message length of Rlog(N/R) and storage of logN keys at the
receiver. The second technique for the covering is the Subset Difference (SD), [13]. The improved
performance of SD algorithm is primarily due to its more sophisticated choice of the covering sets
in the following way.

Let 7 be any vertex in the tree and let j be any descendent of <. Then S; ; is the subset of leaves
which are descendents of 7 but are not descendents of j.

Note the following: (i) S;; is empty when ¢ = j; (ii) otherwise, S;; looks like a tree with a
smaller subtree cut out; (iii) an alternative view of this set is a collection of subtrees which are
hanging off the tree path from 7 to j.

The SD scheme covers any privileged set P defined as the complement of R revoked users by
the union of O(R) of these S;; sets, providing that a receiver stores O((logN)?) keys.

What is shown in [7] is that SD collection of sets can be reduced: The basic idea of the Layered
Subset Difference (LSD) scheme [7] is to retain only a small collection of the S; ; sets used by the
SD scheme, which suffices to represent any privileged set P as the union of O(R) of the remaining
sets, with a slightly larger constant.

13

The subcollection of sets S;; in the LSD scheme is defined by restricting the levels in which
the vertices 7 and j can occur in the tree. This approach is based by specifying some of the log(N)
levels as "special”. The root is considered to be at a special level, and in addition we every level of
depth k- \/log(N) for k = 1,...,4/log(N), as special (we assume that these numbers are integers).
Thus, there are /log(N) special levels which are equally spaced at a distance of \/log(N) from
each other. The collection of levels between (and including) adjacent special levels is defined as a
"layer”.

Since there are fewer possible sets, it is possible to reduce the number of initial keys given to
each user. In [7], it is shown that if we allow the number of sets in the cover to grow by a factor of
two, we can reduce the number of keys from O(log?(N)) to O(log®/?(N)) and then this technique
was extended and it has been shown how to reduce the number of keys to O(log'*¢(N)) for € > 1.

Suppose that nodes 4, k, j, occur in this order on a path from the root to a leaf, ¢ is not located
on a special level, ¢ and j do not belong to the same layer, and & is located on the first special
layer from 7 to j. In this case a subset S; ; is not included in the basic LSD but it can be described
using other subsets included in the LSD collection as follows:

Sij = Sik|J Sk -

Accordingly, instead of a ciphertext encrypted under the subset key S; ; as in SD, two ciphertexts
obtained by S; and S} ; should be broadcasted in LSD scenario. Therefore, the communication
overhead increases at most twice in comparison with SD, but on the other hand LSD yields the
storage reduction at a receiver.

14

