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Abstract. We propose a practical sampling reduction algorithm for
lattice bases based on work by Schnorr [1] as well as two even more
effective generalizations. We report the empirical behaviour of these al-
gorithms. We describe how Sampling Reduction allows to stage lattice
attacks against the NTRU cryptosystem with smaller BKZ parameters
than before and conclude that therefore the recommeded NTRU security
parameters offer ≤ 74 Bit security.
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1 Introduction

Lattice basis reduction, in particular the renowned LLL algorithm [2], has
long been established as a powerful tool in cryptanalysis, e. g. [3, 4]. On
the other hand, several cryptosystems were proposed over the last decade
that are based on the hardness of certain lattice problems. Some of them
are of mostly theoretical interest [5–7], but the NTRU cryptosystem [8,
9] is used in practice and actively marketed.

The key sizes that need to be selected in order for the system to
be secure depend on the efficiency of the best algorithm for computing
short vectors in lattices. Currently, that algorithm is the Block Korkine-
Zolotarev (BKZ) reduction algorithm [10]. In 2003 Schnorr presented
Random Sampling Reduction (RSR) [1], a new algorithm for computing
short vectors in lattices. Assuming the so called geometric series assump-
tion (GSA), RSR asymptotically outperforms BKZ. However, RSR is not
a practical algorithm since the parameter choice in RSR depends on the
GSA. But in general, GSA is not satisfied.

In this paper, we present Sampling Reduction (SR), a practical algo-
rithm based on RSR. We report on experiments that demonstrate that
the shortest vector found by SR is significantly shorter than the shortest
vector found by BKZ. We also propose two generalizations of SR that
generate lattice bases with even more short vectors. We describe success-
ful attacks on low dimensional NTRU lattice bases that require smaller



BKZ parameters than previous attacks that used BKZ only. We conclude
under reasonable assumptions that the recommended NTRU parameters
[8] do not offer more than 74 Bit security.

2 Notation and Definitions

We assume the Euclidean metric on Rd. A lattice L is a discrete subgroup
of Rd, its dimension is dim(L) := dim(L⊗R R). The first minimum of L
is λ1(L) := min{‖x‖ | 0 6= x ∈ L}.

For any n-dimensional lattice L, n ≥ 1, there are ordered bases
B = [b1, . . . , bn] ∈ Rd×n such that L = L(B) := {v | v = Bx for some
x ∈ Zn}. Given an ordered basis B, the set of all bases of L(B) is
{BU |U ∈ Zn×n and det U = ±1}. We consider integer coefficient lattices
only whence B ∈ Zd×n.

Let B = B̂R be the Gram-Schmidt decomposition of B, i. e. the
columns b̂j of B̂ ∈ Qd×n are pairwise perpendicular and R = (µi,j) ∈
Qn×n is unit upper triangular. Let πi : Rd → lin{b1, . . . , bi−1}⊥ be the
orthogonal projection onto the orthogonal space of the first i − 1 base
vectors. Denote Li,β(B) = L([πi(bi), . . . , πi(bmin{i+β−1,n})]).

Given a generating system of L and parameters (δ, β) with 1/2 < δ < 1
and 2 ≤ β ∈ N, the BKZ algorithm [10] computes a (δ, β)-BKZ reduced
basis of L. A (δ, β)-BKZ reduced basis B satisfies

|µi,j | ≤ 1/2 for all 1 ≤ i < j ≤ n, (size condition)

δ‖b̂i‖2 ≤ λ1(Li,β(B)) for all 1 ≤ i ≤ n. (BKZ condition)

In the course of BKZ reduction we also obtain the Gram-Schmidt coef-
ficient matrix R as well as ‖b̂i‖2 for i = 1, . . . , n. LLL reduction is the
special case of BKZ reduction with β = 2.

Throughout this paper B = [b1, . . . , bn] denotes a (δ, β)-BKZ re-
duced ordered lattice bases with Gram-Schmidt decomposition B = B̂R,
B̂ = [b̂1, . . . , b̂n], R = (µi,j). All lattice points belong to the n-dimensional
lattice L = L(B). Even though B is updated in the course of the reduc-
tion, L stays always the same.

3 The Sampling Reduction

In this section we describe our Sampling Reduction Algorithm (SR) which
is based on Schnorr’s Random Sampling Reduction.

The idea of SR is as follows. SR operates on a generating system G
of an n-dimensional lattice L. SR applies (δ, β)-BKZ reduction to G and
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Algorithm 1 Sampling Reduction (SR)
Input: generating system G of L, reduction factor γ, search space parameter umax,

BKZ parameters (δ, β)
Output: (B, reason) where B is a (δ, β)-BKZ reduced basis of L and reason indicates

why the algorithm terminated.

procedure SR(G, γ, umax, δ, β)

(B, b, R)← BKZ(G, δ, β) /∗/∗/∗ B = bBR, b = (‖bb1‖2, . . . , ‖bbn‖2) ∗/∗/∗/
if −BestBound(b, umax, γ) > umax then

return (B, “success probability too small”)
else

for l = 1, . . . , 2umax do
v ← Sample(B, R, l)
if ‖v‖2 ≤ γ‖b1‖2 then

return SR([v, b1, . . . , bn], γ, umax, δ, β)
end if

end for
return (B, “search space exhausted”)

end if
end procedure

obtains the BKZ reduced basis B. As long as the success probability –
determined by the function BestBound – is sufficiently high, SR uses
the sampling strategy Sample described below to find vectors that are
significantly shorter than the first vector of B. Whenever such a vector
v is found, SR is applied to the generating system that consists of v and
the vectors in B. The input variable umax ∈ N limits the amount of work
SR spends on sampling vectors.

SR always terminates due to the following lemma.

Lemma 1. The recursion depth x of SR(G, γ, umax, δ, β) is bound by x ≤
(n− 1) logγ(δ − 1/4).

Proof. SR operates on (δ, β)-BKZ reduced and thus δ-LLL reduced bases.
Therefore, ‖b1‖ ≤ (δ − 1/4)

1−n
2 λ1(L) [2]. BKZ reduction never increases

the length of the first vector in the generating system. Each recursion
decreases the length of the first base vector by a factor at most

√
γ < 1,

and b1 cannot be shorter than λ1(L). Hence, γx(δ − 1/4)1−n ≥ 1 which
implies the lemma. �

3.1 The Sampling Algorithm

The actual sampling of vectors in SR is performed by the subalgorithm
Sample described here. Sample is similar to Schnorr’s algorithm SA [1]
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except that the (pseudo-)random coin toss in the latter is replaced by an
interger input argument l.

The task of Sample is to generate lattice points that are likely to
be short. Because of ‖v‖2 =

∑n
i=1 ν2

i ‖b̂i‖2, it is plausible to expect that
a lattice point v is short if all Gram-Schmidt coefficients νi are small.
Therefore, Sample enumerates lattice points with all |νi| ≤ 1.

To be precise, let 2u−1 < l ≤ 2u. Then v = Sample(B,R, l) =∑n
i=1 νib̂i satisfies

νi ∈


(−1

2 , 1
2 ] for 1 ≤ i < n− u,

(−1, 1] for n− u ≤ i < n,
{1} for i = n.

(SC)

Algorithm 2 Sample

Input: unit upper triangular matrix R = [r1, . . . , rn] ∈ Qn×n, lattice basis B =

[b1, . . . , bn] ∈ Zn×n with Gram-Schmidt decomposition B = bBR, 1 ≤ l ≤ 2n−1

Output: v ∈ L(B) subject to (SC)

procedure Sample(B, R, l)
v ← bn, ν = (ν1, . . . , νn)t ← rn

for i = n− 1, n− 2, . . . , 1 do
x← dνi − 1

2
e /∗/∗/∗ − 1

2
< νi − x ≤ 1

2
∗/∗/∗/

if l mod 2 = 1 then
if νi − x ≤ 0 then

x← x− 1 /∗/∗/∗ 1
2

< νi − x ≤ 1 ∗/∗/∗/
else

x← x + 1 /∗/∗/∗ −1 < νi − x ≤ − 1
2
∗/∗/∗/

end if
end if
l← l div 2
v ← v − xbi, ν ← ν − xri /∗/∗/∗ νi ← νi − x ∗/∗/∗/

end for
return v

end procedure

Let i ∈ {1, . . . , n}. The choice of νi in v =
∑

xjbj =
∑

νj b̂j does not
affect νi+1, . . . , νn since R is unit upper triangular. Therefore, Sample
computes (xi, νi) by iteration based on xn = νn = 1. Assume the coef-
ficients (xi+1, νi+1), . . . , (xn, νn) are already fixed. Then Sample deter-
mines the unique x′ ∈ Z with πi(x′bi+

∑
j=i+1 xjbj) = ν ′b̂i+

∑n
j=i+1 νj b̂j

and ν ′ ∈ (−1
2 , 1

2 ]. Sample chooses (xi, νi) = (x′, ν ′) if l div 2n−i−1 is
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even. Else (xi, νi) becomes the also unique (x′ ± 1, ν ′ ± 1) s. t. νi ∈
(−1,−1

2 ] ∪ (1
2 , 1].

Thus, {1, . . . , 2umax} → L(B) : l 7→ Sample(B,R, l) is an enumera-
tion of all points in L(B) subject to (SC) with u = umax. Inspection of
Alg. 2 shows the computation of Sample requires 2n vector updates and
assignments, i. e. O(n2) arithmetic operations.

3.2 The Best Bound Algorithm

The vectors computed by Sample are likely to be short but they are
of course not necessarily shorter than b1. The algorithm BestBound
(Alg. 3) yields an estimate how many samples are required in the search
space Vt := {v1, . . . ,v2−t} if we want to guarantee a success probability
Pr

[
min{‖v‖2 |v ∈ Vt} ≤ γ‖b1‖2

]
≥ 1/2.

Schnorr [1] gives a formula that implies a bound on t but his formula
requires the so called Geometric Series Assumption (GSA). In practice,
we usually encounter bases that do not satisfy GSA. That poses two
questions Schnorr does not answer: How good (and in which sense) must
a basis approximate GSA for the given formula still to be meaningful?
How can the formula be evaluated if the GSA coefficient it involves is not
evident?

The way BestBound achieves its estimate is explained in detail in
Sect. 4. Here we point out that BestBound makes no assumption on
the input basis, in particular not GSA. However, if the basis B happens
to satisfy GSA then the bound that BestBound computes is at least as
sharp as the one given by Schnorr’s formula.

4 BESTBOUND

We explain in the following the idea behind BestBound and the numer-
ical solution of the resulting problems.

The Randomness Assumption. Empirically, the coefficients νi of the vec-
tors sampled by SR behave like uniform (pseudo-)random variables ex-
cept for i near to n. We thus can assess the expected values of ν2

i ‖b̂i‖2 if
n− i is not too small. Typically, the last columns of B̂ are much shorter
than the leading columns whence the error we incur if we treat all νi

as uniform random variables is insignificant. That justifies the following
assumption:
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Algorithm 3 BestBound

Input: b = (‖bb1‖2, . . . , ‖bbn‖2), base 2 logarithm umax of maximum number of samples,
reduction factor γ

Output: tmax = max{t ∈ Z | Pr
h
min{‖v‖2 ≤ γ‖bb1‖2 |v ∈ Vt}

i
≥ 1/2} ∪ {−∞}

procedure ExpLength(`, k, u, q) /∗/∗/∗ ` = (l1, . . . , ln) ∗/∗/∗/
return 1

12

Pk−1
i=1 qk−ili + 1

12

Pn−u−1
i=k li + 1

3

Pn−1
i=n−u li + ln

end procedure

procedure LogSuccessProbBound(`, k, u, γ)

if ExpLength(`, k, u, 1) ≤ γ‖bb1‖2 then
return −1

else if ExpLength(`, k, u, 0) ≥ γ‖bb1‖2 then
return −∞

end if
qγ ← RegulaFalsi(ExpLength(`, k, u, q) = γ‖b1‖2, q ∈ [0, 1])

return b k(k−1)
4

log2(qγ)− 1c
end procedure

procedure BestBound(b, umax, γ)

`← (‖bbσ(1)‖2, . . . , ‖bbσ(n)‖2) /∗/∗/∗ permutation σ defined by (1), page 7 ∗/∗/∗/
return max{LogSuccessProbBound(`, k, umax, γ) | k = 1, . . . , n− umax}

end procedure

Assumption 1 (Randomness Assumption) Let l ∈R {1, . . . , 2u} be
a uniform random variable, 1 < u < n. Then the νi, 1 ≤ i < n, defined
by Sample(B,R, l) =

∑
i=1 νib̂i are statistically indistinguishable from

independent random variables with uniform distribution on the intervals
defined by (SC).

4.1 The Approach Taken by BESTBOUND

BestBound is supposed to return a lower bound for (the log2 of) the
probability that Sample returns a vector shorter than

√
γ‖b1‖. The al-

gorithm is based on the following idea: The sampling of a lattice point v
is a random experiment. We consider some event (Sq,k) parameterized by
q ∈ [0, 1] and 1 ≤ k < n − umax < n. The probability of (Sq,k) is strictly
increasing in q. Let 0 ≤ qγ ≤ 1 be maximal s. t. the conditional expected
length E

[
‖v‖2 | (Sq,k)

]
≤ γ‖b1‖2. Then the success probability is

Pr
[
‖v‖2 ≤ γ‖b1‖2

]
≥ Pr

[
‖v‖2 ≤ E

[
‖v‖2 | (Sqγ ,k)

]
| (Sqγ ,k)

]
Pr

[
(Sqγ ,k)

]
=

1
2

Pr
[
(Sqγ ,k)

]
.
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BestBound computes max{blog2

(
1
2 Pr

[
(Sqγ ,k)

])
c | k = 1, . . . , n−umax}.

Consequently, if SR samples at least 2−BestBound(b,umax,γ) lattice points
then the probability to find a sufficiently short vector is at least 1/2.

The event (Sq,k). Consider the random experiment v = Sample(B,R, l) =∑n
i=1 νib̂i, l ∈R {1, . . . , 2umax}. σ ∈ Sym({1, . . . , n}) describes the sorting

of the first n− umax − 1 elements of b in non-increasing order, i. e.

‖b̂σ(1)‖2 ≥ · · · ≥ ‖b̂σ(n−umax−1)‖2 and σ(i) = i for i ≥ n− umax. (1)

Let q ∈ [0, 1] and 1 ≤ k < n− umax. (Sq,k) denotes the event

ν2
σ(i) ≤

1
4
qk−i for i = 1, . . . , k − 1. (Sq,k)

The randomness assumption on νi yields

Pr [(Sq,k)] =
k−1∏
i=1

Pr
[
|νσ(i)| ≤

1
2
q

k−i
2

]
= q

k(k−1)
4 .

The expected length of v. Assume (Sq,k). For any uniform random vari-
able x ∈ (−t, t] the expected value of x2 is E

[
x2

]
= 1

3 t2. The νi are
independent random variables uniformly distributed on intervals defined
by (SC) and (Sq,k) whence

E(b, k, q) := E
[
‖v‖2 | (Sq,k)

]
=

n∑
i=1

E
[
ν2

i | (Sq,k)
]
‖b̂i‖2

=
k−1∑
i=1

qk−i ‖b̂σ(i)‖2

12
+

n−umax−1∑
i=k

‖b̂σ(i)‖2

12
+

n−1∑
i=n−umax

‖b̂i‖2

3
+ ‖b̂n‖2 .

4.2 Numerical Solution

Schnorr gives a closed formula for E(b, k, q). We cannot derive such a
formula without the GSA since we do not have a priori knowledge about
b. However, given a basis B we can easily evaluate E(b, k, q), provided one
takes some care to avoid loss of numeric precision. Since all summands
are positive it is sufficient to add them in non-decreasing order.
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Computation of qγ. The expected length E(b, k, q) is a polynomial in q
with non-negative coefficients. Therefore, f : [0, 1] → R : q 7→ E(b, k, q)−
γ‖b1‖2 is a strictly increasing continuous function that has a root if and
only if f(0) ≤ 0 ≤ f(1). The unique root qγ can be efficiently determined
with the textbook Regula Falsi algorithm [11] provided such a root exists.

If f(1) < 0 then the (unconditional) mean value E
[
‖v‖2

]
is already

short enough and we have Pr
[
‖v‖2 ≤ γ‖b1‖2

]
≥ 1

2 . On the other hand,
if f(0) > 0 then our approach does not yield a positive lower bound on
Pr

[
‖v‖2 ≤ γ‖b1‖2

]
for this particular choice of k.

The optimal bound t. BestBound computes the maximum success prob-
ability for all k. The computation of Pr

[
(Sqγ ,k)

]
is in our experience

fast enough that the cost for computing the probability for all k =
1, . . . , n− umax − 1 is negligible.

5 Experimental Results

All experiments were performed on a Linux system with a 2.4 GHz Pen-
tium 4 processor and 1 GByte RAM. We used a lattice reduction library
that is derived from Shoup’s NTL [12]. We tested our algorithm with bases
in Hermite normal form as proposed by Micciancio [7] for the public keys
in his variant of the GGH cryptosystem. They are derived from base vec-
tors uniformly chosen from a cube whence the generated lattices do not
have any special structure. The HNF bases were (0.99, β)-BKZ reduced
for various values of β. The resulting bases were input to the Sampling
Reduction. We stick here to an example in dimension 180 (Fig. 1) in order
to simplify the presentation. Our experiments showed comparable results
in other dimensions, though.
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Fig. 1. Sampling Reduction of HNF Bases
Values of BestBound, ‖bbi‖2, and ‖bi‖2 (sorted in non decreasing order)

With the sampling parameter umax = 30 the Sampling Reduction
improved the squared length of the shortest base vector by a factor < 0.6.
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A large part of this improvement is gained in the first iterations. With
β = 5, the Sampling Reduction took 1928 s, of which 71 s were spent on
the BKZ updates. With β = 10, the Sampling reduction ran only for
577 s but here 190 s were spent in the BKZ updates.

It is noticeable that the very first base vectors are much more im-
proved than the remaining base vectors. Most of the time, the effect of
the BKZ updates peters out quickly. In particular, ‖b̂i‖2 does not change
significantly beyond base column 20. Since E

[
‖v‖2

]
does not change that

much if only few b̂i become smaller it quickly becomes less likely that a
sampled vector is shorter than b1. This is also reflected in our estimates
of the success probability’s logarithm, shown in the leftmost diagram in
Fig. 1. The estimates decrease quite rapidly with every recursion.

The value of BestBound actually depends on the choice of umax: If
one increments umax then E(b, k, q) grows by 1

4‖b̂n−umax−1‖2 which means
that qγ and therefore Pr

[
(Sqγ ,k)

]
become smaller. But the diagram makes

apparent that this effect is negligible.
The experiments exhibit another fact, however: The bound on the

success probability is way too pessimistic. Most of the time, the search
space size computed by BestBound exceeds the actual number of sam-
ples before a sufficiently short vector is found by a factor between 29 and
210. We outline a potential strategy to overcomes this problem in Sect. 8.

6 Globally Improved Bases

SR replaces the first base vector by a significantly shorter vector. The
remaining base vectors are much less improved. We address this by two
variants of SR. Due to the lack of space we can only sketch the algorithms.

Pool Sampling Reduction. Our pool variant of SR takes advantage of the
short vectors sampled before a “short enough” vector is found. In the
recursion step the generated pool of short vectors is prepended to the
basis. In the final result there is a block of vectors not much longer than
b1 and the length of the remaining base vectors is also somewhat shorter
than in the result of the plain SR algorithm. The length of b1, however,
is not further improved by the pool variant.

Short Projection Reduction. SR decreases ‖b̂i‖2 for small i only. Short-
ProjectionSR tries to reduce explicitly selected b̂i, i ∈ T ⊆ {1, . . . , n}.

ShortProjectionSR computes the success probability with respect
to bt = (‖b̂t‖2, . . . , ‖b̂n‖2) for all t ∈ T . Then the algorithm proceeds like
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SR except that it compares the length of πt(v) against b̂t, t ∈ T , whereas
SR compares v and b1. If πt(v) is sufficiently short then v is inserted at
column t and the algorithm recurses.

ShortProjectionSR with T = {1, . . . , 10} and γ = 0.99 is simi-
lar to Schnorr’s EShort algorithm. The goal of EShort is to make the
reduction continue even if the first ten base vectors violate GSA. In con-
trast, ShortProjectionSR aims at producing shorter vectors in the
middle of the basis and at shaping b so the chances of further reductions
increase. We will demonstrate the potential of this technique in Sect. 7.

7 Reduction of NTRU Bases

We explain why under plausible assumptions the recommended security
parameter N = 251 for NTRU [13] offer at most 74 Bit security and that
80 Bit security requires N ≥ 271. We report how ShortProjectionSR
performs when applied to NTRU lattice bases.

NTRU security parameters. Recovering a private key from a public NTRU
key h is equivalent to finding short vectors in a certain 2N -dimensional
lattice LNT

h [14]. Therefore, a successful attack against NTRU takes no
longer than a reduction of the publicly known basis of LNT

h that recovers
a short vector in LNT

h .
In order to assess the impact of sampling reduction on NTRU we need

to estimate its runtime. Schnorr concluded that the asymptotic runtime
of RSR required to achieve a given approximation of λ1(L) is about
the 4th root compared to previous methods [1]. We do not expect that
SR gives the speedup Schnorr stated for RSR because it was derived in
an idealized setting. But we conjecture the runtime of SR is somewhere
in between because SR is similar to RSR. That is, we expect that SR
improves the asymptotic runtime of lattice reduction by a factor x in the
exponent with 1/4 < x < 1. We estimate that x ≤ 0.75.

Based on experiments with NTRU lattices for N ≤ 122, Hoffstein,
Silverman and Whyte extrapolated the runtime TBKZ of successful attacks
with BKZ reduction. They found TBKZ ≥ 10ABKZN+BBKZ MIPS-years
with ABKZ = 0.1095 and BBKZ = −12.6401. Since SR improves the
asymptotic reduction time by the factor x in the exponent we expect the
runtime TSR,x ≥ 10ASR(x)N+BSR(x) with ASR(x) = xABKZ for attacks with
sampling reduction. From the experiments described below we know that
the runtime of an sampling attack for N = 109 is about the same as a
BKZ attack. Thus BSR(x) ≈ −11.9x− 0.7.
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N T1.0 T0.75 T0.50 T0.25

167 4.9× 105 1.2× 104 3.1× 102 7.9× 100

251 7.7× 1014 9.7× 1010 1.2× 107 1.6× 103

271 1.2× 1017 4.3× 1012 1.5× 108 5.5× 103

300 1.8× 1020 1.0× 1015 6.0× 109 3.4× 104

Table 1. Breaking times in MIPS-years for various N and x

Tab. 1 shows the resulting breaking times for various N and x. We
estimated x ≤ 0.75 for sampling attacks, so for N = 251 a sampling
attack is expected to require < 1011 MIPS-years corresponding to 74 Bit
security [15]. Ignoring refined attacks by zero-forcing [16] we find that 80
Bit security requires N ≥ 271.

Sampling Reduction of LNT . An NTRU instance defines a pair (a, c) of
characteristic quantities. The larger these values the longer takes a suc-
cessful attack with BKZ. The experiments in [17] were done for lattices
with (a, c) ≈ (0.535, 1.73). We constructed NTRU instances for the same
values and BKZ reduced the corresponding lattices with successively in-
cremented parameter β until the private keys were recovered.

Consider an example with N = 109. BKZ recovered the actual private
key not before β = 10. But for β ≥ 6 the reduced bases contain vectors
that are about 6.5 times as long as the private key. Coppersmith and
Shamir [14] have shown that such almost shortest vectors enable an at-
tacker to recover at least partial information about the plaintext whence
we consider the reductions with 6 ≤ β ≤ 9 successful attacks as well.

It is evident from the right diagram in Fig. 2 that a plain Sampling
Reduction of the NTRU lattice reduced with β = 5 must fail: SR tries to
find a vector v with ‖v‖2 < 41000 but the probability to sample vectors
shorter than 100000 is very small.

This is an almost perfect setup for the Short Projection variant.
ShortProjectionSR with T = {15} returned immediately a vector
with ‖π15(v)‖2 < 120000. The subsequent BKZ update with β = 5 broke
the NTRU instance within 341 s. The resulting base vectors were about
the same length as after BKZ reduction with β = 6, i. e. 700 < ‖bi‖2 < 900
for many 1 ≤ i ≤ N .

Even smaller BKZ parameter are possible: The left diagram in Fig. 2
shows the progress of a Short Projection Reduction with β = 3. The target
set T = {t, t+1} was in each recursion step chosen such that t was the first
column with ‖b̂t‖2 ≥ 42000. ‖b̂15‖2 was gradually decreased over 32 recur-
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Fig. 2. Reduction of NTRU Lattice (N = 109)

‖bbi‖2 during the Short Projection Reduction of an NTRU lattice basis.

sion steps when it suddenly fell from 63670 to 1905. After that t could be
incremented in at least every second recursion step. The NTRU instance
was broken in the 44th recursion step after 805 s with ‖b1‖2 = 812. Fur-
ther Sampling Reduction of the subbasis B′ = [b1, . . . , b109] improved the
attackers key in 107 s to ‖b1‖ = 364, i. e. to about 3 - 4 times the length
of the private key whence Coppersmith’s and Shamir’s method will reveal
much more if not all information about the plaintext. The attack with
BKZ only behaved differently: Here the first basis vector did not improve
beyond ‖b1‖2 = 650 (β = 9) before the actual private key was recovered.

Our sampling attacks took about as long as the BKZ reductions. But
for larger N the BKZ parameter β required for a successful attack is much
larger so the reduction of β by sampling reduction will have significant
impact on the runtime.

8 Conclusion and Further Work

We proposed a practical lattice basis reduction by sampling that avoids
any dependence on Schnorr’s Geometric Series Assumption. It generalizes
Schnorr’s RSR algorithm but is also well defined for bases where Schnorr’s
algorithm is not applicable. We demonstrated that the Sampling Reduc-
tion can significantly reduce the length of the base vectors. We also pro-
posed two generalizations that further reduce the overall length of the
base vectors and that allow the Sampling Reduction to proceed even if
jumps in the length of the orthogonalized base vectors disrupt the plain
Sampling Reduction.

We observed that our estimates of the success probability are too pes-
simistic. We plan to test whether it is numerically feasible to calculate the
distribution of the length of the sampled vectors directly by convoluting
(via FFT) the distributions of the coefficients νi. The so derived exact

12



success probability could open the way for search spaces better tailored
to specific classes of lattice bases.

We demonstrated that the Sampling Reduction makes it possible to
break NTRU instances with smaller BKZ parameters than before. We put
forth arguments that in the light of Sampling Reduction the recommended
NTRU parameters [8] offer less security than previously assumed. This
result needs to be verified by further experiments in higher dimensions.
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