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Abstract

Digital signatures have become a key technology for making the
Internet and other IT infrastructures secure. But in 1994 Peter Shor
showed that quantum computers can break all digital signature schemes
that are used today and in 2001 Chuang and his coworkers imple-
mented Shor’s algorithm for the first time on a 7-qubit NMR quan-
tum computer. This paper studies the question: What kind of digital
signature algorithms are still secure in the age of quantum computers?
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1 Introduction

Digital signatures have become a key technology for making the Internet and
other IT infrastructures secure. Digital signatures provide long term authen-
ticity, integrity, and support for non-repudiation of data. Digital signatures
are widely used in identification and authentication protocols for example
for software downloads. Therefore, secure of digital signature algorithms are
crucial for maintaining IT security.

But in 1994 Shor [67] showed that quantum computers can break all
digital signature that are used today and in 2001 Chuang et al. [73] imple-
mented Shor’s algorithm on a 7-qubit quantum computer. Physicists predict
that within the next 15 to 20 years there will be quantum computers that
are sufficiently large to implement Shor’s ideas for breaking digital signature
schemes used in practice.

Naturally the following questions arise: What kind of digital signature
schemes do we use when quantum computers exist? What do we know about
their security and their efficiency? What is their standardization status?
This is what we discuss in this paper.

It turns out that we are far from being able to replace existing digital
signature schemes by new ones that are secure against quantum computer
attacks. A lot of research and development is still necessary. We have to
develop security models for digital signature schemes in the age of quantum
computers. We have to identify algorithmic problems that are intractable
for quantum computers and that can be used as the security basis for digital
signature schemes. We have to design, implement and standardize post-
quantum signature schemes and to investigate their security and efficiency.

The paper is organized as follows. In Section 2 we explain the practical
relevance of digital signatures for IT-Security today. In Section 3 we dis-
cuss the current status of quantum attacks on digital signature schemes. In
Section 4 we give an overview over possible candidates for computational
problems that are intractable for quantum computers and that can be used
as the security basis for digital signature schemes and in Section 2 we de-
scribe the signature algorithms that are believed to resist quantum computer
attacks. Finally, in Section 7 we identify open research problems.

We would like to thank Dan Bernstein for inventing the notion “post-
quantum cryptography”and Detlef Hühnlein, Ulrike Meyer, and Tobias Straub
for their suggestions and input.
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2 Digital signatures are crucial for secure IT

systems

In this section we explain the practical relevance of digital signatures for
IT-Security today.

2.1 Legislation

In recent years, most countries worldwide have been adapting legislation and
regulations that recognize the legality of a digital signature. Such coun-
tries are Argentina, Australia, Austria, Belgium, Bermuda, Brazil, Bulgaria,
Canada, Chile, Colombia, Costa Rica, Croatia, Czech Republic, Denmark,
Dominican Republic, Ecuador, Estonia, Finland, France, Germany, Greece,
Hong Kong, Hungary, India, Ireland, Israel, Italy, Japan, Luxembourg, Malaysia,
Malta, Mexico, Netherlands, New Zealand, Nicaragua, Norway, Panama,
Peru, Philippines, Poland, Portugal, Puerto Rico, Rumania, Russian Fed-
eration, Singapore, Slovak Republic, Slovenia, South Africa, South Korea,
Spain, Sweden, Switzerland, Taiwan, Thailand, Trinidad/Tobago Republic,
Tunesia, United Kingdom, USA, Uruguay, Venezuela, Vietnam. An overview
over digital signature laws worldwide can be found in [24]. In those countries,
handwritten signatures that are required by law may be replaced by digital
signatures. An example: the US E-Sign law and the EU Directive for Digital
Signatures allow insurance companies to forgo archiving the paper records on
the condition that the original documents are electronically signed, thereby
ensuring document authenticity.

2.2 Technology

IT-technology is ready for the use of electronic signatures. There are many
standardized protocols that support digital signatures, for example S/MIME
for digitally signing emails and a W3C draft for digitally signing HTML and
XML documents. Standard software such as MS Internet Explorer, Word,
Outlook, Power Point, Excel, Netscape Messenger, and Adobe Acrobat can
digitally sign documents and handle digitally signed documents.
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2.3 Applications

The following examples for applications of digital signatures are taken from
[9], [6], [40], and [10].

1st American Mortgage lender uses digital signatures to properly present
and sign mortgage applications online.

The Federal Aviation Administration (FAA) of the United States uses
electronic signatures on a variety of regulatory documents including new
pilot applications and renewals.

The German Health Professional card, which will be introduced in 2006,
lets medical doctors digitally sign patient medical records.

The ”Sistema de Pagos Electronicos Interbancarios” uses electronic signa-
tures for transactions between Mexican banks.

The Trusted Computing Group (TCG) [71], an industry standards body,
comprised of computer and device manufacturers, software vendors, and oth-
ers such as Microsoft, Intel, IBM, HP and AMD, has specified the Trusted
Platform Module (TPM) for enhancing the security of desktop computers.
The TPM is a crypto-processor that provides digital signatures and other
cryptographic functionality.

3 Quantum computers will break all digital

signatures used today

The first and still most popular digital signature algorithm is RSA. RSA [63].
The security of RSA is based on the intractability of the integer factorization
problem. There are a few other digital signature schemes that are used in
practice, for example, the Digital Signature Algorithm DSA and the Elliptic
Curve Digital Signature Algorithm ECDSA. The security of those schemes
is based on the discrete logarithm problem in the multiplicative group of a
prime field or in the group of points of an elliptic curve over a finite field.
All digital signature algorithms used in practice can be found in the IEEE
standard P1363 [41].

In 1994 Peter Shor [67], at AT&T’s Bell Labs in New Jersey, discovered a
remarkable quantum algorithm. It solves both the factoring problem and the
discrete log problem in finite fields and on elliptic curves in polynomial time.
So Shor’s algorithm breaks all digital signature schemes in use today. Its
invention sparked a tremendous interest in quantum computers, even outside
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the physics community. The core question is: can quantum computers be
built in practice?

We give a brief history of quantum computers (see [36]).
In 1981 in his talk enitled ”Simulating Physics With Computers” the fa-

mous physicist Richard Feynman made the first proposal for using quantum
phenomena to perform computations. In 1985 David Deutsch, at the Uni-
versity of Oxford, described the first universal quantum computer. In 1993
Dan Simon [68], at Université de Montreal, invented an oracle problem for
which quantum computers would be exponentially faster than conventional
computers. This algorithm introduced the main ideas which were then devel-
oped in Peter Shor’s factoring algorithm in 1994. In 1997 David Cory, A.F.
Fahmy and Timothy Havel, and at the same time Neil Gershenfeld and Isaac
Chuang at MIT published the first papers on quantum computers based on
bulk spin resonance, or thermal ensembles. In 1998 the first working 2-qubit
NMR computer was demonstrated at the University of California, Berkeley.
In 1999 the first working 3-qubit NMR computer was demonstrated at IBM’s
Almaden Research Center. In 2000 the first working 5-qubit NMR computer
and in 2001 the first working 7-qubit NMR computer were built at IBM’s
Almaden Research Center by Chuang and co-workers [73]. The 7-qubit com-
puter factored the number 15 using Shor’s algorithm. Although no bigger
quantum computer has been built so far, there is remarkable progress in
quantum computer technology.

In 1985, the U.S. Government began funding research on quantum com-
puters when physicists brought it to their attention that a quantum com-
puter could potentially cripple national security. Corporations such as IBM,
Boeing, Hewlett-Packard, or Microsoft and science-based educational insti-
tutions such as MIT, Caltech, or Stanford joined the bandwagon and com-
mitted funds and full-time resources to studying quantum computers. And
remarkably, in April 2004, the founders of the University of Waterloo (UW)
at Ontario, Canada, donated $33.3 million to UW’s Institute for Quantum
Computing bringing their research funding total to $100 million. An overview
over quantum computing projects can be found in [61].

There is a good chance that large quantum computers can be built within
the next 20 years. This would be a nightmare for IT security if there are
no fully developed, implemented, and standardized post-quantum signature
schemes.
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4 Problems intractable for quantum comput-

ers

A necessary condition for the existence of a post-quantum signature scheme
is the existence of a computational problem that is intractable for quantum
computers and can be used as the security basis for a signature scheme. But
currently, no signature scheme is known that is provably hard to break for
conventional computers. So there is no hope to find an appropriate compu-
tational problem that is provably intractable for quantum computers.

However, there are a few results from complexity theory and there are a
few candidates for computational problems which we review in this section.

4.1 Complexity theory

Nielsen and Chuang [59] give heuristic arguments that quantum computers
cannot efficiently solve NP-hard problems. On the other hand, it has been
shown by Brassard [13] that the security of a deterministic signature scheme
cannot be reduced to the intractability of an NP-hard problem. Crepeau
[11] shows that quantum cryptography cannot be used to design signature
schemes. However, it is possible to use quantum algorithms in conventional
signature schemes. For example, Okamato et al. [72] suggest such a scheme.
So complexity theory does not really give us a hint where to look for appro-
priate computational problems.

4.2 CVP and related problems

A serious candidate for quantum-hard computational problems are lattice
problems.

Let L be a lattice in Zn, n ∈ N, that is, L is a subgroup L of Zn. The
lattice L can be written as

L = Zb1 + · · ·+ Zbk = {
k∑

j=1

xjbj : xj ∈ Z}. (1)

where the vectors b1, . . . ,bk ∈ Zn are linearly independent. The dimension
of L is k. The dimension of L is uniquely determined. The sequence B =
(b1, . . . ,bk) is called a basis of L. The set of all bases of L is

BGLk(Z) = {BT : T ∈ GLk(Z)} (2)
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where GLk(Z) is the set of all invertible matrices in Z(k,k), the set of all k by k
matrices with integer entries. By the length of a vector v = (v1, . . . , vn) ∈ Rn

we mean its euclidean length

||v|| =
√√√√

n∑
i=1

v2
i . (3)

The ith successive minimum of L, 1 ≤ i ≤ k is the radius of the smallest
sphere that contains i linearly independent lattice vectors. It is denoted by
λi(L). In particular, λ1(L) is the length of a shortest nonzero lattice vector.

Lattices were introduced by Minkowski [56] in the geometry of numbers,
a method which allows the solution of number theoretic problems by geo-
metric and analytic means. There are various hard lattice problems that are
used in cryptography. We describe the most important computational lattice
problems. In this description we only consider lattices of dimension n in Zn

for some n. A lattice is represented by a lattice basis.
The most important problem in our context is the following.

Problem 1 γ-closest vector problem (γ-CVP). Given a lattice L in Zn for
n ∈ N, x ∈ Zn, and γ > 0. Find a lattice vector v such that ||x − v|| ≤
γ||x−w|| for all w ∈ L.

For γ = 1 this problem is called the closest vector problem (CVP)
Closely related to γ-CVP is the following problem

Problem 2 γ-shortest vector problem (γ-SVP). Given a lattice L in Zn for
n ∈ N and γ > 0. Find a nonzero lattice vector v such that ||v|| ≤ γ||w|| for
all nonzero w ∈ L.

For γ = 1 this problem is called the shortest vector problem (SVP)
Ajtai [1] shows that SVP is NP-hard for randomized reduction. There is

no cryptosystem whose security can be reduced to the intractability of SVP.
However, the security of the cryptosystems of Ajtai-Dwork [3] and Regev [62]
can be reduced to SVP in a subclass of lattices in which the shortest nonzero
vector is unique up to sign (uSVP). Micciancio [52] proves that γ-SVP is
NP-hard for randomized reduction if γ <

√
2. Van Emde-Boas [26] shows

that CVP is NP-hard. Also, Arora et al. [8] showx that γ-CVP is NP-hard
for γ = (log n)c for every c > 0. Goldwasser and Goldreich give a complexity
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theoretic argument that γ-CVP cannot be NP-hard for γ = Ω(
√

n/ log n). A
more detailed discussion of the complexity of lattice problems can be found
in [53].

To solve γ-CVP in practice, the problem is reduced to some γ′-SVP by
modifying the lattice appropriately. The famous LLL algorithm [46] solves
αn−1-SVP in polynomial time for any α > 0. On the other hand, the al-
gorithm of Kannan [42] solves SVP in exponential time. There are several
improvements of the LLL algorithm. The BKZ algorithm [66] allows to ap-
proximate the shortest vector in a lattice much better than the LLL algorithm
using more time. Recently, Schnorr [65] has suggested a heuristic sampling
reduction technique that is expected to be very efficient in practice. Ludwig
[47] has shown how to make Schnorr’s algorithm even more efficient using
quantum computers.

Ludwig has made experiments with the LLL and BKZ algorithm. Table 1
shows timings for successful CVP solutions. The lattice basis is the Hermite
Normal Form (HNF) of a randomly selected matrix B ∈ {−n, . . . , n}(n,n).
The distance of the target vector from the closest lattice vector is min{‖b̄∗i ‖/2 :
i = 1, . . . , n} where [b̄∗1, . . . , b̄

∗
n] is the Gram-Schmidt orthogonalization of the

LLL reduction B̄ = LLL(B) of the original lattice basis. That choice is ap-
propriate to study the cryptanalysis of the Micciancio cryptosystem [51]. The
signature variant of that system is described in Section 5.1. The timings are
given in seconds of CPU time on a SunBlade 100 (500MHz UltraSparc IIE
Processor, 1 GByte RAM). The spikes in the graph are due to the necessary
switch to the more powerful but slower BKZ reduction with BKZ parameter
β = 20.

Ludwig has also studied the impact of the random sampling algorithm on
BKZ reduced bases. Table 2 shows by which factor the results of one random
sampling iteration were shorter than the shortest vectors of the original BKZ
reduced basis. All bases were generated by the method suggested by Ajtai
in [2].

Those results show that BKZ-reduction is sucessfull for quite high dimen-
sions and Schnorr random sampling is a real improvement.

4.3 Coding theory

In this section we introduce the decoding problem, another computational
problem that resists quantum computer attacks so far.

Let n ∈ N and let F = {0, 1} be the field of two elements. Consider the
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Table 1: Timings for solving CVP

dimension
RSR
coefficient

BKZ block size

10 20 30

175 25 0.42 0.48 0.58

300 30 0.22 0.41 0.58

600 70 0.28 0.63 0.78

Table 2: Experiments for Schnorr’s random sampling
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F -vector space F n. The hamming weight of v ∈ F n is the number of nonzero
entries in the vector v. The hamming distance dist(v,w) of v,w ∈ F n is the
hamming weight of the difference v −w. Let k ≤ n. An (n, k)-code over F
is a k-dimensional subspace of F n. The elements of such a code are called
code words. For d ∈ N an (n, k, d)-code is an (n, k)-code for which d is the
minimum hamming distance between two different code words.

Let C be an (n, k)-code for some n, k ∈ N. A generator matrix for C is
a matrix C ∈ F (k,n) whose rows are an F -basis of C. We also say that C
generates the code C. The matrix C has rank k.

An important algorithmic problem is the following.

Problem 3 Decoding problem. Given n, k ∈ N, k ≤ n, an (n, k)-code C,
and y ∈ F n. Find x ∈ C such that dist(x,y) is minimum.

For y = 0 the decoding problem is the minimum weight problem if x 6= 0.
Berlekamp, McEliece, and van Tilborg [12] show that the minimum weight
problem is NP-complete.

Linear codes can be used for error correction. A message m ∈ F k is
encoded as

z = mC. (4)

The encoded message z is transmitted. It is possible that during the transmis-
sion some bits of z are changed. The receiver receives the incorrect message
y. He solves the decoding problem, that is, he calculates x ∈ C such that
dist(x,y) is minimum. If the error is not too big, that is, dist(z,y) < 1/2d
where d is the minimum distance of any two distinct code words, then x is
equal to the original message z.

Linear codes are also used for encryption, for example in the McEliece
cryptosystem [50] or in the Niederreiter cryptosystem [58]. To encrypt a mes-
sage it is encoded and an error vector of fixed weight t is added. Decryption
requires the solution of the decoding problem.

In order for error correction to be efficient, the decoding problem must
be efficiently solvable. Also, coding theory based cryptosystems can only be
secure if decoding is hard without the knowledge of a secret. This is both
true for binary Goppa codes.

Decryption of a coding theory based cryptosystem means solving a de-
coding problem for which the weight of the error vector is known. If we have
no special knowledge about the linear code such as a generating polynomial
of a Goppa code, then generic methods for decoding can be used. In order
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to break cryptosystems based on linear codes the following problem must be
solved.

Problem 4 Crypto decoding problem. Given an (n, k)-code C, n, k ∈ N,
n ≥ k, the error weight t ∈ N t ≤ n, and y ∈ F n. Find a vector of weight t
in the coset y + C.

Overbeck [14] has calculated Table 4 which shows the efficiency and secu-
rity of the McEliece cryptosystem compared to the RSA cryptosystem. The
column best attack refers to the time required by the general number field
sieve attack on the RSA private key (which recovers the private key), and the
attack from [15] on a McEliece ciphertext (which decrypts one cipher text
block).

Note that the security comparison is made here for classical attackers.
The picture changes drastically to the advantage of the McEliece system if
we consider two systems to offer the same level of security if breaking them
requires quantum computers with the same number of qubits.

System Size Work factor (binary operations)

public key
in bytes

encryption
/block size

decryption
/block size

best
attack

McEliece [1024, 524, 101] 67,072 29 213.25 265

RSA 362-bit Modulus 46 217 217 268

McEliece [2048, 1025, 187] 262,400 210 214.5 2107

RSA 1024-bit Modulus 256 220 220 2110

RSA 2048-bit Modulus 512 222 222 2145

McEliece [4096, 2056, 341] 1,052,672 211 215.5 2187

RSA 4096-bit Modulus 1024 224 224 2194

Table 4: The security of RSA versus McEliece

10



4.4 Combinatoric group theory

Combinatoric group theory studies presentations of non-commutative groups.
In this section we explain basic problems of this theory. Our exposition—like
most current proposals for cryptographic schemes in this setting—focuses on
braid groups.

The n-th Braid group Bn is the group of isotopy classes of diffeomorphisms
of the two-dimensional disk with n points removed that keep the boundary
of the disk fixed. Group operation is composition. The group is infinite.

The group Bn can be presented on generators σ1, . . . , σn−1 with relations

σiσj = σjσi for |i− j| ≥ 2

σiσjσi = σjσiσj for |i− j| = 1

It enjoys a nice geometric interpretation in which each n-braid is represented
by a collection of n intertwined strands whose end-points are affixed to two
bars.

The word problem in Bn (which asks to decide equality between two
words in elements from a given generating set) is solved efficiently by using
the normal form introduced in [30], or subsequent variations. In normal form
each n-braid is represented by a vector from Z× (Sn)?.

Composition and inversion of elements of Bn with l components are done
in time O(ln). See [16]. Efficient implementation of these operations at small
parameter sizes (n ≤ 250, l ≤ 40) are reported in the same work.

The Conjugacy Search Problem (CSP) and its variations are the starting
point for the construction of one-way functions.

Problem 5 (CSP) Given two conjugated braids p, p′ ∈ Bn, find s ∈ Bn

such that p = sp′s−1.

This problem may be modified in two ways

(a) by demanding that the conjugating element come from a certain sub-
group of Bn. The resulting problem is called the Generalized Conjugacy
Search Problem (GCSP).

(b) by extending the input to multiple pairs of braids that are all conju-
gated by the same element. The resulting problem is called the Multiple
Conjugacy Search Problem (MCSP).
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Alternatively, one may use the weaker Braid Diffie-Hellman Problem
(BDHP). Let L and R be two commuting sub-groups of Bn.

Problem 6 (BDHP) Given a, b1 = xax−1 and b2 = yay−1 with a ∈ Bn,
x ∈ L, and y ∈ R, find the element xy a x−1y−1.

There are several different venues for attacking the CSP.
Summit sets. The idea of the summit set method is to define a dis-

tinguished sub-set of all conjugates of a given group element which can be
efficiently computed. It dates back to Garside [30], and was later refined by
El-Rifai and Morton in [25], and Gebhardt [31].

Let a be a group element. The Ultra Summit Set of a defined by Gebhardt
is the maximal sub-set of the set of all conjugates of a of minimal length on
which the so-called cycling operator operates bijectively. The time needed
to obtain an element of the Ultra Summit Set given a is quadratic in n, and
linear in the length of a. It is expected that the size of the Ultra Summit Set
is linear in the length of a and that it can be computed likewise in linear time.
Gebhardt [31] reports about solving the CSP in B100 with braids of length
1000 using the Ultra Summit Set method in less than a minute computing
time.

Table 5 (which is excerpted from [31]) shows how the time needed to com-
pute the Ultra Summit Set of a random element of Bn scales with increasing
braid index n and length r. In order to solve the CSP for a pair of braids
it suffices to compute the Ultra Summit Sets of the two elements and record
the conjugating elements occuring in the procedure. Time is given in ms on
a 2.4 GHz Pentium 4 PC.

HHHHHHr
n

10 20 50 100

10 4.2 4.7 12 36

100 100 100 130 210

1000 16, 000 19, 000 21, 000 23,000

Table 5: Average time needed to compute Ultra Summit Sets

Linear representation. There are representations of Bn in the general lin-
ear groups Gl(n(n−1)/2,Z[t±1, q±1]) and Gl(n,Z[t±1

1 , . . . , t±1
n ]) of dimension
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n and n(n− 1)/2 with coefficients coming from the ring of two-variable (or,
respectively, n-variable) finite Laurent series. Using one such representation
it has been shown in [17] that the Braid Diffie-Hellman Problem can be solved
within time bounds polynomial in the braid index n and the length of the
input braids.

Note that any faithful efficiently computable representation of Bn in a
matrix group yields an efficient means of solving the Decisional Conjugacy
Problem (DCP).

Problem 7 (DCP) Given a, b ∈ Bn, decide whether there exists x ∈ Bn

such that b = xax−1.

The solution is achieved by comparing the characteristic polynomials of
the matrices representing a and b.

Length based attacks. Individual instances of the CSP that are the result
of the key generation procedures of the crypto-systems proposed in [7] and
[43] can efficiently be solved by conjugating the longer of the two braids in
the given pair by random braids in such a way that the complexity of the
result of the conjugation is minimal. See in particular [39].

4.5 Multi-Variate Quadratic Systems

The last class of possibly quantum-hard computational problems to be con-
sidered here concerns the solution of multi-variate quadratic systems over
finite fields.

Let K = Fq be the finite field with q elements.

Problem 8 (MQ) Let n ∈ N, mi ∈ K and gi ∈ K[X1, . . . , K] have degree
2. Find x1, . . . , xn ∈ K such that

gi(x1, . . . , xn) = mi, for all 1 ≤ i ≤ n. (5)

The general MQ-Problem is known to be NP-complete, see [29].
The standard method for solving multi-variate polynomial systems in-

volves computing the Gröbner basis of the system. Run-time bounds for
known Gröbner basis algorithms depend exponentially on the size of the in-
put.

In order to introduce a trap-door for the owner of the secret key in a PKCS
that allows her to solve (5) efficiently, the polynomials gi need to be derived
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from an effectively solvable system. The transformation is then hidden and
serves as secret key.

We describe one such derivation. Let L/K be a finite field extension of
degree n, and let σ denote the corresponding Frobenius map. Let r ∈ N with
r < n and f be a quadratic polynomial in L[T0, . . . , Tr]. Let m ∈ L, and
consider the equation

f(σ0(x), σ1(x), . . . , σr(x)) = m (6)

which can be efficiently solved provided a solution exists. The asymptotically
fastest algorithm for solving (6) requires execution of (d2 + d ·#L)(log d)O(1)

operations in L where d is the degree of f in x, see [74].
Fixing a basis (ω1, . . . , ωn) of L as vector space over K and representing

each element of L as K-linear combination of the ωi we may consider (6) as a
quadratic system f(x1, . . . , xn) = m over K given by polynomials f1, . . . , fn.
If s and t are now two affine linear transformations of Kn, then the system

g = t ◦ f ◦ s = t(m) (7)

can be efficiently solved for any vector m = (m1, . . . , mn) for which (6) with
m = m1ω1 + · · ·+ mnωn is solvable.

A PKCS that uses the trap-door just described is called a Hidden-Field-
Equations (HFE) system. In it, the vector g = (g1, . . . , gn) is the public key,
whereas the triple (f , s, t) serves as private key. The first HFE like systems
were suggested in [49], [60] and [21].

The special form of system (7) can be used to facilitate its solution.
Faugère and Joux showed in [28] and [27] that a Gröbner basis attack on
the system (7) can be performed in O(n10) operations if qr−1(q + 1) ≤ 512
and K = F2. The reason for the efficency of this approach lies in the fact
that the bound for the degree of the polynomials occuring in the Gröbner
basis computation depends on the degree of the hidden function f (in x),
and not on the number n of polynomials in the system.

Allan Steel1 gives a table of timings for the solution of HFE systems with
parameters n, the number of equations varying from 25 through 80, and
fixed d, the degree of the hidden polynomial f . Timings are in seconds on an
Athlon XP 2800+ with the exception of the last one where the computation
was done on a 750MHz Sunfire v880. The software used was Magma 2.11-8.

1http://magma.maths.usyd.edu.au/users/allan/gb/
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n 25 30 35 40 45 80

t 56.6 28.9 94.2 230.5 530.8 25.4h

Table 6: Timings for the solution of HFE systems

Instead of solving (7) directly, it is also possible to compute the secret
data (f , s, t) from g by solving a large overdetermined system in the coeffi-
cients through relinearization, see [44] and [23]. It remains, however, an open
question to exactly describe the run-time behavior of these algorithms.

5 Digital signatures

We describe signature schemes currently appear to be secure against quantum
computer attacks.

5.1 Lattice based signatures

The basic idea of lattice based signature schemes is the following. The public
key is a basis of a lattice L in Zn for some n ∈ N. The secret key is a basis
B = (b1, . . . ,bn) of L with short vectors. Given some vector z ∈ Zn, the
secret key allows the computation of a lattice vector v that is close to z. This
can be done as follows. Write

z =
n∑

i=1

xibi (8)

and set

v =
n∑

i=1

bxiebi (9)

where bre, r ∈ R, is the nearest integer to r. Without the knowledge of the
secret key the problem of computing such a lattice vector v is intractable.
However, given the public information, anybody can verify that the lattice
point v is close to z. In this situation the signature scheme uses a hash
function that maps a message m to a vector z in Zn. The signature of m is a
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lattice point that is close to z. Only the signer can generate such a signature
but everybody can verify it.

We explain two schemes that use the described principle.
The scheme of Micciancio [51] is a modification of the scheme by Goldre-

ich, Goldwasser, and Halevi (GGH) [34]. It generates the secret and public
lattice bases as follows. Fix the security parameter n ∈ N. Select a ran-
dom matrix in {−n, . . . , n}. Apply lattice basis reduction to the basis that
consists of the columns of that matrix. The result is the secret key B. The
public key P is the Hermite normal form of B.

Ludwig [48] shows that the Micciancio cryptosystem can only be secure
if n ≥ 780. For n = 780 the key size in the Micciancio system is > 1MByte.
The HNF computation takes several days. Ludwig also expects that the
improvements in the Schnorr sampling reduction algorithm [64] imply a min-
imum dimension of 2000.

NTRUSign [38], [37] is a more efficient lattice based cryptosystem. One of
the system parameters is a positive integer N . For example, in an unbroken
instance of NTRUSign N = 251 is selected. The secret and public keys are
polynomials with small integer coefficients of degree < N . They determine
the NTRU-lattice L of dimension 2N . In fact, from the secret key a basis of
L with short vectors can be determined. Also, all computations in NTRU are
efficient polynomial calculations. Therefore, NTRU has small keys and can
extremely efficiently be implemented also in hardware. An example for key
sizes is the following. If N = 251 and a few more parameters are selected,
then the public key has bit length 2008 and both the signature and the secret
key have bit length 251. NTRUSign can be found in the standard [18].

However, the security status of NTRU is unclear. Solving an approxi-
mate close vector problem is sufficient but not necessary for the security of
NTRUSign. There have been many attacks on NTRU and NTRUSign which
made modifications of those systems necessary (for example, see [32], [33],
[55], [55], [54], ). Therefore, it is unclear how secure NTRUSign really is.
Nevertheless, currently NTRUSign is one of the most efficient candidate for
a signature scheme secure against quantum attacks.

5.2 Code based signatures

Various coding theory based signature schemes have been suggested, for ex-
ample, by Xinmei [75]. That system was attacked and modified by Harn and
Wang [35] and finally broken by Alabbadi and Wicker [4]. A proposal by
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Alabbadi and Wicker [5] was broken by Stern [69]
The only coding theory based signature scheme that is not broken so

far is by Courtois, Finiasz, and Sendrier [20]. Their scheme is based on the
Niederreiter cryptosystem [58]. We refer to that system as the CFS signature
scheme. The CFS signature scheme uses a Goppa code. In the CFS signature
scheme, the hash of the document to be signed augmented by a counter is
hashed until the hash value is a decodable syndrome. The signer uses his
secret key to determine the corresponding error-vector.

The inventors of the CFS signature scheme suggest the use of a [216 =
65536, 65392, 19]-code. Then the size of the public key is 524 Kbytes. The
expected number of hash values, that have to be inspected before a decodable
syndorme is found, is 9! = 362880. This requires approximately 238 bit oper-
ations. The binary length of a signature is 145. The verification requires 222

bit operations. The attack of Cantenaut and Chabaud [15] allows generating
signatures without the knowledge of the public key using approximately 283

bit operations.

5.3 Signatures in Braid Groups

Cryptosystems based on problems in combinatoric group theory were first
suggested in [7]. A key-agreement and an encryption scheme using the braid
group as the underlying group was proposed in [43]. A signature scheme
followed in [45].

We explain two variants of the signature scheme proposed in [45]. Both
rely on the assumption that for suitably chosen parameters the Decisional
Conjugacy Problem is simple while the Conjugacy Search Problem is hard.

The signer Alice chooses a pair of conjugated braids p and p′ = sps−1.
The pair (p, p′) is her public key, s is the private one. It is assumed that the
instance of the Conjugacy Search Problem given by the public key is hard.

Alice signs a message m as follows: First m is hashed by way of a fixed
public hash function H to an element q = H(m) ∈ Bn. The signature consists
of q′ = sqs−1. A verifier first validates the public key by checking that p ∼ p′

and then checks the signature itself by testing whether p′q′ ∼ pq.
To forge a signature for a given message m in a no-message attack is to

solve the Matching Conjugate Search Problem (MCSP) which asks for given
p ∼ p′ and q in Bn to produce a braid q′ such that p′q′ ∼ pq. This problem
is at least as hard as the Conjugacy Search Problem.
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The second version of the signature scheme introduces randomization.
Random braids are drawn from the finite subset of all braids of given length,
random conjugates operationally from a subset of the Super Summit Set of
the given element starting with a random braid of given length as conjugator.
The quality of this randomization process appears to be not fully understood.

Public and private keys are identical to those of the simple variant. In
order to sign document m, Alice chooses randomly b ∈ Bn and computes
successively α = b−1xb, y = H(m‖α), β = b−1yb, and γ = b−1aya−1b. The
signature is (α, β, γ).

The signature is valid if α ∼ x, β ∼ γy, and αγ ∼ x′y.
For a further modified version of the randomized scheme, Ko et.al. claim

security against adaptive-chosen message attacks under the assumption of
the hardness of the Matching Triple Search Problem which is an obvious
generalization of the MCSP.

Due to the progress in solving the CSP at currently proposed parameter
sizes it has been proposed to substitute the braid groups in the above schemes
with other non-commutative groups for which the word problem is likewise
efficiently solvable.

5.4 Signatures from Multi-Variate Quadratic Systems

There exists a large number of varieties of the HFE signature scheme pro-
posed in [60].

The general procedure of these signature schemes is as follows. A finite
base field K and some n ∈ N is chosen. Messages concatenated with some
random data are hashed to vectors in Kn. The signer then solves the multi-
variate system (5) using his trap-door decomposition of g = (g1, . . . , gn). If
this succeeds the solution serves as signature. If it does not, then the message
is concatenated with a new random string, and the procedure repeated until
it is met with success.

The variations of HFE concern the choice of the ground field, the form of
the hidden polynomial f , and the form in which the public key is presented.
In this public key some equations might be removed, others added, and some
variables fixed and eliminated a priori.

A notable example is the signature scheme SFLASH [22] which was in-
cluded in the final portfolio of the NESSIE project2 of the European Union

2The NESSIE project provided recommendations regarding the use of cryptographic
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for use in low security resource constrained environments.
SFLASH uses a version of the HCE system called C? where K = F27 , the

univariate trap-door polynomial f is actually a monomial and 11 polynomials
gi are deleted from the public key. Randomization is unnecessary here since
f as a monomial map is surjective.

A slightly modified version of SFLASH [57] is reported to produce signa-
tures and allow verification in less than 1ms on standard PC hardware. Key
generation takes approximately the same amount of time. Public key size is
112.3 KBytes and signatures are 469 bits long.

5.5 Merkle Signatures

In his thesis, Merkle invented a signature scheme whose security is based
on the collision freeness of an arbitrary cryptographic hash function and an
arbitrary one-time signature algorithm. The idea of the Merkle signature
scheme is the following:

In the one-time algorithm that is used by Merkle’s scheme a secret signa-
ture algorithm sign is applied to the message m. The result is the signature

τ = sign(m).

The signature can be verified by applying the public verification function

verify(τ,m) =

{
true

false

The secret key is sign. The public key is verify.
By themselves, one-time signature schemes cannot be used in an open

network. Any user must be able to obtain any public verification function
and he must be able to convince himself of the correctness of that function.
For example if digital signatures are used to authenticate an Internet user,
that user must use a new key pair for each authentication and there is no
way for the authentication server to know all the public keys.

Merkle’s scheme makes the use of one-time signatures in an open network
easier.

The key generation works as follows. A signer fixes a maximum number
N = 2n of signatures that he wants to produce and selects a collision free

schemes for signature, integrity and encryption in the member states of the EU.
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hash function h. He generates N pairs (Xi, Yi), 0 ≤ i < N of secret and
public keys. From the keys Yi, 0 ≤ i < N the signer constructs a public key
for the whole system. This is done via a binary tree. The leaves of that tree
are

Wi,n = Yi, 0 ≤ i < N.

The nodes Wi,j on level j, 0 ≤ j < n, 0 ≤ i < N are defined recursively as

Wi,j = h(W2i−1,j+1 ◦W2i,j), 0 ≤ j < n, 0 ≤ i < N (10)

where ◦ denotes concatenation of bitstrings. The public key is (W0,0, n). So
it contains only the root of the tree and its depth instead of containing many
thousands of public one-time keys. Also, there is a systematic method for
generating the secret keys from a seed. So the Merkle tree can be computed
as necessary.

Suppose that the signer has already signed i − 1 messages with i ≤ N .
To sign a new message m the signer computes

τ = signXi
(m).

The signer also constructs a sequence P0, . . . , Pn of nodes that helps the
verifier to convince himself of the correctness of Yi by constructing the path
in the tree from Yk to the root W0,0. The signer sets

P0 = W0,0. (11)

For j ∈ {1, . . . , n} the signer calculates

k =

⌊
i

2j

⌋
(12)

and

Pj =

{
Wk+1,j if k is even

Wk−1,j if k is odd.
(13)

The signature is
s = (τ, Yi, P1, . . . , Pn). (14)

The signature is longer than the one time signature. Here, the algorithm
pays for saving public key space. However, for 2n possible signatures the
signature length is only n.
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The verification consists of two steps. First, the verifier calculates verify(τ, m).
If verify(τ, m) = false, then the verifier rejects the signature. If verify(τ, m) =
true, then the validity of the key Yi is reduced to the validity of the root
of the tree. The verifier constructs the path from Yi to the root W0,0 in the
Merkle graph. The verifier calculates the path (Qj)0≤n in the Merkle graph
as follows. He sets

Qn = Yi (15)

For j ∈ {0, . . . , n− 1} the signer calculates

k =

⌊
i

2j+1

⌋
(16)

and

Qj =

{
h(Qj+1, Pj+1) if k is even

h(Pj+1, Qj+1) if k is odd.
(17)

If Q0 = W0,0, then the signature is accepted. Otherwise, it is rejected.
It has been shown that the Merkle signature scheme is secure against

chosen message attacks provided that the hash function used is collision re-
sistant.

N Key Generation Signing Verification

time in sec time in ms

10 2.45 22.8 0.88

11 4.95 25.2 0.94

12 9.31 27.4 1.00

13 18.61 29.7 1.07

14 37.32 31.9 1.13

15 74.40 35.3 1.20

16 149.40 38.0 1.27

Table 8: Merkle Signature Scheme
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Coronado [19] has implemented the Merkle scheme. Table 8 on page 21
shows the efficiency of the Merkle key generation, the Merkle signature gen-
eration, and the Merkle signature verification. That table shows that the
efficiency of the Merkle signature scheme is competitive. However, it has
to be studied how the Merkle signature scheme with its limited number of
possible signatures can be used in today application scenarios.

The timing was measured on a SunBlade-100 SunOS 5.8 Generic 450
MHz. and the hash function used is SHA-1.

6 Other suggestions

Okamoto et al. [72] suggest public-key systems that use quantum computers
in the key generation process.

7 Conclusion

The threat of quantum computer attacks and the relevance of digital sig-
nature schemes for information technology security makes the development
of post-quantum signature schemes necessary. Presently, complexity theory
does not help to find intractable computational problems that can be used as
the security basis for post-quantum signature schemes. However, there are
several candidates for such computational problems. Also, there are several
candidates for post-quantum signature schemes. The most efficient ones are
NTRU, SFLASH and the Merkle scheme.

But many research problems have still to be solved. We identify a few.
Is it true that the computational problems from Section 4 remain in-

tractable in the age of quantum computers? What is a good security notion
for post-quantum signatures? How can quantum-hard instances be efficiently
generated? Can we say more about the security of NTRU and SFLAH? Are
there other efficient lattice based signature schemes? Is there an efficient
coding theory based signature scheme? Can the Merkle- signature scheme
be used in todays signature applications?
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