
GENERATION OF RANDOM PICARD CURVES FOR CRYPTOGRAPHY

ANNEGRET WENG

Abstract. Combining the ideas in [BTW] and [GS], we give a efficient, low memory algorithm
for computing the number of points on the Jacobian of a Picard curve. We present an example of
cryptographic size.

1. Introduction

Let p, p 6= 2, 3, be a prime. A Picard curve over Fp is a non-singular curve C given by an affine
equation of the form

y3 = f(x)

where f(x) ∈ Fp[x] is a polynomial of degree 4. We can define the discrete logarithm problem in
the group of Fp rational elements of the Jacobian or the divisor class group of degree 0 of C . If p
is large enough, this problem is difficult and we can use the curve C for crytosystems based on the
discrete logarithm problem.
To ensure the invulnerability with respect to the attack by Pohlig and Hellmann, the group order
of JC(Fp) should have a large prime factor. But the determination of the group order #JC(Fp) is
a non-trivial problem and has not been solved efficiently.
In this paper we apply the low-memory version of the MCT-algorithm by Gaudry and Schost to
Picard curves. Using the ideas from [BTW] and some minor improvements described in Sections 4
and 5, we manage to count the number of points on a Picard curve over Fp where p has 16 decimal
digits and JC(Fp) is of size 2162. This shows that determining the group order of the Jacobian of
a Picard curve of cryptographic size is feasible.
We restrict to prime fields but all results are also true for arbitrary finite fields Fq.

2. Point counting on Picard curves

We briefly summarize the main results from [BTW] which we will need to formulate the modified
version of the algorithm by Gaudry and Schost.
Let C be a Picard curve over Fp.
If p ≡ 2 mod 3, point counting is relatively easy since we know that #C(Fp) = p+1 and #C(Fp3) =

p3+1. Indeed, we can deduce that the L-polynomial of C splits and the group order of the Jacobian
will be divisible by (p+ 1) (cf. [BTW]). These curves are not suitable for crytography.
We now restrict to the case p ≡ 1 mod 3. In this case, the automorphism ζ3 : (x, y) → (x, ζ3y) is
defined over Fp. Let C be a Picard curve over Fp and let w be the Frobenius endomorphism on the

Date: November 2, 2004.
1991 Mathematics Subject Classification. Primary 14H45. Secondary 11Y16.
Key words and phrases. Picard curves.
The author thanks the DFG for financial support.

1

Jacobian JC . For the vast majority of Picard curves over Fp there exists an element π ∈ Z[ζ3] with
ππ = p and a1 ∈ Z[ζ3] with NormQ(ζ3)/Q(a1) ≤ 6p such that

(2.1) (1− a1 + a1π − πp)D = 0

for all D ∈ JC(Fp) [BTW].

This leads to the following algorithm. Set a1 = d1+d2
√
−3

2 with d1, d2 ∈ Z and choose a random
element D ∈ JC(Fp). We must have

(1− a1 + a1π − πp)D = 0

for some π, ππ = p. Note that there are exactly 12 element which satisfies the norm equation,
namely {π, π,−π,−π, ζ3π, ζ3π,−ζ3π,−ζ3π, ζ

2
3π, ζ

2
3π,−ζ2

3π,−ζ2
3π}. Since NormQ(ζ3)/Q(a1) ≤ 6p, we

have |d1| ≤ 6
√
p and |d2| ≤ 2

√
3p.

For a fixed π, we compute

2(1 − πp)D + (1 + π)(ζ3 + 1)d2D

for all d2 ∈ Z in [−2
√

3p, 2
√

3p] and store the hash value of the results in a table. We then compute

(1− π)d1D

for d1 ∈ Z∩ [−6
√
p, 6
√
p] and compare its hash value to the values in the table. This is a baby-step

giant-step type algorithm of space and time complexity O(
√
p).

Note that the order of D does not have to be maximal and in general, we will only find a candidate
for a1. In practice, this is no problem and we always discover the right element a1 (for a discussion
see [BTW], Subsection 4.1).

3. A 2-dimensional random walk on Jacobians of Picard curves

This section is a very close adaptation of the two dimension random walk described by Gaudry and
Schost in [GS].
We choose a random element D ∈ JC(Fp) and fix an element π ∈ Z[ζ3] such that ππ = p (for more
about the choice of π, see Section 4). We will now compute the order of D.
Set

R =
{

(σ1, σ2) : σ1 ∈ [−6
√
p, 6
√
p], σ2 ∈ [−2

√
3p, 2

√
3p]
}
,

and define two set of points

W = {2(1 − πp)D − (1 + π)(ζ3 + 1)σ2D − (1− π)σ1D : (σ1, σ2) ∈ R}
and

T = {−(1 + π)(ζ3 + 1)σ2D − (1− π)σ1D : (σ1, σ2) ∈ R}.
We will later choose random elements in T and W and hope for a collision. Note that if we find
an element P ∈W ∩ T with coordinates (σ1W , σ2W) resp. (σ1T , σ2T), then we discover a candidate
for a1 by setting d1 = σ1W − σ1T and d2 = σ2W − σ2T .
Let fR : JC(Fp)→ {0, 1} be a pseudo-random deterministic function which takes 1 with probability
pD and 0 with probability 1− pD. It decides whether a point is distinguished or not.
For the random walk we fix parameters r, `1, `2. For each k, k′ in [1, r] we select random non-
negative integers in αk,k′ ∈ [0, 2`1] and βk,k′ ∈ [0, 2`2]. We then precompute offsets

Ok,k′,b = −(1 + π)(ζ3 + 1)σ2D − (−1)b(1− π)σ1D

for all k, k′ in [1, r] and b ∈ {0, 1}.
We now start the random walk by choosing a random point P in W (resp. T) whose coordinates

2

are given by (σ1, σ2). We compute the values k, k′ and b as pseudo-random deterministic functions
of P and define the next point by setting

Q = P +Ok,k′,b.

If `1, `2 are chosen small enough, we have Q ∈ W (resp. T). The coordinates of the new point Q
are (σ1 + (−1)bαk,k′, σ2 + βk,k′). For each Q we compute fR(Q). If we hit a distinguished point, we
save its parameters in a list and start a new chain. For each new distinguished point we check if it
occurs in the list. If yes, a collision is found and we can compute our candidates for d1 and d2.

Following Section 4.3 in [GS], we now chose optimal parameters.
We have

#R = 48
√

3p

Let λ be such that the expected number of points to construct is λ
√

#R. By [GS], Subsection 4.1,
λ ' 2.43.
We want C to be the number of random chains we expect to construct; set C = 1000.
We get

pD =
C

λ
√

#R
' 109.67

λ
√
p
' 45.13√

p
.

By [GS],

`1 =
(B2,max −B2,min)pD

10

and

`2 =
(B1,max −B1,min)

√
pD

9

where B2,max = −B2,min = 2
√

3p and B1,max = −B1,min = 6
√
p in our case. We find

`1 '
75.98

λ
' 31.27.

and

`2 '
6.98p

1
4

λ
1
2

' 4.47p1/4.

Note that for about 60% of all Picard curves over a fixed field Fp, we expect NormQ(ζ3)/Q(a1) ≤ p.
If we want to restrict to this case, the parameters have to be chosen as follows: pD ' 178.19√

p ,

`1 ' 41.15, `2 ' 5.93p1/4.

Remark 3.1. In practice, `2 turns out to be too large and many chains will go out of the interval.
We have to observe the average quotient of

σD2 −B1,min

B2,max −B1,min

where (σD1 , σ
D
2) are the coordinates for a distinguished point D. We then divide `2 by some

appropriate constant such that this quotient is almost always less than one.

3

4. The choice of π

In principal, we have 12 different possibilities for π ∈ Z[ζ3] such that ππ = p. In [BTW], Example
3, it is observed that only 3 different values seem to occur. We can make this more precise. For
the operation of the automorphism of order 3, i.e. (x, y) → (x, ζ3y) we have to make a choice of
the third root of unity modulo p. Let us call this root z. The choice of π has to be consistent with
the choice of the root of unity, i.e. if π = a+ bζ3, we must have a+ bz ≡ 0 mod p. We easily see
that for each set of conjugates {π, π} there is precisely one element which satisfies this condition.
Hence, we are left with 6 instead of 12 different values for π. In fact, given a prime p, all these
different values can occur. But if we restrict to special curves, we can reduce the possible set of
elements further

Lemma 4.1. Let C be a Picard curve defined over Fp with p ≡ 1 mod 3 and assume that the
group order of JC(Fp) is not divisible by 3. Then the element π in equation 2.1 satisfies π ≡ 2
mod (1− ζ3).

Proof. We have Z[ζ3]/(1 − ζ3) ' F3. Obviously, π 6≡ 0 mod (1− ζ3), since p is prime.
Moreover, since JC(Fp) is not divisible by 3,

1− a1 + a1π − πp 6≡ 0 mod (1− ζ3).

We have

1− a1 + a1π − πp ≡ 1− a1 + a1π − π mod (1− ζ3), since p ≡ 1 mod 3

≡ 1− a1 + a1π − π mod (1− ζ3), since a1 ≡ a1 mod (1− ζ3) for all a1 ∈ Z[ζ3]

≡ (1− a1)(1− π) mod (1− ζ3).

Hence, π 6≡ 1 mod (1− ζ3) and the claim follows. �

5. Using the 2-torsion points

In [BTW], Section 3, the authors describe how to ensure that the Jacobian has no 2-torsion points.
In fact, using the 2-torsion points we can deduce more information on π and a1.
With the algorithm in Section 3 in [BTW] we can determine all 2-torsion elements. We then
consider the action of the Frobenius on a basis JC [2] and find its matrix representation in Gl2(F2).
Let f2(x) ∈ F2[x] be its minimal polynomial.
The prime 2 is inert in ζ3. Consider the reduction g2(x) ∈ F4[x] = F2(α)[x] of the polynomial
g(x) = x3 − a1x

2 + a1πx− πx. It is of the form

g2(x) = x3 + ax2 + a2bx+ b

where a1 ≡ a mod 2 and π ≡ b mod 2. Moreover we have

g2(x)g
(2)
2 (x) = f2(x)

where g
(2)
2 is the polynomial we obtain by raising all coefficient of g2 to the second power.

We now run through all possible choices for b and a. Note that b 6≡ 0 mod 2, since p is odd. We
4

get the following table:

b a g2(x) f2(x)

1 0 x3 + 1 x6 + 1
1 1 x3 + x2 + x+ 1 x6 + x4 + x2 + 1
1 α x3 + αx2 + α2x+ 1 x6 + x5 + x3 + x+ 1
1 α2 x3 + α2x2 + αx+ 1 x6 + x5 + x3 + x+ 1
α 0 x3 + α x6 + x3 + 1
α 1 x3 + x2 + αx+ α x6 + 1
α α x3 + αx2 + x+ α x6 + x5 + x4 + x2 + x+ 1
α α2 x3 + α2x2 + α2x+ α x6 + x5 + x3 + x+ 1
α2 0 x3 + α2 x6 + x3 + 1
α2 1 x3 + x2 + α2x+ α2 x6 + 1
α2 α x3 + αx2 + αx+ α2 x6 + x5 + x3 + x+ 1
α2 α2 x3 + α2x2 + x+ α2 x6 + x5 + x4 + x2 + x+ 1

This tables helps us to deduce some information on π mod 2 or the relation between π mod 2 and
a1 mod 2 and will speed up the algorithm.
Using the 2-torsion we can extract even more information. Set

g2(x) = x3 + αx+ α2βx+ β ∈ F4[x].

Let w be the Frobenius endomorphism on the Jacobian. We now search for solutions α, β ∈ F4

with β 6= 0 such that

(5.1)
(
w3 + αw2 + α2βw + β

)
Di = 0

for all elements {D1, D2, . . . , D6} in a basis of JC [2].
In most cases, we will find precisely one pair (α, β) for equation (5.1). Together with the results in
Section 4 this allows us to compute π ∈ Z[ζ3] with ππ = p completely. Moreover we get a1 mod 2.
These improvements lead to a further speed up by a factor of 6.

6. Twists of Picard curves

Suppose we have chosen a Picard curve

y3 = f(x)

and using the algorithm in [BTW] and its modification described above we could determine a1 ∈
Z[ζ3] such that

(6.1) (1− a1 + a1π − πp)D = 0

for some D ∈ JC(Fp). Most likely, D will have an order which is large enough to ensure the equality
6.1 for all divisors D ∈ JC(Fp).
In this case, the characteristic polynomial of the Frobenius is given by

(6.2) f(x) = g(x)g(x) where g(x) = x3 − a1x
2 + a1πx− πp

and g(x) is the conjugate of g(x).
If f(1) is an integers with a large prime factor, we found a curve of cryptographic relevance.
Suppose that f(1) is not prime or nearly a prime (which is sufficient for most applications). We
can then still hope that one of the two other cubic twists of C has a prime order. If C is given in
canonical form y3 = x4 + g2x

2 + g3x+ g4, the cubic twist can be described by

C(k) : y3 = x4 + b2kg2 + b3kg3x+ b4kg4, k = 1, 2
5

where b is a cubic non-residue modulo p.
We find their orders by computing a root w1 of the characteristic polynomial of the Frobenius f(x)
and determining the minimal polynomials of ζ3w1 resp. ζ2

3w1. This can for instance be done using

the LLL-algorithm. For each k ∈ {1, 2} there exists some j ∈ {1, 2} such that #JC(k)(Fp) = f (j)(1).

7. Two experimental examples

Let p = 18014398509482143 ≡ 1 mod 3 and choose α = 17273671983260821. We have α2 +α+1 ≡
0 mod p. Using Lemma 4.1 we get the following three possibilities for π in formula (6.1):

π ∈ {−140475539 − 126933146ζ3 , 126933146 − 13542393ζ3 , 13542393 + 140475539ζ3}.
We now choose random curves until we find a curve C whose Jacobian has neither 2 nor 3-torsion
points (see [BTW] how this can be checked) and count the number of points. The 24th curve we
tried was

C : y3 = x4 + 7763767191750169x2 + 8830812181647934x + 6270991928220054.

By considering the 2-torsion points, we find that

w ≡ 1 + ζ3 mod 2, i.e. w = 13542393 + 140475539ζ3 ,

and
a1 ≡ 0 mod 2.

We now use the random walk described in Section 3 to find g in equation (6.2). After determining
a few distinguished points, we see that we often jump out of the box R and that `2 has been chosen
to large. A more appropriate value for `2 in this case is given by

1

128
p

1
4 .

After a total number of 285565533 jumps we find a collision and recover

a1 = −96325782 − 175278454ζ3

and hence

fC(x) = x6 + 17373110x5 − 12831169373438532x4 − 1203166213468120809454997x3−
231145798435784013559166562134076x2 + 5637896529748849474572066416236002446390x+

5846006549323766468164834401780073670200191178207.

The group order f(1) = 5846006554961662766767884237401900227979465970103 is not prime. We
now compute a root w of f(x) and determine the minimal polynomials f1(x) and f2(x) of ζ3w and
ζ3w. In fact, one of them leads to a prime group order and the corresponding curve is given by

C̃ : y3 = x4 + 11722105437014538x2 + 8830812181647934x + 10542915522985670.

Its characteristic polynomial is equal to

fC̃(x) = x6 + 254231126x5 + 57828212190899298x4 + 8245950918421015447423279x3

+ 1041740459497753404970703442235614x2 + 82502717304474702521596007459025101647574x+

5846006549323766468164834401780073670200191178207

and
fC̃(1) = 5846006631826484814380004667080462349156627615099

which is a prime of size 2162.
The computation took 5919.02 seconds.
Next we tried a larger example with p = 288230376151711813. Here, we were lucky, since the first

6

curve had already a prime group order.
The curve

y3 = x4 + 211939155673366998x2 + 180771375410752024x + 192949046001937542

has no 2 and 3-torsion points. The Frobenius element can be computed and we find

π = 194769756 + 607070009ζ3 .

We now started our random walk and after 2681105003 jumps and 58406.90 seconds we found

a1 = 29876544 − 135474292ζ3 .

The corresponding group order is

23945242809810674383789064863599186983250020224864027

which is a prime with 53 decimal digits or 174 binary digits.

Acknowledgements

I am grateful to Pierrick Gaudry for the source code of his implementation of the parallel version
of Matsuo, Chao and Tsujii’s algorithm and for answering many question concerning [GS] and its
realization.
For our computation I used three Linux machines with altogether six AMD Opteron 250 processors
(2,4 GHz). The implementation uses a C++ program, NTL, GMP and MPICH and for the infor-
mation on the 2-torsion points we used the function field arithmetic by Florian Hess implemented
in Magma.

References

[BTW] M. Bauer, E. Teske, A. Weng. Point counting on Picard curves. preprint, 2003

[GS] P. Gaudry, É. Schost. A low-memory parallel version of Matsuo, Chao and Tsujii’s algorithm. ANTS VI,
LNCS 3076, p. 208-222, 2004

Laboratoire d’Informatique (LIX), cole polytechnique, 91128 Palaiseau CEDEX, France

E-mail address: weng@lix.polytechnique.fr

7

