Musings on the Wang et al. MD5 Collision

Philip Hawkes ${ }^{1}$, Michael Paddon ${ }^{1}$, and Gregory G. Rose ${ }^{1}$
Qualcomm Australia, Level 3, 230 Victoria Rd, Gladesville, NSW 2111, Australia
\{phawkes,mwp,ggr\}@qualcomm.com

Abstract

Wang et al [12] caused great excitement at CRYPTO2004 when they announced a collision for MD5 [11]. This paper is examines the internal differences and conditions required for the attack to be successful. There are a large number of conditions that must be satisfied, thus indicating Wang at al. have found a clever way to generate message pairs for which the conditions are satisfied. The large number of conditions suggests that an attacker cannot use these differentials to cause second pre-image attacks with complexity less than generic attacks. Initial examination also suggests that an attacker cannot cause such collisions for HMAC-MD5 [9] with complexity less than generic attacks.

Keywords: MD5, collision.

Disclaimer: This document notes some observations of the authors regarding the collisions generated by Wang et al.. We do not claim to have any new discoveries in this paper. However, we hope that this paper provides a useful explanation until the time when Wang et al. publish a detailed analysis of their discoveries. This is a very rough description and is not intended as a publication. There has been a focus more on content than presentation.

1 Introduction

The cryptographic hash algorithm MD5 [11] needs little introduction. The MD5 collision found by X. Wang, D. Feng, X. Lai and H. Yu [12] is almost as well known as MD5 itself!

Following the announcement of the MD5 collision, we spent some time studying the MD5 collision in order to glean useful hints for our ongoing analysis of SHA-2 family [5]. At first, the collision seemed to difficult to comprehend: the XOR-based differences have high weight (which seemed counter-intuitive) and the addition-based differences do not seem to follow any obvious pattern. We are still amazed that someone found this sequences of differences! It will be enlightening to see how it was discovered.

The collision uses a differential that is spread over a length of two message blocks. The first block difference results in a small difference in the state, and the second block difference cancels the introduced difference. For each of these blocks, the internal differentials are very similar. Unfortunately, we have only had sufficient time to fully document the internal differential for the first block.

Tables in Appendix B contain the details of the internal differential for the second block, but without any explanatory text.

This paper is arranged as follows. Section 3 contains some basic notation, with Section 3 containing a description of the MD5 algorithm. We use an unorthodox description, as it better suits our analysis and (I think) leads to a better understanding of the algorithm. Section 4 describes the sequence of additionbased differences that form the internal differential for the first block. Section 4 also considers the conditions required for the cyclic rotation to produce the correct add-differences. Section 5 considers the conditions required for the nonlinear functions f_{t} to produce the correct add-differences. By combining the conditions stated in Section 4 and Section 5, we can determine the complexity for various attacks. The Appendices contains tables with the details of the internal differential for the first and second block.

Our results indicate that the differential can be used for:

- a collision attack with complexity $2^{42.2}$;
- a second pre-image attack with complexity 2^{285};
- a 2^{128} complexity collision attack on HMAC-MD5 with unknown key;
- a $2^{42.2}$ complexity collision attack on HMAC-MD5 with known key;

Given how fast Wang at al. can generate a collision (1 hour) it seems likely that they have founds some additional tricks to use for finding collisions.

2 Notation

MD5 is based on 32-bit words. Within each word, the most significant bit (MSB) is the leftmost bit while the least significant bit (LSB) is the rightmost bit. Where words must be formed from octet-oriented data, MD5 uses Least Significant Byte first (little endian, c.f. Intel 80386), whereas SHA algorithms [3] use Most Significant Byte first (big endian, c.f. SPARC).

The i-th bit of a word a is denoted $a[i]$. MD5 uses three bit-wise operators: " \wedge " represents the bitwise AND operation with $(a \wedge b)[i]=a[i] \wedge b[i], 0 \leq i \leq 31$; " \vee " represents the bitwise OR operation with $(a \vee b)[i]=a[i] \vee b[i], 0 \leq i \leq 31$; and " \oplus " represents the bitwise exclusive-OR operation with $(a \oplus b)[i]=a[i] \oplus b[i]$, $0 \leq i \leq 31$. MD5 also uses addition modulo 2^{32}, which is denoted using " + ". Subtraction modulo 2^{32} is denoted using "-".

The bit-wise complement of x (equal to $2^{32}-1-x$) is denoted \bar{x}. The function $R_{O T L}(X)$ produces a word of the same size as X, but with the bits rotated cyclically to the left by r positions. That is, if $Y=R O T L^{r}(X)$, then $Y[i]=X[i-r(\bmod 32)], 0 \leq i \leq 31$.

In a situation where we want to consider several bit positions $X[a], X[b]$, $X[c], X[d]$ of value X simultaneously, then we may combine these values into a vector ($X[a], X[b], X[c], X[d])$ and use the notation:

$$
X[a, b, c, d]=(X[a], X[b], X[c], X[d])
$$

We always write the bits in descending order. If some bits are adjacent we may combine them, for example:

$$
X[a-b, c]=(X[a], X[a-1], \ldots, X[b+1], X[b], X[c])
$$

If we want to say that a set of bit positions are set to a specific value, then we may write, for example

$$
\begin{aligned}
X[a-b, c]= & 1, \Leftrightarrow \\
& X[a]=1 ; X[a-1]=1, \ldots, X[b+1]=1 ; X[b]=1 ; X[c]=1 .
\end{aligned}
$$

3 Description of MD5

I shall use an unorthodox description for MD5 (the description is unorthodox in comparison to [11]).
Padding: The message is padded and has its length in bits appended to make a multiple of 512 bits.
Parsing: The padded message is parsed into 512 -bit blocks, $M^{(1)}, \ldots, M^{(N)}$. Each 512-bit input block is expressed as sixteen 32 -bit words $M_{0}^{(i)}, \ldots, M_{15}^{(i)}$.
Message Expansion: The message expansion is applied to each message block individually. This is similar in principal to the key scheduling for a modern block cipher. The message expansion results in a series of 64 words $\left\{W_{t}\right\}$:

$$
W_{t}= \begin{cases}M_{t}^{(i)}, & 0 \leq t \leq 15 \\ M_{1+5 t(\bmod 16)}^{(i)}, & 16 \leq t \leq 31 ; \\ M_{5+3 t(\bmod 16)}^{(i)}, & 32 \leq t \leq 47 \\ M_{7 t(\bmod 16)}^{(i)}, & 48 \leq t \leq 63\end{cases}
$$

Note that for each $r, 0 \leq r \leq 3$, the values of $\left\{W_{16 r+0}, \ldots, W_{16 r+15}\right\}$ form a permutation of the message block words.

Register Update:

The hash function maintains 4 words of state for the intermediate hash value $I H V^{(i)}[0], I H V^{(i)}[1], I H V^{(i)}[2], I H V^{(i)}[3]$, where $I H V^{(i)}$ denotes the value of the intermediate hash value before hashing the i-th 512 -bit block. The 4 words $I H V^{(0)}[j]$ are initialized to pre-determined constants.

The algorithm has a working register with 4 words of state Q_{t}, Q_{t-1}, Q_{t-2}, Q_{t-3}. These values are initialized to

$$
Q_{0}=I H V^{(i)}[1], Q_{-1}=I H V^{(i)}[2], Q_{-2}=I H V^{(i)}[3], Q_{-3}=I H V^{(i)}[0]
$$

The unusual order of initialization is due to our description of the algorithm, but it is still an accurate translation of the algorithm.

Following initialization, 64 rounds of the round function are applied to the expanded input sequence $\left\{W_{t}\right\}$. The round function modifies the register based
on the values of an input word $W_{t} \in G F\left({ }^{32}\right)$, a rotation amount denoted $S(t) \in[0,31]$, and a pre-determined constant word $A C_{t} \in G F\left(2^{32}\right)$. The rotation amounts $S(t)$ can be seen in Table 1. The constant words $A C_{t}$ are found in the MD5 specification [11]. The compression function uses addition modulo 2^{32}, left rotation by the amount $S(t)$ and a round-dependent nonlinear function $f_{t}(X, Y, Z)$ where:

$$
f_{t}(X, Y, Z)=\left\{\begin{array}{lll}
F(X, Y, Z)=(X \wedge Y) \oplus(\bar{X} \wedge Z), & 0 \leq t \leq 15 \\
G(X, Y, Z)=(Z \wedge X) \oplus(\bar{Z} \wedge Y), & 16 \leq t \leq 31 \\
H(X, Y, Z)=X \oplus Y \oplus Z, & 32 \leq t \leq 47 \\
I(X, Y, Z)=Y \oplus(X \vee \bar{Z}), & 48 \leq t \leq 63
\end{array}\right.
$$

All the inputs and outputs of these round-dependent functions are 32-bit values. The compression function modifies the register as follows:

$$
\begin{aligned}
T_{t} & =f_{t}\left(Q_{t}, Q_{t-1}, Q_{t-2}\right)+Q_{t-3}+A C_{t}+W_{t} \\
R_{t} & =R O T L^{S(t)}\left(T_{t}\right) ; \quad Q_{t+1}=Q_{t}+R_{t}
\end{aligned}
$$

After all 64 input words have been input to the register, the resulting values of the state are added modulo 2^{32} to the initialized values of the state, according to the Davies-Meyer construction [10]:

$$
\begin{aligned}
& I H V^{(i+1)}[1]=I H V^{(i)}[1]+Q_{64}, I H V^{(i+1)}[2]=I H V^{(i)}[2]+Q_{63}, \\
& I H V^{(i+1)}[3]=I H V^{(i)}[3]+Q_{62}, I H V^{(i+1)}[0]=I H V^{(i)}[0]+Q_{61} .
\end{aligned}
$$

These values become the new intermediate hash value. If this is the last message block, the new intermediate hash value is output as the resulting message digest. Otherwise, the algorithm proceeds to updating the register using the next message block.

4 The Differentials

We concentrate mainly on add-differences $\delta X=X^{*}-X\left(\bmod 2^{32}\right)$: add-differences are so-called because the differences are formed relative to the modular addition group operation. We also look at XOR-differences $\Delta X=X^{*} \oplus X$, as both differences are useful. As noted in [5], if $\Delta X=\lambda$, then δX can be determined if $X[i]$ is known for every $i<31$ such that $\lambda[i]=1 .{ }^{1}$ That is, if the attacker predicts the bits of X at the positions where $\hat{\lambda}[i]=1$, then the attacker also predicts δX.

4.1 Message Expansion

The collision uses a pair of messages with each message consisting of two message blocks of data with the first message containing the blocks $M \mid N$ and

[^0]the second message containing blocks M^{*}, N^{*}. When parsed into 32-bit words, $M_{0}, \ldots, M_{15} \mid N_{0}, \ldots, N_{15}$ and $M_{0}^{*}, \ldots, M_{15}^{*} \mid N_{0}^{*}, \ldots, N_{15}^{*}$, these values satisfy:
\[

$$
\begin{gathered}
M_{4}^{*}-M_{4}=2^{31}, \quad M_{11}^{*}-M_{11}=2^{15}, \quad M_{14}^{*}-M_{14}=2^{31}, M_{i}^{*}=M_{i} \text { otherwise }, \\
N_{4}^{*}-N_{4}=2^{31}, \quad N_{11}^{*}-N_{11}=-2^{15}, \quad N_{14}^{*}-N_{14}=2^{31}, \quad N_{i}^{*}=N_{i} \text { otherwise. }
\end{gathered}
$$
\]

The message expansion transforms the message block into the input word sequence $W_{t}, 0 \leq t \leq 63$. For the first message blocks M and M^{*}, the attacker has:

$$
\begin{aligned}
W_{4}^{*}-W_{4} & =W_{23}^{*}-W_{23}=W_{37}^{*}-W_{37}=W_{60}^{*}-W_{60}=-2^{31} \\
W_{11}^{*}-W_{11} & =W_{18}^{*}-W_{18}=W_{34}^{*}-W_{34}=W_{61}^{*}-W_{61}=+2^{15} \\
W_{14}^{*}-W_{14} & =W_{25}^{*}-W_{25}=W_{35}^{*}-W_{35}=W_{50}^{*}-W_{50}=-2^{31}
\end{aligned}
$$

and $W_{i}^{*}=W_{i}$ otherwise. For the second message blocks N and N^{*}, the attacker has:

$$
\begin{aligned}
W_{4}^{*}-W_{4} & =W_{23}^{*}-W_{23}=W_{37}^{*}-W_{37}=W_{60}^{*}-W_{60}=-2^{31} \\
W_{11}^{*}-W_{11} & =W_{18}^{*}-W_{18}=W_{34}^{*}-W_{34}=W_{61}^{*}-W_{61}=-2^{15} \\
W_{14}^{*}-W_{14} & =W_{25}^{*}-W_{25}=W_{35}^{*}-W_{35}=W_{50}^{*}-W_{50}=-2^{31},
\end{aligned}
$$

and $W_{i}^{*}=W_{i}$ otherwise.

4.2 First Block of the Differential

It may be easiest to read through the description of the first few rounds to get an idea of how the notation works. I have only looked in detail at the differential for the first blocks (M and M^{*}).

Due to the structure of the MD5 round function, add-differences propagate through most of the round function with little trouble.

$$
\begin{aligned}
\delta T_{t} & =\delta f_{t}\left(Q_{t}, Q_{t-1}, Q_{t-2}\right)+\delta Q_{t-3}+\delta W_{t} \\
\delta Q_{t+1} & =\delta Q_{t}+\delta R_{t}
\end{aligned}
$$

Furthermore, the difference δR_{t} can be expressed as $\delta R_{t}=R O T L^{S(t)}\left(\delta T_{t}\right)$ with high probability. Table 1 on page 6 describes the differential, showing the values of $\delta Q_{t}, \delta f_{t}\left(Q_{t}, Q_{t-1}, Q_{t-2}\right), \delta Q_{t-3}, \delta W_{t}, \delta T_{t}, S(t)$ and δR_{t}.
Notation. The columns headed by $\delta Q_{t}, \delta f_{t}\left(Q_{t}, Q_{t-1}, Q_{t-2}\right), \delta Q_{t-3}, \delta W_{t}, \delta T_{t}$, and δR_{t} describe the add-differences between the appropriate values, for example $\delta Q_{t}=Q_{t}^{*}-Q_{t}\left(\bmod 2^{32}\right)$. To describe the add-differences in such a small space,

- a difference of the form $+2^{j}$ is denoted $\stackrel{+}{j}$, and
- a difference of the form -2^{j} is denoted \bar{j}.

t	δQ_{t}	δf_{t}	δQ_{t-3}	δW_{t}	δT_{t}	$S(t)$	δR_{t}
0-3	-	-	-	-	-	.	-
4	-	-	-	$\overline{31}$	$\overline{31}$	7	6
5	6	$\stackrel{+}{19},{ }_{11}^{+}$	-	-	$\stackrel{+}{19},{ }_{11}^{+}$	12	$\stackrel{+}{31} \stackrel{+}{23}^{+}$
6	$\stackrel{ \pm}{31,} \stackrel{+}{23}, \overline{6}$	$\overline{14}, \overline{10}$	-	-	$\overline{15}, \stackrel{+}{14}, \overline{10}$	17	$\stackrel{+}{31, ~} \overline{27}, \overline{0}$
7	$\overline{27},{ }^{+} 3, \overline{6}, \overline{0}$	- $-\overline{27,25,16, ~+~}{ }^{+}$	-	-		22	${ }_{27}^{+},-\overline{24}, \overline{17}, \overline{15},{ }_{6}{ }^{+}+{ }_{1}^{+}$
8	$\overline{23}, \overline{17}, \overline{15},{ }_{0}^{+}$		$\overline{6}$	-		7	
9	$\stackrel{ \pm}{31}, \overline{6}, \stackrel{+}{0}$	(${ }^{ \pm}+{ }^{+}$	$\stackrel{ \pm}{31}{ }_{23}^{+}$, $\overline{6}$	-	$\stackrel{+}{+6}{ }_{20}{ }^{-}+{ }_{0}^{+}$	12	$\begin{array}{r}+ \\ 12,+ \\ \hline\end{array}$
10	+ 31,12	(${ }^{\text {a }}$	$\stackrel{+}{27}+23, \overline{6}, \overline{0}$	-	$\stackrel{-}{27,13}$	17	+ 30,12
			$\overline{-}-\overline{1}-+$	${ }^{+}$			
11	31, 30	8, 0	$23,17,15,0$	15	23, 17, 8	22	30, 13, 7
12	$\stackrel{+}{31,13, ~} \overline{7}$	$\stackrel{+}{31}, \stackrel{+}{17}, \stackrel{+}{7}$	$\overline{31}, \overline{6},{ }_{0}^{+}$	-	$\stackrel{+}{17}, \stackrel{+}{6},{ }_{0}^{+}$	7	$\stackrel{+}{24}, \stackrel{+}{13}, \stackrel{+}{7}$
13	$\stackrel{+}{31},{ }_{24}^{+}$	$\stackrel{+}{31,13}$	$\stackrel{+}{31} \stackrel{+}{12}$	-	12	12	24
14	$\stackrel{+}{31}$	$\stackrel{+}{31}, \stackrel{+}{18}$	$\stackrel{+}{31,} \stackrel{+}{30}$	$\overline{31}$	$\stackrel{+}{30} \stackrel{1}{18}^{\text {a }}$	17	$-\overline{15}{ }_{3}^{+}$
15	$\stackrel{+}{31}, \overline{15}, \stackrel{+}{3}$	$\stackrel{+}{31,}{ }_{2}^{5}$	$\stackrel{+}{31, ~} \overline{13}, \overline{7}$	-	$\stackrel{+}{25,13, ~} \overline{7}$	22	$\overline{29},{ }^{+}, \overline{3}$
16	$\stackrel{+}{31}$,	${ }^{+}$	$\stackrel{+}{31,24}$	-	$\stackrel{+}{+}$	5	$\stackrel{+}{+}$
	+	+					
17	31	31	31	-	-	9	-
18	$\stackrel{+}{31}$	$\stackrel{+}{31}$	$\stackrel{+}{31, ~} \square_{15}, \stackrel{+}{3}$	$\stackrel{+}{15}$	${ }_{3}^{+}$	14	${ }_{17}^{+}$
19	$\stackrel{+}{31,}{ }_{17}^{+}$	${ }^{+}$	$\stackrel{+}{31}, \stackrel{-}{29}$	-	$\stackrel{-}{29}$	20	17
		$+$					
20-21	31	31	31	-	-	.	-
22	$\stackrel{+}{31}$	$\stackrel{+}{31}$	$\stackrel{+}{31,} \stackrel{+}{17}$	-	$\stackrel{+}{17}$	14	$\stackrel{+}{31}$
23	-	-	$\stackrel{+}{31}$	31	-	20	-
24	-	$\stackrel{+}{31}$	$\stackrel{+}{31}$	-	-	5	-
25	-	-	${ }_{31}^{+}$	$\overline{31}$	-	9	-
26-33	-	-	-	-	-	.	-
34	-	-	-	$\stackrel{+}{15}$	$\stackrel{+}{15}$	16	$\stackrel{+}{31}$
35	$\stackrel{+}{31}$	$\overline{31}$	-	31	-	23	-
36	$\stackrel{+}{31}$	-	-	-	-	4	-
37	$\stackrel{+}{31}$	$\stackrel{+}{31}$		$3{ }^{-}$	-	11	-
38-49	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$	-	-		-
50	$\overline{31}$		$\overline{31}$	$\overline{31}$	-	15	-
51-59	31	${ }^{+}$	31	-	-		-
	$\stackrel{+}{+}$		$\overline{31}$	-			
60	31		31	31	-	6	-
61	$\overline{31}$	31	31	${ }_{15}^{+}$	${ }_{15}^{+}$	10	$\stackrel{+}{25}$
62-63	$\stackrel{ \pm}{31},{ }_{25}^{+}$	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$	-	-	.	-

Table 1. The first block of the differential. Recall that $\delta Q_{t}=\delta Q_{t-1}+\delta R_{t-1}, \delta T_{t}=$ $\delta f_{t}+\delta Q_{t-3}+\delta W_{t}$, and (most of the time) $\delta R_{t}=R O T L^{S(t)}\left(\delta T_{t}\right)$.

The total add-difference is obtained by adding the differences together. The column headed by $S(t)$ shows the rotation amount for that round. The propagation of differences through the f_{t} function is discussed in Section 5.
Conditions of T_{t}. For Section 4 we consider only the restrictions on T_{t} that are necessary to ensure that the rotation of T_{t} (that is R_{t}) provides the correct add-difference. The restrictions fall into one of three categories:

- A given add-difference must not propagate XOR-differences past the bit position in T_{t} that is rotated to bit $R_{t}[31]$ otherwise the rotation will carry that difference to the lower order bits, thus resulting in the wrong adddifference in R_{t}.
- A given add-difference must propagate XOR-differences past a certain bit position in T_{t}, to ensure that the rotation will carry that difference to the lower order bits, in order to obtain the correct add-difference in R_{t}.
- In some cases, an add-difference would propagate XOR-differences past bit 31 (if it were possible). For example, if $T_{t}[j]=0,25 \leq j \leq 31$ and the attacker wanted the add-difference -2^{25}, then the second message must have $T_{t}^{*}[j]=1,25 \leq j \leq 31$. Injecting this add-difference to T_{t} propagates the difference up to bit 31, and would propagate further (if T_{t} had consisted of more bits). When rotated by, for example $S(t)=12$, the attacker may desire that the resulting difference is $\delta R_{t}=-2^{25+12(\bmod 32)}=-2^{5}$. In stead, the attacker will get

$$
\delta R_{t}=\sum_{j=25}^{31}+2^{j+12(\bmod 32)}=\sum_{j=5}^{31}+2^{j} .
$$

This is not what the attacker wanted at all. To prevent this, the attacker needed to ensure that injecting this add-difference to T_{t} would not propagate pas bit 31 (if T_{t} had consisted of more bits). The attacker needed at least one of the bit positions $25 \leq j \leq 31$ to have $T_{t}[j]=1$, as this would stop the difference propagating past this pit position.

Rather than explaining this reasoning every time these situations occur, we may simply state:
$-\delta=\left(\pm 2^{j}\right)$ must not propagate past bit k;
$-\delta=\left(\pm 2^{j}\right)$ must propagate past bit k; or
$-\delta=\left(\pm 2^{j}\right)$ must propagate past bit 31;
according to the corresponding category above.

4.3 Description of the First Block of the Differential

Rounds 0 to 3: $\delta Q_{t}=0$ and $\delta W_{t}=0$: thus $\delta T_{t}=\delta R_{t}=\delta Q_{t+1}=0$.
Round 4: $\delta Q_{4}=0$. $-\delta W_{4}=+2^{31}$.

- Thus $\delta T_{4}=-2^{31}$.
- Conditions on T_{4} :
- $T_{4}[31]=1$, to change add-difference $\left(+2^{31}\right)$ to $\left(-2^{31}\right)$.
- Since $S(4)=7$, this results in $\delta R_{4}=-2^{31+7=6}=-2^{6}$.
- Thus $\delta Q_{5}=\delta Q_{4}+\delta R_{4}=(0)+\left(-2^{6}\right)=-2^{6}$.

Round 5: $\delta Q_{5}=-2^{6}$.
$-\delta f_{5}=+2^{19}+2^{11}$.

- Thus $\delta T_{5}=+2^{19}+2^{11}$.
- Conditions on T_{5} :
- $\delta=\left(+2^{19}+2^{11}\right)$ must not propagate past bit 19 .
- Since $S(5)=12$, this results in

$$
\delta R_{5}=+2^{19+12=31}+2^{11+12=23}=+2^{31}+2^{23}
$$

- Thus $\delta Q_{6}=\delta Q_{5}+\delta R_{5}=\left(-2^{6}\right)+\left(+2^{31}+2^{23}\right)= \pm 2^{31}+2^{23}-2^{6}$.

Round 6: $\delta Q_{6}= \pm 2^{31}+2^{23}-2^{6}$.
$-\delta f_{6}=-2^{14}-2^{10}$.

- Thus $\delta T_{6}=-2^{14}-2^{10}$.
- Conditions on T_{6} :
- $\delta=\left(-2^{14}\right)$ must propagate to at least bit 15 in order for the rotation to cause desired bit differences in lower order bits. Thus, we can write $\delta T_{6}=-2^{15}+2^{14}-2^{10}$.
- $\delta=\left(-2^{10}\right)$ must not propagate past bit 14 .
- Since $S(6)=17$, this results in
$\delta R_{6}=-2^{15+17=0}+2^{14+17=1}-2^{10+17=27}=+2^{31}-2^{27}-2^{0}$.
- Thus

$$
\begin{aligned}
\delta Q_{7} & =\delta Q_{6}+\delta R_{6}=\left(\pm 2^{31}+2^{23}-2^{6}\right)+\left(+2^{31}-2^{27}-2^{0}\right) \\
& =-2^{27}+2^{23}-2^{6}-2^{0},
\end{aligned}
$$

noting that the add-differences $\left(\pm 2^{31}\right)$ and $\left(+2^{31}\right)$ have cancelled out.
Round 7: $\delta Q_{7}=-2^{27}+2^{23}-2^{6}-2^{0}$.
$-\delta f_{7}=-2^{27}-2^{25}+2^{16}+2^{10}+2^{5}-2^{2}$.

- Thus $\delta T_{7}=-2^{27}-2^{25}+2^{16}+2^{10}+2^{5}-2^{2}$.
- Conditions on T_{7} :
- $\delta=\left(-2^{27}-2^{25}+2^{16}\right)$ must not propagate past bit 31 .
- $\delta=\left(-2^{2}\right)$ must not propagate past bit 9 .
- $\delta=\left(+2^{10}+2^{5}\right)$ must propagate to at least bit 11 and have $\Delta T_{7}[10]=$ 0 in order for the rotation to cause desired bit differences in lower order bits. Thus, we can write

$$
\left(+2^{10}+2^{5}\right)=+2^{11}-2^{9}-2^{8}-2^{7}-2^{6}-2^{5} .
$$

- In the given collision, $T_{7}[27,25,9-5,2]=1$, and $T_{7}[16,11]=0$, so these conditions are satisfied.
- Since $S(7)=22$, this results in

$$
\begin{aligned}
\delta R_{7}= & -2^{27+22=17}-2^{25+22=15}+2^{16+22=6}+2^{11+22=1}-2^{2+22=24} \\
& +\underbrace{\left(-2^{9+22=31}-2^{8+22=30}-2^{7+22=29}-2^{6+22=28}-2^{5+22=27}\right)}_{=+2^{27}} \\
= & +2^{27}-2^{24}-2^{17}-2^{15}+2^{6}+2^{1} .
\end{aligned}
$$

- Thus

$$
\begin{aligned}
\delta Q_{8} & =\delta Q_{7}+\delta R_{7} \\
& =\left(-2^{27}+2^{23}-2^{6}-2^{0}\right)+\left(+2^{27}-2^{24}-2^{17}-2^{15}+2^{6}+2^{1}\right) \\
& =\left(-2^{24}+2^{23}\right)-2^{17}-2^{15}+\left(+2^{1}-2^{0}\right) \\
& =-2^{23}-2^{17}-2^{15}+2^{0},
\end{aligned}
$$

noting that:

- the add-differences $\left(-2^{27}\right)$ and $\left(+2^{27}\right)$ have cancelled out;
- the add-differences $\left(-2^{6}\right)$ and $\left(+2^{6}\right)$ have cancelled out;
- add-differences $\left(-2^{24}\right)$ and $\left(+2^{23}\right)$ combine as $\left(-2^{23}\right)$; and
- add-differences $\left(+2^{1}\right)$ and $\left(-2^{0}\right)$ combine as $\left(+2^{0}\right)$.

Round 8: $\delta Q_{8}=-2^{23}-2^{17}-2^{15}+2^{0}$.
$-\delta f_{8}= \pm 2^{31}-2^{24}+2^{16}+2^{10}+2^{8}+2^{6}$.
$-\delta Q_{t-3}=\delta Q_{5}=-2^{6}$.

- Thus

$$
\begin{aligned}
\delta T_{8} & =\left(+2^{31}-2^{24}+2^{16}+2^{10}+2^{8}+2^{6}\right)+\left(-2^{-6}\right) \\
& =-2^{31}-2^{24}+2^{16}+2^{10}+2^{8}
\end{aligned}
$$

noting that:

- the add-differences $\left(-2^{6}\right)$ and $\left(+2^{6}\right)$ have cancelled out.
- Conditions on T_{6} :
- $T_{6}[31]=1$, to ensure add-difference $\left(\pm 2^{31}\right)$ is really $\left(-2^{31}\right)$.
- $\delta=\left(-2^{24}+2^{16}+2^{10}+2^{8}\right)$ must not propagate past bit 24 .
- Since $S(8)=7$, this results in

$$
\begin{aligned}
\delta R_{8} & =-2^{31+7=6}-2^{24+7=31}+2^{16+7=23}+2^{10+7=17}+2^{8+7=15} \\
& =-2^{31}+2^{23}+2^{17}+2^{15}-2^{6} .
\end{aligned}
$$

- Thus

$$
\begin{aligned}
\delta Q_{9} & =\delta Q_{8}+\delta R_{8} \\
& =\left(-2^{23}-2^{17}-2^{15}+2^{0}\right)+\left(-2^{31}+2^{23}+2^{17}+2^{15}-2^{6}\right) \\
& =-2^{31}-2^{6}+2^{0} .
\end{aligned}
$$

noting that:

- the add-differences $\left(-2^{23}\right)$ and $\left(+2^{23}\right)$ have cancelled out;
- the add-differences $\left(-2^{17}\right)$ and $\left(+2^{17}\right)$ have cancelled out; and
- the add-differences $\left(-2^{15}\right)$ and $\left(+2^{15}\right)$ have cancelled out.

Round 9: $\delta Q_{9}=-2^{31}-2^{6}+2^{0}$.
$-\delta f_{9}= \pm 2^{31}+2^{26}-2^{23}-2^{20}+2^{6}+2^{0}$.
$-\delta Q_{t-3}=\delta Q_{6}=+2^{31}+2^{23}-2^{6}$.

- Thus

$$
\begin{aligned}
\delta T_{9} & =\left(\pm 2^{31}+2^{26}-2^{23}-2^{20}+2^{6}+2^{0}\right)+\left(+2^{31}+2^{23}-2^{6}\right) \\
& =+2^{26}-2^{20}+2^{0}
\end{aligned}
$$

noting that:

- $\left(\pm 2^{31}\right)$ and $\left(+2^{31}\right)$ have cancelled out;
- $\left(-2^{23}\right)$ and $\left(+2^{23}\right)$ have cancelled out; and
- $\left(+2^{6}\right)$ and $\left(-2^{6}\right)$ have cancelled out.
- Conditions on T_{t} :
- $\delta=\left(+2^{26}-2^{20}\right)$ must not propagate past bit 31 .
- $\delta=\left(+2^{0}\right)$ must not propagate past bit 19 .
- Since $S(9)=12$, this results in

$$
\begin{aligned}
\delta R_{9} & =+2^{26+12=6}-2^{20+12=0}+2^{0+12=12} \\
& =+2^{12}+2^{6}-2^{0}
\end{aligned}
$$

- Thus $\delta Q_{10}=\delta Q_{9}+\delta R_{9}=\left(-2^{31}-2^{6}+2^{0}\right)+\left(+2^{12}+2^{6}-2^{0}\right)=-2^{31}+2^{12}$, noting that:
- $\left(-2^{6}\right)$ and $\left(+2^{6}\right)$ have cancelled out; and
- $\left(+2^{0}\right)$ and $\left(-2^{0}\right)$ have cancelled out.

Round 10: $\delta Q_{10}=+2^{31}+2^{12}$.
$-\delta f_{10}=-2^{23}+2^{13}+2^{6}+2^{0}$.
$-\delta Q_{t-3}=\delta Q_{7}=-2^{27}+2^{23}-2^{6}-2^{0}$.

- Thus

$$
\begin{aligned}
\delta T_{10} & =\left(-2^{23}+2^{13}+2^{6}+2^{0}\right)+\left(-2^{27}+2^{23}-2^{6}-2^{0}\right) \\
& =-2^{27}+2^{13}
\end{aligned}
$$

- $\left(-2^{23}\right)$ and $\left(+2^{23}\right)$ have cancelled out;
- $\left(-2^{6}\right)$ and $\left(+2^{6}\right)$ have cancelled out; and
- $\left(+2^{0}\right)$ and $\left(-2^{0}\right)$ have cancelled out.
- Conditions on T_{t} :
- $\delta=\left(-2^{27}\right)$ must not propagate past bit 31 .
- $\delta=\left(+2^{13}\right)$ must not propagate past bit 14 .
- Since $S(10)=17$, this results in

$$
\delta R_{10}=+2^{27+17=12}-2^{13+17=30}=+2^{30}-2^{12}
$$

- Thus $\delta Q_{11}=\delta Q_{10}+\delta R_{10}=\left(+2^{31}+2^{12}\right)+\left(+2^{30}-2^{12}\right)=+2^{31}+2^{30}$, noting that
- $\left(+2^{12}\right)$ and $\left(-2^{12}\right)$ have cancelled out.

Round 11: $\delta Q_{11}=+2^{31}+2^{30}$.
$-\delta f_{11}=-2^{8}-2^{0}$.
$-\delta Q_{t-3}=\delta Q_{8}=-2^{23}-2^{17}-2^{15}+2^{0}$.
$-\delta W_{11}=\delta M_{11}=+2^{15}$.

- Thus

$$
\begin{aligned}
\delta T_{11} & =\left(-2^{8}-2^{0}\right)+\left(-2^{23}-2^{17}-2^{15}+2^{0}\right)+\left(+2^{15}\right) \\
& =-2^{23}-2^{17}-2^{8}
\end{aligned}
$$

noting that:

- $\left(-2^{15}\right)$ and $\left(+2^{15}\right)$ have cancelled out; and $\left(-2^{0}\right)$ and $\left(+2^{0}\right)$ have cancelled out.
- Conditions on T_{t} :
- $\delta=\left(-2^{23}-2^{17}\right)$ must not propagate past bit 31 .
- $\delta=\left(-2^{8}\right)$ must not propagate past bit 9 .
- Since $S(11)=22$, this results in

$$
\delta R_{11}=-2^{23+22=13}-2^{17+22=7}-2^{8+22=20}=-2^{30}-2^{13}-2^{7}
$$

- Thus

$$
\begin{aligned}
\delta Q_{12} & =\delta Q_{11}+\delta R_{11}=\left(+2^{31}+2^{30}\right)+\left(-2^{30}-2^{13}-2^{7}\right) \\
& =+2^{31}-2^{13}-2^{7}
\end{aligned}
$$

noting that

- $\left(+2^{30}\right)$ and $\left(-2^{30}\right)$ have cancelled out.

Round 12: $\delta Q_{12}=+2^{31}-2^{13}-2^{7}$.
$-\delta f_{12}=+2^{31}+2^{17}+2^{7}$.
$-\delta Q_{t-3}=\delta Q_{9}=-2^{31}-2^{6}+2^{0}$.

- Thus

$$
\begin{aligned}
\delta T_{12} & =\left(+2^{31}+2^{17}+2^{7}\right)+\left(-2^{31}-2^{6}+2^{0}\right) \\
& =-2^{16}+2^{6}+2^{0}
\end{aligned}
$$

noting that:

- $\left(+2^{31}\right)$ and $\left(-2^{31}\right)$ have cancelled out; and
- $\left(+2^{7}\right)$ and $\left(-2^{6}\right)$ have combined to become $\left(+2^{6}\right)$.
- Conditions on T_{t} :
- $\delta=\left(-2^{16}+2^{6}+2^{0}\right)$ must not propagate past bit 24 .
- Since $S(12)=7$, this results in

$$
\delta R_{12}=-2^{16+7=23}+2^{6+7=13}+2^{0+7=7}=+2^{24}+2^{13}+2^{7}
$$

- Thus

$$
\begin{aligned}
\delta Q_{13} & =\delta Q_{12}+\delta R_{12}=\left(+2^{31}-2^{13}-2^{7}\right)+\left(+2^{24}+2^{13}+2^{7}\right) \\
& =+2^{31}+2^{24}
\end{aligned}
$$

noting that:

- $\left(-2^{13}\right)$ and $\left(+2^{13}\right)$ have cancelled out; and
- $\left(-2^{7}\right)$ and $\left(+2^{7}\right)$ have cancelled out.

Round 13: $\delta Q_{13}=+2^{31}+2^{24}$.
$-\delta f_{13}=+2^{31}-2^{13}$.
$-\delta Q_{t-3}=\delta Q_{10}=+2^{31}+2^{12}$.

- Thus $\delta T_{13}=\left(+2^{31}-2^{13}\right)+\left(+2^{31}+2^{12}\right)=-2^{12}$, noting that:
- $\left(+2^{31}\right)$ and $\left(+2^{31}\right)$ have cancelled out; and
- $\left(-2^{13}\right)$ and $\left(+2^{12}\right)$ have combined to become $\left(-2^{12}\right)$.
- Conditions on T_{t} :
- $\delta=\left(-2^{12}\right)$ must not propagate past bit 19 .
- Since $S(13)=12$, this results in $\delta R_{13}=-2^{12+12=24}=-2^{24}$.
- Thus $\delta Q_{14}=\delta Q_{13}+\delta R_{13}=\left(+2^{31}+2^{24}\right)+\left(-2^{24}\right)=+2^{31}$, noting that:
- $\left(+2^{24}\right)$ and $\left(-2^{24}\right)$ have cancelled out.

Round 14: $\delta Q_{14}=+2^{31}$.
$-\delta f_{14}=+2^{31}+2^{18}$.
$-\delta Q_{t-3}=\delta Q_{11}=+2^{31}+2^{30}$.
$-\delta W_{14}=\delta M_{14}=-2^{31}$.
$-\delta T_{14}=\left(+2^{31}+2^{18}\right)+\left(+2^{31}+2^{30}\right)+\left(-2^{31}\right)=-2^{30}+2^{18}$, noting that:

- $\left(+2^{31}\right),\left(+2^{31}+2^{30}\right)$ and $\left(-2^{31}\right)$ combine to become $\left(-2^{30}\right)$.
- Conditions on T_{t} :
- $\delta=\left(-2^{30}+2^{18}\right)$ must not propagate past bit 31 .
- Since $S(14)=17$, this results in

$$
\delta R_{14}=-2^{30+17=15}+2^{18+17=3}=-2^{15}+2^{3}
$$

- Thus $\delta Q_{15}=\delta Q_{14}+\delta R_{14}=\left(+2^{31}\right)+\left(-2^{15}+2^{3}\right)=+2^{31}-2^{15}+2^{3}$.

Round 15: $\delta Q_{15}=+2^{31}-2^{15}+2^{3}$.
$-\delta f_{15}=+2^{31}+2^{25}$.
$-\delta Q_{t-3}=\delta Q_{12}=+2^{31}-2^{13}-2^{7}$.
$-\delta T_{15}=\left(+2^{31}+2^{25}\right)+\left(+2^{31}-2^{13}-2^{7}\right)=+2^{25}-2^{13}-2^{7}$, noting that:

- $\left(+2^{31}\right)$ and $\left(+2^{31}\right)$ have cancelled out.
- Conditions on T_{t} :
- $\delta=\left(+2^{25}-2^{13}\right)$ must not propagate past bit 31 .
- $\delta=\left(-2^{7}\right)$ must not propagate past bit 9 .
- Since $S(15)=22$, this results in

$$
\delta R_{15}=+2^{25+22=15}-2^{13+22=3}-2^{7+22=29}=-2^{29}+2^{15}-2^{3}
$$

- Thus

$$
\begin{aligned}
\delta Q_{16} & =\delta Q_{15}+\delta R_{15}=\left(+2^{31}-2^{15}+2^{3}\right)+\left(-2^{29}+2^{15}-2^{3}\right) \\
& =+2^{31}-2^{29}
\end{aligned}
$$

noting that:

- $\left(-2^{15}\right)$ and $\left(+2^{15}\right)$ have cancelled out; and
- $\left(+2^{3}\right)$ and $\left(-2^{3}\right)$ have cancelled out.

The differential becomes easier from here-on.
Round 16: $\delta Q_{16}=+2^{31}-2^{29}$.
$-\delta f_{16}=+2^{31}$.
$-\delta Q_{t-3}=\delta Q_{13}=+2^{31}+2^{24}$.

- Thus $\delta T_{16}=\left(+2^{31}\right)+\left(+2^{31}+2^{24}\right)=+2^{24}$, noting that:
- $\left(+2^{31}\right)$ and $\left(+2^{31}\right)$ have cancelled out.
- Conditions on T_{t} :
- $\delta=\left(+2^{24}\right)$ must not propagate past bit 26 .
- Since $S(16)=5$, this results in $\delta R_{16}=+2^{24+5=29}=+2^{29}$.
- Thus $\delta Q_{17}=\delta Q_{16}+\delta R_{16}=\left(+2^{31}-2^{29}\right)+\left(+2^{29}\right)=+2^{31}$, noting that:
- $\left(-2^{29}\right)$ and $\left(+2^{29}\right)$ have cancelled out.

Round 17: $\delta Q_{17}=+2^{31}$.
$-\delta f_{17}=+2^{31}$.
$-\delta Q_{t-3}=\delta Q_{14}=+2^{31}$.

- Thus $\delta T_{17}=\left(+2^{31}\right)+\left(+2^{31}\right)=0$, noting that:
- $\left(+2^{31}\right)$ and $\left(+2^{31}\right)$ have cancelled out.
- Conditions on T_{t} : none
$-\delta R_{17}=0$.
- Thus $\delta Q_{18}=\delta Q_{17}+\delta R_{17}=\left(+2^{31}\right)+(0)=+2^{31}$.

Round 18: $\delta Q_{18}=+2^{31}-2^{29}$.
$-\delta f_{18}=+2^{31}$.
$-\delta Q_{t-3}=\delta Q_{15}=+2^{31}-2^{15}+2^{3}$.
$-\delta W_{18}=\delta M_{11}=+2^{15}$.

- Thus $\delta T_{18}=\left(+2^{31}\right)+\left(+2^{31}-2^{15}+2^{3}\right)+\left(+2^{15}\right)=\left(+2^{3}\right)$, noting that:
- $\left(+2^{31}\right)$ and $\left(+2^{31}\right)$ have cancelled out; and
- $\left(-2^{15}\right)$ and $\left(+2^{15}\right)$ have cancelled out.
- Conditions on T_{t} :
- $\delta=\left(+2^{3}\right)$ must not propagate past bit 17 .
- Since $S(18)=14$, this results in $\delta R_{18}=+2^{3+14=17}=+2^{17}$.
- Thus $\delta Q_{19}=\delta Q_{18}+\delta R_{18}=\left(+2^{31}\right)+\left(+2^{17}\right)=+2^{31}+2^{17}$.

Round 19: $\delta Q_{19}=+2^{31}+2^{17}$.
$-\delta f_{19}=+2^{31}$.
$-\delta Q_{t-3}=\delta Q_{14}=+2^{31}-2^{29}$.

- Thus $\delta T_{19}=\left(+2^{31}\right)+\left(+2^{31}-2^{29}\right)=-2^{29}$, noting that
- $\left(+2^{31}\right)$ and $\left(+2^{31}\right)$ have cancelled out.
- Conditions on T_{t} :
- $\delta=\left(-2^{29}\right)$ must not propagate past bit 31 .
- Since $S(19)=20$, this results in $\delta R_{19}=-2^{29+20=17}=-2^{17}$.
- Thus $\delta Q_{20}=\delta Q_{19}+\delta R_{19}=\left(+2^{31}+2^{17}\right)+\left(-2^{17}\right)=+2^{31}$, noting that:
- $\left(+2^{17}\right)$ and $\left(-2^{17}\right)$ have cancelled out.

Round 20 and $21 \delta Q_{t}=+2^{31}$.
$-\delta f_{t}=+2^{31}$.
$-\delta Q_{t-3}=\delta Q_{17}=+2^{31}$.

- Thus $\delta T_{t}=\left(+2^{31}\right)+\left(+2^{31}\right)=0$, noting that:
- $\left(+2^{31}\right)$ and $\left(+2^{31}\right)$ have cancelled out.
- Conditions on T_{t} : none.
$-\delta R_{t}=0$.
- Thus $\delta Q_{t+1}=\delta Q_{t}+\delta R_{t}=\left(+2^{31}\right)+(0)=+2^{31}$.

Round 22: $\delta Q_{22}=+2^{31}$.
$-\delta f_{22}=+2^{31}$.
$-\delta Q_{t-3}=\delta Q_{19}=+2^{31}+2^{17}$.

- Thus $\delta T_{22}=\left(+2^{31}\right)+\left(+2^{31}+2^{17}\right)=+2^{17}$, noting that
- $\left(+2^{31}\right)$ and $\left(+2^{31}\right)$ have cancelled out.
- Conditions on T_{t} :
- $\delta=\left(+2^{17}\right)$ must not propagate past bit 17 .
- Since $S(22)=14$, this results in $\delta R_{19}=+2^{17+14=31}=+2^{31}$.
- Thus $\delta Q_{23}=\delta Q_{22}+\delta R_{22}=\left(+2^{31}\right)+\left(+2^{31}\right)=0$, noting that
- $\left(+2^{31}\right)$ and $\left(+2^{31}\right)$ have cancelled out.

Round 23: $\delta Q_{23}=0$.
$-\delta f_{23}=0$.
$-\delta Q_{t-3}=\delta Q_{20}=+2^{31}$.
$-\delta W_{23}=\delta M_{4}=-2^{31}$.

- Thus $\delta T_{23}=\left(+2^{31}\right)+\left(-2^{31}\right)=0$, noting that:
- $\left(+2^{31}\right)$ and $\left(-2^{31}\right)$ have cancelled out.
- Conditions on T_{t} : none
$-\delta R_{23}=0$.
- Thus $\delta Q_{24}=\delta Q_{23}+\delta R_{23}=(0)+(0)=0$.

Round 24: $\delta Q_{24}=0$.
$-\delta f_{24}=+2^{31}$.
$-\delta Q_{t-3}=\delta Q_{21}=+2^{31}$.

- Thus $\delta T_{24}=\left(+2^{31}\right)+\left(+2^{31}\right)=0$, noting that:
- $\left(+2^{31}\right)$ and $\left(+2^{31}\right)$ have cancelled out.
- Conditions on T_{t} : none
$-\delta R_{24}=0$.
- Thus $\delta Q_{25}=\delta Q_{24}+\delta R_{24}=0$.

Round 25: $\delta Q_{25}=0$.
$-\delta f_{25}=0$.
$-\delta Q_{t-3}=\delta Q_{19}=+2^{31}$.
$-\delta W_{25}=\delta M_{14}=-2^{31}$.

- Thus $\delta T_{25}=\left(+2^{31}\right)+\left(-2^{31}\right)=0$, noting that - $\left(+2^{31}\right)$ and $\left(-2^{31}\right)$ have cancelled out.
- Conditions on T_{t} : none
$-\delta R_{25}=0$.
- Thus $\delta Q_{26}=\delta Q_{25}+\delta R_{25}=0$.

Round 26 to 33: $\delta Q_{t}=0$.
$-\delta f_{t}=\delta Q_{t-3}=\delta W_{t}=0$.

- Thus $\delta T_{t}=\delta R_{t}=0$, and $\delta Q_{t+1}=\delta Q_{t}+\delta R_{t}=0$.
- Conditions on T_{t} : none

Round 34: $\delta Q_{34}=0$.
$-\delta f_{34}=0$.
$-\delta Q_{t-3}=\delta Q_{31}=0$.
$-\delta W_{34}=\delta M_{11}=+2^{15}$.

- Thus $\delta T_{34}=(0)+\left(+2^{15}\right)=+2^{15}$.
- Conditions on T_{t} :
- $\delta=\left(+2^{15}\right)$ must not propagate past bit 15 .
- Since $S(34)=16$, this results in $\delta R_{34}=+2^{15+16=31}=+2^{31}$.
- Thus $\delta Q_{35}=\delta Q_{34}+\delta R_{34}=(0)+\left(+2^{31}\right)=+2^{31}$.

Round 35: $\delta Q_{35}=+2^{31}$.
$-\delta f_{35}=-2^{31}$.
$-\delta Q_{t-3}=\delta Q_{32}=0$.
$-\delta W_{35}=\delta M_{14}=-2^{31}$.

- Thus $\delta T_{35}=\left(-2^{31}\right)+\left(-2^{31}\right)=0$, noting that:
- $\left(-2^{31}\right)$ and $\left(-2^{31}\right)$ have cancelled out.
- Conditions on T_{t} : none
$-\delta R_{35}=0$.
- Thus $\delta Q_{36}=\delta Q_{35}+\delta R_{35}=\left(+2^{31}\right)+(0)=+2^{31}$.

Round 36: $\delta Q_{36}=+2^{31}$.
$-\delta f_{36}=0$,
$-\delta Q_{t-3}=\delta Q_{33}=0$.

- Thus $\delta T_{36}=\delta R_{36}=0$.
- Conditions on T_{t} : none
- Thus $\delta Q_{37}=\delta Q_{36}+\delta R_{36}=\left(+2^{31}\right)+(0)=+2^{31}$.

Round 37: $\delta Q_{37}=+2^{31}$.
$-\delta f_{37}=+2^{31}$.
$-\delta Q_{t-3}=\delta Q_{34}=0$.
$-\delta W_{37}=\delta M_{4}=-2^{31}$.

- Thus $\delta T_{37}=\left(-2^{31}\right)+\left(-2^{31}\right)=0$, noting that:
- $\left(-2^{31}\right)$ and $\left(-2^{31}\right)$ have cancelled out.
- Conditions on T_{t} : none
$-\delta R_{37}=0$.
- Thus $\delta Q_{38}=\delta Q_{37}+\delta R_{37}=\left(+2^{31}\right)+(0)=+2^{31}$.

Rounds 38 to 49: $\delta Q_{t}= \pm 2^{31}$.
$-\delta f_{t}= \pm 2^{31}$.
$-\delta Q_{t-3}= \pm 2^{31}$.

- Thus $\delta T_{t}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}\right)=0$, noting that:
- $\left(\pm 2^{31}\right)$ and $\left(\pm 2^{31}\right)$ have cancelled out.
- Conditions on T_{t} : none
$-\delta R_{t}=0$.
- Thus $\delta Q_{t+1}=\delta Q_{t}+\delta R_{t}=\left(\pm 2^{31}\right)+(0)= \pm 2^{31}$.

Round 50: $\delta Q_{50}=-2^{31}$.
$-\delta f_{50}=0$.
$-\delta Q_{t-3}=\delta Q_{47}=-2^{31}$.
$-\delta W_{50}=\delta M_{14}=-2^{31}$.

- Thus $\delta T_{50}=\left(-2^{31}\right)+\left(-2^{31}\right)=0$, noting that:
- $\left(-2^{31}\right)$ and $\left(-2^{31}\right)$ have cancelled out.
- Conditions on T_{t} : none
$-\delta R_{50}=0$.
- Thus $\delta Q_{51}=\delta Q_{50}+\delta R_{50}=\left(-2^{31}\right)+(0)=-2^{31}$.

Rounds 51 to 59: $\delta Q_{t}=-2^{31}$.
$-\delta f_{t}=+2^{31}$.
$-\delta Q_{t-3}= \pm 2^{31}$.

- Thus $\delta T_{t}=\left(-2^{31}\right)+\left(\pm 2^{31}\right)=0$, noting that:
- $\left(-2^{31}\right)$ and $\left(\pm 2^{31}\right)$ have cancelled out.
- Conditions on T_{t} : none
$-\delta R_{t}=0$.
- Thus $\delta Q_{t+1}=\delta Q_{t}+\delta R_{t}=\left(-2^{31}\right)+(0)= \pm 2^{31}$.

Round 60: $\delta Q_{60}=+2^{31}$.
$-\delta f_{60}=0$.
$-\delta Q_{t-3}=\delta Q_{57}=-2^{31}$.
$-\delta W_{60}=\delta M_{4}=-2^{31}$.

- Thus $\delta T_{60}=\left(-2^{31}\right)+\left(-2^{31}\right)=0$, noting that:
- $\left(-2^{31}\right)$ and $\left(-2^{31}\right)$ have cancelled out.
- Conditions on T_{t} : none
$-\delta R_{60}=0$.
- Thus $\delta Q_{61}=\delta Q_{60}+\delta R_{60}=\left(+2^{31}\right)+(0)=-2^{31}$.

Round 61: $\delta Q_{61}=-2^{31}$.
$-\delta f_{61}=-2^{31}$.
$-\delta Q_{t-3}=\delta Q_{58}=-2^{31}$.
$-\delta W_{61}=\delta M_{11}=+2^{15}$.

- Thus $\delta T_{61}=\left(-2^{31}\right)+\left(-2^{31}\right)+\left(+2^{15}\right)=+2^{15}$, noting that:
- $\left(-2^{31}\right)$ and $\left(-2^{31}\right)$ have cancelled out.
- Conditions on T_{t} :
- $\delta=\left(+2^{15}\right)$ must not propagate past bit 21 .
- Since $S(61)=10$, this results in $\delta R_{61}=+2^{15+10=25}=+2^{25}$.
- Thus $\delta Q_{62}=\delta Q_{61}+\delta R_{61}=\left(+2^{31}\right)+(0)=+2^{31}+2^{25}$.

Rounds 62 to 63: $\delta Q_{t}= \pm 2^{31}+2^{25}$.
$-\delta f_{t}= \pm 2^{31}$.
$-\delta Q_{t-3}= \pm 2^{31}$.

- Thus $\delta T_{t}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}\right)=0$, noting that: - $\left(-2^{31}\right)$ and $\left(-2^{31}\right)$ have cancelled out.
- Conditions on T_{t} : none
$-\delta R_{t}=0$.
- Thus $\delta Q_{t+1}=\delta Q_{t}+\delta R_{t}=\left(\pm 2^{31}+2^{25}\right)+(0)= \pm 2^{31}+2^{25}$.

The differential in the first block finishes with

$$
\begin{aligned}
\Delta Q_{61} & = \pm 2^{31} \\
\Delta Q_{62} & = \pm 2^{31}+2^{25} \\
\Delta Q_{62} & = \pm 2^{31}+2^{25} \\
\Delta Q_{62} & = \pm 2^{31}+2^{25}
\end{aligned}
$$

and thus:

$$
\begin{aligned}
& \delta I H V^{(1)}[0]=\delta I H V^{(0)}[0]+\delta Q_{61}=(0)+\left(\pm 2^{31}\right)= \pm 2^{31}, \\
& \delta I H V^{(1)}[1]=\delta I H V^{(0)}[1]+\delta Q_{64}=(0)+\left(\pm 2^{31}+2^{25}\right)= \pm 2^{31}+2^{25}, \\
& \delta I H V^{(1)}[2]=\delta I H V^{(0)}[2]+\delta Q_{63}=(0)+\left(\pm 2^{31}+2^{25}\right)= \pm 2^{31}+2^{25}, \\
& \delta I H V^{(1)}[3]=\delta I H V^{(0)}[3]+\delta Q_{62}=\left((0)+\left(\pm 2^{31}+2^{25}\right)= \pm 2^{31}+2^{25} .\right.
\end{aligned}
$$

The differential in the second block begins with

$$
\begin{aligned}
\delta I H V^{(1)}[0] & = \pm 2^{31} \\
\delta I H V^{(1)}[1] & = \pm 2^{31}+2^{25} \\
\delta I H V^{(1)}[2] & = \pm 2^{31}+2^{25} \\
\delta I H V^{(1)}[3] & = \pm 2^{31}+2^{25}
\end{aligned}
$$

Table 16 in Appendix B. 1 shows the sequence of add-differences in the second block. The differential in the second block finishes up with

$$
\begin{aligned}
\delta Q_{61} & = \pm 2^{31} \\
\delta Q_{62} & = \pm 2^{31}-2^{25} \\
\delta Q_{63} & = \pm 2^{31}-2^{25} \\
\delta Q_{64} & = \pm 2^{31}-2^{25} .
\end{aligned}
$$

There is no explanation of the differential through the second block as the explanation is quite similar to that for the first block. Thus:

$$
\begin{aligned}
& \delta I H V^{(2)}[0]=\delta I H V^{(1)}[0]+\delta Q_{61}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}\right)=0, \\
& \delta I H V^{(2)}[1]=\delta I H V^{(1)}[1]+\delta Q_{64}=\left(\pm 2^{31}+2^{25}\right)+\left(\pm 2^{31}-2^{25}\right)=0, \\
& \delta I H V^{(2)}[2]=\delta I H V^{(1)}[2]+\delta Q_{63}=\left(\pm 2^{31}+2^{25}\right)+\left(\pm 2^{31}-2^{25}\right)=0, \\
& \delta I H V^{(2)}[3]=\delta I H V^{(1)}[3]+\delta Q_{62}=\left(\pm 2^{31}+2^{25}\right)+\left(\pm 2^{31}-2^{25}\right)=0 .
\end{aligned}
$$

t	δ	Max	Requirements	Probabilities	
				Small	≈ 1
4	$\left(+2^{31}\right)$	> 31	$T_{4}[31]=1$	2^{-1}	
5	$\left(+2^{19}+2^{11}\right)$	≤ 19	$\begin{gathered} T_{5}[19]=0 \\ 0 \in T_{5}[11-18] \end{gathered}$	2^{-1}	$\left(1-2^{-8}\right)$
6	$\begin{aligned} & \left(-2^{14}\right) \\ & \left(-2^{10}\right) \end{aligned}$	$\begin{aligned} & >14 \\ & \leq 14 \end{aligned}$	$\begin{gathered} T_{6}[14]=0 \\ \left.1 \in T_{6}[13-10]\right] \end{gathered}$	2^{-1}	$\left(1-2^{-5}\right)$
7	$\left(-2^{27}-2^{25}+2^{16}\right)$ $\begin{array}{r} \left(-2^{2}\right) \\ \left(+2^{10}+2^{5}\right) \\ \hline \end{array}$	$\begin{gathered} \leq 31 \\ \\ \leq 9 \\ \Delta T_{7}[10]=0 \end{gathered}$	$\begin{gathered} 1 \in T_{7}[31-27], \\ 1 \in T_{7}[26,25], \\ 0 \in T_{7}[24-16] \\ 1 \in T_{7}[9-2] \\ T_{7}[9-5]=1 \\ \hline \end{gathered}$	$\left(1-2^{-2}\right)$ 2^{-5}	$\begin{aligned} & \left(1-2^{-5}\right) \\ & \left(1-2^{-9}\right) \\ & \left(1-2^{-8}\right) \end{aligned}$
8	$\begin{gathered} +2^{31} \\ \left(-2^{24}+2^{16}+2^{10}+2^{8}\right) \end{gathered}$	$\begin{aligned} & >31 \\ & \leq 24 \end{aligned}$	$\begin{gathered} T_{8}[31]=1 \\ T_{8}[24]=1, \\ 0 \in T_{8}[23-16] \\ 0 \in T_{7}[15-10] \\ 0 \in T_{7}[9,8] \end{gathered}$	2^{-1} 2^{-1} $\left(1-2^{-2}\right)$	$\begin{aligned} & \left(1-2^{-8}\right) \\ & \left(1-2^{-6}\right) \end{aligned}$
9	$\begin{gathered} \left(+2^{26}-2^{20}\right) \\ \left(+2^{0}\right) \end{gathered}$	≤ 31 ≤ 19	$\begin{gathered} 0 \in T_{9}[31-26], \\ 1 \in T_{9}[25-20] \\ 0 \in T_{9}[19-2] \end{gathered}$		$\begin{array}{\|l\|} \hline\left(1-2^{-6}\right) \\ \left(1-2^{-6}\right) \\ \left(1-2^{-18}\right) \\ \hline \end{array}$
10	$\begin{aligned} & \left(-2^{27}\right) \\ & \left(+2^{13}\right) \end{aligned}$	$\begin{aligned} & \leq 31 \\ & \leq 14 \end{aligned}$	$\begin{gathered} 1 \in T_{10}[31-27] \\ 0 \in T_{10}[14,12] \\ \hline \end{gathered}$	$\left(1-2^{-3}\right)$	$\left(1-2^{-5}\right)$
11	$\begin{gathered} \left(-2^{23}-2^{17}\right) \\ \left(-2^{8}\right) \end{gathered}$	≤ 31 ≤ 9	$\begin{gathered} 1 \in T_{11}[31,23], \\ 1 \in T_{11}[22,17] \\ 1 \in T_{11}[9,8] \end{gathered}$	$\left(1-2^{-2}\right)$	$\begin{aligned} & \left(1-2^{-9}\right) \\ & \left(1-2^{-6}\right) \end{aligned}$
12	$\left(-2^{16}+2^{6}+2^{0}\right)$	≤ 24	$\begin{gathered} 1 \in T_{12}[24-16], \\ 0 \in T_{12}[15-6] \\ 0 \in T_{12}[5-2] \end{gathered}$	$\left(1-2^{-4}\right)$	$\begin{gathered} \left(1-2^{-9}\right) \\ \left(1-2^{-10}\right) \end{gathered}$
13	$\left(-2^{12}\right)$	≤ 19	$1 \in T_{13}[19-12]$		$\left(1-2^{-8}\right)$
14	$\left(-2^{30}+2^{18}\right)$	≤ 31	$\begin{aligned} & 1 \in T_{14}[31,30], \\ & 0 \in T_{14}[29-18] \end{aligned}$	$\left(1-2^{-2}\right)$	$\left(1-2^{-12}\right)$
15	$\begin{gathered} \left(+2^{25}-2^{13}\right) \\ \left(-2^{7}\right) \end{gathered}$	≤ 31 ≤ 9	$\begin{gathered} 0 \in T_{15}[31-25] \\ 1 \in T_{15}[24-13] \\ 1 \in T_{15}[9,8,7] \end{gathered}$	$\left(1-2^{-3}\right)$	$\left\lvert\, \begin{aligned} & \left(1-2^{-12}\right) \\ & \left(1-2^{-12}\right) \end{aligned}\right.$
16	$\left(+2^{24}\right)$	≤ 24	$T_{16}[24]=0$	2^{-1}	
18	$\left(+2^{3}\right)$	≤ 17	$0 \in T_{18}[17-3]$		$\left(1-2^{-15}\right)$
19	$\left(-2^{29}\right)$	≤ 31	$1 \in T_{19}[31-29]$	$\left(1-2^{-3}\right)$	
22	$\left(+2^{17}\right)$	≤ 17	$T_{22}[17]=0$	2^{-1}	
34	$\left(+2^{15}\right)$	≤ 15	$T_{23}[15]=0$	2^{-1}	
61	$\left(+2^{15}\right)$	≤ 21	$0 \in T_{15}[21-15]$		$\left(1-2^{-7}\right)$
			Total	2	5.6

Table 2. Conditions on T_{t} for the first block of the differential. Only those rounds with conditions are shown.

4.4 Summary of Conditions on $\boldsymbol{T}_{\boldsymbol{t}}$

In Table 2, the conditions on the carry propagation for δT_{t} have been collected, turned into conditions of the values $T_{t}[j]$ (the values during the first message), and then translated into a probability. The product of these probabilities is $2^{-15.6}$. That is, for a random message, the conditions on T_{t} are satisfied with probability $2^{-15.6}$.

Suppose we define a" T_{t}-good" message M to be a message such that the conditions on T_{t} in the first 16 rounds satisfied. You can see from the table that most of the conditions on T_{t} occur in the first 16 rounds. This is useful, because an attacker has full, independent control over the value of T_{t} for all of these rounds. Hence, the attacker can easily generate T_{t}-good" message M. For each T_{t}-good message, the probability of the conditions being satisfied is the product of the probabilities for rounds 16 to 63 . This probability is $2^{-3.2} \approx 1 / 9$, so the attacker can assume that one in 9 of the T_{t}-good messages will also satisfy the conditions in the remaining rounds.

5 Conditions for Propagation of the Differences Through the f_{t} Functions

Tables $3,6,7$ and 8 provide more details on the propagation of the differences through the f_{t} functions.

- Table 3 corresponds to the rounds 0 to 15 , with function $f_{t}=F$.
- Table 6 corresponds to the rounds 16 to 31 , with function $f_{t}=G$.
- Table 7 corresponds to the rounds 32 to 47 , with function $f_{t}=H$.
- Table 8 corresponds to the rounds 48 to 63 , with function $f_{t}=I$.

We use the following notation:

$$
\nabla X[i]= \begin{cases}0, & \text { if } X^{*}[i]=X[i]=0 ; \\ 1, & \text { if } X^{*}[i]=X[i]=1 ; \\ \varkappa^{\prime \prime}, & \text { if } X^{*}[i]=X[i], \text { but the value is not specified; } \\ + \text { or }+1, & \text { if } X^{*}[i]-X[i]=+1 ; \\ - \text { or }-1, & \text { if } X^{*}[i]-X[i]=-1 ; \\ \pm \text { or } \pm 1, & \text { if } X^{*}[i]-X[i]= \pm 1 \text { : that is } X^{*}[i]=\overline{X[i]} .\end{cases}
$$

- We may write $X[i]=0 / 1$ to to mean that $X[i]=0$ and $X^{*}[i]=1$. This is the same as $\nabla X[i]=+1$.
- We may write $X[i]=1 / 0$ to to mean that $X[i]=1$ and $X^{*}[i]=0$. This is the same as $\nabla X[i]=-1$.

5.1 Rounds 0 to 15 of the First Block

Rounds 0 to 4: The attacker has

$$
-\delta Q_{3}=0
$$

t	δQ_{t}	∇Q_{t}	∇f_{t}	δf_{t}
0-4	-			-
5	6	-++++++++++++++++.	+.......+..........	$\stackrel{+}{19},{ }_{11}^{+}$
6	$\stackrel{ \pm}{31}, \stackrel{+}{23}, \overline{6}$	$\pm+$	-+++++++ ++++	$\overline{14}, \overline{10}$
7	$\overline{27}, \stackrel{+}{23}, \overline{6}, \overline{0}$	土+++++----+++++-+++++-.-.........+..... +- .	$\overline{27},-\overline{25}, \stackrel{+}{16}, \stackrel{+}{10}, \stackrel{+}{5}, \overline{2}$
8	$\overline{23}, \overline{17}, \overline{15}, \stackrel{+}{0}$-. .-+++-+ +		$\stackrel{ \pm}{31,24, ~} \stackrel{+}{16},{ }_{1}^{1}, \stackrel{+}{8}, \stackrel{+}{6}$
9	$\stackrel{ \pm}{31}, \overline{6},{ }_{0}^{+}$	$\pm .-{ }^{-++} . . .{ }^{+-}$		$\stackrel{ \pm}{31}, \stackrel{+}{26}, \stackrel{-}{23}, \stackrel{-}{2} ., \stackrel{+}{6}, \stackrel{+}{0}$
10	$\stackrel{ \pm}{31} \stackrel{+}{12}^{+}$	-..........+...... . + +	$\stackrel{-}{23}, \stackrel{+}{13}, \stackrel{+}{6}, \stackrel{+}{0}$
11	$\stackrel{ \pm}{31,}{ }_{30}$	$\pm+$		$\overline{8}, \overline{0}$
12	$\stackrel{ \pm}{31,13, ~} \overline{7}$	\pm		$\stackrel{ \pm}{31}, \stackrel{+}{17}, \stackrel{+}{7}$
13	$\stackrel{ \pm}{31,24}$			$\stackrel{ \pm}{31}, \overline{13}^{-1}$
14	$\stackrel{ \pm}{31}$			$\stackrel{ \pm}{31} \stackrel{1}{18}^{+}$
15	$\stackrel{ \pm}{31, ~} \overline{15}^{15}, \stackrel{+}{3}$	$\pm-.+$	$\pm+$.	$\stackrel{ \pm}{31,} \stackrel{+}{25}$

Table 3. Propagation of differences through the f_{t} functions in the first 16 rounds of the first block for the example collision given by Wang et al.. Note that $f_{t}=\left(Q_{t} \wedge\right.$ $\left.Q_{t-1}\right) \oplus\left(\overline{Q_{t}} \wedge Q_{t-2}\right)$ for these rounds.
$-\delta Q_{4}=0$, and
$-\delta Q_{5}=0$.
The attacker wants $\delta f_{5}=0$. No conditions required.

Round 5: The attacker has
$-\delta Q_{3}=0$,
$-\delta Q_{4}=0$, and
$-\delta Q_{5}=-2^{6}$.
The attacker wants $\delta f_{5}=+2^{19}+2^{11}$.
Obtaining Correct ΔQ_{t} : The only way to obtain $\delta f_{5}=+2^{19}+2^{11}$ from these differences is if the difference $\left(-2^{6}\right)$ in Q_{5} is propagated into higher order bits via the carries. That is, the attacker needs $Q_{5}[j]=0,6 \leq j \leq 19$. In the collision of Wang et al., the value of Q_{5} has $Q_{5}[21-6]=0$ and $Q_{5}[22]=1$, as shown below. Although we could consider the case with $Q_{5}[19-6]=0$ and $Q_{5}[20]=1$ (which is more probable) we are satisfied with the conditions $Q_{5}[21-6]=0$ and $Q_{5}[22]=1$ (for the moment).

	δ	∇
Q_{3}		
Q_{4}		
Q_{5}	$\overline{6}$ -+++++++++++++++++ .
f_{5}	$\stackrel{+}{9},{ }_{11}^{+}$	+. + .

Conditions to get correct ΔQ_{t} :
$-Q_{5}[21-6]=0$;
$-Q_{5}[22]=1$.
Obtaining Correct δf_{t} : The "best" way to get the difference $\delta f_{5}=+2^{19}+$ $\overline{2^{11}}$ is to use the differences in $Q_{5}[19]$ and $Q_{5}[11]$ to result in a differences $\nabla f_{5}[19,11]=$ " + ". By "best" we: mean that this requires the fewest conditions be applied.
Constant bits of $Q_{5}: \Delta Q_{5}[j]=0$ for $j \in[31-23,5-0]$, where the function either

- selects $f_{5}[j]=Q_{4}[j]$ and $f_{5}^{*}[j]=Q_{4}^{*}[j]\left(\right.$ when $\left.\left.Q_{5}[j]\right]=1\right)$, or
- selects $f_{5}[j]=Q_{3}[j]$ and $f_{5}^{*}[j]=Q_{3}^{*}[j]\left(\right.$ when $\left.Q_{5}[j]=0\right)$.

We deduce that:

- For bits $j \in[31-23,5-0], \Delta Q_{4}[j]=0$ and $\Delta Q_{3}[j]=0$, and thus $f_{t}=0$. No conditions required for these bits.
- Conditions from constant bits of Q_{5} : none.

Non-Constant bits of Q_{5} :

$\nabla Q_{5}[j]=+1, j \in[21-6]: Q_{5}[j]=0 / 1, \Rightarrow f_{5}[j]=Q_{3}[j] / Q_{4}^{*}[j]$.

- For $j \in[21,20,18-12,10-6], f_{5}^{*}[j]=f_{5}[j]$, requires $Q_{4}^{*}[j]=Q_{4}[j]=$ $Q_{3}[j]$.
- For $j \in[19,11], f_{5}^{*}[j]-f_{5}[j]=+1$, requires $Q_{4}^{*}[j]-Q_{3}[j]=Q_{4}[j]-$ $Q_{3}[j]=+1$ which implies that $Q_{4}[j]=1$ and $Q_{3}[j]=0$.
$\nabla Q_{5}[j]=-1, j \in[22]: Q_{5}[j]=1 / 0, \Rightarrow f_{5}[j]=Q_{4}[j] / Q_{3}^{*}[j]$.
$-f_{5}^{*}[22]=f_{5}[22]$, requires $Q_{3}^{*}[22]=Q_{3}[22]=Q_{4}[22]$.
Conditions from non-constant bits of Q_{5} :
$-Q_{4}[19,11]=1$;
$-Q_{3}[19,11]=0$;
- $Q_{3}[21,20,18-12,10-6]=Q_{4}[21,20,18-12,10-6]$. We indicate this equality by placing a " v " in the corresponding bit positions in Q_{3} (like an arrow pointing down to say "The value of this bit must be equal to the value of the bit below") and placing a " n " in Q_{4} (like an arrow pointing up to say "The value of this bit must be equal to the value of the bit above.")

Summary of Requirements resulting from this round:

$-Q_{5}[21-6]=0$;
$-Q_{5}[22]=1$;
$-Q_{4}[19,11]=1$;
$-Q_{3}[19,11]=0$;
$-Q_{3}[21,20,18-12,10-6]=Q_{4}[21,20,18-12,10-6]$.

Round 6: The attacker has
$-\delta Q_{4}=0$,
$-\delta Q_{5}=-2^{6}$, and
$-\delta Q_{6}=-+2^{31}+2^{23}-2^{6}$.
The attacker wants $\delta f_{6}=-2^{14}-2^{10}$.

Obtaining Correct ΔQ_{t} :

- No conditions on bit 31 at this stage.
- Otherwise, it is best if the add-differences do not propagate. Thus, for the difference $\left(+2^{23}\right)$ we want $Q_{6}[23]=1$, and for the difference $\left(-2^{6}\right)$ we want $Q_{6}[6]=1$.

This value of ∇f_{6} provides the correct add-difference $\left(-2^{14}-2^{10}\right)$, since:

$$
\begin{aligned}
\delta f_{6} & =\sum_{j=0}^{31}\left(f_{6}^{*}[j]-f_{6}[j]\right) 2^{j}=-2^{22}+\left(\sum_{j=15}^{21}+2^{j}\right)+\left(\sum_{j=10}^{13}+2^{j}\right) \\
& =\underbrace{\left(-2^{22}+\left(\sum_{j=14}^{21}+2^{j}\right)\right)}_{=-2^{14}}+\underbrace{\left(-2^{14}+\left(\sum_{j=10}^{13}+2^{j}\right)\right)}_{=-2^{10}} \\
& =-2^{14}-2^{10} .
\end{aligned}
$$

Conditions to get correct ΔQ_{t} :
$-Q_{6}[23]=0$;
$-Q_{6}[6]=1$;
Obtaining Correct δf_{t} :
Constant bits of $Q_{6}: \Delta Q_{6}[j]=0, j \in[30-24,22-7,5-0]$; where the function either

- selects $f_{6}[j]=Q_{5}[j]$ and $f_{6}^{*}[j]=Q_{5}^{*}[j]\left(\right.$ when $\left.\left.Q_{6}[j]\right]=1\right)$, or
- selects $f_{6}[j]=Q_{4}[j]$ and $f_{6}^{*}[j]=Q_{4}^{*}[j]\left(\right.$ when $\left.Q_{6}[j]=0\right)$.

We deduce that,

- To obtain $\Delta f_{6}[22-15,13-10]=1$, requires $Q_{6}[22-15,13-10]=1$.
- To obtain $\Delta f_{6}[14,9,8,7]$, requires $Q_{6}[14,9,8,7]=0$.
- For bits $j \in[30-24,5-0], \Delta Q_{5}[j]=0$ and $\Delta Q_{4}[j]=0$, and thus $f_{t}=0$. No conditions required for these bits.
- Conditions from constant bits of Q_{6} :
- $Q_{6}[22-15,13-10]=1$.
- $Q_{6}[14,9,8,7]=0$.

Non-Constant bits of Q_{6} :
$\nabla Q_{6}[j]=+1, j \in[23]: Q_{6}[j]=0 / 1, \Rightarrow f_{6}[j]=Q_{4}[j] / Q_{4}^{*}[j]$.
$-f^{*}[23]=f_{6}[23]$, requires $Q^{*}[23]=Q_{5}[23]=Q[23]$.
$-f_{6}^{*}[23]=f_{6}[23]$, requires $Q_{5}^{*}[23]=Q_{5}[23]=Q_{4}[23]$.
$\nabla Q_{6}[j]=-1, j \in[6]: Q_{6}[j]=1 / 0, \Rightarrow f_{6}[j]=Q_{5}[j] / Q_{4}^{*}[j]$.
$-f_{6}^{*}[6]=f_{6}[6]$, requires $Q_{4}^{*}[6]=Q_{5}[6]=1$, since $Q_{5}[6]=0$ has already been specified $\left(\nabla Q_{5}[6]="+"\right)$.
$\nabla Q_{6}[31]= \pm 1:$
$-f_{6}^{*}[31]=f_{6}[31]$, requires $Q_{5}[31]=Q_{4}[31]$.
Conditions from non-constant bits of Q_{6} :
$-Q_{5}[31,23]=Q_{4}[31,23]$;
$-Q_{4}[6]=0$.

Summary of Requirements resulting from this round:

$-Q_{6}[22-15,13-10,6]=1$;
$-Q_{6}[23,14,9,8,7]=0$;
$-Q_{4}[6]=0$;
$-Q_{5}[31,23]=Q_{4}[31,23]$.
Note that the condition $Q_{4}[6]=0$ combines with the condition $Q_{4}[6]=Q_{3}[6]$ required for f_{5}, and thus $Q_{3}[6]=0$. A by-product of this requirement is that $f_{5}[6]=f_{4}[6]=0$.

Round 7: The attacker has
$-\delta Q_{5}=-2^{6}$,
$-\delta Q_{6}= \pm 2^{31}+2^{23}-2^{6}$, and
$-\delta Q_{7}=-2^{27}+2^{23}-2^{6}-2^{0}$.
The attacker wants $\delta f_{7}=-2^{27}-2^{25}+2^{16}+2^{10}+2^{5}-2^{2}$.
Obtaining Correct ΔQ_{t} :

- Obtaining difference $\left(+2^{25}\right)$ in f_{7} requires the difference $\left(+2^{23}\right)$ in Q_{7} to propagated to at least bit 26 . This requires $Q_{7}[25-23]=1$.
- Obtaining difference $\left(+2^{26}\right)$ in f_{9} requires the difference $\left(+2^{23}\right)$ in Q_{7} to propagated to bit 26 . This requires $Q_{7}[26]=0$.
- Obtaining difference $\left(+2^{10}\right)$ in f_{8} will require the difference $\left(-2^{6}\right)$ in Q_{7} to propagated to bit 11 . This requires $Q_{7}[11]=1, Q_{7}[10-6]=0$.
- Obtaining difference $\left(+2^{5}\right)$ in f_{7} will require the difference $\left(-2^{0}\right)$ in Q_{7} to propagated to bit 5 . This requires $Q_{7}[5]=1, Q_{7}[4-0]=0$.
- The example of Wang et al. has the difference $\left(-2^{27}\right)$ in Q_{7} propagating to bit 31. At first glance, this does not seem to be necessary, as it results in a large additional number of conditions. We consider two cases:
- Case One: where the carry propagates and thus $Q_{7}[30-27]=0$; and
- Case Two: where there is no carry propagation and thus $Q_{7}[27]=1$.

Case One: $Q_{7}[30-27]=0$; carry propagation as in example of Wang et al.

	δ	∇
Q_{5}	6	++
Q_{6}	$\stackrel{ \pm}{31}, \stackrel{+}{23}, \overline{6}$	
Q_{7}	$\stackrel{ \pm}{31},-\overline{27}, 23, \overline{6}, \overline{0}$	$\pm++++++--$. -++++++-+++++
	$\overline{27}, \overline{25}, \stackrel{+}{16}, \stackrel{+}{10}, \stackrel{+}{5}, \overline{2}$-.-. + +- .

Case Two: $Q_{7}[27]=1$; no carry propagation.

	δ	∇
Q_{5}	$\overline{6}$-+++++++++++++++++
Q_{6}	$\stackrel{+}{31}, \stackrel{+}{23}, \overline{6}$	$\pm+$.-
Q_{7}	$\stackrel{ \pm}{31}, \overline{27}, \stackrel{+}{23}, \overline{6}, \overline{0}$. . . -+--- ${ }^{-+++++-+++++~}$
f_{7}	$\stackrel{-}{27,} \stackrel{-}{25}, \stackrel{+}{16}, \stackrel{+}{10}, \stackrel{+}{5}, \stackrel{-}{2}$-.-.+......+.... + . .-

Conditions to get correct ΔQ_{t} :
$-Q_{7}[26,10-6,4-0]=0$;
$-Q_{7}[25-23,11,5]=1$.

- Case One: $Q_{7}[31-27]=0$.
- Case Two: $Q_{7}[27]=1$.

Obtaining Correct δf_{t} :
Constant bits of $Q_{7}: \Delta Q_{7}[j]=0, j \in[22-12]$, where the function either

- selects $f_{7}[j]=Q_{6}[j]$ and $f_{7}^{*}[j]=Q_{6}^{*}[j]\left(\right.$ when $\left.\left.Q_{7}[j]\right]=1\right)$, or
- selects $f_{7}[j]=Q_{5}[j]$ and $f_{7}^{*}[j]=Q_{5}^{*}[j]\left(\right.$ when $\left.Q_{7}[j]=0\right)$.

We deduce that:

- To obtain $\Delta f_{7}[16]=+1$, requires $Q_{7}[16]=0$.
- To obtain $\Delta f_{7}[22-17,15-12]=0$, requires $Q_{7}[22-17,15-12]=1$.

Case Two: add $\Delta Q_{7}[j]=0, j \in[31-28]$.

- To obtain $\Delta f_{7}[31]=0$, requires $Q_{7}[31]=0$.
- No conditions for bits $j \in[30,29,28]$.
- Conditions from constant bits of Q_{7} :
- $Q_{7}[16]=0$;
- $Q_{7}[22-17,15-12]=1$;
- Case Two: $Q_{7}[31]=0$.

Non-Constant bits of Q_{7} :
$\underline{\nabla Q_{7}[j]=+1, j \in[26,10-6,4-0]:} Q_{7}[j]=0 / 1, \Rightarrow f_{7}[j]=Q_{5}[j] / Q_{6}^{*}[j]$.

- For the bits $j \in[26,4,3,1,0]: f_{7}^{*}[j]=f_{7}[j]$ requires $Q_{6}^{*}[j]=Q_{6}[j]=$ $Q_{5}[j]$.
- For $j \in[2], f_{7}^{*}[j]-f_{7}[j]=-1$ requires $Q_{6}^{*}[j]-Q_{5}[j]=-1$, which implies that $Q_{6}[j]=0$ and $Q_{5}[j]=1$.
$-f_{7}^{*}[10]-f_{7}[10]=+1$ requires $Q_{6}^{*}[10]-Q_{5}[10]=+1$, which implies that $Q_{6}[10]=1$, and $Q_{5}[10]=0$.
- For $j \in[9,8], f_{7}^{*}[j]=f_{7}[j]$ requires $Q_{6}^{*}[j]=Q_{5}[j]$, which implies that $Q_{6}[j]=0$, since $Q_{5}[j]=0$ has already been specified $\left(\nabla Q_{5}[j]="+"\right)$.
- Case One: add $\nabla Q_{7}[j]=+1, j \in[31-27]$.
- For the bits $j \in[30,29,28]: f_{7}^{*}[j]=f_{7}[j]$ requires $Q_{6}^{*}[j]=Q_{6}[j]=$ $Q_{5}[j]$.
- $f_{7}^{*}[31]=f_{7}[31]$ requires $Q_{6}^{*}[31]=Q_{5}[31]=1$, since $Q_{6}^{*}[31]=1$ has already been specified $\left(\nabla Q_{6}[31]="+"\right)$.
- For $j \in[27], f_{7}^{*}[j]-f_{7}[j]=-1$ requires $Q_{6}^{*}[j]-Q_{5}[j]=-1$, which implies that $Q_{6}[j]=0$ and $Q_{5}[j]=1$.
$\nabla Q_{7}[j]=-1, j \in[23-25,11,5]: Q_{7}[j]=1 / 0 \Rightarrow f_{7}[j]=Q_{6}[j] / Q_{5}^{*}[j]$.
$-f_{7}^{*}[25]-f_{7}[25]=-1$, requires $Q_{5}^{*}[25]-Q_{6}[25]=Q_{5}[25]-Q_{6}[25]=-1$, since $\Delta Q_{6}[25]=\Delta Q_{5}[25]=0$. Thus $Q_{6}[25]=1$ and $Q_{5}[25]=0$.
$-f_{7}^{*}[24]=f_{7}[24]$, requires $Q_{5}^{*}[24]=Q_{6}[24] \Rightarrow Q_{5}[24]=Q_{6}[24]$.
$-f_{7}^{*}[23]=f_{7}[23]$, requires $Q_{5}^{*}[23]=Q_{6}[23] \Rightarrow Q_{5}[23]=0$, since $Q_{6}[23]=$ 0 , has already been specified.
$-f_{7}^{*}[11]=f_{7}[11]$, requires $Q_{5}^{*}[11]=Q_{6}[11] \Rightarrow Q_{6}[11]=1$, since $Q_{5}[11]=$ 1 , has already been specified.
$-f_{7}^{*}[5]-f_{7}[5]=+1$, requires $Q_{5}^{*}[5]-Q_{6}[5]=Q_{5}[5]-Q_{6}[5]=+1$, since $\Delta Q_{6}[5]=\Delta Q_{5}[5]=0$. Thus $Q_{6}[5]=0$ and $Q_{5}[5]=1$.
- Case Two: add $\nabla Q_{7}[27]=-1$.
- $f_{7}^{*}[27]-f_{7}[27]=-1$ requires $Q_{5}^{*}[27]-Q_{6}[27]=-1$, which implies that $Q_{5}[27]=0$ and $Q_{6}[27]=1$.
$\nabla Q_{7}[31]= \pm 1:$ Case One only. Need $f_{7}^{*}[31]=f_{7}[31]$.
$-\nabla\left(Q_{7}[31], Q_{6}[31]\right)=(+,+): f_{7}^{*}[31]=Q_{6}^{*}[31]=1, \Rightarrow f_{7}[31]=Q_{5}[31]=1$.
$-\nabla\left(Q_{7}[31], Q_{6}[31]\right)=(+,-): f_{7}^{*}[31]=Q_{6}^{*}[31]=0, \Rightarrow f_{7}[31]=Q_{5}[31]=0$.
$-\nabla\left(Q_{7}[31], Q_{6}[31]\right)=(-,+): f_{7}[31]=Q_{6}[31]=0, \Rightarrow f_{7}^{*}[31]=Q_{5}[31]=0$.
$-\nabla\left(Q_{7}[31], Q_{6}[31]\right)=(-,-): f_{7}[31]=Q_{6}[31]=1, \Rightarrow f_{7}^{*}[31]=Q_{5}[31]=1$.
- These conditions are summarized by $Q_{5}[31]=\overline{Q_{6}[31] \oplus Q_{7}[31]}$.

Conditions from non-constant bits of Q_{7} :
$-Q_{5}[5,2]=1$;
$-Q_{5}[25,23,10]=0$;
$-Q_{6}[25,11,10]=1$;

- $Q_{6}[9,8,5,2]=0$;
$-j \in[30-28,26,24,4,3,1,0], Q_{6}[j]=Q_{5}[j]$.
- Case One:
- $Q_{5}[31,27]=1$;
- $Q_{6}[27]=0$;
- $j \in[30,29,28], Q_{6}[j]=Q_{5}[j]$.
- Case Two:
- $Q_{5}[27]=0$;
- $Q_{6}[27]=1$.

Summary of Requirements resulting from this round:

$$
\begin{aligned}
& Q_{5}[25,23]=Q_{6}[9,8,5,2]=Q_{7}[26,16,10-6,4-0]=0 ; \\
&\left.Q_{5} 5,2\right]=Q_{6}[25,11,10]=Q_{7}[25-17,15-11,5]=1 ; \\
& Q_{6}[26,24,4,3,1,0]=Q_{5}[26,24,4,3,1,0] .
\end{aligned}
$$

Case One: Additional Conditions

$$
\begin{aligned}
Q_{7}[31-27] & =0 ; \\
Q_{5}[31] & =Q_{6}[31] \oplus Q_{7}[31] ; \\
Q_{6}[30,29,28] & =Q_{5}[30,29,28] .
\end{aligned}
$$

Note that the condition on $Q_{5}[31]$ combines with the condition $Q_{5}[31]=$ $Q_{4}[31]$ required for f_{6}, to define $Q_{4}[31]$.

	Cumulative Conditions on Q_{t} : Case One
C........0^^^1^^^^^^^1^^^ 0.	
Cvvv1v0v0100000000000000001vv1vv	
B^^^0^1^0111111110111100010^	
	A0000011111111101111100000100000
	$C=\overline{A \oplus B}$

Case Two: Additional Conditions

$$
\begin{aligned}
Q_{6}[27] & =Q_{7}[27]=1 ; \\
Q_{5}[27] & =Q_{7}[31]=0 .
\end{aligned}
$$

Note that the condition $Q_{5}[31]=0$ combines with the condition $Q_{5}[31]=$ $Q_{4}[31]$ required for f_{6}, to define $Q_{4}[31]=0$.

$\frac{t \text { Cumulative Conditions on } Q_{t}: \text { Case Two }}{4} 40 . \ldots \ldots \ldots 0^{\wedge \wedge}$	
5	
	1^1^0111111110111100
	1...1011111111101111100000100000

Round 8: The attacker has
$-\delta Q_{6}= \pm 2^{31}+2^{23}-2^{6}$,
$-\delta Q_{7}=-2^{27}+2^{23}-2^{6}-2^{0}$, and
$-\delta Q_{8}=-2^{23}-2^{17}-2^{15}+2^{0}$.
The attacker wants $\delta f_{7}=+2^{31}-2^{24}+2^{16}+2^{10}+2^{8}+2^{6}$.

Obtaining Correct ΔQ_{t} :

- Obtaining difference $\left(-2^{20}\right)$ in f_{9} requires the difference $\left(-2^{17}\right)$ in Q_{8} to propagate to bit 20 . This requires $Q_{8}[20]=1$ and $Q_{8}[19,18,17]=0$.
- Obtaining difference $\left(+2^{16}\right)$ in f_{8} requires the difference $\left(-2^{15}\right)$ in Q_{8} to propagate to bit 16 . This requires $Q_{8}[16]=1$ and $Q_{8}[15]=0$.
- Otherwise, it is best if the add-differences do not propagate. Thus, for the difference $\left(-2^{23}\right)$ we want $Q_{8}[23]=1$, and for the difference $\left(+2^{0}\right)$ we want $Q_{8}[0]=0$.
- It is now possible to obtain $\nabla f_{8}[31,16,10,8,6]="+"$ and $\nabla f_{8}[24]="-"$. Case One: (See explanation of Round 7).

	δ	∇
Q_{6}	$\stackrel{ \pm}{31}, \stackrel{+}{23}, \overline{6}$	\pm
Q_{7}	$\overline{27}, \stackrel{+}{23}, \overline{6}, \overline{0}$	土+++++--- -++++++-+++++
Q_{8}	$\overline{23}, \overline{17}, \overline{15}, \stackrel{+}{0}$ - . .-+++-+ +
	, $-\stackrel{+}{4}, \stackrel{+}{16}, \stackrel{+}{10}, \stackrel{+}{8}$	$\pm-\ldots+.+.+.+$.

Case Two: (See explanation of Round 7).

	δ	∇
Q_{6}	$\stackrel{ \pm}{31}, \stackrel{+}{23}, \overline{6}$	$\pm+$.
Q_{7}	$27,23,6,0$	-+++++-+++++
Q_{8}	$\overline{23}, \overline{17}, \overline{15},{ }_{0}^{+}$-. .-+++-+ +
	$\stackrel{-}{24}, \stackrel{+}{16}, \stackrel{+}{10}, \stackrel{+}{8}$. .+.+

Conditions to get correct ΔQ_{t} :
$-Q_{8}[19,18,17,15,0]=0$;
$-Q_{8}[23,20,16]=1$.
Obtaining Correct δf_{t} :
Constant bits of $Q_{8}: \Delta Q_{8}[j]=0$, for $j \in[27-24,22,21,14-1]$, where the function either

- selects $f_{8}[j]=Q_{7}[j]$ and $f_{8}^{*}[j]=Q_{7}^{*}[j]$ (when $\left.Q_{8}[j]\right]=1$), or
- selects $f_{8}[j]=Q_{6}[j]$ and $f_{8}^{*}[j]=Q_{6}^{*}[j]\left(\right.$ when $\left.Q_{8}[j]=0\right)$.

We deduce that:

- For $j \in[27,26,25,11,9,7,5-1], \Delta f_{8}[j]=0$, requires $Q_{8}[j]=0$.
- For $j \in[10,8,6], \nabla f_{8}[j]=+1$, requires $Q_{8}[j]=1$.
$-\nabla f_{8}[24]=-1$, requires $Q_{8}[24]=1$.
- No conditions are required for bits $j \in[22,21,14,13,12]$.
- Case One:
- The attacker obtains $\nabla f_{8}[31]= \pm 1$, irrespective of the value of $Q_{8}[31]$, so this results in no conditions.
- For $j \in[30,29,28], \Delta f_{8}[j]=0$, requires $Q_{8}[j]=0$.
- Case Two:
- $\nabla f_{8}[31]= \pm 1$, requires $Q_{8}[j]=0$.
- No conditions are required for bits $j \in[30,29,28]$.
- Conditions from constant bits of Q_{8} :
- $Q_{8}[27,26,25,11,9,7,5-1]=0$;
- $Q_{8}[24,10,8,6]=1$.
- Case One: $Q_{8}[30,29,28]=0$.
- Case Two: $Q_{8}[31]=0$.

Non-Constant bits of Q_{8} :
$\nabla Q_{8}[j]=+1, j \in[19,18,17,15,0]: Q_{8}[j]=0 / 1, \Rightarrow f_{8}[j]=Q_{6}[j] / Q_{6}^{*}[j]$.

- For the bits $j \in[19,18,17,15], f_{8}^{*}[j]=f_{8}[j]$, requires $Q_{7}^{*}[j]=Q_{7}[j]=$ $Q_{6}[j]$.
$-f_{8}^{*}[0]=f_{8}[0]$, requires $Q_{6}[0]=Q_{7}^{*}[0]=1$, since $Q_{7}^{*}[0]=1$, is already specified $\left(\Delta Q_{7}[0]=+1\right)$.
$\nabla Q_{8}[j]=-1, j \in[23,20,16]: Q_{8}[j]=1 / 0, \Rightarrow f_{8}[j]=Q_{7}[j] / Q_{6}^{*}[j]$.
- The values $Q_{6}^{*}[23]=1$ and $Q_{7}[23]=1$ are already specified, resulting in $f_{8}^{*}[23]=f_{8}[23]=1$.
$-f_{8}^{*}[20]=f_{8}[20]$, requires $Q_{6}^{*}[20]=Q_{6}[20]=Q_{7}[20]$.
$-f_{8}^{*}[16]-f_{8}[16]=+1$, requires $Q_{6}^{*}[16]-Q_{7}[16]=+1$, and thus $Q_{6}^{*}[16]=$ $Q_{6}[16]=1$ and $Q_{7}[16]=Q_{7}^{*}[16]=0$.
Conditions from non-constant bits of Q_{8} :
$-Q_{6}[16,0]=1$;
$-Q_{7}[16]=0 ;$
$-j \in[20-17,15], Q_{7}[j]=Q_{6}[j]$.

Summary of Requirements resulting from this round:

$$
\begin{array}{rlrl}
Q_{7}[16] & =Q_{8}[27,26,25,19,18,17,15,11,9,7,5-0] & =0 \\
Q_{6}[16,0]=Q_{7}[0]=Q_{8}[24,23,20,16,10,8,6] & =1 \\
Q_{6}[20-17,15]=Q_{7}[20-17,15]
\end{array}
$$

Note that the condition $Q_{6}[0]=1$ combines with the condition $Q_{5}[0]=Q_{6}[0]$ required for f_{7}, and thus we obtain $Q_{5}[0]=1$. Interestingly, the conditions:

$$
\begin{gathered}
Q_{6}[20-17,15]=Q_{7}[20-17,15] \\
Q_{7}[16]=0 ; \quad Q_{6}[16]=1
\end{gathered}
$$

were already satisfied as a consequence of previous independent requirements for f_{6} and f_{7}. Alternatively, one could say that the other requirements stipulated the values of $\Delta f_{8}[20-15]$.
Case One: Additional Conditions: $Q_{8}[30,29,28]=0$.

t	Cumulative Conditions on Q_{t} : Case One
5	Cvvv1v0v010000000000000001vv1v1
6	$\mathrm{~B}^{\wedge} \sim 0^{\wedge} 1^{\wedge} 0111111110111100010^{\wedge \sim} 0^{\wedge} 1$
7	A0000011111111101111100000100000
8	$.00000011 \ldots 100010 \ldots 010101000000$
	$C=\overline{A \oplus B}$

Case Two: Additional Condition: $Q_{8}[31]=0$.

t	Cumulative Conditions on Q_{t} : Case Two
5	$0 \ldots .0 \mathrm{v} 0 \mathrm{v} 010000000000000001 \mathrm{vv1v} 1$
6	$\ldots .1^{\wedge} 1^{\wedge} 0111111110111100010^{\wedge \sim} 0^{\wedge 1}$
7	$1 \ldots 1011111111101111100000100000$
8	$0 \ldots 00011 \ldots 100010 \ldots 010101000000$

Round 9：The attacker has
$-\delta Q_{7}=-2^{27}+2^{23}-2^{6}-2^{0}$,
$-\delta Q_{8}=-2^{23}-2^{17}-2^{15}+2^{0}$ ，and
$-\delta Q_{9}=-2^{31}-2^{6}+2^{0}$ ．
The attacker wants $\delta f_{9}= \pm 2^{31}+2^{26}-2^{23}-2^{20}+2^{6}+2^{0}$ ．

Obtaining Correct ΔQ_{t} ：

－Obtaining difference $\left(-2^{8}\right)$ in f_{11} requires the difference $\left(-2^{6}\right)$ in Q_{9} to propagate to bit 8 exactly．This requires $Q_{9}[8]=1$ and $Q_{9}[7,6]=0$ ．
－Obtaining difference $\left(-2^{0}\right)$ in f_{11} requires the difference $\left(2^{0}\right)$ in Q_{9} to have $\nabla Q_{9}[0]=$＂－＂．This requires the addition to propagate to at least bit 1．It is best if the add－difference does not propagate further．Thus， we add conditions $Q_{9}[1]=0$ and $Q_{9}[0]=1$ ．
－No conditions for bit 31 ？
－It is now possible to obtain the add－difference by using $\nabla f_{9}[31]= \pm$ ， $\nabla f_{9}[26,6,0]="+"$ and $\nabla f_{9}[23,20]="-"$ ．
Case One：（See explanation of Round 7）．

	δ	∇
Q_{7}	$\overline{27}, \stackrel{+}{23}, \overline{6}, \overline{0}$	土＋＋＋＋＋－－－．．．．．．．．．－＋＋＋＋＋＋－＋＋＋
Q_{8}	$\overline{23}, \overline{17}, \overline{15}, \stackrel{+}{0}$	＋
Q_{9}	$\stackrel{ \pm}{31}, \overline{6}, \stackrel{+}{0}$	士．．．．．．．．．．．．．．．．．．．－＋＋．．．．＋－
f_{9}	1，$\stackrel{+}{26}, \stackrel{-}{23}, \stackrel{-}{20}, \stackrel{+}{6}$ ，	$\pm \ldots . .+$ ．．－．．－．．．．．．．．．．．+ ．．．．+

Case Two：（See explanation of Round 7）．

	δ	∇
Q_{7}	$\overline{27}, \stackrel{+}{23}, \overline{6}, \overline{0}$	＋＋＋＋＋－
Q_{8}	$\overline{23}, \overline{17}, \overline{15}, \stackrel{+}{0}$	．．．．．．．－．．－＋＋＋－＋．．．．．．．．．．．．．+
Q_{9}	$\stackrel{ \pm}{31}, \overline{6},{ }_{0}^{+}$	士．．．．．．．．．．．．．．．．．．．．．．．．．－＋＋．．．．+ －
f_{9}	$\frac{+}{1}, \stackrel{+}{26}, \overline{23},-\overline{20}, \stackrel{+}{6},$	$\pm+$ ．－．．－．．．．．．．．．．．+ ．．．．．+

Conditions to get correct ΔQ_{t} ：
$-Q_{9}[7,6,1]=0$ ；
$-Q_{9}[8,0]=1$ ．
Obtaining Correct δf_{t} ：
Constant bits of $Q_{9}: \Delta Q_{9}[j]=0$ ，for $j \in[30-9,5-2]$ ，where the function either

- selects $f_{9}[j]=Q_{8}[j]$ and $f_{9}^{*}[j]=Q_{8}^{*}[j]\left(\right.$ when $\left.\left.Q_{9}[j]\right]=1\right)$ ，or
- selects $f_{9}[j]=Q_{7}[j]$ and $f_{9}^{*}[j]=Q_{7}^{*}[j]\left(\right.$ when $\left.Q_{9}[j]=0\right)$ ．

We deduce that：
－The attacker obtains $\nabla f_{9}[23]=-1$ ，irrespective of the value of $Q_{9}[23]$ ， so this results in no conditions．
－For $j \in[27,25,24,11,10,9,5-2], \Delta f_{9}[j]=0$ ，requires $Q_{9}[j]=1$ to select from Q_{8} rather than Q_{7} ．

- For $j \in[19-15], \Delta f_{9}[j]=0$, requires $Q_{9}[j]=0$ to select from Q_{7} rather than Q_{8}.
$-\nabla f_{9}[26]=+1$, requires $Q_{9}[26]=0$.
$-\nabla f_{9}[20]=+1$, requires $Q_{9}[20]=1$.
- No conditions are required for bits $j \in[22,21,14-12]$.
- Case One:
- For $j \in[30,29,28], \Delta f_{9}[j]=0$, requires $Q_{9}[j]=1$ to select from Q_{8} rather than Q_{7}.
- Case Two:
- No conditions are required for bits $j \in[30,29,28]$.
- Conditions from constant bits of Q_{9} :
- $Q_{9}[26,19-15]=0$;
- $Q_{9}[27,25,24,20,11,10,9,5-2]=1$.
- Case One: $Q_{9}[30,29,28]=1$.

Non-Constant bits of Q_{9} :

$\nabla Q_{9}[j]=+1, j \in[7,6,1]: Q_{9}[j]=0 / 1, \Rightarrow f_{9}[j]=Q_{7}[j] / Q_{8}^{*}[j]$.

- For the bits $j \in[7,1], f_{9}^{*}[j]=f_{9}[j]$, requires $Q_{8}^{*}[j]=Q_{7}[j]=0$, since $Q_{7}[j]=0$, is already specified $\left(\Delta Q_{7}[j]=+1\right)$. Thus, $Q_{8}[j]=0, j \in[7,1]$.
$-f_{9}^{*}[6]-f_{9}[6]=+1$, requires $Q_{8}^{*}[6]-Q_{7}[6]=+1$, and hence $Q_{8}^{*}[6]=1$, since $Q_{7}^{*}[6]=0$, is already specified $\left(\Delta Q_{7}[6]=+1\right)$.
$\underline{\nabla Q_{9}[j]=-1, j \in[8,0]:} Q_{9}[j]=1 / 0, \Rightarrow f_{9}[j]=Q_{8}[j] / Q_{7}^{*}[j]$.
$-f_{9}^{*}[8]=f_{9}[8]$, requires $Q_{7}^{*}[8]=Q_{8}[8]=1$, since $Q_{7}^{*}[8]=1$, is already specified $\left(\Delta Q_{7}[8]=+1\right)$.
- The values $\Delta Q_{9}[0]=-1, Q_{8}[0]=Q_{7}[0]=+1$, are already specified, resulting in $\Delta f_{9}^{*}[0]=+1$.
$\underline{\nabla Q_{9}[31]= \pm 1: ~ N e e d ~} \nabla f_{9}[31]= \pm 1$.
- Case One.
- $\nabla\left(Q_{9}[31], Q_{7}[31]\right)=(+,+): f_{9}[31]=Q_{7}[31]=0, \Rightarrow Q_{8}[31]=1$.
- $\nabla\left(Q_{9}[31], Q_{7}[31]\right)=(+,-): f_{9}[31]=Q_{7}[31]=1, \Rightarrow Q_{8}[31]=0$.
- $\nabla\left(Q_{9}[31], Q_{7}[31]\right)=(-,+): f_{9}^{*}[31]=Q_{7}^{*}[31]=1, \Rightarrow Q_{8}[31]=0$.
- $\nabla\left(Q_{9}[31], Q_{7}[31]\right)=(-,-): f_{9}^{*}[31]=Q_{7}^{*}[31]=0, \Rightarrow Q_{8}[31]=1$.
- These conditions are summarized by $Q_{8}[31]=\overline{Q_{7}[31] \oplus Q_{8}[31]}$.
- Case Two: $\nabla Q_{7}[31]=1, \nabla Q_{8}[31]=0$, and $\nabla Q_{7}[31]= \pm 1$, implies $\nabla f_{9}= \pm 1$. No additional conditions.

Summary of Requirements resulting from this round:

$$
\begin{array}{ll}
Q_{8}[7,1]=Q_{9}[26,19-15] & =0 \\
Q_{8}[8,6]=Q_{9}[27,25,24,20,11-8,5-2,0] & =1
\end{array}
$$

Interestingly, the conditions:

$$
Q_{8}[7,1]=0 ; \quad Q_{8}[8,6]=1 ;
$$

were already satisfied as a consequence of previous independent requirements for f_{8}. Alternatively, one could say that the other requirements stipulated the values of $f_{9}[8,7,6,1]$. Case One: Additional Conditions:

$$
\begin{aligned}
Q_{9}[30,29,28] & =1 ; \\
Q_{8}[31] & =\overline{Q_{7}[31] \oplus Q_{8}[31]}
\end{aligned}
$$

t	Cumulative Conditions on $Q_{t}:$ Case One
6	$B^{\wedge \sim \sim} 0^{\wedge} 1^{\wedge} 0111111110111100010^{\wedge} 0^{\wedge} 1$
7	A0000011111111101111100000100000
8	D00000011..100010 ...010101000000
9	E1111011...100000....1100111101
	$E=\overline{A \oplus D}$

Case Two: Additional Conditions: none.

t	Cumulative Conditions on $Q_{t}:$ Case Two
6	$\ldots .1^{\wedge} 1^{\wedge} 0111111110111100010^{\wedge} 0^{\wedge} 1$
7	$1 \ldots 101111111101111100000100000$
8	$0 \ldots 00011 \ldots 100010 \ldots 010101000000$
9	$\ldots .1011 \ldots 100000 \ldots . .1100111101$

Round 10: The attacker has
$-\delta Q_{8}=-2^{23}-2^{17}-2^{15}+2^{0}$,
$-\delta Q_{9}= \pm 2^{31}-2^{6}+2^{0}$, and
$-\delta Q_{10}= \pm 2^{31}+2^{12}$.
The attacker wants $\delta f_{10}=-2^{23}+2^{13}+2^{6}+2^{0}$.
Obtaining Correct ΔQ_{t} :

- Obtaining difference $\left(+2^{13}\right)$ in f_{10} requires the difference $\left(+2^{12}\right)$ in Q_{10} to propagate to bit 13 exactly. This requires $Q_{10}[13]=0, Q_{10}[12]=1$.
- It is now possible to obtain $\nabla f_{10}[13,6,0]="+"$ and $\nabla f_{10}[23]="-"$.

	δ	∇
Q_{8}	$\overline{23}, \overline{17}, \overline{15},{ }_{0}^{+}$	
Q_{9}	${ }_{31}{ }^{\text {b }}$, ${ }_{6}{ }_{0}^{+}$	
Q_{10}	$\stackrel{+}{31}{ }_{12}$	\pm.
f_{10}	$\stackrel{-}{23,13}, \stackrel{+}{6}, \stackrel{+}{0}$+......+.

Conditions to get correct ΔQ_{t} :
$-Q_{10}[13]=0$;
$-Q_{10}[12]=1$.

Obtaining Correct δf_{t} :

Constant bits of $Q_{10}: \Delta Q_{10}[j]=0$, for $j \in[30-14,11-0]$, where the function either

- selects $f_{10}[j]=Q_{9}[j]$ and $f_{10}^{*}[j]=Q_{9}^{*}[j]\left(\right.$ when $\left.\left.Q_{10}[j]\right]=1\right)$, or
- selects $f_{10}[j]=Q_{8}[j]$ and $f_{10}^{*}[j]=Q_{8}^{*}[j]\left(\right.$ when $\left.Q_{10}[j]=0\right)$.

We deduce that:

- For $j \in[20-15], \Delta f_{10}[j]=0$, requires $Q_{10}[j]=1$.
- For $j \in[8,7,1], \Delta f_{10}[j]=0$, requires $Q_{10}[j]=0$.
$-\Delta f_{10}[23]=-1$, requires $Q_{10}[23]=0$.
$-\Delta f_{10}[6]=+1$, requires $Q_{10}[6]=1$.
$-\Delta f_{10}[0]=+1$, requires $Q_{10}[0]=0$.
- No conditions are required for bits $j \in[30-24,14,11-9,5-2]$.
- Conditions from constant bits of Q_{10} :
- $Q_{10}[23,8,7,1,0]=0$;
- $Q_{10}[20-15,6]=1$.

Non-Constant bits of Q_{10} :
$\nabla Q_{10}[j]=+1, j \in[13]: Q_{10}[j]=0 / 1, \Rightarrow f_{10}[j]=Q_{8}[j] / Q_{8}^{*}[j]$.
$-f_{10}^{*}[13]-f_{10}[13]=+1$, requires $Q_{9}^{*}[13]-Q_{8}[13]=+1$, which implies that $Q_{9}^{*}[13]=Q_{9}[13]=1$ and $Q_{8}^{*}[13]=Q_{8}[13]=0$.
$\nabla Q_{10}[j]=-1, j \in[12]: Q_{10}[j]=1 / 0, \Rightarrow f_{10}[j]=Q_{9}[j] / Q_{8}^{*}[j]$.
$-f_{10}^{*}[12]=f_{10}[12]$, requires $Q_{8}^{*}[12]=Q_{8}[12]=Q_{9}[12]$.
$\nabla Q_{10}[31]= \pm 1:$
$-\nabla\left(Q_{10}[31], Q_{9}[31]\right)=(+,+): f_{10}^{*}[31]=Q_{9}^{*}[31]=1, \Rightarrow Q_{8}[31]=1$.

- Case Two is impossible in this case since $Q_{8}[31]=0$ already specified.
$-\nabla\left(Q_{10}[31], Q_{9}[31]\right)=(+,-): f_{10}^{*}[31]=Q_{9}^{*}[31]=0, \Rightarrow Q_{8}[31]=0$.
$-\nabla\left(Q_{10}[31], Q_{9}[31]\right)=(-,+): f_{10}[31]=Q_{9}[31]=0, \Rightarrow Q_{8}[31]=0$.
$-\nabla\left(Q_{10}[31], Q_{9}[31]\right)=(-,-): f_{10}[31]=Q_{9}[31]=1, \Rightarrow Q_{8}[31]=1$.
- Case Two is impossible in this case since $Q_{8}[31]=0$ already specified.
- These conditions are summarized by:
- Case One: $Q_{10}[31]=\overline{Q_{8}[31]} \oplus Q_{9}[31]$.
- Case Two: $Q_{10}[31]=\overline{Q_{9}[31]}$.

Summary of Requirements resulting from this round:

$$
\begin{aligned}
Q_{8}[13]= & Q_{10}[23,13,8,7,1,0]=0 \\
Q_{9}[13]= & Q_{10}[20-15,12,6]=1 \\
& Q_{8}[12]=Q_{9}[12]
\end{aligned}
$$

Case One: Additional Conditions:

$$
Q_{10}[31]=\overline{Q_{8}[31] \oplus Q_{9}[31]}=Q_{7}[31] .
$$

t	Cumulative Conditions on $Q_{t}:$ Case One
7	A0000011111111101111100000100000
8	D00000011..100010.0v010101000000
9	E1111011...100000.1~. 1100111101
10	A........111111101...001....00
	$E=\overline{A \oplus D}$

Case Two: Additional Conditions: $Q_{10}[31]=\overline{Q_{9}[31]}$.

t	Cumulative Conditions on $Q_{t}:$ Case Two
7	$1 \ldots 1011111111101111100000100000$
8	$0 \ldots 00011 \ldots 100010.0 \mathrm{v} 010101000000$
9	$\mathrm{~F} \ldots 1011 \ldots 100000.1^{\wedge} \ldots 1100111101$
10	$\mathrm{G} \ldots \ldots .0 \ldots 111111101 \ldots 001 \ldots 00$
	$G=\bar{F}$

Round 11: The attacker has
$-\delta Q_{9}= \pm 2^{31}-2^{6}+2^{0}$,
$-\delta Q_{10}= \pm 2^{31}+2^{12}$, and
$-\delta Q_{11}= \pm 2^{31}+2^{30}$.
The attacker wants $\delta f_{11}=-2^{8}-2^{0}$.

Obtaining Correct ΔQ_{t} :

- It is already possible to obtain $\nabla f_{11}[8,0]=$ " - ".
- The difference $\delta Q_{11}= \pm 2^{31}+2^{30}$ could be

$$
\begin{aligned}
& \nabla Q_{11}=.-\ldots, \text { with } \Delta Q_{11}[31]=0 \text { or } \\
& \nabla Q_{11}= \pm+\ldots, \text { with } \Delta Q_{11}[31]=1 .
\end{aligned}
$$

In the first case, $Q_{11}[31]$ will select either:

- $f_{11}[31]=Q_{9}[31] / Q_{9}[31]$, and $\nabla f_{11}[31]=\nabla Q_{9}[31]= \pm$; or
- $f_{11}[31]=Q_{10}[31] / Q_{10}[31]$, and $\nabla f_{11}[31]=\nabla f_{10}[31]= \pm$.

Since we need $\Delta f_{11}[31]=0$, this eliminates the first case. Therefore, the attacker needs $\nabla Q_{11}= \pm+\ldots$ That is, the attacker needs $Q_{11}[30]=0$.

	δ	∇
Q_{9}	$\stackrel{ \pm}{31}, \overline{6},{ }_{0}^{+}$	
Q9	$\begin{gathered} 31,6,0 \\ \pm \end{gathered}$	
Q_{10}	31, 12	$\pm+-$.
Q_{11}	$\stackrel{+}{+}{ }^{+}$	$\pm+$
f_{11}	$\overline{8}, \overline{0}$	-.......-

Conditions to get correct ΔQ_{t} :
$-Q_{11}[30]=0$.
Obtaining Correct δf_{t} :
Constant bits of $Q_{11}: \Delta Q_{11}[j]=0$, for $j \in[29-0]$, where the function either

- selects $f_{11}[j]=Q_{10}[j]$ and $f_{11}^{*}[j]=Q_{10}^{*}[j]\left(\right.$ when $\left.\left.Q_{11}[j]\right]=1\right)$, or
- selects $f_{11}[j]=Q_{9}[j]$ and $f_{11}^{*}[j]=Q_{9}^{*}[j]\left(\right.$ when $\left.Q_{11}[j]=0\right)$.

We deduce that:

- For $j \in[13,12], \Delta f_{11}[j]=0$, requires $Q_{11}[j]=0$.
- For $j \in[7,6,1], \Delta f_{11}[j]=0$, requires $Q_{11}[j]=1$.
- For $j \in[8,0], \nabla f_{11}[j]=+1$, requires $Q_{11}[j]=0$.
- No conditions are required for bits $j \in[29-14,11-9,5-2]$.
- Conditions from constant bits of Q_{11} :
- $Q_{11}[13,12,8,0]=0$;
- $Q_{11}[7,6,1]=1$.

Non-Constant bits of Q_{11} :
$\nabla Q_{11}[j]=+1, j \in[30]: Q_{11}[j]=0 / 1, \Rightarrow f_{11}[j]=Q_{9}[j] / Q_{9}^{*}[j]$.
$-f_{11}^{*}[30]=f_{11}[30]$, requires $Q_{9}^{*}[30]=Q_{9}[30]=Q_{10}[30]$.
$\nabla Q_{11}[31]= \pm 1$: Note $\nabla Q_{10}[31]= \pm 1, \nabla Q_{10}[31]= \pm 1$. Attacker wants $f_{11}^{*}[31]=f_{11}[31]$
$-\nabla Q_{11}[31]="+": Q_{11}[j]=0 / 1, \Rightarrow f_{11}[j]=Q_{9}[j] / Q_{10}^{*}[j]$. Thus, $f_{11}^{*}[31]=$ $f_{11}[31]$ requires $Q_{10}^{*}[31]=Q_{9}[31]$. We require $Q_{10}[31]=\overline{Q_{9}[31]}$.
$-\nabla Q_{11}[31]="-": Q_{11}[j]=1 / 0 \Rightarrow f_{11}[j]=Q_{10}[j] / Q_{9}^{*}[j]$. Thus, $f_{11}^{*}[31]=$ $f_{11}[31]$ requires $Q_{9}^{*}[31]=Q_{10}[31]$. Similarly, we require $Q_{10}[31]=\overline{Q_{9}[31]}$.

- In either case, the requirement is $Q_{10}[31]=\overline{Q_{9}[31]}$.

Conditions from non-constant bits of Q_{11} :
$-Q_{9}[30]=Q_{10}[30] ;$
$-Q_{10}[31]=Q_{9}[31]$.

Summary of Requirements resulting from this round:

$$
\begin{aligned}
Q_{11}[13,12,8,0] & =0 ; \\
Q_{11}[7,6,1] & =1 ; \\
Q_{9}^{*}[30] & =Q_{10}[30] . \\
Q_{10}[31] & =\overline{Q_{9}[31] .} .
\end{aligned}
$$

Note that the condition $Q_{9}^{*}[30]=Q_{10}[30]$ combines with the condition $Q_{9}^{*}[30]=1$ required for f_{9}, and thus we obtain $Q_{10}[30]=1$.
Case One: The condition $Q_{10}[31]=\overline{Q_{9}[31]}$ combines with the condition: $Q_{8}[31]=\overline{Q_{9}[31]} \oplus Q_{10}[31]$ required for Case One in f_{10}, and we thus obtain $Q_{8}[31]=0$.

t	Cumulative Conditions on Q_{t} : Case One
8	000000011..100010.0v010101000000
9	E1111011...100000.1^.. 1100111101
10	A1. $0 . .111111101 . .001$. . . . 00
11	.0....vv. 00. . . 011. . . . 10
	$E=\bar{A}$

Case Two: The condition $Q_{10}[31]=\overline{Q_{9}[31]}$ is already satisfied.

t	Cumulative Conditions on $Q_{t}:$ Case Two
8	$0 \ldots .00011 \ldots 100010.0 \mathrm{v} 010101000000$
9	$\mathrm{~F} \ldots 1011 \ldots 100000.1^{\wedge} \ldots 1100111101$
10	$\mathrm{G} 1 \ldots \ldots 0 \ldots 11111101 \ldots 001 \ldots .00$
11	$.0 \ldots \ldots \ldots \ldots \ldots .00 \ldots 011 \ldots .10$
	$G=\bar{F}$

Interestingly, the conditions on the MSB are identical for Q_{8}, Q_{9} and Q_{10} for both Case One and Case Two.

Round 12: The attacker has
$-\delta Q_{10}= \pm 2^{31}+2^{12}$,
$-\delta Q_{11}= \pm 2^{31}+2^{30}$, and
$-\delta Q_{12}= \pm 2^{31}-2^{13}-2^{7}$.
The attacker wants $\delta f_{12}= \pm 2^{31}+2^{17}+2^{7}$.
Obtaining Correct ΔQ_{t} :

- Obtaining difference $\left(+2^{18}\right)$ in f_{14} requires the difference $\left(-2^{13}\right)$ in Q_{12} to propagate to bit 19 exactly. It is best if the add-difference does not propagate further. Thus, we add conditions $Q_{12}[19]=1$ and $Q_{12}[18-$ $13]=0$.
- Since $Q_{11}[7]=1$ and $Q_{11}[7]=0$ are already specified, the only way to get $\nabla f_{12}[7]="+"$ is to have $\nabla Q_{12}[7]="+"$. This means that the difference $\left(-2^{7}\right)$ must propagate to at least bit 8 . It is best if the add-difference does not propagate further. Thus, we add conditions $Q_{12}[8]=1$ and $Q_{12}[7]=0$.
- Note that $Q_{10}[19,18,17]=1$, is already specified. It is impossible to get $\nabla f_{12}[j]=$ " + " for the bit positions 17 and 18 since $f_{12}[j]=Q_{10}[j]=1$ is selected for both bit positions. The only way to get the difference $\left(+2^{17}\right)$ is to have
- $\nabla f_{12}[17]=$ "-" by specifying $Q_{11}[17]=0$;
- $\nabla f_{12}[18]=$ "-" by specifying $Q_{11}[18]=0$; and
- $\nabla f_{12}[19]="+$ " by specifying $Q_{11}[19]=0$.

Conditions to get correct ΔQ_{t} :
$-Q_{12}[18-13,7]=0$;
$-Q_{12}[19,8]=1$;
$-Q_{11}[19,18,17]=0$.

Obtaining Correct δf_{t} :

Constant bits of $Q_{12}: \Delta Q_{12}[j]=0$, for $j \in[30-20,12-9,6-0]$:
$-Q_{12}[j]=1$, selects $f_{12}[j]=Q_{11}[j]$ and $f_{12}^{*}[j]=Q_{11}^{*}[j]$, or
$-Q_{12}[j]=0$, selects $f_{12}[j]=Q_{10}[j]$ and $f_{12}^{*}[j]=Q_{10}^{*}[j]$.
We deduce that:
$-\Delta f_{12}[30]=0$, requires $Q_{12}[30]=0$.
$-\Delta f_{12}[12]=0$, requires $Q_{12}[12]=1$.

- No conditions are required for bits $j \in[30-20,11,10,9,6-0]$.
- Conditions from constant bits of Q_{12} :
- $Q_{12}[30]=0$;
- $Q_{12}[12]=1$.

Non-Constant bits of Q_{12} :

Bits [19-17] are discussed under heading "Obtaining Correct ΔQ_{t}."
$\nabla Q_{12}[j]=+1, j \in[16-13,7]: Q_{12}[j]=0 / 1, \Rightarrow f_{12}[j]=Q_{10}[j] / Q_{10}^{*}[j]$.

- For the bits $j \in[16,15,14,7], f_{12}^{*}[j]=f_{12}[j]$, requires $Q_{11}^{*}[j]=Q_{11}[j]=$ $Q_{10}[j]$.
$-f_{12}^{*}[13]=f_{12}[13]$, requires $Q_{11}^{*}[13]=Q_{10}[13]=0$, since $Q_{10}[13]=0$, is already specified $\left(\Delta Q_{10}[13]=+1\right)$. Thus, $Q_{11}[13]=0$.
$\nabla Q_{12}[j]=-1, j \in[8]: Q_{12}[j]=1 / 0 \Rightarrow f_{12}[j]=Q_{11}[j] / Q_{10}^{*}[j]$.
$-f_{12}^{*}[8]=f_{12}[8]$, requires $Q_{10}^{*}[8]=Q_{10}[8]=Q_{11}[8]$.
$\frac{\nabla Q_{12}[31]= \pm 1:}{f *[31]=\overline{f_{12}[31]}}$ Note $\nabla Q_{10}[31]= \pm 1, \nabla Q_{11}[31]= \pm 1$. Attacker wants $f_{12}^{*}[31]=\overline{f_{12}[31]}$.
$-\nabla Q_{12}[31]="+": Q_{12}[j]=0 / 1, \Rightarrow f_{12}[j]=Q_{10}[j] / Q_{11}^{*}[j]$. To obtain $f_{12}^{*}[31]=\overline{f_{12}[31]}$ requires $Q_{11}^{*}[31]=\overline{Q_{10}[31]}$. That is, $Q_{11}[31]=Q_{10}[31]$.
$-\nabla Q_{12}[31]="-": Q_{12}[j]=1 / 0 \Rightarrow f_{12}[j]=Q_{11}[j] / Q_{10}^{*}[j]$. To obtain $f_{12}^{*}[31]=\overline{f_{12}[31]}$ requires $Q_{10}^{*}[31]=\overline{Q_{11}[31]}$. That is, $Q_{11}[31]=Q_{10}[31]$.
- In either case, the requirement is $Q_{11}[31]=Q_{10}[31]$.

Conditions from non-constant bits of Q_{12} :
$-Q_{10}[31,16,15,14,8,7]=Q_{11}[31,16,15,14,8,7] ;$
$-Q_{11}[13]=0$;
Summary of Requirements resulting from this round:

$$
\begin{aligned}
Q_{11}[19,18,17,13] & =Q_{12}[30,18-13,7]=0 \\
Q_{10}[19,18,17] & =Q_{12}[19,12,8]= \\
Q_{10}[31,16,15,14,8,7] & =Q_{11}[31,16,15,14,8,7]
\end{aligned}
$$

The conditions:

$$
Q_{10}[19,18,17]=1 ; \quad Q_{11}[13]=0 ; \quad Q_{10}[8,7]=Q_{11}[8,7] .
$$

were already satisfied as a consequence of previous independent requirements for f_{10} and f_{11}. Alternatively, one could say that the other requirements stipulated the values of $f_{12}[19,18,17,13,8,7]$. Note that the condition $Q_{10}[16,15]=Q_{11}[16,15]$, combines with the condition $Q_{10}[16,15]=1$, required for f_{10}, and thus we obtain $Q_{11}[16,15]=1$.
Case One:

t	Cumulative Conditions on Q_{t} : Case One
9	E1111011...100000.1^..1100111101
10	A1. $0 . .111111101 . . .00100$
11	A0 000 . . 00 . . . 011 10
12	.0.... $10000001 . . .10 . .$. .
	$E=\bar{A}$

Case Two:

t Cumulative Conditions on Q_{t} : Case Two	
9	F...1011...100000.1^..1100111101
10	G1.......0..111111101. . 00100
11	G0 000 . . 00 . . . 011 10
12	.0......... . . $10000001 . . .10 .$.
	$G=\bar{F}$

Round 13: The attacker has
$-\delta Q_{11}= \pm 2^{31}+2^{30}$,
$-\delta Q_{12}= \pm 2^{31}-2^{13}-2^{7}$, and
$-\delta Q_{13}= \pm 2^{31}+2^{24}$.
The attacker wants $\delta f_{13}= \pm 2^{31}-2^{13}$.

Obtaining Correct ΔQ_{t} :

- Obtaining difference $\left(+2^{25}\right)$ in f_{15} requires the difference $\left(+2^{24}\right)$ in Q_{13} to propagate to bit 25 exactly. Thus, we add conditions $Q_{13}[25]=0$ and $Q_{13}[24]=1$.
- The difference $\left(-2^{13}\right)$ can be obtained by specifying values of $Q_{13}[19-13]$ so that f_{13} selects the bits that produce the difference $\left(-2^{13}\right)$ in Q_{12}. We look at this below.

	δ	∇
Q_{11}	$\stackrel{ \pm}{31}, \stackrel{+}{30}$	$\pm+$
Q_{12}	$\pm{ }^{ \pm} 1, \overline{13}, \overline{7}$	
Q_{13}	$\stackrel{ \pm}{31,} \stackrel{+}{24}$	
f_{13}	$\stackrel{ \pm}{31,13}$	士............-+++

Conditions to get correct ΔQ_{t} :
$-Q_{13}[25]=0$;
$-Q_{13}[24]=1$.

Obtaining Correct δf_{t} :

Constant bits of $Q_{13}: \Delta Q_{13}[j]=0$, for $j \in[30-26,23-0]$:
$-Q_{13}[j]=1$, selects $f_{13}[j]=Q_{12}[j]$ and $f_{13}^{*}[j]=Q_{12}^{*}[j]$, or

- $Q_{13}[j]=0$, selects $f_{13}[j]=Q_{11}[j]$ and $f_{13}^{*}[j]=Q_{11}^{*}[j]$.

We deduce that:
$-\Delta f_{13}[30]=0$, requires $Q_{13}[30]=1$.

- For $j \in[8,7], \Delta f_{13}[j]=0$, requires $Q_{13}[j]=0$.
- To produce the difference $\left(-2^{13}\right)$ we must have $\nabla f_{13}[19]=-1$ and $\nabla f_{13}[j]=+1$:
- $\nabla f_{13}[19]=-1$, requires $Q_{13}[19]=1$.
- For $j \in[18-13], \nabla f_{13}[j]=+1$, requires $Q_{13}[j]=1$.
- No conditions are required for bits $j \in[29-26,23-20,12-9,6-0]$.
- Conditions from constant bits of Q_{13} :
- $Q_{13}[8,7]=0$;
- $Q_{13}[30,19-13]=1$.

Non-Constant bits of Q_{13} :
$\nabla Q_{13}[j]=+1, j \in[25]: Q_{13}[j]=0 / 1, \Rightarrow f_{13}[j]=Q_{11}[j] / Q_{11}^{*}[j]$.
$-f_{13}^{*}[25]=f_{13}[25]$, requires $Q_{12}^{*}[25]=Q_{12}[25]=Q_{11}[25]$.
$\nabla Q_{13}[j]=-1, j \in[24]: Q_{13}[j]=1 / 0, \Rightarrow f_{13}[j]=Q_{12}[j] / Q_{11}^{*}[j]$.
$-f_{13}^{*}[24]=f_{13}[24]$, requires $Q_{11}^{*}[24]=Q_{11}[24]=Q_{12}[24]$.
$\nabla Q_{13}[31]= \pm 1$: Note $\nabla Q_{11}[31]= \pm 1, \nabla Q_{12}[31]= \pm 1$. Attacker wants

Conditions from non-constant bits of Q_{13} :

- $Q_{11}[31,25,24]=Q_{12}[31,25,24] ;$

Summary of Requirements resulting from this round:

$$
\begin{aligned}
Q_{13}[25,8,7] & =0 ; \\
Q_{13}[30,24,19-13] & =1 ; \\
Q_{11}[31,25,24] & =Q_{12}[31,25,24] .
\end{aligned}
$$

It is no longer useful to distinguish between Case One and Case Two; we show the conditions on the same table from hereon.

Round 14: The attacker has
$-\delta Q_{12}= \pm 2^{31}-2^{13}-2^{7}$,
$-\delta Q_{13}= \pm 2^{31}+2^{24}$, and
$-\delta Q_{14}= \pm 2^{31}$.
The attacker wants $\delta f_{14}= \pm 2^{31}+2^{18}$.
Obtaining Correct $\Delta Q_{t}:$ No conditions required.

	δ	∇
Q_{12}	$\stackrel{ \pm}{31}, \overline{13}, \overline{7}$	
Q_{13}	$\stackrel{ \pm}{31}, \stackrel{+}{24}$	
Q_{14}	$\stackrel{ \pm}{31}$	
f_{14}	$\stackrel{+}{31} \stackrel{+}{18}$	$\pm+.$.

Conditions to get correct ΔQ_{t} : none

Obtaining Correct δf_{t} :

Constant bits of $Q_{14}: \Delta Q_{14}[j]=0$, for $j \in[30-0]$:

- $Q_{14}[j]=1$, selects $f_{14}[j]=Q_{13}[j]$ and $f_{14}^{*}[j]=Q_{13}^{*}[j]$, or
$-Q_{14}[j]=0$, selects $f_{14}[j]=Q_{12}[j]$ and $f_{14}^{*}[j]=Q_{12}^{*}[j]$.
We deduce that:
- For $j \in[25,24], \Delta f_{14}[j]=0$, requires $Q_{14}[j]=0$.
- For $j \in[19,17-13,8,7], \Delta f_{14}[j]=0$, requires $Q_{14}[j]=1$.
$-\Delta f_{14}[18]=+1$, requires $Q_{14}[18]=0$.
- No conditions are required for bits $j \in[30-26,23-20,12-9,6-0]$.
- Conditions from constant bits of Q_{14} :
- $Q_{14}[25,24,18]=0$;
- $Q_{14}[19,17-13,8,7]=1$.

Non-Constant bits of Q_{14} :

$\underline{\nabla Q_{14}[31]= \pm 1}$: Note $\nabla Q_{12}[31]= \pm 1, \nabla Q_{13}[31]= \pm 1$. Attacker wants

Conditions from non-constant bits of Q_{14} :
$-Q_{12}[31]=Q_{13}[31]$;
Summary of Requirements resulting from this round:

$$
\begin{aligned}
Q_{14}[25,24,18] & =0 \\
Q_{14}[19,17-13,8,7] & =1 ; \\
Q_{12}[31] & =Q_{13}[31] .
\end{aligned}
$$

Round 15: The attacker has
$-\delta Q_{13}= \pm 2^{31}+2^{24}$,
$-\delta Q_{14}= \pm 2^{31}$, and
$-\delta Q_{15}= \pm 2^{31}-2^{15}+2^{3}$.
The attacker wants $\delta f_{15}= \pm 2^{31}+2^{25}$.

Obtaining Correct ΔQ_{t} :

- It is best if the add-differences do not propagate. Thus, for the difference $\left(-2^{15}\right)$ we want $Q_{15}[15]=1$, and for the difference $\left(+2^{3}\right)$ we want $Q_{15}[3]=0$.

	δ	∇
Q_{13}	$\stackrel{+}{31,24}$	
Q_{14}	31	
Q_{15}	$\stackrel{ \pm}{31}, \overline{1}_{5}, \stackrel{+}{3}$	
f_{15}	$\stackrel{ \pm}{31,25}$	$\pm+$..

Conditions to get correct ΔQ_{t} :
$-Q_{15}[3]=0$;
$-Q_{15}[15]=1$.

Obtaining Correct δf_{t} :
Constant bits of $Q_{15}: \Delta Q_{15}[j]=0$, for $j \in[30-16,14-4,2,1,0]$:
$-Q_{15}[j]=1$, selects $f_{15}[j]=Q_{14}[j]$ and $f_{15}^{*}[j]=Q_{14}^{*}[j]$, or
$-Q_{15}[j]=0$, selects $f_{15}[j]=Q_{13}[j]$ and $f_{15}^{*}[j]=Q_{13}^{*}[j]$.
We deduce that:
$-\Delta f_{15}[24]=0$, requires $Q_{15}[24]=1$.
$-\Delta f_{15}[25]=+1$, requires $Q_{15}[25]=0$.

- No conditions are required for bits $j \in[30-26,23-16,14-4,2,1,0]$.
- Conditions from constant bits of Q_{15} :
- $Q_{15}[25]=0$;
- $Q_{15}[24]=1$.

Non-Constant bits of Q_{15} :
$\nabla Q_{15}[j]=+1, j \in[3]: Q_{15}[j]=0 / 1, \Rightarrow f_{15}[j]=Q_{13}[j] / Q_{14}^{*}[j]$.
$-f_{15}^{*}[3]=f_{15}[3]$, requires $Q_{14}^{*}[3]=Q_{14}[3]=Q_{13}[3]$.
$\nabla Q_{15}[j]=-1, j \in[15]: Q_{15}[j]=1 / 0, \Rightarrow f_{15}[j]=Q_{14}[j] / Q_{13}^{*}[j]$.
$-f_{15}^{*}[15]=f_{15}[15]$, requires $Q_{13}^{*}[15]=Q_{13}[15]=Q_{14}[15]$.
$\nabla Q_{15}[31]= \pm 1$: Note $\nabla Q_{13}[31]= \pm 1, \nabla Q_{14}[31]= \pm 1$. Attacker wants $f_{15}^{*}[31]=\overline{f_{15}[31]}$. As for Round 12, the requirement is $Q_{14}[31]=Q_{13}[31]$.
Conditions from non-constant bits of Q_{15} :

- $Q_{13}[31,15,3]=Q_{14}[31,15,3]$;

Summary of Requirements resulting from this round:

$$
\begin{aligned}
Q_{15}[25,3] & =0 ; \quad Q_{15}[24,15]=1 ; \\
Q_{13}[31,15,3] & =Q_{14}[31,15,3] .
\end{aligned}
$$

These conditions are added to Table 3. Interestingly, the condition: $Q_{13}[15]=$ $Q_{14}[15]$. was already satisfied as a consequence of previous independent requirements for f_{13} and f_{14}. Alternatively, one could say that the other requirements stipulated the value of $f_{15}[15]$.

t	Conditions on Q_{t} for Rounds 0-15: Case One
3	vvv0vvvvvvv0vvvv0.
4	C.......0~~~1~~~~~~~1~~~0.
5	Cvvv1v0v0100000000000000001vv1v1
6	
7	A0000011111111101111100000100000
8	000000011..100010.0v010101000000
9	E1111011...100000.1~. 1100111101
10	A1......0..111111101...001... 00
11	A0....vv. . . 000 . . $00 . . .01110$
12	A0.... ~~. . . $10000001 . . .10$
13	$\begin{gathered} \mathrm{A} 1 \ldots 01 \ldots .1111111 \ldots .00^{C}=\overline{\mathrm{A}} \mathrm{v}, E=\bar{A} \end{gathered}$

Table 4. Summary of the conditions required to get the correct propagation of differences through f_{t} for rounds 0 to 15 . The values of Q_{14} and Q_{15} will have additional conditions imposed by Rounds 16 and 17, so they are not shown here. These conditions are for Case One, that has the same conditions as the example by Wang et al.

t	Conditions on Q_{t} for Rounds 0-15: Case Two
3	vvv0vvvvvvv0vvvv0.
4	0.......0~~~1~~~~~~~1~~~~0
5	0...0v0v0100000000000000001vv1v1
6	. .1^1^0111111110111100010~~0^1
7	1...1011111111101111100000100000
8	0...00011..100010.0v010101000000
9	F...1011...100000.1~..1100111101
10	G1......0..111111101...001... 00
11	G0. . . .vv. . . . 000. . 00 . . 011 10
12	G0. . . . ${ }^{\sim}$. . . . 10000001. . . 10.
13	G1....01....1111111....00...v.
	$G=\bar{F}$

Table 5. Summary of the conditions required to get the correct propagation of differences through f_{t} for rounds 0 to 15 . The values of Q_{14} and Q_{15} will have additional conditions imposed by Rounds 16 and 17 , so they are not shown here. These conditions are for Case Two.

5．2 Rounds 16 to 34 of the First Block

t	δQ_{t}	∇Q_{t}	∇f_{t}	δf_{t}
14 15				
16	$\stackrel{ \pm}{31,} \stackrel{-}{29}^{-}$	士．－．．．．．．．．．．．．．v．．．．．．．．．．．v．		31
17	$\stackrel{ \pm}{1}$	士．v．．．．．．．．．．．．0．＾		$\stackrel{ \pm}{ \pm 1}$
18	$\stackrel{ \pm}{31}$	$\pm .^{\wedge}1$.		$\stackrel{ \pm}{31}$
19	$\stackrel{ \pm}{31,17}$	士．．．．．．．．．．．．．．＋	\pm	$\stackrel{ \pm}{31}$
20	$\stackrel{ \pm}{31}$			$+{ }_{+}^{+}$
21	$\stackrel{ \pm}{31}$			$\stackrel{+}{+}$
22	$\stackrel{ \pm}{31}$			$\stackrel{ \pm}{31}$
23	－	0．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．		－
24	－	1．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．		$\stackrel{ \pm}{31}$
25－32	－	．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	－

Table 6．Propagation of differences through the f_{t} functions for rounds 16 to 32 of the first block．Note $f_{t}=\left(Q_{t-2} \wedge Q_{t}\right) \oplus\left(\overline{Q_{t-2}} \wedge Q_{t-1}\right)$ for these rounds．

In rounds 16 to 31 ，the function changes so that it is now the value of Q_{t-2} that is selecting either Q_{t}（when $Q_{t-2}=1$ ）or Q_{t}（when $Q_{t-2}=1$ ）．

These rounds will be easier to describe because the only differences in f_{t} only occur in the MSB．

Round 16：The attacker has
$-\delta Q_{14}= \pm 2^{31}$ ，
$-\delta Q_{15}= \pm 2^{31}-2^{15}+2^{3}$ ，and
$-\delta Q_{16}= \pm 2^{31}-2^{29}$ ．
The attacker wants $\delta f_{16}= \pm 2^{31}$ ．
Obtaining Correct ΔQ_{t} ：
－It is best if the add－differences do not propagate．Thus，for the difference $\left(-2^{29}\right)$ we want $Q_{16}[29]=1$ ．

	δ	∇
Q_{14}	$\stackrel{ \pm}{31}$	
Q_{15}	\pm－${ }^{+}$	边
Q_{16}	31， 29	\pm
f_{16}	$\stackrel{ \pm}{31}$	\pm ．

Conditions to get correct ΔQ_{t} :
$-Q_{16}[29]=1$.
Obtaining Correct δf_{t} :
Constant bits of $Q_{14}: \Delta Q_{14}[j]=0$, for $j \in[30-0]$:
$-Q_{14}[j]=1$ selects $f_{16}[j]=Q_{16}[j]$ and $f_{16}^{*}[j]=Q_{16}^{*}[j]$, or
$-Q_{14}[j]=0$ selects $f_{16}[j]=Q_{15}[j]$ and $f_{16}^{*}[j]=Q_{15}^{*}[j]$.
We deduce that:
$-\Delta f_{16}[29]=0$, requires $Q_{14}[29]=0$.

- For $j \in[15,3], \Delta f_{16}[j]=0$, requires $Q_{14}[j]=1$.
- No conditions are required for bits $j \in[30,28-16,14-3,2,1,0]$.
- Conditions from constant bits of Q_{16} :
- $Q_{14}[29]=0$;
- $Q_{14}[15,3]=1$.

Non-Constant bits of Q_{14} :
$\nabla Q_{14}[31]= \pm 1$: Note $\nabla Q_{15}[31]= \pm 1, \nabla Q_{16}[31]= \pm 1$. Attacker wants $\overline{f_{16}^{*}[31]=\overline{f_{16}[31]}}$.
$-\nabla Q_{14}[31]="+": Q_{14}[j]=0 / 1, \Rightarrow f_{16}[j]=Q_{15}[j] / Q_{16}^{*}[j]$. To obtain $f_{16}^{*}[31]=\overline{f_{16}[31]}$ requires $Q_{16}^{*}[31]=\overline{Q_{15}[31]}$. That is, $Q_{15}[31]=Q_{16}[31]$.
$-\nabla Q_{14}[31]="-": Q_{14}[j]=1 / 0 \Rightarrow f_{16}[j]=Q_{16}[j] / Q_{15}^{*}[j]$. To obtain $f_{16}^{*}[31]=\overline{f_{16}[31]}$ requires $Q_{15}^{*}[31]=\overline{Q_{16}[31]}$. That is, $Q_{15}[31]=Q_{16}[31]$.

- In either case, the requirement is $Q_{15}[31]=Q_{16}[31]$.

Conditions from non-constant bits of Q_{16} :
$-Q_{15}[31]=Q_{16}[31]$.
Summary of Requirements resulting from this round:

$$
\begin{gathered}
Q_{14}[29]=0 ; \quad Q_{14}[15,3]=1 \\
Q_{15}[31]=Q_{16}[31] .
\end{gathered}
$$

Interestingly, the condition $Q_{14}[15]=1$, was already satisfied as a consequence of previous independent requirements for f_{10}. Alternatively, one could say that the other requirements stipulated the values of $f_{16}[15]$. Note that the condition $Q_{14}[3]=1$ combines with the condition $Q_{13}[3]=Q_{14}[3]$ required for f_{15}, and thus we obtain $Q_{13}[3]=1$.

Round 17: The attacker has
$-\delta Q_{15}= \pm 2^{31}-2^{15}+2^{03}$,
$-\delta Q_{16}= \pm 2^{31}-2^{29}$, and

- and $\delta Q_{17}= \pm 2^{31}$.

The attacker wants $\delta f_{17}= \pm 2^{31}$.
Obtaining Correct ΔQ_{t} : Already good.

	δ	∇
Q_{15}	$\stackrel{ \pm}{31}, \overline{15},{ }_{3}^{+}$	
Q_{16}	31, $\overline{29}$	
Q_{17}	${ }_{31}$	
f_{17}	$\stackrel{ \pm}{31}$	$\pm .$.

Conditions to get correct ΔQ_{t} : none.
Obtaining Correct δf_{t} :
Constant bits of $Q_{15}: \Delta Q_{15}[j]=0$, for $j \in[30-17,14-44,2,1,0]$:

- $Q_{15}[j]=1$ selects $f_{17}[j]=Q_{17}[j]$ and $f_{17}^{*}[j]=Q_{17}^{*}[j]$, or
$-Q_{15}[j]=0$ selects $f_{17}[j]=Q_{16}[j]$ and $f_{17}^{*}[j]=Q_{16}^{*}[j]$.
We deduce that:
$-\Delta f_{17}[29]=0$, requires $Q_{15}[29]=1$.
- No conditions are required for bits $j \in[30,28-16,14-4,2,1,0]$.
- Conditions from constant bits of Q_{17} :
- $Q_{15}[29]=1$.

Non-Constant bits of Q_{15} :
$\nabla Q_{15}[j]=+1, j \in[3]: Q_{15}[j]=0 / 1, \Rightarrow f_{17}[j]=Q_{16}[j] / Q_{17}^{*}[j]$.
$-f_{17}^{*}[3]=f_{17}[3]$, requires $Q_{17}^{*}[3]=Q_{17}[3]=Q_{16}[3]$.
$\nabla Q_{15}[j]=-1, j=15: Q_{15}[j]=1 / 0, \Rightarrow f_{17}[j]=Q_{17}[j] / Q_{16}^{*}[j]$.
$-f_{17}^{*}[15]=f_{17}[15]$, requires $Q_{16}^{*}[15]=Q_{16}[15]=Q_{17}[15]$.
$\nabla Q_{15}[31]= \pm 1$: Note $\nabla Q_{16}[31]= \pm 1, \nabla Q_{17}[31]= \pm 1$. Attacker wants

Conditions from non-constant bits of Q_{17} :
$-Q_{16}[31,15,3]=Q_{17}[31,15,3]$.

Summary of Requirements resulting from this round:

$$
\begin{aligned}
Q_{15}[29] & =1 ; \\
Q_{16}[31,15,3] & =Q_{17}[31,15,3] .
\end{aligned}
$$

Note that the condition $Q_{15}[29]=1$ was already specified.

t		Cumulative Conditions on Q_{t}
15	H. 1	.01.........1........... 0
16	H. 1v.
17	

Round 18: The attacker has
$-\delta Q_{16}= \pm 2^{31}-2^{29}$,
$-\delta Q_{17}= \pm 2^{31}$, and
$-\delta Q_{18}= \pm 2^{31}$.
The attacker wants $\delta f_{18}=+2^{31}$.
Obtaining Correct ΔQ_{t} : Already Good.

	δ	∇
Q_{16}	${ }^{ \pm 1}, 29$	\pm
Q_{17}	31	
Q_{18}	31	
f_{18}	$\stackrel{1}{31}$	$\pm \ldots$

Conditions to get correct ΔQ_{t} : none.
Obtaining Correct δf_{t} :
Constant bits of $Q_{16}: \Delta Q_{16}[j]=0$, for $j \in[30,28-0]$, and since $\Delta Q_{18}[j]=$ $\Delta Q_{18}[j]=0$ at these bit positions, it follows that $\Delta f_{18}[j]=0$ at these bit positions.

- Conditions from constant bits of Q_{18} : none.

Non-Constant bits of Q_{16} :
$\nabla Q_{16}[29]=-1=: Q_{16}[29]=1 / 0 \Rightarrow f_{18}[29]=Q_{18}[29] / Q_{17}^{*}[29]$.
$-f_{18}^{*}[29]=f_{18}[29]$, requires $Q_{17}^{*}[29]=Q_{17}[29]=Q_{18}[29]$.
$\underline{\nabla Q_{16}[31]= \pm 1: ~ N o t e ~} \nabla Q_{17}[31]= \pm 1, \nabla Q_{18}[31]= \pm 1$. Attacker wants $\overline{f_{18}^{*}[31]=\overline{f_{18}[31]}}$. As for Round 16, the attacker requires $Q_{17}[31]=Q_{18}[31]$.
Conditions from non-constant bits of Q_{18} :
$-Q_{17}[31,29]=Q_{18}[31,29]$.

Summary of Requirements resulting from this round:

$$
Q_{17}[31,29]=Q_{18}[31,29] .
$$

t		Cumulative Conditions on Q_{t}
16	H.	.v
17	H.v	
18	H.	. .

Round 19: The attacker has
$-\delta Q_{17}= \pm 2^{31}$,
$-\delta Q_{18}= \pm 2^{31}$, and
$-\delta Q_{19}= \pm 2^{31}+2^{17}$.
The attacker wants $\delta f_{19}= \pm 2^{31}$.

Obtaining Correct ΔQ_{t} :

- It is best if the add-differences do not propagate. Thus, for the difference $\left(+2^{17}\right)$ we want $Q_{19}[17]=0$.

	δ	∇
Q_{17}	$\stackrel{ \pm}{31}$	
Q^{1}	\pm	
Q_{18}	31	
Q_{19}	${ }_{31}{ }^{+}{ }^{+}$	
f_{19}	$\stackrel{ \pm}{31}$	\pm.

Conditions to get correct ΔQ_{t} :
$-Q_{19}[17]=0$.
Obtaining Correct δf_{t} :
Constant bits of $Q_{17}: \Delta Q_{17}[j]=0$, for $j \in[30-0]$:
$\left.-Q_{17}[j]\right]=1$ selects $f_{19}[j]=Q_{19}[j]$ and $f_{19}^{*}[j]=Q_{19}^{*}[j]$, or
$-Q_{17}[j]=0$ selects $f_{19}[j]=Q_{18}[j]$ and $f_{19}^{*}[j]=Q_{18}^{*}[j]$.
We deduce that:
$-\Delta f_{19}[17]=0$, requires $Q_{17}[17]=0$.

- No conditions are required for bits $j \in[30-18,16-0]$.
- Conditions from constant bits of Q_{19} :

$$
\text { - } Q_{17}[17]=0
$$

Non-Constant bits of Q_{17} :
 $f_{19}^{*}[31]=\overline{f_{19}[31]}$. As for Round 16, the attacker requires $Q_{18}[31]=Q_{19}[31]$.
Conditions from non-constant bits of Q_{19} :
$-Q_{18}[31]=Q_{19}[31]$.
Summary of Requirements resulting from this round:

$$
\begin{aligned}
& Q_{19}[17]=Q_{17}[17]=0 \\
& Q_{18}[31]=Q_{19}[31]
\end{aligned}
$$

t		Cumulative Conditions on Q_{t}
16	H. 1	. .v.
17	H.v	.0.
18	H.	
19		. 0

Round 20: The attacker has
$-\delta Q_{18}= \pm 2^{31}$,
$-\delta Q_{19}= \pm 2^{31}+2^{17}$, and
$-\delta Q_{20}= \pm 2^{31}$.
The attacker wants $\delta f_{20}= \pm 2^{31}$.
Obtaining Correct ΔQ_{t} : Already good.

	δ	∇
Q_{18}	$\stackrel{ \pm}{31}$	
	$\pm+$	
Q_{19}	31, 17	\pm
Q_{20}	$\stackrel{ \pm}{31}$	
f_{20}	$\stackrel{ \pm}{31}$	\pm

Conditions to get correct $\Delta Q_{t}:$ none.
Obtaining Correct δf_{t} :

$\left.-Q_{18}[j]\right]=1$ selects $f_{20}[j]=Q_{20}[j]$ and $f_{20}^{*}[j]=Q_{20}^{*}[j]$, or
$-Q_{18}[j]=0$ selects $f_{20}[j]=Q_{19}[j]$ and $f_{20}^{*}[j]=Q_{19}^{*}[j]$.
We deduce that:
$-\Delta f_{20}[17]=0$, requires $Q_{18}[17]=1$.

- No conditions are required for bits $j \in[30-18,16-0]$.
- Conditions from constant bits of Q_{20} :

$$
\text { - } Q_{18}[17]=1 .
$$

Non-Constant bits of Q_{18} :
$\underline{\nabla Q_{18}[31]=+1} . \underline{\nabla Q_{18}[31]= \pm 1:}$ Note $\nabla Q_{19}[31]= \pm 1, \nabla Q_{20}[31]= \pm 1$. Attacker wants $f_{20}^{*}[31]=\overline{f_{20}[31]}$. As for Round 16 , the attacker requires $Q_{19}[31]=Q_{20}[31]$.
Conditions from non-constant bits of Q_{20} :
$-Q_{19}[31]=Q_{20}[31]$.
Summary of Requirements resulting from this round:

$$
Q_{18}[17]=1, Q_{19}[31]=Q_{20}[31] .
$$

t	Cumulative Conditions on Q_{t}
18	H.^............ 1
19	H. 0.

Round 21: The attacker has
$-\delta Q_{19}= \pm 2^{31}+2^{17}$,
$-\delta Q_{20}= \pm 2^{31}$, and
$-\delta Q_{21}= \pm 2^{31}$.
The attacker wants $\delta f_{21}= \pm 2^{31}$.
Obtaining Correct $\Delta Q_{t}:$ Already good.

	δ	∇
Q_{19}	$\stackrel{ \pm}{31},{ }_{17}^{+}$	
Q_{20}	$\stackrel{ \pm}{41}$	
Q_{21}	\pm	
	31	\pm.
f_{21}	$\stackrel{ \pm}{31}$	\pm.

Conditions to get correct ΔQ_{t} : none.

Obtaining Correct δf_{t} :

Constant bits of $Q_{19}: \Delta Q_{19}[j]=0$, for $j \in[30-18,16-0]$, and since $\Delta Q_{21}[j]=\Delta Q_{21}[j]=0$ at these bit positions, it follows that $\Delta f_{21}[j]=0$ at these bit positions.

- Conditions from constant bits of Q_{21} : none.

Non-Constant bits of Q_{19} :
$\nabla Q_{19}[j]=+1, j \in[17]: Q_{19}[j]=0 / 1, \Rightarrow f_{21}[j]=Q_{20}[j] / Q_{21}^{*}[j]$.
$-f_{21}^{*}[17]=f_{21}[17]$, requires $Q_{21}^{*}[17]=Q_{21}[17]=Q_{20}[17]$.
$\nabla Q_{19}[31]= \pm 1$: Note $\nabla Q_{20}[31]= \pm 1, \nabla Q_{21}[31]= \pm 1$. Attacker wants $\overline{f_{21}^{*}[31]=\overline{f_{21}[31]}}$. As for Round 16, the attacker requires $Q_{20}[31]=Q_{21}[31]$.
Conditions from non-constant bits of Q_{21} :
$-Q_{20}[31,17]=Q_{21}[31,17]$.
Summary of Requirements resulting from this round:

$$
Q_{20}[31,17]=Q_{21}[31,17] .
$$

Round 22: The attacker has
$-\delta Q_{20}= \pm 2^{31}$,
$-\delta Q_{21}= \pm 2^{31}$, and
$-\delta Q_{22}= \pm 2^{31}$.
The attacker wants $\delta f_{22}= \pm 2^{31}$.
Obtaining Correct ΔQ_{t} : Already good.

Conditions to get correct ΔQ_{t} : none.
Obtaining Correct δf_{t} :
Constant bits of $Q_{20}: \Delta Q_{20}[j]=0$, for $j \in[30-0]$, and since $\Delta Q_{22}[j]=$ $\Delta Q_{22}[j]=0$, at these bit positions, it follows that $\Delta f_{22}[j]=0$ at these bit positions.

- Conditions from constant bits of Q_{22} : none.

Non-Constant bits of Q_{20} :
$\nabla Q_{20}[31]= \pm 1$: Note $\nabla Q_{21}[31]= \pm 1, \nabla Q_{22}[31]= \pm 1$. Attacker wants

Conditions from non-constant bits of Q_{22} :
$-Q_{21}[31]=.Q_{22}[31$.$] .$

t	Cumulative Conditions on Q_{t}
20	.v.
21	. .
22

Round 23: The attacker has
$-\delta Q_{21}= \pm 2^{31}$,
$-\delta Q_{22}= \pm 2^{31}$, and
$-\delta Q_{23}=0$.
The attacker wants $\delta f_{23}=0$.
Obtaining Correct ΔQ_{t} : no differences.

Conditions to get correct ΔQ_{t} : none.
Obtaining Correct δf_{t} :
Constant bits of $Q_{21}: \Delta Q_{21}[j]=0$, for $j \in[30-0]$, and since $\Delta Q_{23}[j]=$ $\Delta Q_{23}[j]=0$ at these bit positions, it follows that $\Delta f_{23}[j]=0$ at these bit positions.

- Conditions from constant bits of Q_{23} :
- $Q_{21}[29]=0$;
- $Q_{21}[15,3]=1$.

Non-Constant bits of Q_{21} :
$\nabla Q_{21}[31]= \pm 1$: Note $\nabla Q_{22}[31]= \pm 1$ but $\Delta Q_{23}[31]=0$. Attacker wants $\overline{f_{23}^{*}[31]=f_{23}[31]}$.
$-\nabla Q_{21}[31]="+": Q_{21}[j]=0 / 1, \Rightarrow f_{23}[j]=Q_{22}[j] / Q_{23}^{*}[j]$ where $Q_{23}^{*}[j]=$ $Q_{23}[j]$. To obtain $f_{23}^{*}[31]=f_{23}[31]$ requires $Q_{23}[31]=Q_{22}[31]$. That is, $Q_{22}[31]=Q_{21}[31]$.
$-\nabla Q_{21}[31]="-": Q_{21}[j]=1 / 0 \Rightarrow f_{23}[j]=Q_{23}[j] / Q_{22}^{*}[j]$. To obtain $f_{23}^{*}[31]=\overline{f_{23}[31]}$ requires $Q_{22}^{*}[31]=Q_{23}[31]$. That is, $Q_{23}[31]=\overline{Q_{22}[31]}$.

- In either case, the requirement is $Q_{23}[31]=Q_{21}[31] \oplus Q_{22}[31]$. However, since we already know that $Q_{21}[31] \oplus Q_{22}[31]$ from the conditions for f_{22}, we conclude that $Q_{23}[31]=0$.
Conditions from non-constant bits of Q_{23} :
$-Q_{22}[31]=0$.
Summary of Requirements resulting from this round:

$$
Q_{23}[31]=0 .
$$

Round 24: The attacker has
$-\delta Q_{22}= \pm 2^{31}$,
$-\delta Q_{23}=0$, and
$-\delta Q_{24}=0$.
The attacker wants $\delta f_{24}= \pm 2^{31}$.
Obtaining Correct ΔQ_{t} : Already good.

	δ	∇
Q_{22}	$\stackrel{ \pm}{31}$	
Q_{23}		
Q_{24}		.
f_{24}	${ }_{31}^{ \pm}$	$\pm \ldots \ldots \ldots \ldots$

Conditions to get correct ΔQ_{t} : none
Obtaining Correct δf_{t} :
Constant bits of $Q_{22}: \Delta Q_{22}[j]=0$, for $j \in[30-0]$, and since $\Delta Q_{24}[j]=$ $\Delta Q_{24}[j]=0$ at these bit positions, it follows that $\Delta f_{24}[j]=0$ at these bit positions.

- Conditions from constant bits of Q_{24} :
- $Q_{22}[29]=0$;
- $Q_{22}[15,3]=1$.

Non-Constant bits of Q_{22} :

$\nabla Q_{22}[31]= \pm 1$: Note $\Delta Q_{23}[31]=\nabla Q_{24}[31]=0$.

- Getting $\nabla f_{24}[31]= \pm 1$ will require $Q_{24}[31]=\overline{Q_{23}[31]}$.

Conditions from non-constant bits of Q_{24} :
$-Q_{24}[31]=\overline{Q_{23}[31]}$.

Summary of Requirements resulting from this round:

$$
Q_{24}[31]=\overline{Q_{23}[31]} .
$$

Note that the condition $Q_{24}[31]=\overline{Q_{23}[31]}$ combines with the condition $Q_{23}[31]=0$ required for f_{23}, and thus we obtain $Q_{24}[31]=1$.

t	Cumulative Conditions on Q_{t}
22	
23	. . .
24	

Rounds 25 to 32: The attacker has
$-\delta Q_{t-2}=0$,
$-\delta Q_{t-1}=0$, and
$-\delta Q_{t}=0$.
The attacker wants $\delta f_{t}=0$.
Obtaining Correct $\Delta Q_{t}:$ no differences.

δ	∇
Q_{t-2}	
Q_{t-1}	
Q_{t}
f_{t}

New Conditions imposed by these rounds: none.

5.3 Rounds 32 to 47 of the First Block

From here-on it is rather easy. Certainly, rounds 32 to 47 are very simple to explain.

Since $f_{t}=Q_{t} \oplus Q_{t-1} \oplus Q_{t-2}$, it follows that $\Delta f_{t}=\Delta Q_{t} \oplus \Delta Q_{t-1} \oplus \Delta Q_{t-2}$. Thus, Δf_{t} is dictated by the XOR differences in Q_{t-2}, Q_{t-1}, and Q_{t}.

In these rounds, only differences in Q_{t} occur in the MSB. The sign of an MSB difference is important only if the difference goes through the rotation and becomes a difference in a less significant bit in R_{t}. However, in these rounds, these MSB differences are cancelled by an MSB difference in either f_{t}, Q_{t-3} or W_{t}, so $\Delta R_{t}=0$. Consequently, for these rounds, the "sign" of MSB difference is irrelevant.

Table 7. Propagation of differences through the f_{t} functions for rounds 16 to 31 of the first block. Note $f_{t}=Q_{t} \oplus Q_{t-1} \oplus Q_{t-2}$.

Round 35: The attacker has $\delta Q_{32}=0, \delta Q_{34}=0$ and $\delta Q_{35}= \pm 2^{31}$: (in Wang et al.'s example, they have $\delta Q_{35}=+2^{31}$) The attacker will get $\delta f_{35}= \pm 2^{31}$: (in Wang et al.'s example, they have $\delta f_{35}=-2^{31}$)

	δ	∇
Q_{32}	0	
Q_{34}	0	
Q_{35}	$\pm 2^{31}$	\pm
f_{35}	$\pm 2^{31}$	\pm.

Round 36: The attacker has $\delta Q_{34}=0, \delta Q_{35}= \pm 2^{31}$ and $\delta Q_{36}= \pm 2^{31}$: (in Wang et al.'s example, they have $\delta Q_{35}=+2^{31}$ and $\delta Q_{36}=+2^{31}$) The attacker will get $\delta f_{36}=0$.

	δ	∇
Q_{34}	0	
Q_{35}	$\pm 2^{31}$	\pm
Q_{36}	$\pm 2^{31}$	\pm
Q_{36}	0

Round 37-47: The attacker has $\delta Q_{t-2}= \pm 2^{31}, \delta Q_{t-1}= \pm 2^{31}$ and $\delta Q_{t}=$ $\pm 2^{31}$: The attacker will get $\delta f_{t}= \pm 2^{31}$.

	δ	∇
Q_{t-2}	$\pm 2^{31}$	\pm
Q_{t-1}	$\pm 2^{31}$	\pm
Q_{t}	$\pm 2^{31}$	
f_{t}	$\pm 2^{31}$	士.................

Summary of Rounds 32 to 47: - There are no conditions imposed during these rounds.

5.4 Rounds 48 to 63 of the First Block

The final 16 rounds are a bit tricky again because of the non-linearity in the function f_{t}. For these rounds, the sequential order of + 's and -'s in $\left\{\nabla Q_{t}[31]\right\}$ is quite important, as the sequence determines where $f_{t}[31]$ will have differences. The differences in $f_{t}[31]$ must occur for the correct values of t, otherwise the differences in $f_{t}[31], Q_{t-3}[31]$ and $W_{t}[31]$ will not cancel out, and the difference in T_{t} will introduce differences in undesirable bit positions (after the rotation). As we shall see, in order to get the correct sequence of XOR-differences $\left\{\Delta f_{t}[31]\right\}$, the sequence of + 's and -'s in $\left\{\nabla Q_{t}[31]\right\}$ is completely determined by the values of $\nabla Q_{46}[31]$ and $\nabla Q_{47}[31]$. Since $\nabla Q_{46}[31] \in\{+,-\}$ and $\nabla Q_{47}[31] \in\{+,-\}$, it follows that there are 4 possible sequences of + 's and -'s in $\left\{\nabla Q_{t}[31]\right\}$. These four possible sequences are shown in Table 8. In the example of Wang et al., they have $\nabla Q_{46}=+2^{31}$ and $\nabla Q_{47}=-2^{31}$, shown in the fourth to sixth columns in Table 8.

Furthermore, the MSB of Q_{t}, Q_{t-1} and Q_{t-2} is specified for all of these rounds (since $\nabla Q_{t}[31]= \pm 2^{31}$), so the difference in the MSB of f_{t} is already specified. The first two columns of Table 9 show the values of $\nabla f_{t}[31]$ when $\nabla Q_{t-2}[31] \in \pm 2^{31}, \nabla Q_{t-1}[31] \in \pm 2^{31}$, and $\nabla Q_{t}[31] \in \pm 2^{31}$.

t	δQ_{t}	∇Q_{t}	∇f_{t}	δQ_{t}	∇Q_{t}	∇f_{t}	δQ_{t}	∇Q_{t}	∇f_{t}	δQ_{t}	∇Q_{t}	∇f_{t}
46	$+2^{31}$	+.		$+2^{31}$			-2^{31}			-2^{31}		
47	$+2^{31}$	+.		-2^{31}			$+2^{31}$	+......		-2^{31}		
48	$+2^{31}$			$+2^{31}$			-2^{31}			-2^{31}		
49	$+2^{31}$			-2^{31}		-	$+2^{31}$	+......	+	-2^{31}	-	
50	-2^{31}	-......	1	-2^{31}	-......	0.	$+2^{31}$			$+2^{31}$		
51	$+2^{31}$		+.	-2^{31}	-......	+.	$+2^{31}$			-2^{31}	-	
52	-2^{31}	-.		-2^{31}	-......		$+2^{31}$			$+2^{31}$		
53	$+2^{31}$			-2^{31}			$+2^{31}$			-2^{31}	-	
54	-2^{31}	-.......		-2^{31}			$+2^{31}$			$+2^{31}$		
55	$+2^{31}$			-2^{31}			$+2^{31}$			-2^{31}	-	
56	-2^{31}	-.......		-2^{31}			$+2^{31}$			$+2^{31}$		
57	$+2^{31}$			-2^{31}	-		$+2^{31}$			-2^{31}	-	
58	-2^{31}			-2^{31}			$+2^{31}$			$+2^{31}$		
59	$+2^{31}$			-2^{31}			$+2^{31}$			-2^{31}		
60	$+2^{31}$	+. . . . 0		$+2^{31}$	+..... 0		-2^{31}	. 0		-2^{31}	... 0	
61	$+2^{31}$	+..... 1		-2^{31} 1		$+2^{31}$	+..... 1		-2^{31}	-..... 1	
62	$+2^{31}+2^{25}$	+..... +	- 0	$+2^{31}+2^{25}$	+..... +	+. 0	$-2^{31}+2^{25}$	-..... +	- 0	$-2^{31}+2^{25}$		+ 0
63	$+2^{31}+2^{25}$	+..... +	. . . 0	$-2^{31}+2^{25}$. +	. . 0	$+2^{31}+2^{25}$	+..... +	+ 0	$-2^{31}+2^{25}$. +	+.... . 0

Table 8. The four possible sequences for the p propagation of differences through the f_{t} functions in the last 16 rounds of the first block. Only the 7 most significant bits are shown.

Most of the differences in these rounds occur only in the MSB (that is, bit 31). The first two columns of Table 9 show the values of $\nabla f_{t}[31]$ when $\nabla Q_{t-2}[31] \in$ $\pm 2^{31}, \nabla Q_{t-1}[31] \in \pm 2^{31}$, and $\nabla Q_{t}[31] \in \pm 2^{31}$. The only other differences occur in bit $Q_{62}[25]$ and $Q_{63}[25]$. The attacker wants to obtain $\Delta f_{62}[25]=\Delta f_{63}[25]=$ 0 and must choose the values of $Q_{60}[25]$ and $Q_{61}[25]$ appropriately. The last two columns of Table 9 show of values $\nabla f_{62}[25]$ and $\nabla f_{63}[25]$ for the possible combinations $\nabla Q_{60}[25] \in\{0,1\}$ and $\nabla Q_{61}[25] \in\{0,1\}$. This table is sufficient to determine what values of values for ∇Q_{t} will produce the correct outputs from f_{t}.

Round 48: The attacker has $\delta Q_{46}= \pm 2^{31}, \delta Q_{47}= \pm 2^{31}$, and $\delta Q_{48}= \pm 2^{31}$.
The attacker wants $\delta f_{48}= \pm 2^{31}$. Table 9 indicates that

- obtaining $\Delta f_{48}[31]=0$, requires $\nabla Q_{48}[31]=\nabla Q_{48}[31]$, and provides $\nabla f_{48}[31]=-\nabla Q_{47}[31]$.

	$\nabla Q_{46}[31], \nabla Q_{47}[31]$							
	,+		,+-		,-+		,--	
	δ	∇	δ	∇	δ	∇	δ	∇
Q_{46}	$+2^{31}$	$+\ldots$	$+2^{31}$	$+\ldots$	-2^{31}	$-\ldots$	-2^{31}	$-\ldots$
Q_{47}	$+2^{31}$	$+\ldots$	-2^{31}	$-\ldots$	$+2^{31}$	$+\ldots$	-2^{31}	$-\ldots$
Q_{48}	$+2^{31}$	$+\ldots$	$+2^{31}$	$+\ldots$	-2^{31}	\ldots	-2^{31}	\ldots
f_{48}	-2^{31}	$-\ldots$	$+2^{31}$	$+\ldots$	-2^{31}	$-\ldots$	$+2^{31}$	$+\ldots$

Bit 31		Bit 25	
$\nabla\left(Q_{t-2}, Q_{t-1}, Q_{t}\right)$	∇f_{t}		
,,+++	-	$\nabla\left(Q_{60}, Q_{61}, Q_{62}\right)$	$\nabla f_{62}[j]$
,,++-	1	$0,0,+$	1
,,+-+	+	$0,1,+$	0
,,+--	0	$1,0,+$	+
,,-++	0	$1,1,+$	-
,,-+-	-	$\nabla\left(Q_{61}, Q_{62}, Q_{63}\right)$	$\nabla f_{63}[j]$
,,--+	1	$0,+,+$	-
,,---	+	$1,+,+$	0

Table 9. Propagation of differences through the f_{t} functions in the last 32 rounds of the first block.

Round 49: The attacker has $\delta Q_{47}= \pm 2^{31}, \delta Q_{48}= \pm 2^{31}$, and $\delta Q_{49}= \pm 2^{31}$. The attacker wants $\delta f_{49}= \pm 2^{31}$. Table 9 indicates that

- obtaining $\Delta f_{49}[31]=0$, requires $\nabla Q_{49}[31]=\nabla Q_{49}[31]$, and provides $\nabla f_{49}[31]=-\nabla Q_{48}[31]$.

	$\nabla Q_{46}[31], \nabla Q_{47}[31]$							
	,++		,+-		,-+		,--	
	δ	∇	δ	∇	δ	∇	δ	∇
Q_{47}	$+2^{31}$	$+\ldots$	-2^{31}	$-\ldots$	$+2^{31}$	$+\ldots$	-2^{31}	$-\ldots$
Q_{48}	$+2^{31}$	$+\ldots$	$+2^{31}$	$+\ldots$	-2^{31}	$-\ldots$	-2^{31}	$-\ldots$
Q_{49}	$+2^{31}$	$+\ldots$	-2^{31}	$-\ldots$	$+2^{31}$	$+\ldots$	-2^{31}	\ldots.
f_{49}	-2^{31}	$-\ldots$	-2^{31}	$-\ldots$	$+2^{31}$	$+\ldots$	$+2^{31}$	$+\ldots$

Round 50: The attacker has $\delta Q_{48}= \pm 2^{31}, \delta Q_{49}= \pm 2^{31}$, and $\delta Q_{50}= \pm 2^{31}$.
The attacker wants $\delta f_{50}=0$. Table 9 indicates that

- obtaining $\Delta f_{50}[31]=0$, requires $\nabla Q_{50}[31]=-\nabla Q_{50}[31]$.

	$\nabla Q_{46}[31], \nabla Q_{47}[31]$							
	,++		,+-		,-+		,--	
	δ	∇	δ	∇	δ	∇	δ	∇
Q_{48}	$+2^{31}$	$+\ldots$	$+2^{31}$	$+\ldots$	-2^{31}	$-\ldots$	-2^{31}	$-\ldots$
Q_{49}	$+2^{31}$	$+\ldots$	-2^{31}	$-\ldots$	$+2^{31}$	$+\ldots$	-2^{31}	$-\ldots$
Q_{50}	-2^{31}	$-\ldots$	-2^{31}	$-\ldots$	$+2^{31}$	$+\ldots$	$+2^{31}$	$+\ldots$
f_{50}		$1 \ldots$		$0 \ldots$		$0 \ldots$		$1 \ldots$

A by-product is that $\nabla f_{50}[31]=1$.
Rounds 51 to 59: The attacker has $\delta Q_{t-2}= \pm 2^{31}, \delta Q_{t-1}= \pm 2^{31}$, and $\delta Q_{t}=$ $\pm 2^{31}$. The attacker wants $\delta f_{t}= \pm 2^{31}$. Table 9 indicates that

- obtaining $\Delta f_{t}[31]=1$, requires $\nabla Q_{t}[31]=\nabla Q_{t}[31]$, and results in $\nabla f_{t}[31]=-\nabla Q_{t-1}[31]$.

	$\nabla Q_{46}[31], \nabla Q_{47}[31]$											
		+, +			+, -			$-,+$			-, -	
	δ	∇	∇f_{t}									
Q_{49}	$+2^{31}$	+.		-2^{31}						-2^{31}		
Q_{50}	-2^{31}			-2^{31}			$+2^{31}$	+		$+2^{31}$		
Q_{51}	$+2^{31}$		+	-2^{31}		+	$+2^{31}$		-	-2^{31}		-
Q_{52}	-2^{31}		-	-2^{31}		+	$+2^{31}$		-	$+2^{31}$		+
Q_{53}	$+2^{31}$		+	-2^{31}		+	$+2^{31}$		-	-2^{31}		-
Q_{54}	-2^{31}		-	-2^{31}		+	$+2^{31}$		-	$+2^{31}$		+
Q_{55}	$+2^{31}$		+	-2^{31}		+	$+2^{31}$		-	-2^{31}		-
Q_{56}	-2^{31}		-	-2^{31}		+	$+2^{31}$		-	$+2^{31}$		+
Q_{57}	$+2^{31}$		+	-2^{31}	-	+	$+2^{31}$		-	-2^{31}		-
Q_{58}	-2^{31}		-	-2^{31}	-	+	$+2^{31}$		-	$+2^{31}$		+
Q_{59}	$+2^{31}$	+.	+	-2^{31}	-.	+	$+2^{31}$	+...	-	-2^{31}		-

Rounds 60: The attacker has $\delta Q_{58}= \pm 2^{31}, \delta Q_{59}= \pm 2^{31}$, and $\delta Q_{60}= \pm 2^{31}$. The attacker wants $\delta f_{60}=0$. Table 9 indicates that

- obtaining $\Delta f_{60}[31]=0$, requires $\nabla Q_{60}[31]=-\nabla Q_{60}[31]$.

	$\nabla Q_{46}[31], \nabla Q_{47}[31]$							
	,++		,+-		-+		,--	
	δ	∇	δ	∇	δ	∇	δ	∇
Q_{58}	-2^{31}	$-\ldots$	-2^{31}	$-\ldots$	$+2^{31}$	$+\ldots$	$+2^{31}$	$+\ldots$
Q_{59}	$+2^{31}$	$+\ldots$	-2^{31}	$-\ldots$	$+2^{31}$	$+\ldots$	-2^{31}	$-\ldots$
Q_{60}	$+2^{31}$	$+\ldots$	$+2^{31}$	$+\ldots$	-2^{31}	\ldots	-2^{31}	\ldots.
f_{60}		$0 \ldots$		$1 \ldots$		$1 \ldots$		$0 \ldots$

Rounds 61: The attacker has $\delta Q_{59}= \pm 2^{31}, \delta Q_{60}= \pm 2^{31}$, and $\delta Q_{61}= \pm 2^{31}$. The attacker wants $\delta f_{61}= \pm 2^{31}$. Table 9 indicates that

- obtaining $\Delta f_{61}[31]=0$, requires $\nabla Q_{61}[31]=\nabla Q_{61}[31]$, and provides $\nabla f_{61}[31]=-\nabla Q_{60}[31]$.

	$\nabla Q_{46}[31], \nabla Q_{47}[31]$												
	+							,+-		-+		,--	
	δ	∇	δ	∇	δ	∇	δ	∇					
Q_{59}	$+2^{31}$	$+\ldots$	-2^{31}	$-\ldots$	$+2^{31}$	$+\ldots$	-2^{31}	$-\ldots$					
Q_{60}	$+2^{31}$	$+\ldots$	$+2^{31}$	$+\ldots$	-2^{31}	$-\ldots$	-2^{31}	$-\ldots$					
Q_{61}	$+2^{31}$	$+\ldots$	-2^{31}	$-\ldots$	$+2^{31}$	$+\ldots$	-2^{31}	\ldots.					
f_{61}	-2^{31}	$-\ldots$	-2^{31}	$-\ldots$	$+2^{31}$	$+\ldots$	$+2^{31}$	$+\ldots$					

Round 62: The attacker has $\delta Q_{60}= \pm 2^{31}, \delta Q_{61}= \pm 2^{31}$, and $\delta Q_{62}= \pm 2^{31}+$ 2^{25}. The attacker wants $\delta f_{62}= \pm 2^{31}$.

- The first thing to notice is that the smallest number of requirements will be imposed if the add-difference $\left(+2^{25}\right)$ does not propagate to other bits: that is, the smallest number of requirements will be imposed if $\nabla Q_{62}= \pm \ldots \ldots+$. This imposes the condition $Q_{62}[25]=0$.

Table 9 indicates that

- obtaining $\Delta f_{62}[31]=1$, requires $\nabla Q_{62}[31]=\nabla Q_{62}[31]$, and provides $\nabla f_{62}[31]=-\nabla Q_{61}[31] ;$
- obtaining $\Delta f_{62}[25]=0$, requires $Q_{60}[25]=0$.

	$\nabla Q_{46}[31], \nabla Q_{47}[31]$							
	+, +		+, -		-, +		-, -	
	δ	∇	δ	∇	δ	∇	δ	∇
Q_{60}	$+2^{31}$	+. 0	$+2^{31}$	+. . . . 0	-2^{31} 0	-2^{31}	-..... 0
Q_{61}	$+2^{31}$		-2^{31}		$+2^{31}$		-2^{31}	
Q_{62}	$+2^{31}+2^{25}$	+. +	$+2^{31}+2^{25}$	+..... +	$-2^{31}+2^{25}$.+	$-2^{31}+2^{25}$	-..... +
f_{62}	-2^{31}	-. .	$+2^{31}$	+.	-2^{31}		$+2^{31}$	

Round 63: The attacker has $\delta Q_{61}= \pm 2^{31}, \delta Q_{62}= \pm 2^{31}+2^{25}$, and $\delta Q_{63}=$ $\pm 2^{31}+2^{25}$. The attacker wants $\delta f_{63}= \pm 2^{31}$.

- The first thing to notice is that the smallest number of requirements will be imposed if the add-difference $\left(+2^{25}\right)$ does not propagate to other bits: that is, the smallest number of requirements will be imposed if $\nabla Q_{63}= \pm \ldots \ldots+$. This imposes the condition $Q_{63}[25]=0$.
Table 9 indicates that
- obtaining $\Delta f_{63}[31]=1$, requires $\nabla Q_{63}[31]=\nabla Q_{63}[31]$, and provides $\nabla f_{63}[31]=-\nabla Q_{62}[31] ;$
- obtaining $\Delta f_{63}[25]=0$, requires $Q_{61}[25]=1$.

	$\nabla Q_{46}[31], \nabla Q_{47}[31]$							
	+, +		+, -		-, +		-, -	
	δ	∇	δ	∇	δ	∇	δ	∇
Q_{61}	$+2^{31}$	+..... 1	-2^{31}	1	$+2^{31}$	+. 1	-2^{31}	-..... 1
Q_{62}	$+2^{31}+2^{25}$	+..... +	$+2^{31}+2^{25}$	+..... +	$-2^{31}+2^{25}$. . +	$-2^{31}+2^{25}$	-. +
Q_{63}	$+2^{31}+2^{25}$	+..... +	$-2^{31}+2^{25}$	-. +	$+2^{31}+2^{25}$	+. +	$-2^{31}+2^{25}$	-..... +
f_{63}	-2^{31}	. .	-2^{31}	$\ldots .$.	$+2^{31}$	+......	$+2^{31}$	+....

A by-product is that $\nabla f_{63}[25]=\nabla f_{62}[25]=0$.

Summary of Rounds $\mathbf{4 8}$ to 63: The four possibilities can be described by defining the choices $I=Q_{46}[31] \in\{0,1\}, J=Q_{47}[31] \in\{0,1\}$, and a related value $K=\bar{I}$.

t	Q_{t}
46	I. .
47	J .
48	I.
49	J . .
50	K.
51	J.
52	K.
53	J.
54	K.
55	J .
56	K.
57	J .
58	K .
59	J .
60	I 0
61	J 1
62	I 0
63	J. . . . 0.

Table 10. Summary of conditions on Rounds 48 to $63: I=Q_{46}[31] \in\{0,1\}, J=$ $Q_{47}[31] \in\{0,1\}, K=\bar{I}$.

- There are four possible sequences of additive differences, each specified by the values of $\nabla Q_{46}[31]$ and $\nabla Q_{46}[31]$. Each sequence has the same number of conditions.
- Each of the four sequences requires specific values for $Q_{t}[31], 48 \leq t \leq 63$ and specific values for $Q_{t}[25], 60 \leq t \leq 63$.
- This is a total of 20 conditions on the internal state for these rounds.
- The probability of a random message satisfying one of these set of 20 conditions is $4 \times 2^{-20}=2^{-18}$.

5.5 Summary of Conditions for Propagation through f_{t}

Tables 12 and 12 show the conditions on Q_{t} in order to for the differential to propagate through f_{t} correctly:

- Case One: For a given choice of the values A, B, H, I, J, the total number of conditions is 282 . Thus, for a random message, the probability is 2^{-277} that all the conditions for this differential are satisfied (since there are five variables).

t	Conditions on Q_{t}			
	Case One	Eq	Def	None
3	.vvv0vvvvvvvv0vvvv0.	13 v	3	16
4	C. $0^{\sim \sim} 1^{\sim \sim \sim \sim \sim \sim ~ 1 ~ ~ ~ 0 ~}$	13^{\sim}	5	11
5	Cvvv1v0v0100000000000000001vv1v1	8v	24	
6	B~~~0^1^0111111110111100010~~0^1	8	24	
7	A0000011111111101111100000100000		32	
8	000000011. .100010.0v010101000000	1 v	28	3
9	E1111011...100000.1~. 1100111101	1^{\sim}	25	6
10	A1 $0 . .111111101$. . 001 . . . 00		17	15
11	A0vv. . . 000 . . 00 . . 011 10	2 v	15	15
12	AO ~ . . . 10000001 . . 10	2^{-}	12	18
13	A1. . . 01111111100		14	18
14	A.0. . . 001011111. . . $11 . . .1$		14	18
15			6	26
		Eq	Def	Combined
	Subtotal $0 \leq t \leq 15:$ Case One	24	219	243
	Case Two	Eq	Def	None
3	. vvv0vvvvvvv0vvvv0	13 v	3	16
4		13^{\sim}	5	11
5	0. . . 0v0v0100000000000000001vv1v1	5 v	24	3
61~1~0111111110111100010~~0^1	5^{-}	23	4
7	1... 1011111111101111100000100000		29	2
8	0. . . 00011. . 100010.0v010101000000	1 v	25	6
9	E. . .1011. . .100000.1~. 1100111101	1^{-}	22	9
10	A1. $0 . .111111101$. . 001 . . . 00		17	15
11	A0. . . .vv. . . . 000 . . 00 . . 011 10	2 v	15	15
12	A0. . . . ~ . . . $10000001 . . .10$	2^{\sim}	12	18
13	A1. . . . 01111111100.		14	18
14	A.0...00... 1011111.... 11... 1.		14	18
15	H.1. . . 01. 1. 0 .		6	26
		Eq	Def	Combined
	Subtotal $0 \leq t \leq 15:$ Case Two	21	209	230

Table 11. Conditions for on $Q_{t}, 15 \leq t \leq 32$ in the first block. There are two variables with two possibilities each: $A \in\{0,1\}, B \in\{0,1\}$, with $C=\overline{A \oplus B}, E=\bar{A}$. The column headed by "Eq" contains the number of equality relationships of the form $Q_{t}[j]=Q_{t-1}[j]$. The column headed by "Def" contains the number of definitions of the form $Q_{t}[j]=0$ or $Q_{t}[j]=1$. The column headed by "None" contains the number of bits with no conditions. When computing subtotals, the column headed by "Comb." contains the combination of equality relationships and definitions.

t	Conditions on Q_{t}	Eq	Def	None
14	A.0...00....1011111....11...1...			
15	H.1...01........1............0...			
16	H.1.............v...........v.	2v	2	28
17	H.v............0.^............. ${ }^{\text {® }}$	$1 \mathrm{v}, 2^{\sim}$	2	27
18	H.^............ 1.	1^{\wedge}	2	29
19	H. 0.		2	30
20	H.v.	1v	1	30
21	H.	1^{\wedge}	1	30
22	H.		1	31
23	0.		1	31
24			1	31
25-45				32
46	I.		1	31
47	J.		1	31
48	I.		1	31
49	J.		1	31
50	K.		1	31
51	J.		1	31
52	K.		1	31
53	J.		1	31
54	K.		1	31
55	J.		1	31
56	K.		1	31
57	J.		1	31
58	K.		1	31
59	J.		1	31
60	I..... 0.		2	30
61	J. . . . 1		2	30
62	I..... 0.		2	30
63	J...... 0.		2	30
		Eq	Def	Combined
	Sub-total: $16 \leq t \leq 31$	-	13	17
	Sub-total: $32 \leq t \leq 47$	-	2	2
	Sub-total: $48 \leq t \leq 63$	-	20	20
	SubTotal: $16 \leq t \leq 63$ (This Table)	4	35	
	Sub-total: $-2 \leq t \leq 15$: Case One	24	219	243
	Sub-total: $-2 \leq t \leq 15$: Case Two	21	209	230
	Total: $-2 \leq t \leq 63$: Case One	28	254	282
	Total: $-2 \leq t \leq 63$: Case Two	25	244	269

Table 12. Conditions for on $Q_{t}, 15 \leq t \leq 32$ in the first block. There are three new variables with two possibilities each: $H \in\{0,1\}, I \in\{0,1\}$, and $J \in\{0,1\}$, with $K=\bar{I}$. The column headed by "Eq" contains the number of equality relationships of the form $Q_{t}[j]=Q_{t-1}[j]$. The column headed by "Def" contains the number of definitions of the form $Q_{t}[j]=0$ or $Q_{t}[j]=1$. The column headed by "None" contains the number of bits with no conditions. In the last few rows, the column headed by "Comb." contains the combination of equality relationships and definitions.

- Case Two: For a given choice of the values A, H, I, J, the total number of conditions is 269. Thus, for a random message, the probability is 2^{-265} that all the conditions for this differential are satisfied (since there are only four variables for Case Two).
- This eliminates the possibility of a second pre-image attack.
- A vast majority of the conditions occur in the first 16 rounds.
- Only 39 conditions occur in the last 48 rounds.

I define an" f_{t}-good" message M to be a message such that the conditions required for f_{t} in the first 16 rounds are satisfied. You can see from the table that most of the conditions on f_{t} occur in the first 16 rounds. This is useful, because an attacker has full, independent control over the value of f_{t} for all of these rounds. Hence, the attacker can easily generate an f_{t}-good" message M. For each f_{t}-good message, the probability of the conditions being satisfied is the product of the probabilities for rounds 16 to 63 . This probability is 2^{-39}, so the attacker can assume that one in 2^{39} of the f_{t}-good messages will also satisfy the conditions in the remaining rounds.

The attacker may easily produce first message blocks that are both T_{t}-good (see Section 4.4)and f_{t} good. The probability that tone such message block satisfies the requirements for all rounds is: $2^{-39} \cdot 2^{-3.2} \approx 2^{-42}$. Given how fast Wang at al. can generate a collision (1 hour) it seems likely that they are using additional tricks.

Appendix B provides the details of the internal differential for the second block.

- For a given choice of the values A, B, H, I, J, the total number of conditions is 323 . Thus, for a random message, the probability is 2^{-318} that all the conditions for this differential are satisfied (since there are five variables).
- Eight of these conditions apply to the intermediate has value $I H V^{(1)}$. This may means that some intermediate values are not acceptable, even though they satisfy the conditions for the first block.
- A vast majority of the conditions occur in the first 16 rounds.
- Once again, only 39 conditions occur in the last 48 rounds.

The attacker can easily produce second message blocks that are both $T_{t^{-}}$ good and f_{t} good. The probability that one such message block satisfies the requirements for all rounds is the same as the probability for the first block: 2^{-42}. The total complexity is the sum of the complexity for finding the first message block and the complexity of find the second message block. This complexity is 2^{43}.

5.6 Applications of the Differential

- The differential allows a collision attack on the MD5 hash function with complexity $2^{42.2}$;
- A second pre-image attack based on this differential has complexity 2^{265}. So this differential does not lead to second pre-image attack on the MD5 hash function.
- Regarding HMAC-MD5 with unknown key: it seems that the attack must guess the entire state in order to get the conditions to be satisfied. Maybe there is a slight advantage to using this differential, but I doubt it. I suspect that this differential does not lead to a collision attack on HMAC-MD5.
- Regarding HMAC-MD5 with known key: in most cases the attacker does not know the key, but there are uses of MAC functions where the MAC must resist collisions even when the key is known. If the key is known, then complexity of finding a collision is at most as difficult as finding a collision in MD5 hash function. If the attacker can control the key being used, then the attacker can find a good starting point in the middle of the differential and work outwards to find a suitable initial value $\left(I H V^{(0)}\right)$ that provides many collisions. The attacker can then choose to use this key.

A little observation: If the attacker can control the appropriate bits up to round 20 , then there are only 25 conditions for f_{t} left (with 2 variables I and J). Also, the probability of satisfying the conditions on T_{t} increases to 2^{-2}. So the complexity becomes 2^{25} which is possible in one hour. (Disclaimer: we do not know if it is possible for the attacker to control the appropriate bits up to round 20).

6 Conclusion

The Wang et al. MD5 collision makes sophisticated use of differences in the carry bits in the modular addition. Features of their attack include a complicated differential for in the first round of compression, with simple differentials (in the most significant bit) for the remaining rounds. The collision uses differences in two blocks for which each block has similar internal differentials. The first block difference one to introduce a small difference into the state, and the second block difference cancels the introduced difference.

References

1. Eli Biham, Rafi Chen New results on SHA-0 and SHA-1 Short talk presented at CRYPTO 2004 Rump Session, 2004.
2. F. Chabaud and A. Joux, Differential Collisions in SHA-0, Advances in CryptologyCRYPTO'98, Lecture Notes in Computer Science, vol.1462, pp.56-71, SpringerVerlag, 1998.
3. National Institute of Standards and Technology, Federal Information Processing Standards (FIPS) Publication 180-2, Secure Hash Standard (SHS), February, 2004.
4. H. Gilbert and H. Hanschuh, Security Analysis of SHA-256 and sisters, Selected Areas in Cryptography, SAC 2003, Canada, Lecture Notes in Computer Science, vol. 3006, M. Matsui and R. Zuccheratopp (Eds.), pp. 175-193, Springer, 2004.
5. P. Hawkes, M. Paddon and G. Rose, On Corrective Patterns for the SHA-2 Family, Cryptology ePrint Archive, Report 2004/207, see http://eprint.iacr.org/, 2004.
6. International Organization for Standardization, Data Cryptographic TechniquesData Integrity Mechanism Using a Cryptographic Check Function Employing a Block Cipher Algorithm, ISO/IEC 9797, 1989.
7. A. Joux, Multicollisions in Iterated Hash Functions, Advances in Cryptology CRYPTO 2004, Lecture Notes in Computer Science, vol. 3152, M. Franklin (Ed.), pp. 306-316, Springer, 2004.
8. A. Joux, Collisions in SHA-0, Short talk presented at CRYPTO 2004 Rump Session, 2004.
9. H. Krawczyk, M. Bellare, and R. Canetti, HMAC: Keyed-Hashing for Message Authentication, Internet RFC 2104, February 1997.
10. A. Menezes, P.van Oorschot and A. Vanstone Handbook of Applied Cryptography, CRC Press series on Discrete Nathematics and its Applications, CRC Press LLC, 1997.
11. R. Rivest, The MD5 Message-Digest Algorithm, Internet RFC 1321, April 1992.
12. X. Wang, D. Feng, X. Lai and H. Yu, Collisions for Hash Functions MD4, MD5, HAVAL-128 and RIPEMD, Cryptology ePrint Archive, Report 2004/199, see http://eprint.iacr.org/, 2004.

A Details for First Block

A. 1 Sequence of Addition Differences

See Table 1 on page 6 .

A. 2 Conditions on Bit Positions

See Tables 11 and 12 on pages 58 and 59.

A. 3 Values of ∇Q_{t} and ∇f_{t} at All Bit Positions

Tables $13,14,15$ and 16 list the values of ∇Q_{t} and ∇f_{t} at all bit positions of the first block of the example collision given by Wang et al.

t	δQ_{t}	∇Q_{t}	∇f_{t}	δf_{t}
-3		01100111010001010010001100000001		
-2		00010000001100100101010001110110		
-1		10011000101110101101110011111110		
0		11101111110011011010101110001001	10011000101110101101110011111110	
1		00010011101110001100111111110110	10001011100010101001101110001000	
2		01001100100110100110010010001101	10100011110111011100111110000100	
3		00000010001001110011001100110011	00010001100110101110110011000101	
4		10110111001011110011101100111000	01001010101101110111011110110101	
5	6	100010000-++++++++++++++++++100101	100000100010+1110011+01100110010	$\stackrel{+}{19},{ }_{11}$
6	$\stackrel{+}{31}, \stackrel{+}{23}, \overline{6}$	+0000010+1111111101111000-000001	101101010-++++++++0++++1100111001	$\overline{14}, \overline{10}$
7	$27+, 23, \overline{6}, \overline{0}$	+++++++---11111101111-++++++++++++	1000-0-00111111+10111+0000+00-01	$\overline{27}, \overline{25}, \stackrel{+}{16}, \stackrel{+}{10}, \stackrel{+}{5}, \overline{2}$
8	$\overline{23}, \overline{17}, \overline{15}, \stackrel{+}{0}$	00000001-01-+++-+00101010100000+	+000001-1111111+10111+0+0+000001	$\stackrel{+}{31}, \stackrel{-}{24}, \stackrel{+}{16}, \stackrel{+}{10}, \stackrel{+}{8}, \stackrel{+}{6}$
9	$\overline{31}, \overline{6}, \stackrel{+}{1}, \overline{0}$	-1111011101100000011111-++1111+-	+0000+01-11-1110110101010+00000+	$\stackrel{+}{31}, \stackrel{+}{26}, \overline{23}, \overline{20}, \stackrel{+}{6}, \stackrel{+}{0}$
10	$\stackrel{+}{31}, \stackrel{+}{13}, \overline{12}^{-}$	+11100110111111111+-100001100100	01110011-011000000+111010+10010+	$\overline{23}, \stackrel{+}{13}, \stackrel{+}{6}, \stackrel{+}{0}$
	$\stackrel{+}{+}$			$\overline{8}-$
11	31, 30	++011110011100011100111011010010	11110011111100011111100-0110110-	8,0 + +
12	31, 13, 7	+00000101010-++++++1111-+0100111	+11100110111+--111001110+1000010	31, 17, 7
13	$\stackrel{+}{31},{ }_{24}^{+}$	+11100+-010111111111010000001000	+00011100010-++++++1111011010010	$\stackrel{+}{31}, \overline{13}$
14	${ }^{+}$	+0010100110010111111010111111000	+001001001101+111111111000001111	$\stackrel{+}{31},{ }_{18}^{+}$
15	$\stackrel{+}{31}, \overline{15}, \stackrel{+}{3}$	+111000101011101-00010100010+000	+00100+0010010111111010000101000	$\stackrel{+}{31} \stackrel{+}{25}^{+}$

Table 13. Values of ∇Q_{t} and ∇f_{t} at all bit positions for rounds 0 to 15 of the first block of the collision provided by Wang et al..

t	δQ_{t}	∇Q_{t}	∇f_{t}	δf_{t}
14	$\stackrel{+}{31}$ + $31, \overline{15}, \stackrel{+}{3}$	$\left\|\begin{array}{l} +0010100110010111111010111111000 \\ +111000101011101-00010100010+000 \end{array}\right\|$		
16	${ }^{+}$- -			31
16	31, 29			-
17	31	+1101111000111001110111100100110	+1101101100111101000101100110100	31
18	31	+1110101100011100100100000101000	+1100111100111100110110000100010	${ }_{31}^{+}$
19	$\stackrel{+}{31,17}$	+1100101111111+00101111010001110	+1110101100111100100111000001110	$\stackrel{+}{31}$
20	${ }^{+}$	+0010001110101010101101001101010	+0010001111101000101111010101110	${ }_{31}^{+}$
21	${ }^{+}$	+1101001101010011110001011001010	+1110001101010010100001011101010	$\stackrel{+}{31}$
22	31	+1110010101100011011001110100100	+1111000101110011011001010100000	31
23		01111110011111010111100001001001	01111010001110010111000101101100	
24		10011011010111010011000111010010	+0011110010111010111100111001001	${ }^{+}$
25		00101111000000010000001000100111	10101111000000010000000110010011	
26		01111100101101101100111111010110	00111100000101000000001111110111	
27		10001011000011101001001011101110	01011011101101101100111111110110	
28		11001011101100101011110100011010	11001011101110101001110100111010	
29		01011000110111011000100011000010	01001000101111001010110111010010	
30		01010011100110111001110001010011	01010011110111111001110011010010	
31		10011111001100000001000001001010	00011011000100100001010001010011	

Table 14. Values of ∇Q_{t} and ∇f_{t} at all bit positions for rounds 16 to 31 of the first block of the collision provided by Wang et al..

t	δQ_{t}	∇Q_{t}	∇f_{t}	δf_{t}
30		01010011100110111001110001010011		
31		10011111001100000001000001001010		
32		10001111001001011101000110010000	01000011100011100101110110001001	
33		00001101011011000010101110000100	00011101011110011110101001011110	
34		11101110110000000110101101111001	01101100100010011001000101101101	
35	31	+1100010101111110011111100010001	-0000001000100110111111111101100	31
36	31	+0010011001111111010110011100100	10011111010000001111100010001100	
37	$\stackrel{+}{1}$	+1111000111011101111111001110101	+0001001011011100110110110000000	$\stackrel{+}{31}$
38	31	-0010100100001011000110011010011	-1111111010101001101111001000010	31
39	31	-1111000111100010110111100100010	+0010100100110100001110110000100	$\stackrel{+}{31}$
40	31	-0100110101001101000000001010111	-1001010110100100110001110100110	31
41	31	+1101001000100010110110111010111	+0110111010001101000001010100010	31
42	31	-0111100010110110111001110100001	+1110011111011001001111000100001	31
43	31	-0101001101111000001001001100111	+1111100111101100000110000010001	$\stackrel{+}{31}$
44	31	-0000000011011110101000010111101	-0010101100010000011000101111011	31
45	31	+0110010100101011000101000001010	+0011011010001101100100011010000	31
46	$\stackrel{+}{31}$	+1001011110100000111111100111111	-1111001001010101010010110001000	31
47	-	-0111000001101111001110100000100	-1000001011100100110100000110001	$\overline{31}$

Table 15. Values of ∇Q_{t} and ∇f_{t} at all bit positions for rounds 32 to 47 of the first block of the collision provided by Wang et al..

t	δQ_{t}	∇Q_{t}	∇f_{t}	f_{t}
46	${ }_{31}^{+}$	+1001011110100000111111100111111		
47	31	-0111000001101111001110100000100		
48	$\stackrel{+}{+}$	+0010110001111100011000100101010	+0001110000010000010110011101110	${ }^{+}$
49	31	-1111111010000001111010001110111	-1101001111101101100011111010101	31
50	31	-1001000010010101000000010000000	00010110100010110011101010100010	
51	31	-1010100110111011011011100001010	+0011100101101010011111100001010	$\stackrel{+}{31}$
52	31	-0100100110110010001011110110100	+1100011001000001100100011110101	$\stackrel{+}{+}$
53	31	-0011101011100110010010110011111	+001101110101010011110	$\stackrel{+}{31}$
54	31	-0001011010011101111110011011110	+100011000011101110110010100000	$\stackrel{+}{31}$
55	31	-0111111111101000100110000011000	+1110100101100100010001010100110	$\stackrel{+}{+}$
56	31	-0011110000000001100101111100111	+10000010100010110000111111111	${ }_{31}^{+}$
57	31	-1000011011101110001110001111100	+1011101011111110111010000011000	$\stackrel{+}{+}$
58	31	-0100001101101000111010110000100	+0100010100010000110100111100000	$\stackrel{+}{+}$
59	31	-0100000010110101101011101101110	+0011101011011101000001001101011	$\stackrel{+}{+}$
60	$\stackrel{+}{31}$	+1011101101011111111111110010011	11111111101101010010100010010101	
61	31	-1101011000100110111000000100011	-0100010000110001000011100100000	31
62	$\stackrel{+}{31,} \stackrel{+}{25}$	+00100+0100100110110100110010000	+1011001110000000001100111011111	$\stackrel{+}{+}$
	$\stackrel{-1}{31,} \stackrel{+}{5}$	$-00100+1010010111111111101010110$	-0000101011111001001011001001110	-

Table 16. Values of ∇Q_{t} and ∇f_{t} at all bit positions for rounds 48 to 63 of the first block of the collision provided by Wang et al.

B All Details for the Second Block

B. 1 Sequence of Add-Differences

The differential in the second block begins with

$$
\begin{aligned}
& \delta Q_{-3}=\delta I H V^{(1)}[0]= \pm 2^{31}, \\
& \delta Q_{0}=\delta I H V^{(1)}[1]= \pm 2^{31}+2^{25} \text {, } \\
& \delta Q_{-1}=\delta I H V^{(1)}[2]= \pm 2^{31}+2^{25} \text {, } \\
& \delta Q_{-2}=\delta I H V^{(1)}[3]= \pm 2^{31}+2^{25} .
\end{aligned}
$$

Table 16 shows the sequence of add-differences in the second block. The differential in the second block finishes up with

$$
\begin{aligned}
& \delta Q_{61}= \pm 2^{31}, \\
& \delta Q_{62}= \pm 2^{31}-2^{25}, \\
& \delta Q_{63}= \pm 2^{31}-2^{25}, \\
& \delta Q_{64}= \pm 2^{31}-2^{25} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \delta I H V^{(2)}[0]=\delta I H V^{(1)}[0]+\Delta Q_{61}=\left(\pm 2^{31}\right)+\left(\pm 2^{31}\right)=0, \\
& \delta I H V^{(2)}[1]=\delta I H V^{(1)}[1]+\Delta Q_{64}=\left(\pm 2^{31}+2^{25}\right)+\left(\pm 2^{31}-2^{25}\right)=0, \\
& \delta I H V^{(2)}[2]=\delta I H V^{(1)}[2]+\Delta Q_{63}=\left(\pm 2^{31}+2^{25}\right)+\left(\pm 2^{31}-2^{25}\right)=0, \\
& \delta I H V^{(2)}[3]=\delta I H V^{(1)}[3]+\Delta Q_{62}=\left(\pm 2^{31}+2^{25}\right)+\left(\pm 2^{31}-2^{25}\right)=0 .
\end{aligned}
$$

t	δQ_{t}	δf_{t}	δQ_{t-3}	δW_{t}	δT_{t}	$S(t)$	δR_{t}
0	$\stackrel{ \pm}{31},{ }_{25}^{+}$	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$			7	
1	$\stackrel{ \pm}{31},{ }_{25}^{+}$	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31},{ }_{25}^{+}$		$\stackrel{+}{25}$	12	$\stackrel{+}{5}$
2	$\stackrel{ \pm}{31},{ }_{25}+$	$\stackrel{+}{25}$	$\stackrel{ \pm}{ \pm 1}{ }_{25}^{+}$		${ }_{31}^{+}{ }_{26}^{+}$	17	${ }_{16}^{+}{ }_{11}^{+}$
2	$\stackrel{31,25,5}{+}$	\pm _ ${ }^{+}{ }^{\text {+ }}$	31, 25		- ${ }^{\text {31, }}$, ${ }^{\text {a }}$	17	16, 11
3	$\stackrel{ \pm}{31, ~} \stackrel{+}{25}, \stackrel{+}{16},{ }_{1}^{+}{ }_{1}{ }_{5}^{+}$	$\stackrel{ \pm}{31}, \overline{27}, \stackrel{+}{25}, \overline{21}, \overline{11}$	31, ${ }_{25}^{+}$		$\overline{26}, \overline{21}, \overline{11}$	22	$\overline{16}, \overline{11}, \overline{1}$
4	$\stackrel{ \pm}{31}, \stackrel{+}{25}, \stackrel{+}{5}, \overline{1}$	$\stackrel{+}{30}, \stackrel{+}{26}, \overline{18}_{18}, \overline{3}, \stackrel{+}{1}$	$\stackrel{ \pm}{31},{ }_{25}^{5}$	31	$\stackrel{+}{30}, \stackrel{+}{26}, \stackrel{+}{25}, \overline{1}_{18}, \stackrel{+}{2}, \stackrel{+}{1}$	7	$\overline{25}, \stackrel{+}{10}, \overline{8}, \stackrel{+}{5}, \stackrel{+}{1}, \stackrel{+}{0}$
5	$\stackrel{ \pm}{31}, \stackrel{+}{10}, \overline{8}, \stackrel{+}{6}, \stackrel{+}{0}$	$\stackrel{+}{30}, \stackrel{+}{28}, \overline{26}, \overline{25}, \overline{20}, \overline{8}, \overline{5}, \overline{4}$	31, ${ }^{\text {25 }}$, ${ }_{5}^{5}$		$\overline{30}, \stackrel{+}{28}, \overline{26}, \overline{20}, \overline{8}, \overline{4}$	12	$\overline{20}, \overline{16}, \overline{10}, \stackrel{+}{8}, \overline{6}, \overline{0}$
6	$\stackrel{ \pm}{31}, \overline{20}, \overline{16}$	$\overline{25}, \overline{21}, \overline{16}, \overline{11}, \overline{10}, \overline{5}, \stackrel{+}{3}$	$\stackrel{ \pm}{31}, \stackrel{+}{25}, \stackrel{+}{16}, \stackrel{+}{11}, \stackrel{+}{5}$		$\overline{31}, \overline{21}, \overline{10}, \stackrel{+}{3}$	17	$\overline{27}, \stackrel{+}{20}, \stackrel{+}{16}, \overline{6}$
7	$\stackrel{ \pm}{31}, \overline{27}, \overline{6}$	$\stackrel{ \pm}{31}, \overline{27},{ }_{16}$	$\stackrel{ \pm}{31}, \stackrel{+}{25},{ }_{5}^{5},{ }_{1}$		$-\stackrel{+}{27}{ }^{2}, \stackrel{+}{16}, \stackrel{+}{5}, \overline{1}$	22	$\stackrel{+}{27}, \overline{23}, \overline{17}, \stackrel{+}{15}, \stackrel{+}{6}$
	${ }_{31}^{ \pm},-\overline{23},{ }_{17}{ }^{+}$	$\stackrel{+}{+}{ }_{2}{ }^{+}$	$\stackrel{ \pm}{ \pm 1}{ }_{10}^{+}, \overline{7},{ }_{6}^{+}$		$\stackrel{+}{31} \stackrel{+}{5},_{+}^{+} \stackrel{+}{9}_{+}^{+}+{ }_{8}^{+}$		$\stackrel{+}{+}{ }^{+}{ }_{6}^{+}{ }_{15}+{ }_{6}^{+}$
8	$31,23,17,15$	25, 16, 6	$31,10,7,6,0$		31, 25, 16, 9, 8, 0	7	23, 16, 15, 6, 0
9	${ }_{31}{ }_{6}{ }_{6}^{+}{ }_{0}^{+}$	${ }_{31}^{ \pm},-\overline{26},{ }_{16},{ }_{0}^{+}$	${ }_{31}{ }^{ \pm}, \overline{20}, \overline{16}$		$\overline{26}, \overline{20},{ }_{0}^{+}$	12	${ }_{12}, \overline{6}, \overline{0}$
10	$\stackrel{ \pm}{31},{ }_{12}^{+}$	$\stackrel{ \pm}{31},{ }_{6}^{+}$	$\stackrel{ \pm}{31}, \overline{27}, \overline{6}$		27	17	$\overline{12}$
11	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}, \overline{23}, \overline{17}, \stackrel{+}{15}$	15	$\overline{23,17}$	22	$\overline{13}, \overline{7}$
12	${ }_{31}^{ \pm} \overline{13}, \overline{7}$	$\stackrel{ \pm}{31,17}$	$\stackrel{ \pm}{31},{ }_{6}^{6},{ }_{0}^{+}$		$\stackrel{+}{17}, \stackrel{+}{6},{ }_{0}^{+}$	7	$\stackrel{+}{24,} \stackrel{+}{13},{ }_{7}^{7}$
		+ ${ }^{1}$ -					
13	31, 24	31,13	31, 12		12	12	24
14	31	$\stackrel{+}{30},{ }_{18}^{+}$	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$	$\stackrel{+}{30} \stackrel{1}{18}^{+}$	17	$\stackrel{+}{15} \stackrel{+}{3}^{+}$
15	$\stackrel{ \pm}{31}, \stackrel{+}{15},{ }_{3}^{+}$	$\stackrel{ \pm}{31,25}$	$\stackrel{ \pm}{31}, \overline{13}, \overline{7}$		$\overline{25}, \overline{13}, \overline{7}$	22	$\overline{29}, \overline{15}, \overline{3}$
16	31, ${ }^{\text {9 }}$	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{ \pm 1}{ }_{24}$		${ }^{+}$		${ }^{+}$
	\pm	\pm					
17	31	31	31			9	
18	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}, \stackrel{+}{15},{ }_{3}^{+}$	$\overline{15}$	${ }_{3}^{+}$	14	$\stackrel{+}{17}$
19	$\stackrel{ \pm}{31} \stackrel{1}{17}^{+}$	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31},{ }_{29}$		$\overline{29}$	20	17
20-21	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$				
22	$\stackrel{ \pm}{1}$	$\stackrel{ \pm}{31}$	${ }_{31}^{ \pm}{ }_{17}^{+}$		${ }_{17}^{+}$		\pm
						14	
23			31	31		20	
24		$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$			5	
25			$\stackrel{ \pm}{31}$	31		5	
26-33							
34				$\overline{15}$	$\overline{15}$	16	$\stackrel{ \pm}{31}$
35	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$		$\stackrel{ \pm}{31}$		23	
	\pm						
36	31					4	
37	${ }_{31}$	$\stackrel{ \pm}{31}$		31		11	
38-49	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$				
	\pm		\pm	\pm			
			31	31		15	
51-59	${ }_{31}$	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$				
60	$\stackrel{ \pm}{31}$		$\stackrel{ \pm}{31}$			6	
61	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$	$\overline{15}$	15	10	25
62-63	$\stackrel{ \pm}{31,25}$	$\stackrel{ \pm}{31}$	$\stackrel{ \pm}{31}$				

Table 17. Sequence of add-differences for rounds 16 to 63 of the second block. Recall that $\delta Q_{t}=\delta Q_{t-1}+\delta R_{t-1}, \delta T_{t}=\delta f_{t}+\delta Q_{t-3}+\delta W_{t}$, and (most of the time) $\delta R_{t}=$ $R O T L^{S(t)}\left(\delta T_{t}\right)$.

B． 2 Sequence of XOR－Differences in Q_{t} and f_{t}

Tables 18 and 19 show the XOR－differences in Q_{t} in f_{t} in order to get the add－ differences in f_{t} from the corresponding bits in $Q_{t}, t-1$ and Q_{t-2} ．The sign of $\nabla Q_{t}[31]$ is not shown here，as this is determined by the function f_{t} ．

t	δQ_{t}	∇Q_{t}	∇f_{t}	δf_{t}
－3				
0	${ }_{31}{ }^{+}$	$\pm \ldots$		$\stackrel{ \pm}{31}$
1	31，${ }^{ \pm}$	$\pm+$ ．		$\stackrel{ \pm}{31}$
2	$\stackrel{ \pm}{31}, \stackrel{+}{25}, \stackrel{+}{5}$	$\pm+$ ．		$\stackrel{+}{25}$
3	$\stackrel{ \pm}{31, ~} \stackrel{+}{25}, \stackrel{+}{16}, \stackrel{+}{11}, \stackrel{+}{5}$	$\pm-----. .+-----. . .+-. . .+--$	\pm	$\stackrel{ \pm}{31}, \overline{27}, \stackrel{+}{25}, \overline{21}, \overline{11}$
4	$\stackrel{ \pm}{31}, \stackrel{+}{25}, \stackrel{+}{5}, \overline{1}$	士．．．．＋－．．．．．．．．．．．．．．．．．．．．．＋－＋＋＋．		$\stackrel{+}{30}, \stackrel{+}{26}, \stackrel{-}{18}, \stackrel{+}{2}, \stackrel{+}{1}$
5	$\stackrel{ \pm}{31}, \stackrel{+}{9}, \stackrel{+}{6},{ }_{0}^{+}$	士．．．．．．．．．．．．．．．．．．．－－－－＋＋－．．．．．	$\pm .--.--. . .-._{\text {．．．．．．．．}- \text { ．．－－．．．}}$	$\stackrel{+}{30}, \stackrel{+}{27}, \stackrel{+}{25}, \overline{20}^{20}, \overline{8}, \overline{6}, \stackrel{+}{4}$
6	$\stackrel{ \pm}{31}, \overline{20}, \overline{16}$	士．．．．．．．．．－－＋	．	$\overline{25}, \overline{21}, \overline{16}, \overline{11}, \overline{10}, \overline{5}, \stackrel{+}{3}$
7	$\stackrel{ \pm}{31,} \overline{27}, \overline{6}$	士．．－＋．．．．．．．．．．．．．．．．．．．－＋＋＋		$\stackrel{ \pm}{31}, \overline{27},{ }_{16}^{+}$
8	$\stackrel{ \pm}{31}, \overline{23}, \overline{17}, \stackrel{+}{15}$	土．．．．－＋＋＋．	．．．．．．．＋．．．．．．．．＋．．．．．．${ }^{-+++}$.	$\stackrel{+}{25,1+}{ }_{1}, \overline{6}$
9	$\stackrel{ \pm}{31}, \stackrel{+}{6},{ }_{0}^{+}$	士．．．．．．．．．．．．．．．．．．．．．．＋－－－．．．．＋－		$\stackrel{ \pm}{31},-\overline{26},{ }_{16}^{1},{ }_{0}^{+}$
10	$\stackrel{ \pm}{31}{ }_{1}^{12}$			$\stackrel{ \pm}{31},{ }_{6}^{+}$
11	$\stackrel{ \pm}{31}$			$\stackrel{ \pm}{31}$
12	$\stackrel{ \pm}{31,13}, \overline{7}$	土．．．．．．．．．．．．－＋＋＋＋＋＋．		$\stackrel{ \pm}{31}, \stackrel{+}{17}$
13	$\stackrel{ \pm}{31}{ }_{24}^{+}$			$\stackrel{ \pm}{1}, \overline{13}$
	31，${ }^{ \pm}$			
14	31			30， 18
15	$\stackrel{ \pm}{31},{ }_{15}^{+},{ }_{3}^{+}$	士．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	\pm.	31，${ }^{ \pm}$

Table 18．Sequence of XOR－Differences in Q_{t} and f_{t} for rounds 0 to 15 of the second block．

t	δQ_{t}	∇Q_{t}	∇f_{t}	δf_{t}
16	$\stackrel{ \pm}{31,29}$	\pm		$\stackrel{ \pm}{ \pm 1}$
17-18	$\stackrel{ \pm}{31}$			$\stackrel{ \pm}{31}$
19	$\stackrel{ \pm}{31,17}$			$\stackrel{ \pm}{31}$
20-22	31			$\stackrel{ \pm}{31}$
23				
24				$\stackrel{ \pm}{31}$
25-34				
35	$\stackrel{ \pm}{31}$	\pm		$\stackrel{ \pm}{31}$
36	$\stackrel{ \pm}{31}$			
37-49	$\stackrel{ \pm}{31}$			$\stackrel{ \pm}{31}$
50	$\stackrel{ \pm}{31}$			
	\pm			\pm
51-59	31			31
61	${ }_{31}$			
60	$\stackrel{ \pm}{31}$			\pm
				\pm
62	31, 25			31
63	31, ${ }^{ \pm}$	$\pm+$.		$\stackrel{ \pm}{31}$

Table 19. Sequence of XOR-Differences in Q_{t} and f_{t} for rounds 16 to 63 of the second block.

B. 3 Conditions on Bit Positions

Tables 20 and 21 detail the conditions on the internal values $Q_{t},-2 \leq t \leq 53$ in order for the collision to occur. The conditions on Q_{-2}, Q_{-1} and Q_{0} correspond to conditions on the intermediate hash value $I H V^{(1)}$.

t	Conditions on Q_{t}	Eq	Def	None
-2	A.....0.		2	30
-1	A. . . 01		3	29
0	A. . . 00................ v	1v	3	28
1	Bvvv010. . . 1vvvvv. . .v0 . . .v1~	$10 \mathrm{v}, 1^{\sim}$	7	14
2		$2 \mathrm{v}, 10^{\sim}$	10	10
3	B011111...011111. . 01vv1011~~11v	$3 \mathrm{v}, 2^{\sim}$	21	6
4	B011101...000100 . . 00~~00001000~	3^{-}	23	6
5	A100101. . . 101111 . . 0111001010000		26	6
6	A. .0010v1.10..101. 0110001010110	1 v	24	7
7	B. .1011~1.00..011..1111000....v1	$1 \mathrm{v}, 1^{\sim}$	19	11
8	B. 001000.11..101..v..1111.... ${ }^{\text {º }}$	$1 \mathrm{v}, 1^{\sim}$	17	13
9	B. .111000....010. . ${ }^{\text {a }}$. 0111 . . . 01	$1 \sim$	16	15
10	B . . . 1111 . . . v0111100 . .1111. . . . 00	1 v	18	13
11	Bvvvvvvv. . . . 1011100 . 1111 . . . 11	$7 \mathrm{v}, 1^{\sim}$	14	10
12	B~~~~~~ 10000001. . . . 1	7	10	15
13	A0111111. . . $11111110 . . .1$		17	15
14	A1000000 . . . 1011111. 1. . . 1		17	15
15			10	22
		Eq	Def	Combined
	Sub-total: $-2 \leq t \leq 15$	27	257	

Table 20. Conditions on $\nabla Q_{t},-2 \leq t \leq 15$, of the second block to get the correct propagation of differences through f_{t}. The attacker can allow $A \in\{0,1\}, C \in\{0,1\}$ with $B=\bar{A}$. The column headed by "Eq" contains the number of relationships of the form $Q_{t}[j]=Q_{t-1}[j]$. The column headed by "Def" contains the number of definitions of the form $Q_{t}[j]=0$ or $Q_{t}[j]=1$. The column headed by "None" contains the number of bits with no conditions. In the last row, the column headed by "Comb." contains the combination of equality relationships and definitions. Note the conditions on Q_{-2}, Q_{-1}, Q_{0} apply to the intermediate hash value $I H V^{(1)}$.

t	Conditions on Q_{t}	Eq	Def	None
14	A1000000....1011111.....1...1...			
15	C1111101. 0. $0 . .$.			
16	C.1..............v............ . v . .	2v	2	28
17	C.v........... $0 . \wedge$. ${ }^{\text {® }}$. .	$2^{\wedge}, 1 \mathrm{v}$	2	27
18	C. ^........... 1.	1-	2	29
19	C. 0.		2	30
20	C.v.	1v	1	30
21	C. ${ }^{\text {a }}$.	1^{\sim}	1	30
22	C.		1	31
23	0.		1	31
24	1.		1	31
25-31	. .			32
32-45	. .			32
46	I .		1	31
47	J.		1	31
48	I		1	31
49	J. .		1	31
50	K.		1	31
51	J.		1	31
52	K. .		1	31
53	J. .		1	31
54	K .		1	31
55	J.		1	31
56	K. .		1	31
57	J. .		1	31
58	K.		1	31
59			1	31
60	I. . . . 0. .		2	30
61	J.1. .		2	30
62			2	30
63			2	30
		Eq	Def	Combined
	Sub-total: $16 \leq t \leq 31$	4	13	
	Sub-total: $32 \leq t \leq 47$	-	2	
	Sub-total: $48 \leq t \leq 63$	-	20	
	SubTotal: $16 \leq t \leq 63$ (This Table)	4	35	
	Sub-total: $-2 \leq t \leq 15$ (Table 20)	27	257	
	Total: $-2 \leq t \leq 63$	31	292	323

Table 21. Conditions on $\nabla Q_{t}, 16 \leq t \leq 63$, of the second block to get the correct propagation of differences through f_{t}. There are two new variables with two possibilities each: $I \in\{0,1\}$, and $J \in\{0,1\}$, with $K=\bar{I}$. The column headed by "Eq" contains the number of equality relationships of the form $Q_{t}[j]=Q_{t-1}[j]$. The column headed by "Def" contains the number of definitions of the form $Q_{t}[j]=0$ or $Q_{t}[j]=1$. The column headed by "None" contains the number of bits with no conditions. In the last few rows, the column headed by "Comb." contains the combination of equality relationships and definitions.

B. 4 Values of ∇Q_{t} and ∇f_{t} at All Bit Positions

Tables 22, 23, 24 and 25 list the values of ∇Q_{t} and ∇f_{t} at all bit positions of the second block of the example collision given by Wang et al.

t	δQ_{t}	∇Q_{t}	∇f_{t}	δf_{t}
-3 -2 -1	$\begin{gathered} \quad++ \\ 31 \\ +\quad+ \\ 31,25 \\ +\quad+ \\ 31, \\ 25 \end{gathered}$	$\begin{aligned} & +1010010010110001001001100100100 \\ & +01000+0110001011011111000000110 \\ & +0101+-0000001101101110001010100 \end{aligned}$		
	31			31
0	31, 25	+01100+0100100111101011111001010	+0100000010001101111110001000100	31
1	- ${ }^{1}$, 25	$-10001+0001100111001001011010111$	+0101010000101111101111011000010	31
2	$\overline{31}, \stackrel{+}{25}, \stackrel{+}{5}$	$-10011+1100100110011111111+11001$	111101+0000100111101001011010011	$\stackrel{+}{25}$
3	$\overline{31}, 25,16,11,{ }_{5}^{+}$	-+-----101+-----101+-101+--11110	$-100-1+100-100110011-11111011001$	$\overline{31}, \overline{27},{ }^{25}, \overline{21}, 11$
4	$\overline{31}, \stackrel{+}{25}, \stackrel{+}{5}, \stackrel{1}{1}$	-0111+-0010001001110010000+-+++0	-1----1111010-111011111111011++1	$\stackrel{+}{30}, \stackrel{+}{26}, 18, \stackrel{+}{2}, \stackrel{+}{1}$
5	$\stackrel{+}{31, ~} \stackrel{+}{9}, \stackrel{+}{6}, \stackrel{+}{0}$	+100101100101111101+---++-01000+	-0--1--0010-01001010010-00--1110	$\stackrel{+}{30}, \stackrel{+}{27}, \stackrel{+}{25}, \overline{20}, \overline{8}, \overline{6}, \stackrel{+}{4}$
6	$\stackrel{+}{31}, \overline{20}, \overline{16}$	+010010010-+00-+1100110001010110	100110-001-001-+1010--000-+1+000	$\overline{25}, \overline{21}, \overline{16}, \overline{11}, \overline{10}, \overline{5}, \stackrel{+}{3}$
7	$\overline{31}, \overline{27}, \overline{6}$	-01-+11011000101100111-+++100101	+110-1011010101+1010110001010100	$\stackrel{+}{31,} \overline{27},{ }_{1}^{+}$
	$-\quad-\quad+$			+ + -
8	$31,23,17,15$	-0000-+++11100-+-101011111110000	101001+01100000+100111-+++100110	25, 16, 6
9	-31, $\stackrel{+}{6}, \stackrel{+}{0}$	-111110001111001001110+---0110+-	-0000-101111010+100101111111010+	$\overline{31}, 2 \mathbf{2 6},{ }_{16}^{+}, \stackrel{+}{0}$
10	$\overline{31},{ }_{12}^{+}$	-000111110001011110+101111111100	-000110001111001000111+---011000	$\overline{31},{ }_{6}^{+}$
11	31	-0001111001011011100011111010011	-1111111010110011111101111011000	31
12	$\overline{31}, \overline{13}, \overline{7}$	-00011110000-+++++++10111-0110000	-000111110001+-11100111111011100	$\overline{31}, 17$
	+ +			
13	31, 24	++------010011111111101000011010	-00011110010-+++++++1011111010001	31, 13
14	$\stackrel{+}{1}$	+1000000111110111111001010111100	$1+00111101001+11111011100011000$	$\stackrel{+}{30}, \stackrel{+}{18}$
15	$\stackrel{+}{31}, \stackrel{+}{15}, \stackrel{+}{3}$	+111110101010001+01011001011+111	+10000-0010111111111001010111100	$\stackrel{+}{31}, \overline{25}$

Table 22. Values of ∇Q_{t} and ∇f_{t} at all bit positions for $0 \leq t \leq 15$, in the second block.

t	δQ_{t}	∇Q_{t}	∇f_{t}	δf_{t}
14	$\stackrel{+}{31}$ + 31,1 15	$\begin{aligned} & +1000000111110111111001010111100 \\ & +111110101010001+01011001011+111 \end{aligned}$		
16	$\stackrel{+}{31,29}$	+0-01110000100001101110110101110	+0111101000100001101110010101111	+ 31 + +
17	${ }^{+}$	+0001101010110001001111010001111	+0001111010100001101110110001111	$\stackrel{+}{+}$
18	$\stackrel{+}{31}$	+0001010101100100001010101111101	+0001011010110000001011100101101	${ }^{+}$
19	$\stackrel{+}{31} \stackrel{1}{17}^{+}$	+1100101010111+11001100001000100	+0000111111110101001100101110100	$\stackrel{+}{+}$
20	$\stackrel{+}{31}$	+0001011100011001010011000111000	+1101111110011011000110000111000	$\stackrel{+}{31}$
21	$3{ }^{+}$	+0010101111100011000100011000100	+0001111110100011010111001111100	${ }_{31}^{+}$
22	$\stackrel{+}{31}$	+0000001011100100110011001110010	+0010101011100010010111011110100	$\stackrel{+}{31}$
23		00011111111011011111010000111000	00010101111000111110011000110010	
24		11010110011010110000001000100111	+0011110111011111001001000101010	31
25		00011010011000101100001010101111	11011010011000101100001000101111	
26		01000111111110110001001110011101	01001110011010111100001010001101	
27		01010010011001001010000110111110	01010111111110011001000110111110	
28		01010110111000110111010110011011	01010110111001111011000110111011	
29		01110111001001111100111101101100	01010110101001111101010100101101	
30		11001011111100110001110010001100	01100011111001111001111011101100	
31		11011111010010000100011111100111	11011111110100000101011111100100	

Table 23. Values of ∇Q_{t} and ∇f_{t} at all bit positions for $16 \leq t \leq 31$, in the second block.

t	δQ_{t}	∇Q_{t}	∇f_{t}	δf_{t}
30		11001011111100110001110010001100		
31		11011111010010000100011111100111		
32		11001110101100100110001001111111	11011010000010010011100100010100	
33		10110001010001010011110110100100	10100000101111110001100000111100	
34		11001011110110110011000100010001	10110100001011000110111011001010	
35	31	-0110000001001111000111000111000	-1001010101110011000001010001101	$\overline{31}$
36	${ }_{31}^{+}$	+0010100110111110011110000010100	01101111001000111000001100111101	
37	$\stackrel{+}{31}$	+0101111000011100000110000101010	-0001011111101101011111000000110	31
38	$\overline{31}$	-0001000100111011011011110000100	-0110011010011001000011110111010	- 31
39	31	-1110011110000011010000101100100	+1010100010100100001101011001010	$\stackrel{+}{+}$
	-			31
	31	1	-1010111011011101110011000000001	31 + +
41	31	+1111010111101100101010111101010	+0100101000001010000010001101111	31
42	31	-0000010011100100111000100110101	+1010100101101101101010000111110	$\stackrel{+}{31}$
43	31	-0001101111101000110001111110010	+1110101011100000100011100101101	$\stackrel{+}{31}$
44	-	-0101111101110101111001000110001	-0100000001111001110000011110110	31
45	31	-0110110000010001011011011001111	-0010100010001100010011100001100	-31
46	- 31	-0110011010000010101010110101001	-0101010111100110001000101010111	- 31
	${ }^{+}$,
47	31	+1110001101101111001000111011010	+1110100111111100111001010111100	31

Table 24. Values of ∇Q_{t} and ∇f_{t} at all bit positions for $32 \leq t \leq 47$, in the second block.

t	δQ_{t}	∇Q_{t}	∇f_{t}	δf_{t}
46 47	31 + 31	$\begin{aligned} & -0110011010000010101010110101001 \\ & +1110001101101111001000111011010 \end{aligned}$		
48	31	-0001101001001101001000010100100	-0111100000010010010101100101100	31
49	$\stackrel{+}{31}$	+1100011001010101000010111110001		$\stackrel{+}{31}$
50	$\stackrel{+}{+}$			
51	31	+0110000010100100001100100101001	-0110110011100110110101010111101	31
52	$\stackrel{+}{31}$	+0100001100110111011111010011001	-1000101100010011110011111010100	31
53	$\stackrel{+}{31}$	+0011000011010101101101111110011	-1111110011101000100000101101110	31
54	31	+0000010011111101000110110101000	-1000110000101000001011000011101	31
55	${ }_{31}^{+}$	+0001000011100010110011000101010	-1101101100010111110101110000110	31
	+			
56	31	+1000001111101111000101100010011	-1110101100001101001110101111101	31
57	31	+0001000001111110101100001010000	-0111110010010000101001011000110	31
58	$\stackrel{+}{31}$	+1110110100011010110011011011010	-1110110101100100010111010101110	31
59	$\stackrel{+}{31}$	+1110111000110110110101101100101	-0000001010101101000100100110101	31
60		-1100000001010110101000010100010	10011110011000001011001011000010	
61	31	+1000011101010101000001011111011	+0101011110001011100011001011001	31
62	$\overline{31}, \overline{25}$	-10100-1010110100000100111101001	-0011100011101000010110100000110	31
63	+ \quad -	+1110-+1010111110010001101101000	$+0101110000001010111011010000101$	$\stackrel{+}{+}$

Table 25. Values of ∇Q_{t} and ∇f_{t} at all bit positions for rounds $48 \leq t \leq 63$, in the second block.

[^0]: ${ }^{1}$ The attacker need not guess $X[31]$ to determine δX, since differences in the most significant bit always contribute an add-difference of 2^{31}.

