
On the Limitations of Universally Composable Two-

Party Computation Without Set-up Assumptions∗

Ran Canetti† Eyal Kushilevitz‡ Yehuda Lindell§

May 17, 2004

Abstract

The recently proposed universally composable (UC) security framework for analyzing se-
curity of cryptographic protocols provides very strong security guarantees. In particular, a
protocol proven secure in this framework is guaranteed to maintain its security even when run
concurrently with arbitrary other protocols. It has been shown that if a majority of the parties
are honest, then universally composable protocols exist for essentially any cryptographic task
in the plain model (i.e., with no setup assumptions beyond that of authenticated communica-
tion). When honest majority is not guaranteed, general feasibility results are known only given
trusted set-up, such as in the common reference string model. Only little was known regarding
the existence of universally composable protocols in the plain model without honest majority,
and in particular regarding the important special case of two-party protocols.

We study the feasibility of universally composable two-party function evaluation in the plain
model. Our results show that in this setting, very few functions can be securely computed in the
framework of universal composability. We demonstrate this by providing broad impossibility
results that apply to large classes of deterministic and probabilistic functions. For some of these
classes, we also present full characterizations of what can and cannot be securely realized in the
framework of universal composability. Specifically, our characterizations are for the classes of
deterministic functions in which (a) both parties receive the same output, (b) only one party
receives output, and (c) only one party has input.

Keywords: Secure two-party computation, universal composability, impossibility results.
∗An extended abstract of this work appeared at EUROCRYPT 2003.
†IBM T.J.Watson Research, 19 Skyline Drive, Hawthorne NY 10532, USA. email: canetti@watson.ibm.com.
‡Computer Science Department, Technion, Haifa 32000, Israel. email: eyalk@cs.technion.ac.il. Part of this

work was done while the author was a visitor at IBM T.J.Watson Research Center.
§IBM T.J.Watson Research, 19 Skyline Drive, Hawthorne NY 10532, USA. email: lindell@us.ibm.com.

1 Introduction

Traditionally, cryptographic protocol problems were considered in a model where the only involved
parties are the actual participants in the protocol, and only a single execution of the protocol
takes place. This model allows for relatively concise problem statements, simplifies the design
and analysis of protocols, and is a natural choice for the initial study of protocols. However,
this model of “stand-alone computation” does not fully capture the security requirements from
cryptographic protocols in modern computer networks. In such networks, a protocol execution
may run concurrently with an unknown number of other copies of the protocol and, even worse,
with unknown, arbitrary protocols. These arbitrary protocols may be executed by the same parties
or other parties, they may have potentially related inputs and the scheduling of message delivery
may be adversarially coordinated. Furthermore, the local outputs of a protocol execution may
be used by other protocols in an unpredictable way. These concerns, or “attacks” on a protocol
are not captured by the stand-alone model. Indeed, over the years definitions of security became
more and more sophisticated and restrictive, in an effort to guarantee security in more complex,
multi-execution environments. However, in spite of the growing complexity, none of the proposed
notions guarantee security in arbitrary multi-execution and multi-protocol environments.

An alternative approach to guaranteeing security in arbitrary protocol environments is to use
notions of security that are preserved under general protocol composition. This approach was
adopted by [c01], where a general framework for defining security of protocols was proposed. In this
framework, called the universally composable (UC) security framework, protocols are designed and
analyzed as stand-alone. Yet, once a protocol is proven secure, it is guaranteed that the protocol
remains secure even when composed with an unbounded number of copies of either the same
protocol or other unknown protocols. This guarantee is provided by a general composition theorem.

UC notions of security for a given task tend to be considerably more stringent than other notions
of security for the same task. Consequently, many known protocols (e.g., the general protocol of
[gmw87], to name one) are not UC secure. Thus, the feasibility of realizing cryptographic tasks
requires re-investigation within the UC framework. Let us briefly summarize the known results.

In the case of a majority of honest parties, there exist UC secure protocols for computing any
functionality ([c01], building on [bgw88, rb89, cfgn96]). Also, in the honest-but-curious case
(i.e., when even corrupted parties follow the protocol specification), UC secure protocols exist for
essentially any functionality [clos02]. However, the situation is different when no honest majority
exists and the adversary is malicious (in which case the corrupted parties can arbitrarily deviate
from the protocol specification). In this case, UC secure protocols have been demonstrated for a
number of specific (but important) functionalities such as key exchange and secure communica-
tion [ck02, c03]. Furthermore, in the common reference string model, UC secure protocols exist
for essentially any two-party and multi-party functionality, with any number of corrupted parties
[clos02]1 In addition, it has been shown that in the plain model (i.e., assuming authenticated
channels, but without any additional set-up assumptions), there are a number of natural two-party
functionalities that cannot be securely realized in the UC framework. These include coin-tossing,
bit commitment, and zero-knowledge [c01, cf01].

These results leave open the possibility that useful relaxations of the coin-tossing, bit commit-
ment and zero-knowledge functionalities can be securely realized. A natural open question is what
are the tasks that can be securely realized in the UC framework with a malicious adversary, no
honest majority, and in the the plain model.

1In the common reference string model, it is assumed that all parties have access to a common string that is
chosen by a trusted party according to some specified distribution. This implies an implicit trusted setup phase.

1

Our results. We concentrate on the case of two-party function evaluation, where the parties
wish to evaluate some predefined function of their local inputs. We present extensive impossibility
results for both deterministic and probabilistic functions in the UC framework. For some classes of
functions, we also present full characterizations of what can and cannot be securely realized in the
UC framework. Below, we refer to functions f = (f1, f2) where the designated output of party P1

is f1(x1, x2) and the designated output of party P2 is f2(x1, x2). We now briefly summarize some
of our results (all of the results below relate to feasibility in the plain model):

1. Impossibility for general deterministic functions: Informally stated, a function is said to be
completely revealing for party P1, if party P2 can choose an input so that the output of the
function (when applied to P1’s input and the input chosen by P2) fully reveals P1’s input.
That is, a function f = (f1, f2) is completely revealing for P1 if there exists an input x2 for
P2 so that for every x1, it is possible to derive x1 from f2(x1, x2).

We prove that a deterministic two-party function f = (f1, f2) cannot be securely realized in
the UC framework unless it is completely revealing for both P1 and P2.

2. Characterization for single-input deterministic functions: A function f is single-input if it
depends on at most one of its two inputs (i.e., f(x1, x2) = g(xi) for some function g and
i ∈ {1, 2}). A function g is efficiently invertible if there exists an efficient inverting algorithm
M that successfully inverts g for any samplable distribution over the input x.

We prove that a deterministic single-input function can be securely realized in the UC frame-
work if and only if it is efficiently invertible.

3. Characterization for same-output deterministic functions: A function f is same-output if
f1 = f2 (i.e., both parties receive the same output).

We prove that a deterministic same-output function can be securely realized in the UC frame-
work if and only if it is single-input and efficiently invertible.

4. Characterization for single-output deterministic functions over finite domains: A function f
is single-output if one of f1 or f2 are empty (i.e., only one party receives output).

We prove that a deterministic single-output function over a finite domain can be securely
realized in the UC framework if and only if it is completely revealing (as defined above).

5. Impossibility for same-output probabilistic functions: Loosely speaking, we say that a proba-
bilistic function f is unpredictable for P2 if there exists an input x1 for P1 such that for every
input x2 and every possible output value v, there is at least a non-negligible probability that
f(x1, x2) does not equal v. (That is, f(x1, x2) is a random variable that does not almost
always accept a single value v. In such a case, f(x1, x2) defines a non-trivial distribution,
irrespective of the value x2 that is input by P2.) Likewise, f is unpredictable for P1 if there ex-
ists an x2 such that for every x1 and every v, with at least non-negligible probability f(x1, x2)
does not equal v.

We prove that a probabilistic same-output function that is unpredictable for both P1 and P2

cannot be securely realized in the UC framework.2

2We note that in the preliminary version of this paper that appeared at EUROCRYPT 2003, it was erroneously
stated that impossibility holds if f is unpredictable for P1 or P2. This is incorrect; unpredictability for both parties
is needed.

2

Interestingly, our results hold unconditionally, in spite of the fact that they rule out protocols that
provide only computational security guarantees. We remark that security in the UC framework
allows “early stopping”, or protocols where one of the parties may abort after it receives its output
and before the other party has received output (that is, fairness is not required). Hence, our
impossibility results do not, and cannot, rely on an early stopping strategy by the adversary (as
used in previous impossibility results like [c86]). We also note that our impossibility results hold
even for the case of static adversaries (where the set of corrupted parties is fixed ahead of time).

Our results provide an alternative proof to previous impossibility results regarding UC zero-
knowledge and UC coin-tossing in the plain model [c01, cf01]. In fact, our results also rule out
significant relaxations of these functionalities. We stress, however, that these results do not rule
out the possibility of securely realizing interesting functionalities like key-exchange, secure message
transmission, digital signatures, and public-key encryption in the plain model. Indeed, as noted
above, these functionalities can be securely realized in the plain model [c01, ck02].

Techniques. The proofs of the impossibility results utilize the strong requirements imposed by
the UC framework in an essential way. The UC definition follows the standard paradigm of com-
paring a real protocol execution to an ideal process involving a trusted third party.3 It also differs
in a very important way. The traditional model considered for secure computation includes the
parties running the protocol, plus an adversary A that controls a set of corrupted parties. In
the UC framework, an additional adversarial entity called the environment Z is introduced. This
environment generates the inputs to all parties, reads all outputs, and in addition interacts with
the adversary in an arbitrary way throughout the computation. A protocol securely computes a
function f in this framework if for any adversary A that interacts with the parties running the
protocol, there exists an ideal process adversary (or “simulator”) S that interacts with the trusted
third party, such that no environment Z can tell whether it is interacting with A and the parties
running the protocol, or with S in the ideal process.

On a high level, our results are based on the following observation. A central element of the UC
definition is that the real and ideal process adversaries A and S both interact with the environment
Z in an “on-line” manner. This implies that S must succeed in simulation while interacting with
an external adversarial entity that it cannot “rewind”. In a setting without an honest majority or
setup assumptions that can be utilized, it turns out that the simulator S has no advantage over a
real participant. Thus, a corrupted party can actually run the code of the simulator.

Given the above observation, we demonstrate our results in two steps. First, in Section 3,
we prove a general “technical lemma,” asserting that a certain adversarial behavior (which is
based on running the code of the simulator) is possible in our model. We then use this lemma
in Sections 4 and 5 to prove the respective impossibility results and characterizations mentioned
above. (Impossibility for probabilistic functions is proven separately in Section 6, but uses the
same ideas.) Loosely speaking, the technical lemma states that a real adversary can do to an
honest party “whatever” an ideal process simulator can do. For example, one thing that an ideal
process simulator must be able to do is to extract the input used by the real model adversary.
Therefore, the lemma states that a real model adversary can also extract the input used by an
honest party. This implies that any function that can be securely realized in the UC framework
must reveal the input of the participating parties. Thus, only completely revealing functions (as
described above) can be securely realized.

3This well-established paradigm of defining security can be described as follows. First, an ideal execution is
defined. In such an execution, the parties hand their inputs to a trusted third party, who simply computes the
desired functionality, and hands each party its designated output. Security is then formulated by requiring that the
adversary should not be able to do any more harm in a real execution of the protocol than in this ideal execution.

3

Impossibility for variants of the UC definition. Different variants of the UC definition
have been presented. One aspect where these variants differ is regarding the delivery of messages
between the ideal functionality and the parties in the ideal model. Our results hold for all known
variants. Another issue where some published variants differ is with respect to the running time of
the parties. The original UC definition [c01] models polynomial-time computation as “polynomial
in the security parameter”. In the revised version of [c01], polynomial-time computation is defined
as “polynomial in the input length” [c04]. (The reasons for these changes are discussed in detail
in [c04].) Our impossibility results hold for both of these definitions (without any modification
to the proofs). Due to its lack of effect on our results, we ignore this technical detail in the
presentation. Finally, we note that adaptive corruption strategies are also not used in proving our
results; therefore, impossibility also holds when the adversary is limited to static corruptions.

Impossibility for relaxations of the UC definition. Our impossibility results also apply
to two relaxations of the UC definition. The first relaxation relates to the complexity of the
environment. The UC definition models the environment as a non-uniform Turing machine. A
natural relaxation to consider is one where the environment is modelled as a uniform machine.
(This relaxation was first considered by [hms03], who also showed that the UC composition theorem
holds even when the environment is uniform.) We prove impossibility results also for this relaxation
(the results obtained are only slight variations of those proven for the case that the environment is
non-uniform).

The second relaxation relates to the order of quantifiers between the adversary and the envi-
ronment in the definition. The UC definition requires that for every adversary A, there should
exist a simulator S such that no environment Z can distinguish a real execution with A from an
ideal process execution with S (i.e., the order of quantifiers is ∀A∃S∀Z). Thus, a single simulator
S must successfully simulate for all environments Z. A relaxation of this would allow a different
simulator for every environment; i.e., ∀A∀Z∃S. This difference is only relevant when considering
the UC definition of [c01], where polynomial-time computation is defined as “polynomial in the
security parameter”. In this model, it is unknown whether or not the definitions with the origi-
nal and reversed order of quantifiers are equivalent. In contrast, when modelling polynomial-time
computation as “polynomial in the input length”, as in the UC definition of [c04], this reversal of
quantifiers has no effect. That is, the definitions with the original and reversed order of quantifiers
are equivalent [c04]. As we have mentioned, our main results are identical for the definition of
[c04] and for the original UC definition of [c01]. However, they do not imply impossibility for the
relaxed variant of the definition of [c01] where the order of quantifiers is reversed. We therefore
show how to extend our impossibility results (with a few mild modifications) to this relaxed variant
as well.

Related work. Characterizations of the functions that are securely computable were made in a
number of other models and with respect to different notions of security. For example, in the case
of honest-but-curious parties and information-theoretic privacy, characterizations of the functions
that can be computed were found for the two-party case [ck89, k89], and for boolean functions
in the multiparty case [ck89]. In [bmm99], the authors consider a setting of computational secu-
rity against malicious parties where the output is given to only one of the parties, and provide a
characterization of the complete functions. (A function is complete if given a black-box for com-
puting it, it is possible to securely compute any other function.) Some generalizations were found
in [k00]. Similar completeness results for the information-theoretic, honest-but-curious setting are
given in [kkmo00]. Interestingly, while the characterizations mentioned above are very different

4

from each other, there is some similarity in the type of structures considered in those works and
in ours (e.g., the insecure minor of [bmm99] and the embedded-OR of [kkmo00]). A character-
ization of the complexity assumptions needed to compute functions in a computational setting
(i.e., bounded adversary and arbitrary input sizes) is given in [hnrr04], based on a stand-alone,
indistinguishability-based definition of security for the honest-but-curious setting.

Subsequent work. Subsequent to this work, our results have formed the basis for other impos-
sibility results. In order to describe these results, we introduce the terminology of self and general
composition. Loosely speaking, a protocol is said to be secure under concurrent general composition
if it remains secure when run concurrently with any other arbitrary protocol (thus UC security
implies security in this setting). A more restricted type of composition, called concurrent self com-
position, considers the case that a secure protocol runs concurrently with itself (i.e., it alone is run
many times concurrently). We can even further restrict the setting to one where only two parties
exist in the network, and they alone run many copies of the protocol.

It has been shown that any definition of security that follows the standard simulatability
paradigm and implies security under concurrent general composition implies security under a variant
of universal composability where the order of quantifiers is reversed [l03]. Therefore, our impossi-
bility results for this relaxed variant of the UC definition apply to any such definition that implies
security under concurrent general composition. Next, it was shown that security under concur-
rent self composition is actually equivalent to security under concurrent general composition [l04].
Therefore, our impossibility results apply even to the setting of concurrent self composition.

Open questions. Although the impossibility results in this work are quite broad (and even
provide full characterizations in some cases), many open questions still remain. First, we do not
deal with the case of reactive functionalities at all. Second, we do not deal with functionalities which
obtain inputs directly from the adversary and provide outputs directly to the adversary. (Indeed,
the ability to “directly communicate with the adversary” was already used to provide meaningful
relaxations of functionalities. See for instance the “non-information oracles” of [ck02].) Third, our
impossibility results for general deterministic functionalities and for probabilistic functionalities are
far from full characterizations. Thus, we still do not have a full and exact understanding of what
functions can and cannot be securely realized under the UC definition in the plain model. Given
the wide applicability of impossibility results in the UC framework (as described in the previous
paragraph), it is important to fully resolve these questions.

2 Review of UC security

We present a very brief overview of how security is defined in the UC framework. See [c01] for
further details.

As in other general definitions (e.g., [gl90, mr91, b91]), the security requirements of a given
task (i.e., the functionality expected from a protocol that carries out the task) are captured via a
set of instructions for a “trusted party” that obtains the inputs of the participants and provides
them with the desired outputs. Informally, a protocol securely carries out a given task if running
the protocol with a real adversary amounts to “emulating” an ideal process in which the parties
hand their inputs to a trusted party who computes the appropriate functionality and hands their
outputs back, without any other interaction. We call the algorithm run by the trusted party the
ideal functionality, and describe the interaction in the ideal model to be between the parties and the

5

ideal functionality (with the understanding that what we really mean is the trusted party running
this functionality).

In order to prove the universal composition theorem, the notion of emulation in this framework
is considerably stronger than in previous ones. Traditionally, the model of computation includes
the parties running the protocol and an adversary A that controls the communication channels and
potentially corrupts parties. “Emulating an ideal process” means that for every adversary A there
should exist an “ideal process adversary”, or simulator, S such that the distribution over all parties’
inputs and outputs is essentially the same in the ideal and real processes. In the UC framework, an
additional entity, called the environment Z, is introduced. The environment generates the inputs
to all parties, reads all outputs, and in addition interacts with the adversary in an arbitrary way
throughout the computation. A protocol is said to securely realize a given ideal functionality F if
for any “real-life” adversary A that interacts with the protocol and the environment there exists an
“ideal-process adversary” S, such that no environment Z can tell whether it is interacting with A
and parties running the protocol, or with S and parties that interact with F in the ideal process.
In a sense, here Z serves as an “interactive distinguisher” between a run of the protocol and the
ideal process with access to F . A bit more precisely, Let realπ,A,Z be the ensemble describing the
output of environment Z after interacting with parties running protocol π and with adversary A.
Similarly, let idealF ,S,Z be the ensemble describing the output of environment Z after interacting
in the ideal process with adversary S and parties that have access to the ideal functionality F .
We note that all entities run in time that is polynomial in the security parameter, denoted by k.
In addition, the environment receives an initial input z, and security is required to hold for all
such inputs (this makes the environment a non-uniform machine). Security in the UC framework
is formalized in the following definition.

Definition 2.1 Let F be an ideal functionality and let π be a two-party protocol. We say that π
securely realizes F if for every adversary A there exists an ideal-process adversary S such that for
every environment Z, the ensembles idealF ,S,Z and realπ,A,Z are indistinguishable.

Variants of the UC definition. As we have discussed, our results hold for all known variants
of the UC definition. As will become evident from the proofs, the impossibility results are very
robust and are not dependent on minor changes to the specific UC formalization.

The plain model. As we have mentioned, our impossibility results here are for the plain model,
where no trusted preprocessing phase is assumed. This model is defined as the basic UC model
(as described above), together with authenticated channels. (Formally, authenticated channels are
modelled by considering the Fauth-hybrid model, as described in [c01].)

Non-trivial protocols and the requirement to generate output. As we have mentioned
above, in the variant of UC that we consider here, the ideal-process adversary can choose when (if
ever) to deliver messages that are sent between the parties and the ideal functionality. Consequently,
the definition provides no guarantee that a protocol will ever generate output or “return” to the
calling protocol. Rather, the definition concentrates on the security requirements in the case that
the protocol generates output.

A corollary of the above fact is that a protocol that “hangs”, never sends any messages and
never generates output, securely realizes any ideal functionality. However, such a protocol is clearly
not interesting. We therefore use the notion of a non-trivial protocol [clos02]. Such a protocol has
the property that if the real-life adversary delivers all messages and does not corrupt any parties,

6

then the ideal-process adversary also delivers all messages (and does not corrupt any parties).
Thus, non-trivial protocols have the minimal property that when all participants are honest (and
the adversary does not prevent any messages from being delivered), then all parties receive output.
Our impossibility results are for non-trivial protocols only.

The UC composition theorem. As mentioned, a universally composable protocol remains
secure under a very general composition operation. In particular, it maintains its security even
when run concurrently with other arbitrary protocols that are being run by arbitrary sets of possibly
different sets of parties, with possibly related inputs. Thus, universally composable protocols can
be used in modern networks, and security is guaranteed. It is therefore of great importance to
understand what functions can and cannot be securely realized under this definition. See [c01] for
more details.

3 The Main Technical Lemma for Deterministic Functions

This section contains the main technical lemma that is used for proving our impossibility results.
Loosely speaking, the lemma describes an “attack” that is possible against any universally com-
posable protocol that securely realizes a deterministic function f . This lemma itself does not claim
impossibility of securely realizing any functionality. However, in Section 4, we use it for proving all
our impossibility results.

Notation. We consider deterministic, polynomial-time computable functions f : X × X →
{0, 1}∗ × {0, 1}∗, where X ⊆ {0, 1}∗ is an arbitrary, possibly infinite, domain (for simplicity of
notation, we assume that both parties’ inputs are from the same domain; changing this makes no
difference to our results). We note that functions that depend on the security parameter can be
derived by defining X = N × {0, 1}∗. These functions have two outputs, one for each party. We
denote f = (f1, f2) where f1 denotes the first party’s output and f2 denotes the second party’s
output.

Motivation. To motivate the lemma, recall the way an ideal-model simulator typically works.
Such a simulator interacts with an ideal functionality by sending it an input (in the name of the
corrupted party) and receiving back an output. Since the simulated view of the corrupted party
is required to be indistinguishable from its view in a real execution, it must hold that the input
sent by the simulator to the ideal functionality corresponds to the input that the corrupted party
(implicitly) uses. Furthermore, the corrupted party’s output from the protocol simulation must
correspond to the output received by the simulator from the ideal functionality. That is, such a
simulator must be able to “extract” the input used by the corrupted party, in addition to causing
the corrupted party to output a value that corresponds to the output received by the simulator
from the ideal functionality.

We show that, essentially, a malicious P2 can do “whatever” the simulator can do. That is,
consider the simulator that exists when P1 is corrupted. This simulator can extract P1’s input and
can also cause its output to be consistent with the output from the ideal functionality. Therefore,
P2 (when interacting with an honest P1) can also extract P1’s input and cause its output to
be consistent with an ideally generated output. Indeed, P2 succeeds in doing this by internally
running the ideal-process simulator for P1. In other models of secure computation, this cannot
be done because a simulator typically has some additional “power” that a malicious party does

7

not. (This power is usually the ability to rewind a party or to hold its description or code.) Thus,
we actually show that in the plain model and without an honest majority, the simulator for the
UC setting has no power beyond what a real (adversarial) party can do in a real execution. This
enables a malicious P2 to run the simulator as required. We now describe the above-mentioned
strategy of P2.

Strategy description for P2: The malicious P2 that we construct internally runs two separate
machines (or entities): P a

2 and P b
2 . Entity P a

2 interacts with (the honest) P1 and runs the simulator
that is guaranteed to exist for P1, as described above. In contrast, entity P b

2 emulates the ideal
functionality for the simulator that is run by P a

2 . Loosely speaking, P a
2 first “extracts” the input

used by P1. Entity P a
2 then hands this input to P b

2 , who computes the function output and hands
it back to P a

2 . Entity P a
2 then continues with the emulation, and causes P1 to output a value that

is consistent with the input that is chosen by P b
2 . We now formally define this strategy of P2.

We begin by defining the structure of this adversarial attack, which we call a “split adversarial
strategy”, and then proceed to define what it means for such a strategy to be “successful”.

Definition 3.1 (split adversarial strategy): Let f : X×X → {0, 1}∗×{0, 1}∗ be a polynomial-time
function where f1 and f2 denote the first and second outputs of f , respectively, and let Πf be a
protocol. Let X2 ⊆ X be a polynomial-size subset of inputs (i.e., |X2| = poly(k), where k is the
security parameter), and let x2 ∈ X2. Then, a corrupted party P2 is said to run a split adversarial
strategy if it consists of machines P a

2 and P b
2 such that:

1. Upon input (X2, x2), party P2 internally gives the machine P b
2 the input pair (X2, x2).

2. An execution between (an honest) P1 running Πf and P2 = (P a
2 , P b

2) works as follows:

(a) P a
2 interacts with P1 according to some specified strategy.

(b) At some stage of the execution P a
2 hands P b

2 a value x′1.

(c) When P b
2 receives x′1 from P a

2 , it computes y′1 = f1(x′1, x′2) for some x′2 ∈ X2 of its
choice.4

(d) P b
2 hands P a

2 the value y′1, and P a
2 continues interacting with P1.

Informally speaking, a split adversarial strategy is said to be successful if the value x′1 procured by
P a

2 is “equivalent to” (the honest) P1’s input x1 with respect to f2. That is, the output of P2, when
computed according to f2, is the same whether x1 or x′1 is used. (Note that x′1 may differ from
x1 with respect to P1’s output, but we consider the effect on P2’s output only.) Furthermore, P a

2

should succeed in causing P1 to output the value y1 = f1(x1, x
′
2). That is, the output of P1 should

be consistent with the value x′2 chosen by P b
2 .

Definition 3.2 (successful strategies): Let f be a polynomial-time function and Πf a protocol, as
in Definition 3.1. Furthermore, let k be the security parameter and let Z be an environment who
hands an input x1 ∈ X to P1 and a pair (X2, x2) to P2, where X2 ⊆ X, |X2| = poly(k), and
x2 ∈r X2.5 Then, a split adversarial strategy for a malicious P2 is said to be successful if for every

4The choice of x′2 can depend on the values of both x′1 and x2 and can be chosen by P b
2 according to any efficient

strategy. The fact that x′2 must come from the polynomial-size subset of inputs X2 is needed for proving the existence
of a successful split adversarial strategy, as defined below.

5Formally, Z can only write a single input x2 on the input tape of P2. However, in this case P2 is corrupted and
so Z can pass it the set X2 using the communication between the adversary and the environment.

8

Z as above and every input z to Z, the following two conditions hold in a real execution of P2 with
Z and an honest P1:

1. The value x′1 output by P a
2 in step 2b of Definition 3.1 is such that for every x2 ∈ X2,

f2(x′1, x2) = f2(x1, x2).

2. P1 outputs f1(x1, x
′
2), where x′2 is the value chosen by P b

2 in step 2c of Definition 3.1.

Loosely speaking, the lemma below states that a successful split adversarial strategy exists for
any protocol that securely realizes a two-party function in the plain model. In Section 4, we will
show that the existence of successful split adversarial strategies rules out the possibility of securely
realizing large classes of functions. We are now ready to state the lemma:

Lemma 3.3 (main technical lemma): Let f be a polynomial-time two-party function, and let Ff

be the two-party ideal functionality that receives x1 from P1 and x2 from P2, and hands them back
their respective outputs f1(x1, x2) and f2(x1, x2). If Ff can be securely realized in the plain model
by a non-trivial protocol Πf ,6 then there exists a machine P a

2 such that for every machine P b
2 of

the form described in Definition 3.1, the split adversarial strategy for P2 = (P a
2 , P b

2) is successful,
except with negligible probability.

Proof: The intuition behind the proof is as follows. If Ff can be securely realized by a protocol
ΠF , then this implies that for any real-life adversary A (and environment Z), there exists an ideal-
process adversary (or “simulator”) S. As we have mentioned, the simulator S interacts with the
ideal process and must hand it the input that is (implicitly) used by the adversary while controlling
the corrupted party. In other words, S must be able to extract the input used by A. The key point
in the proof is that S must essentially accomplish this extraction while running a “straight-line
black-box” simulation. (This just means that S cannot rewind A and also has no access to its
code. Stated differently, S interacts with A just like real parties interact in a protocol execution.)
This is shown as follows. Consider the case that Z and A cooperate so that Z runs the adversarial
strategy and A does nothing but forward messages between Z and the honest party. In this case,
S must extract the input that is implicitly used by Z (since A actually does nothing). However, S
interacts with Z like in a real interaction (i.e., in a “straight-line black-box” manner). Therefore,
S must successfully extract even in such a scenario. To complete the intuition for success for item
(1) of Definition 3.2, consider the case that Z’s adversarial strategy is just to follow the protocol
instructions of Πf for the honest P1. Then, we have that S can extract the honest P1’s output in a
real protocol interaction (because this interaction with P1 is the same as with Z, where successful
extraction is guaranteed). Thus, machine P a

2 just consists of running S with P1, in order to obtain
P1’s input. The above intuition relates to success under item (1) of Definition 3.2 (i.e., input
extraction). Similar arguments are used also to prove item (2). We proceed to the formal proof.

Assume that Ff can be securely realized by a protocol Πf . Then, for every real-life adversary
A there exists an ideal-process adversary/simulator S such that no environment Z can distinguish
between an execution of the ideal process with S and Ff and an execution of the real protocol Πf

with A. We now define a specific adversary A and environment Z. The adversary A controls party
P1 and is a “dummy adversary” who does nothing except for delivering all messages that it receives
from P2 to Z, and delivering all messages that it receives from Z to P2. That is, A merely acts as a

6Recall that a non-trivial protocol is such that if the real model adversary corrupts no party and delivers all
messages, then so does the ideal model adversary. This rules out the trivial protocol that does not generate output.
See Section 2 for details.

9

Z (x1) A P
2
(x2)

f1(x1,x2) f2(x1,x2)

The Real Model

Z (x1) S P
2
(x2)

f1(x1,x2) f2(x1,x2)

F
f

The Ideal Model

P
1
(x1) P

2
a

f1(x1,x2)

P
2
b

The Split Adversarial Strategy

Figure 1: Three stages in the proof of Lemma 3.3

bridge that passes messages between Z and P2 (the first box in Figure 1 corresponds to this setting).
Next we define Z. Let X2 be some polynomial-size set of inputs (chosen by Z), and let (x1, x2) be
P1 and P2’s respective inputs as decided by Z, where x2 ∈r X2. Then, Z writes x2 on P2’s input
tape and plays the role of the honest P1 on input x1. That is, Z runs P1’s protocol instructions
in Πf on input x1 and the incoming messages that it receives from A (which are in turn received
from P2). The messages that Z passes to A are exactly the messages as computed by an honest
P1 according to Πf . At the conclusion of the execution of Πf , the environment Z obtains some
output, as defined by the protocol specification for P1 that Z runs internally; we call this Z’s local
P1-output. Z then reads P2’s output tape and outputs 1 if and only if Z’s local P1-output equals
f1(x1, x2) and in addition, P2’s output equals f2(x1, x2); see the first box in Figure 1. Observe
that in the real-life model Z outputs 1 with probability negligibly close to 1. This is because such
an execution of Πf , with the above Z and A, looks exactly like an execution between two honest
parties P1 and P2 upon inputs x1 and x2, respectively. Furthermore, all messages between these
(honest) parties are delivered by the adversary. Intuitively, in such an execution, both parties must
receive output, and this output is exactly f1(x1, x2) and f2(x1, x2), respectively. Formally, this
holds by the assumption that Πf is a non-trivial protocol. (Such a protocol has the property that
if no parties are corrupted in a real execution and the real adversary delivers all messages, then no
parties are corrupted in the ideal process and the ideal adversary delivers all messages between these
parties and the ideal functionality.) Thus, in the ideal process, the parties must receive f1(x1, x2)
and f2(x1, x2), respectively. By the indistinguishability between the real and ideal processes, the

10

same must also hold in a real execution (except with negligible probability). We conclude that Z
outputs 1 in the real-life model, except with negligible probability.

By the assumption that Πf securely realizes Ff , there exists an ideal process simulator S for
the specific A and Z described above (the second box in Figure 1 corresponds to the setting in
which S operates). We will use S to obtain the required strategy for P a

2 (the third box in Figure 1
shows how this strategy is derived). Machine P a

2 invokes simulator S and emulates an ideal process
execution of S with Ff and the above Z. That is, every message that P a

2 receives from the honest
P1 in the real execution of Πf , it forwards to S as if S received it from Z. Likewise, every message
that S sends to Z in the emulation, P a

2 forwards to P1 in the real execution. When S outputs a
value x′1 that it intends to send to Ff , entity P a

2 hands it to P b
2 . Then, when P a

2 receives a value
y′1 back from P b

2 , it passes this to S as if it was sent from Ff , and continues with the emulation.
(Recall that this value y′1 is computed by P b

2 and equals f1(x′1, x′2), for some x′2 ∈ X2 of P b
2 ’s choice.)

We now prove that, except with negligible probability, the above P a
2 is such that for every P b

2 of
the form described in Definition 3.1, party P2 = (P a

2 , P b
2) is a successful split adversarial strategy.

That is, we prove that items (1) and (2) from Definition 3.2 hold with respect to this P2. We begin
by proving that, except with negligible probability, the value x′1 output by P a

2 is such that for every
x2 ∈ X2, f2(x′1, x2) = f2(x1, x2). First, we claim that S’s view in the ideal process with Ff and the
above Z is identical to its view in the emulation with P2 = (P a

2 , P b
2). (Actually, for proving item

(1), it suffices to show that this holds until the point that S outputs x′1.) To see this, notice that
in the ideal process with Ff and Z, the simulator S knows the strategy and input of A. However,
all A does is forward messages between Z and P2. Thus, the only “information” received by S is
through the messages that it receives from Z. Now, recall that in this ideal process, Z plays the
honest P1 strategy upon input x1. Therefore, the messages that S receives from Z are distributed
exactly like the messages that P a

2 forwards to S from the honest P1 in the emulation. Since this
is the only information received by S until the point that S outputs x′1, we have that its views in
both cases are identical. It remains to show that in the ideal process with Ff and Z, simulator S
must obtain and send Ff an input x′1 such that for every x2 ∈ X2, f2(x′1, x2) = f2(x1, x2), except
with negligible probability. (Item (1) follows from this because if S obtains such an x′1 in the ideal
process, then it also obtains it in the emulation with P2 = (P a

2 , P b
2) where its view is identical.)

This can be seen as follows. Assume, by contradiction, that with non-negligible probability x′1 is
such that for some x̃2 ∈ X2, f2(x′1, x̃2) 6= f2(x1, x̃2). Now, if in an ideal execution, P2 has input
x̃2 and S sends x′1 to Ff , then P2 outputs f2(x′1, x̃2) 6= f2(x1, x̃2). By the specification of Z,
when this occurs Z outputs 0. Now, recall that X2 is of polynomial size and that P2’s input is
uniformly chosen from the set X2. Furthermore, the probability that S sends x′1 is independent
of the choice of x2 for P2 (because S has no information on x2 when it sends x′1). Therefore, the
probability that Z outputs 0 is at least 1/|X2| times the probability that x′1 as output by S is
such that for some x̃2, f2(x′1, x̃2) 6= f2(x1, x̃2). Thus, Z outputs 0 in the ideal process with non-
negligible probability. However, we have already argued above that in a real protocol execution, Z
outputs 0 with at most negligible probability. Thus, Z distinguishes the real and ideal executions,
contradicting the security of the protocol. We conclude that except with negligible probability,
item (1) of Definition 3.2 holds.

We proceed to prove item (2) of Definition 3.2. Assume by contradiction, that in the emulation
with P2 = (P a

2 , P b
2), party P1 outputs ỹ1 6= f1(x1, x

′
2) with non-negligible probability. First, consider

the following thought experiment: Modify P b
2 so that instead of choosing x′2 as some function of

x′1 and x2, it chooses x̃2 ∈r X2 instead; denote this modified party P̃ b
2 . It follows that with

probability 1/|X2|, the value chosen by the modified P̃ b
2 equals the value chosen by the unmodified

P b
2 . Therefore, the probability that P1 outputs ỹ1 6= f1(x1, x̃2) in an emulation with the modified

11

P̃2 = (P a
2 , P̃ b

2) equals 1/|X2| times the (non-negligible) probability that this occurred with the
unmodified P b

2 . Since X2 is of polynomial size, we conclude that P1 outputs ỹ1 6= f1(x1, x̃2) with
non-negligible probability in an emulation with the modified P̃2 = (P a

2 , P̃ b
2). Next, we claim that

the view of S in the ideal process with Z and Ff is identical to its view in the modified emulation
by P̃2 = (P a

2 , P̃ b
2). The fact that this holds until S outputs x′1 was shown above in the proof of item

(1). The fact that it holds from that point on follows from the observation that in the emulation by
P̃2 = (P a

2 , P̃ b
2), simulator S receives f1(x′1, x̃2) where x̃2 ∈r X2. However, this is exactly the same as

it receives in an ideal execution (where Z chooses x2 ∈r X2 and gives it to the honest P2). It follows
that the distribution of messages received by P1 in a real execution with P̃2 = (P a

2 , P̃ b
2) is exactly

the same as the distribution of messages received by Z from S in the ideal process. Thus, Z’s
local P1-output in the ideal process is identically distributed to P1’s output in the emulation with
P̃2 = (P a

2 , P̃ b
2). Since with non-negligible probability, in this emulation P1 outputs ỹ1 6= f1(x1, x̃2),

we have that with non-negligible probability, Z’s local P1-output in the ideal process is also not
equal to y1 = f1(x1, x2), where x1 and x2 are the inputs chosen by Z (notice that x2 and x̃2 are
identically distributed). Therefore, Z outputs 0 in the ideal process with non-negligible probability
(since Z outputs 1 only if its local P1-output equals f1(x1, x2) where (x1, x2) are the inputs that it
chose). Thus, Z distinguishes the real and ideal processes. This completes the proof.

Split adversarial strategies for P1. Definitions 3.1 and 3.2, and Lemma 3.3 can all be formu-
lated for P1 instead of P2, and the proof is the same (modulo switching the roles of P1 and P2).

Relaxations of UC. As we have mentioned, we also prove our impossibility results for two
relaxations of the UC definition. Consider first the relaxation obtained by reversing the order of
quantifiers between S and Z. It follows that Lemma 3.3 holds without any modification for this
relaxation; this is the case because in the proof, Z is a fixed strategy. Therefore, S only needs
to successfully simulate the specific environment Z described in the proof. Next, consider the
relaxation of the definition obtained by modelling the environment Z as a uniform machine. In
this case, a slight variant of Lemma 3.3 is obtained; the only difference being that the set X2 and
the inputs x1 and x2 chosen by Z must be uniformly generated.

4 Impossibility Results for Deterministic Functions

In this section we use Lemma 3.3 in order to prove a number of impossibility results. The results
apply to functions with different combinatorial or other properties. Before continuing, we define
the following terminology. A function f = (f1, f2) is called same-output if f1 = f2 (i.e., both parties
receive the same output). Similarly, we say that a function is single-output if either f1 or f2 is the
constant function outputting the empty string λ (i.e., only one party receives output). Finally, we
say that a function is single-input if it depends on the input of only one party. Our impossibility
results in this section relate to functions of the above three classes, as well as to general functions
(where both parties receive possibly different outputs that possibly depend on both inputs). Note
that we actually obtain full characterizations of feasibility for the above three classes of functions
(with the limitation that the characterization for single-output functions is only for the case that
the domain of the function is finite); these are presented in Section 5. In contrast, we do not obtain
full characterizations for general functions; the impossibility results that apply for this general case
appear in Section 4.4.

12

4.1 Single-Input Functions Which Are Not Efficiently Invertible

This section considers functions that depend on only one party’s input. We show that if such
a function is not efficiently invertible, then it cannot be securely realized in the UC framework.
Intuitively, a function is efficiently invertible if there exists a machine that can find preimages of
f(x), when x is chosen according to any efficiently samplable distribution.

Definition 4.1 A polynomial-time function f : X → {0, 1}∗ is efficiently invertible if there exists a
probabilistic polynomial-time inverting machine M such that for every (non-uniform) polynomial-
time samplable distribution X̂ = {X̂k} over X, every polynomial p(·) and all sufficiently large k’s

Prx←X̂k
[M(1k, f(x)) ∈ f−1(f(x))] > 1− 1

p(k)

Discussion. A few remarks regarding Definition 4.1: First, note that every function f over a finite
domain X is efficiently invertible. Second, note that a function that is not efficiently invertible is not
necessarily even weakly one-way. This is because the definition of invertibility requires the existence
of an inverter that works for all distributions, rather than only for the uniform distribution (as in
the case of one way functions). In fact, a function that is not efficiently invertible can be constructed
from any NP-language L that is not in BPP, as follows. Let RL be an NP-relation for L, i.e., x ∈ L
if and only if there exists a w such that RL(x,w) = 1. Then, define fL(x,w) = (x,RL(x,w)). It
then follows that fL is not efficiently invertible unless L ∈ BPP. (This argument holds only when
the distributions X̂ are allowed to be non-uniform. In this case, for every k the distribution can just
output a fixed input (x,w), |x| = k. Then, since the inverting machine M must be able to invert
for all such distributions, we have that it must be able to invert all inputs, except with negligible
probability. It therefore follows that L ∈ BPP.) Finally, note that the function fL as defined
above corresponds in fact to the ideal zero-knowledge functionality for the language L. That is, the
ideal functionality FfL

as defined above is exactly the ideal zero-knowledge functionality FRL
zk for

relation RL, as defined in [c01, clos02]. Consequently, the impossibility theorem below (Theorem
4.2) provides, as a special case, an alternative proof that FRL

zk cannot be realized unless L ∈ BPP
[c01].

We now prove impossibility for functions that are not efficiently invertible.

Theorem 4.2 Let f : X → {0, 1}∗ be a polynomial-time function and let Ff be a functionality
that receives x from P1 and sends f(x) to P2. If f is not efficiently invertible, then Ff cannot be
securely realized in the plain model by a non-trivial protocol.

Proof: The idea behind the proof is that according to Lemma 3.3, a real adversary can always
extract the input of the other party by running a split adversarial strategy. Therefore, an ideal
adversary can also extract this input. Since this ideal adversary extracts the input based only on
the output (because it works in the ideal process), we are able to use it to construct an inverting
machine M for the function f , as described in Definition 4.1. We therefore conclude that if Ff can
be securely realized, then f is efficiently invertible.

Let f : X → {0, 1}∗ be a polynomial-time function and assume that there exists a protocol Πf

that securely realizes f . Then, consider a real execution of Πf with an honest P1 and an adversary
A who corrupts P2. The environment Z for this execution, with security parameter k, samples
a value x from some distribution X̂k and hands it to P1. Then, Z outputs 1 if and only if it at

13

sometime during the execution, it receives a value x′ from A where f(x′) = f(x). This concludes
the description of Z. We now describe the real-life adversary A. Adversary A runs a successful
split adversarial strategy for P2 (the input chosen by P b

2 in this case is the empty string because
f is single-input). By Lemma 3.3, such a successful strategy exists. Now, at some stage of the
execution, P a

2 hands P b
2 a value x′. When A obtains this value x′ from P a

2 , it hands it to Z and
halts. This concludes the description of A.

We now show that in the real-life model with this A, the environment Z outputs 1 except with
negligible probability. This follows from item (1) of Definition 3.2 that implies that the x′ obtained
by A is such that f(x′) = f(x) except with negligible probability. We note that the description
of Z refers to “some” distribution X̂ over the inputs. We do not specify this further; rather, a
different environment Z is considered for every different distribution X̂.

Next, consider an ideal execution with the same Z and with an ideal-process simulator S for
the above A. Clearly, in such an ideal execution S receives f(x) only (because it has no input and
just receives the output of the corrupted party P2). Nevertheless, S succeeds in handing Z a value
x′ such that f(x′) = f(x) except with negligible probability; otherwise, Z would distinguish a real
execution from an ideal one.

We now use S to construct an inverting machine M for f . Given y = f(x), M runs S, gives
it y as if it was sent by Ff , and outputs whatever value S hands to Z. The fact that M is a
valid inverting machine follows from the above argument. That is, for every environment Z, the
simulator S causes Z to output 1 except with negligible probability. Therefore, for every efficiently
samplable distribution X̂, the machine M succeeds in outputting x′ such that f(x′) = f(x), except
with negligible probability. Thus, f is efficiently invertible, concluding the proof.

Relaxations of UC. If the environment Z is uniform, then the distributions X̂ over X must
also be uniform. There is no other difference to Theorem 4.2 for this relaxation. However, there
are significant differences for the relaxation of UC obtained by reversing the order of quantifiers
between S and Z. This is because the above proof assumes that the same simulator S must work
for all environments. That is, S succeeds in obtaining x′ when interacting with every environment
Z that uses some distribution X̂ to choose inputs. Therefore, M can invert for every distribution X̂
demonstrating that f is efficiently invertible. However, if a different simulator S could be provided
for every Z, then we would only obtain that for every distribution X̂ there exists a machine M who
can invert inputs from X̂. This does not imply efficient inversion as formulated in Definition 4.1,
where a single machine must work for all distributions.

Nevertheless, we do obtain the following impossibility result: If f is such that there exists a
single polynomial-time samplable distribution X̂ (called a “hard distribution”) for which it is hard
for all efficient machines M to invert f(X̂), then f cannot be securely realized, even according to
the relaxed order of quantifiers for UC.7 This follows because Z can choose x according to this hard
distribution. Then, no simulator S can invert the inputs chosen by Z. We remark that an example
of such a function f is a (weak) one-way function (note that the ideal zero-knowledge functionality
over hard-on-the-average languages is weakly one-way).

7More formally, let f be a polynomial-time single-input function and let X̂ = {X̂k}k∈N be a family of (non-uniform)
probabilistic polynomial-time distributions, so that for every machine M there exists a polynomial pM such that for
all sufficiently large k’s Pr[M(1k, f(X̂k)) ∈ f−1(f(X̂k))] < 1 − 1/pM (k). Then, f cannot be securely realized even
when the definition of UC is relaxed by reversing the quantifiers between S and Z.

14

4.2 Same-Output Functions with Insecure Minors

This section contains an impossibility result for same-output functions with a special combinatorial
property, namely those functions containing an insecure minor. Insecure minors have been used
in the past to show non-realizability results in a different context of information-theoretic secu-
rity [bmm99]. Since same-output functions are considered, we drop the f = (f1, f2) notation and
consider f : X ×X → {0, 1}∗.

A same-output function f : X ×X → {0, 1}∗ is said to contain an insecure minor if there exist
inputs α1, α

′
1, α2 and α′2 such that f2(α1, α2) = f2(α′1, α2) and f2(α1, α

′
2) 6= f2(α′1, α′2); see Table 1.

α2 α′2
α1 a b
α′1 a c

Table 1: An Insecure Minor (here b 6= c)

In the case of boolean functions, the notion of an insecure minor boils down to the so called
“embedded-OR”; see, e.g., [kkmo00]. Such a function has the property that when P2 has input
α2, then party P1’s input is “hidden” (i.e., given y2 = f2(x1, α2), it is impossible for P2 to know
whether P1’s input, x1, was α1 or α′1). Furthermore, α1 and α′1 are not “equivalent”, in that when
P2 has α′2 for input, then the function value when P1 has x1 = α1 differs from its value when
P1 has x1 = α′1 (because f2(α1, α

′
2) 6= f2(α′1, α′2)). We stress that there is no requirement that

f2(α1, α2) 6= f2(α1, α
′
2) or f2(α′1, α2) 6= f2(α′1, α′2) (i.e., in Table 1, a may equal b or c, but clearly

not both).
We now show that if a same-output function f contains an insecure minor, then f cannot be

securely realized in the plain model.

Theorem 4.3 Let f be a polynomial-time same-output two-party function containing an insecure
minor, and let Ff be the two-party ideal functionality that receives x1 and x2 from P1 and P2

respectively, and hands both parties f(x1, x2). Then, Ff cannot be securely realized in the plain
model by a non-trivial protocol.

Proof: The idea behind the proof is as follows. Consider a function f with an insecure minor as
in Table 1. Then, in the case that P2’s input equals α2, party P2 cannot know if P1’s input was
α1 or α′1 (because in both cases the output of the function is a). However, by Lemma 3.3, if Ff

can be securely realized, then a successful split adversarial strategy can be used by P2 to (almost)
always obtain P1’s input. Thus, we conclude that Ff cannot be securely realized.8

Formally, let f be a polynomial-time same-output two-party function, and let α1, α
′
1, α2, α

′
2

form an insecure minor in f . Assume by contradiction that Ff can be securely realized by a non-
trivial protocol Πf . Then, consider a real execution of Πf with an honest P1 and an adversary A
who corrupts P2. The environment Z for this execution chooses a pair of inputs (x1, x2) where
x1 ∈r {α1, α

′
1} and x2 ∈r {α2, α

′
2}. (Since Z receives auxiliary input, we can assume that it knows

8We note that a function with an insecure minor may be completely revealing (as in Definition 4.5 of Section 4.4).
This is because P2 can always choose to just input α′2, and it will then always be able to distinguish the case that
P1’s input was α1 from the case that its input was α′1. In our proof here, we utilize the fact that f is same-output
in order to show that P2 cannot arbitrarily choose its own input. Specifically, since P1 receives output as well, the
environment is able to check whether or not P2 used its prescribed input (α2 or α′2), by looking at P1’s output. This
forces P2 to use its prescribed input. Then, in the case that this input is α2, party P2 is unable to know whether
P1’s input was α1 or α′1.

15

the insecure minor α1, α
′
1, α2, α

′
2.) Z then writes x1 and x2 on P1 and P2’s respective input tapes.

Furthermore, Z passes A the set X2 = {α2, α
′
2}. Finally, Z outputs 1 if and only if the output of

P1 equals f(x1, x2) and, in addition, Z receives x1 from A at the conclusion of the execution. This
concludes the description of Z. We now describe the real-life adversary A. Adversary A runs a split
adversarial strategy for P2. The entity P b

2 in this case simply chooses x′2 = x2 (i.e., it doesn’t change
the input that it received). By Lemma 3.3, a successful strategy for this P b

2 exists. Now, since P2

is successful, P a
2 must hand P b

2 a value x′1 such that for every x2 ∈ X2, f2(x′1, x2) = f2(x1, x2).
A runs the entire successful strategy of P2. In addition, when A sees the value x′1 output by P a

1 ,
it computes y = f2(x′1, α′2). Then, if y = f2(α1, α

′
2), it concludes that x1 = α1 and sends α1 to

Z. However, if y = f2(α′1, α′2), it concludes that x1 = α′1 and sends α′1 to Z. This completes the
description of A.

We now show that in the real-life model with this A, the environment Z outputs 1 except
with negligible probability. First, by the definition of successful split strategies, P1 must output
f1(x1, x

′
2), except with negligible probability. However, here P b

2 chooses x′2 = x2 and so we have
that except with negligible probability P1 outputs f1(x1, x2). Next, notice that α′2 ∈ X2 and
f2(α1, α

′
2) 6= f2(α′1, α′2). Therefore, the value x′1 output by P a

2 must match exactly one of α1 and
α′1. Thus, it must be that A hands Z the correct input x1, except with negligible probability.
We therefore have that in a real execution, P1 outputs f(x1, x2) and A hands Z the correct value
x1 (except with negligible probability). Thus, by the definition of Z, it outputs 1, except with
negligible probability.

In order to derive a contradiction, it suffices to show that for every simulator S for the ideal
process, Z outputs 0 with non-negligible probability. In the ideal process, the simulator S receives
an input x2 ∈ {α2, α

′
2}, sends an input x̃2 of its choice to Ff , and receives back f(x1, x̃2). Now,

consider the case that x2 = α2 (this occurs with probability 1/2). S has two possible strategies for
choosing x̃2:

1. The value x̃2 sent by S to Ff is such that f(α1, x̃2) 6= f(α′1, x̃2): Let a denote the value
f(α1, α2), which also equals f(α′1, α2). Now, x2 = α2. Therefore, f(x1, x2) = a for x1 = α1

and x1 = α′1. However, at least one of f(α1, x̃2) and f(α′1, x̃2) does not equal a (because by the
case assumption, f(α1, x̃2) 6= f(α′1, x̃2)). Therefore, with probability 1/2, the output f(x1, x̃2)
received by P1 does not equal f(x1, x2). (In order to see that this is the correct probability,
recall that S receives no information on P1’s input x1 before it sends x̃2. Therefore, we can
view an ideal execution as one where S first sends x̃2 and then x1 ∈r {α1, α

′
1} is chosen.

Thus, with probability 1/2, the output of P1 will not equal f(x1, x2).) We conclude that Z
outputs 0 with probability at least 1/2.

2. The value x̃2 sent by S to Ff is such that f(α1, x̃2) = f(α′1, x̃2): In this case, the output
received by S reveals nothing about P1’s input (α1 or α′1). Therefore, S can succeed in sending
Z the correct x1 with probability at most 1/2.

By the above, we have that when P2’s input equals α2, the environment Z outputs 0 with probability
at least 1/2. Since P2’s input is chosen uniformly from {α2, α

′
2}, we have that this “bad case” also

happens with probability 1/2. Combining this together, we conclude that for every possible S, the
environment Z outputs 0 in an ideal execution with probability at least 1/4. In contrast, as we have
seen, Z outputs 0 with at most negligible probability in the real model. Therefore, Z distinguishes
the ideal and real executions with non-negligible probability, in contradiction to the security of Πf .

16

Relaxing the requirements regarding same-output. Let f = (f1, f2). Then, Theorem 4.3
is stated for the special case of same-output functions where f1 = f2. However, the proof of the
theorem only uses the fact that both f1 and f2 have an insecure minor in the same place. Thus,
the impossibility result is actually more general than stated.

Relaxations of UC. Theorem 4.3 remains unchanged for the relaxation of UC where the order
of quantifiers is reversed. However, when a uniform Z is considered, we cannot assume that it
always knows an insecure minor in f . Therefore, we require that f has an insecure minor that can
be efficiently (and uniformly) found. This holds, for example, in the case that the domain of f is
finite.

4.3 Same-Output Functions with Embedded XORs

This section contains an impossibility result for same-output functions with another combina-
torial property, namely those functions containing an embedded-XOR. A function f is said to
contain an embedded-XOR if there exist inputs α1, α

′
1, α2 and α′2 such that the two sets A0

def=
{f(α1, α2), f(α′1, α′2)} and A1

def= {f(α1, α
′
2), f(α′1, α2)} are disjoint; see Table 2.

α2 α′2
α1 a b
α′1 c d

Table 2: An Embedded-XOR – if {a, d} ∩ {b, c} = ∅.

(In other words, the table describes an embedded-XOR if no two elements in a single row or
column are equal. The name “embedded-XOR” originates from the case of boolean functions f ,
where one can pick A0 = {0} and A1 = {1}.) The intuitive idea is that none of the parties, based
on its input (among those in the embedded-XOR sub-domain), should be able to bias the output
towards one of the sets A0, A1 of its choice. In our impossibility proof, we will in fact show a
strategy for P2 to bias the output. We now show that no function containing an embedded-XOR
can be securely computed in the plain model.

Theorem 4.4 Let f be a polynomial-time same-output function containing an embedded-XOR,
and let Ff be the two-party ideal functionality that receives x1 and x2 from P1 and P2 respectively,
and hands both parties f(x1, x2). Then, Ff cannot be securely realized in the plain model by a
non-trivial protocol.

Proof: Again, we prove this lemma using Lemma 3.3. However, the use here is different. That is,
instead of relying on the extraction property (step 2b of Definition 3.1 and item (1) of Definition 3.2),
we rely on the fact that P2 can influence the output by choosing its input as a function of P1’s
input (step 2c), and then cause P1 to output the value y that corresponds to these inputs (step 2d
and item (2) of Definition 3.2). That is, P2 is able to bias the output, something which it should
not be able to do when a function has an embedded-XOR.

Formally, let f be a polynomial-time same-output two-party function and let α1, α
′
1, α2, α

′
2

form an embedded-XOR in f with corresponding sets A0, A1 (as described above). Furthermore,
assume that f does not have an insecure minor (otherwise, the theorem already holds by applying

17

Theorem 4.3). Now, assume by contradiction that Ff can be securely realized by a protocol Πf .
Then, consider a real execution of Πf with an honest P1 and an adversary who corrupts P2. The
environment Z for this execution chooses a pair of inputs (x1, x2) where x1 ∈r {α1, α

′
1} and

x2 ∈r {α2, α
′
2}. Z then writes x1 and x2 on P1 and P2’s respective input tapes. Furthermore, Z

passes A the set X2 = {α2, α
′
2}. Finally, Z outputs 1 if and only if the output of P1 is in the set A0.

This concludes the description of Z. We now describe the real-life adversary A. Adversary A runs
a split adversarial strategy for P2, as follows. When P b

2 receives a value x′1 from P a
2 , it computes

v = f(x′1, α2) and w = f(x′1, α′2). If both v, w ∈ A0 or both v, w /∈ A0, then P b
2 sets x′2 = α2. (This

case is just for completeness; as we will see below, it occurs with at most negligible probability.)
Otherwise, if v ∈ A0 and w /∈ A0, then P b

2 sets x′2 = α2 (in order that f(x′1, x′2) ∈ A0). Finally, if
v /∈ A0 and w ∈ A0, then P b

2 sets x′2 = α′2 (again, in order that f(x′1, x′2) ∈ A0). Adversary A runs
the entire successful strategy and then halts.

We now show that in the real-life model with this A, the environment Z outputs 1, except with
negligible probability. In order to see this, first recall that by Lemma 3.3, a successful strategy for
the above P b

2 exists. Now, since P2 is successful, we have that except with negligible probability,
P a

2 must hand P b
2 a value x′1 such that for every x2 ∈ X2, f(x′1, x2) = f(x1, x2). Therefore, except

with negligible probability, it must be that one of v and w above is in A0 and the other is in A1

(otherwise, this condition on x′1 is not fulfilled). Furthermore, by item (2) of Definition 3.2, party
P1 outputs f(x1, x

′
2) except with negligible probability. Now, x′2 is chosen so that f(x′1, x′2) ∈ A0.

Since x′2 ∈ X2, we also know that f(x′1, x′2) = f(x1, x
′
2). Therefore, the value f(x1, x

′
2) that is

output by P1 is guaranteed to be in A0, except with negligible probability. We conclude that Z
outputs 1 in the real-life model (again, except with negligible probability).

In order to derive a contradiction, it suffices to show that for every S, the environment Z
outputs 1 in an ideal execution with probability at most 1/2. This is demonstrated by proving
that in an ideal execution, S can cause P1’s output to be in A0 with probability at most 1/2. In
an ideal execution, the simulator S receives an input x2 ∈ {α2, α

′
2}, sends an input x̃2 of its choice

to Ff , and receives back f(x1, x̃2). The important point here is that P1’s output is defined as
soon as S sends x̃2 to Ff . Furthermore, S sends x̃2 to Ff without any information whatsoever on
P1’s input x1. Now, since f has no insecure minor and f(α1, α2) 6= f(α′1, α2), it follows that for
every x̃2, f(α1, x̃2) 6= f(α′1, x̃2) (otherwise, α1, α

′
1, α2, x̃2 would constitute an insecure minor in f).

Therefore, for x1 ∈ {α1, α
′
1} and for every x̃2, at most one of f(x1, x̃2) is in A0. Since Z chooses

x1 uniformly from {α1, α
′
1}, we have that no matter what value x̃2 that S sends to Ff , the value

f(x1, x̃2) that is output by P1 is in A0 with probability at most 1/2.
We conclude that for every possible S, the environment Z outputs 0 in an ideal execution with

probability at least 1/2. In contrast, Z outputs 0 with at most negligible probability in the real
model. Therefore, Z distinguishes the ideal and real executions with non-negligible probability, in
contradiction to the security of Πf .

Relaxations of UC. As above, Theorem 4.4 remains unchanged for the relaxation of UC where
the order of quantifiers is reversed. However, when a uniform Z is considered, we require that f
has an embedded-XOR that can be efficiently (and uniformly) found.

4.4 Not Completely-Revealing Functions

In this section, we consider functions that are not completely revealing. This notion does not refer to
protocols and information that is “revealed” by them. Rather, it refers to the question of whether
or not a party’s input is completely revealed by the function output itself. Note that in this section,

18

we do not limit ourselves to functions that have only one input or output. Rather, we consider the
general case where f1 and f2 may be different functions and may depend on both parties’ inputs.

Loosely speaking, a function is completely revealing for party P1, if party P2 can choose an
input so that the output of the function fully reveals P1’s input (for all possible choices of P1’s
input). That is, a function is completely revealing for P1 if there exists an input x2 for P2 so that
for every x1, it is possible to derive x1 from f2(x1, x2). For example, let us take the maximum
function for a given range, say {0, . . . , n}. Then, party P2 can input x2 = 0 and the result is that it
will always learn P1’s exact input. In contrast, the less-than function (i.e., f(x, y) = 1 iff x < y) is
not completely revealing because for any input used by P2, there will always be uncertainty about
P1’s input (unless P1’s input is the smallest or largest in the range). In fact, any function where the
range is smaller than the domain, like for the less-than function, cannot be completely revealing.
(This holds if there are no equivalent inputs; see below.)

Functions over finite domains. We first define what it means for a function to be completely
revealing for the special case of functions over finite domains. The definition in this case is simpler
and more intuitive.

We begin by defining what it means for two inputs to be “equivalent”: Let f : X × X →
{0, 1}∗ × {0, 1}∗ be a two-party function and denote f = (f1, f2). Let x1, x

′
1 ∈ X. We say that x1

and x′1 are equivalent with respect to f2 if for every x2 ∈ X it holds that f2(x1, x2) = f2(x′1, x2).
The rationale for this definition is that if x1 and x′1 are equivalent with respect to f2, then x1 can
always be used instead of x′1 without affecting P2’s output. We now define completely revealing
functions:

Definition 4.5 (completely revealing functions over finite domains): Let f : X ×X → {0, 1}∗ ×
{0, 1}∗ be a polynomial-time two-party function such that the domain X is finite, and denote f =
(f1, f2). We say that function f is completely revealing for P1 if there exists an input x2 ∈ X for
P2, such that for every two distinct inputs x1 and x′1 for P1, that are not equivalent with respect
to f2, it holds that f2(x1, x2) 6= f2(x′1, x2). Completely revealing for P2 is defined analogously. We
say that a function is completely revealing if it is completely revealing for both P1 and P2.

If a function is completely revealing for P1, then party P2 can set its own input to be the “special
value” x2 from the definition, and then P2 will always obtain the exact input used by P1. Specifically,
given y = f2(x1, x2), party P2 can traverse over all X and find the unique x1 for which it holds that
f2(x1, x2) = y (where uniqueness here is modulo equivalent inputs x1 and x′1). It then follows that x1

must be P1’s input (or at least is equivalent to it). Thus we see that P1’s input is completely revealed
by f2. In contrast, if a function f is not completely revealing for P1, then there does not exist such
an input for P2 that enables it to completely determine P1’s input. This is because for every x2 that
is input by P2, there exist two non-equivalent inputs x1 and x′1 such that f2(x1, x2) = f2(x′1, x2).
Therefore, if P1’s input happens to be x1 or x′1, it follows that P2 is unable to determine which
of these inputs were used by P1. Notice that if a function is not completely revealing, P2 may
still learn much of P1’s input (or even the exact input “most of the time”). However, there is a
possibility that P2 will not fully obtain P1’s input. As we will see, the existence of this “possibility”
suffices for proving impossibility.

Note that we require that x1 and x′1 be non-equivalent because otherwise, x1 and x′1 are really
the same input and so, essentially, both x1 and x′1 are P1’s input. Technically, if we do not require
this, then a function may not be completely revealing simply due to the fact that no x2 can have
the property that f2(x1, x2) 6= f2(x′1, x2) when x1 and x′1 are equivalent. This would therefore not
capture the desired intuition.

19

As we have mentioned above, the “less than” function (otherwise known as Yao’s millionaires’
problem) is not completely revealing, as long as the range of inputs is larger than 2. This can easily
be demonstrated.

Functions over infinite domains. In the case of functions that may be over an infinite domain,
the definition of completely revealing is slightly more complex. Recall that in the definition of
completely revealing for functions over finite domains, we require the existence of a single input x2

that can reveal P1’s input, for all possible inputs x1 ∈ X where X is the entire domain. However,
when the domain is infinite, we will only require that for every polynomial-size set X1 ⊆ X there
exists a single input x2, such that x2 can reveal P1’s input, for any input x1 ∈ X1. Thus, a different
x2 can be used for every subset X1 of inputs for P1. Notice that any function that is completely
revealing when a single x2 can be used to reveal all inputs x1, is also completely revealing when
every polynomial-size set X1 can have a different x2. However, the reverse is not true (and it is not
difficult to construct a concrete example). This modification of the definition therefore makes the
set of completely revealing functions larger. Since we prove impossibility for any function that is
not completely revealing, this actually weakens our impossibility result. Nevertheless, it is needed
for our proof. We now present the formal definition:

Definition 4.6 (completely revealing functions): Let f : X ×X → {0, 1}∗×{0, 1}∗ be a two-party
function, denoted f = (f1, f2), and let k be the security parameter. We say that function f is
completely revealing for P1 if for every polynomial p(·), all sufficiently large k’s and every set of
inputs X1 ⊆ X for P1 of size at most p(k), there exists an input x2 ∈ X for P2, such that for
every pair of distinct inputs x1, x

′
1 ∈ X1 that are not equivalent with respect to f2, it holds that

f2(x1, x2) 6= f2(x′1, x2). Completely revealing for P2 is defined analogously. We say that a function
is completely revealing if it is completely revealing for both P1 and P2.

We stress, once again, that “completely revealing” or “not completely revealing” is a property of
functions and not of protocols. We now show that a function that is not completely revealing
cannot be securely realized in the plain model by any non-trivial protocol.

Theorem 4.7 Let f = (f1, f2) be a polynomial-time two-party function that is not completely
revealing, and let Ff be the two-party ideal functionality that receives x1 from P1 and x2 from P2,
and hands f1(x1, x2) to P1 and f2(x1, x2) to P2. Then, Ff cannot be securely realized in the plain
model by a non-trivial protocol.

Proof: The idea behind the proof here is very similar to that of Theorem 4.2. Specifically, according
to Lemma 3.3, a real adversary can always extract the input of the other party by running a split
adversarial strategy. Therefore, an ideal adversary can also extract this input. However, if f is not
completely revealing, then it is impossible to extract the exact input with high enough probability.
We therefore conclude that if Ff can be securely realized, then f must be completely revealing.

Let f = (f1, f2) be a polynomial-time two-party function, and assume that there exists a
protocol Πf that securely realizes Ff . We now prove that this implies that f is completely revealing.
We actually prove that f is completely revealing for P1; the fact that f is also completely revealing
for P2 is proven analogously. Assume by contradiction that f is not completely revealing for P1.
Let k be the security parameter and let X1 be any minimal set of inputs for P1 such that the
requirements of Definition 4.6 do not hold with respect to X1. Specifically, for every x2 there exist
at least two inputs x1, x

′
1 ∈ X1 such that f2(x1, x2) = f2(x′1, x2). (By minimality here, we mean

that no input can be removed from X1 while preserving the requirements in the definition.) We

20

construct a polynomial-size set of inputs X2 for P2 as follows. First, we claim that for every pair of
inputs x1, x

′
1 ∈ X1 there exists an input x2 such that f2(x1, x2) 6= f2(x′1, x2). This follows from the

fact X1 is minimal and therefore does not contain any two inputs that are equivalent with respect
to f2. Next, we construct the set X2 by adding a single value x2 as above for every x1, x

′
1 ∈ X1

(i.e., we add an x2 for which f2(x1, x2) 6= f2(x′1, x2)). Note that since the size of X1 is polynomial
in k, the same holds for X2.

We are now ready to define an environment Z and a real-life adversary A for protocol Πf . The
environment Z chooses x1 ∈r X1 and x2 ∈r X2 and writes x1 and x2 on P1 and P2’s respective
input tapes. Furthermore Z passes A the set X2. Finally, Z outputs 1 if and only if at some stage
A sends Z the correct input value x1 used by P1. We now describe the adversary A. Adversary A
controls party P2 and runs a successful split adversarial strategy (the exact strategy used by P b

2 to
choose x′2 is immaterial here because we only need the value x′1 obtained by P a

2 in the first part of
the attack). At some stage of the attack, A obtains the value x′1 that P a

2 passes to P b
2 . Given this

value, A finds an input x̃1 ∈ X1 such that for every x̃2 ∈ X2 it holds that f2(x̃1, x̃2) = f2(x′1, x̃2).
A then hands this x̃1 to Z (if such a value does not exist, then A outputs fail).

We now claim that in the real-life model, Z outputs 1 except with negligible probability. This
follows from the fact that by Lemma 3.3 a successful split strategy exists for P2. Therefore,
except with negligible probability, the value x′1 obtained by P a

2 is such that for every x2 ∈ X2,
f2(x′1, x2) = f2(x1, x2), where x1 ∈ X1 is the input that Z writes on P1’s input tape and X2 is
the polynomial-size set of inputs given to A by Z. This means that there exists at least one value
x̃1 ∈ X1 such that for every x̃2 ∈ X2 it holds that f2(x̃1, x̃2) = f2(x′1, x̃2); specifically, this value
is P1’s correct input x1. It remains to show that there is at most one such value, and therefore
A sends Z the correct input x1. This follows from the construction of X2. Specifically, for every
x1, x

′
1 ∈ X1 there exists an input x2 ∈ X2 such that f2(x1, x2) 6= f2(x′1, x2). Now, let x′1 be the value

that A obtains from P a
2 . Then, there cannot be two values x̃1 and x̂1 such that for every x̃2 ∈ X2,

f2(x̃1, x̃2) = f2(x′1, x̃2) and f2(x̂1, x̃2) = f2(x′1, x̃2), because this would imply that x̃1, x̂1 ∈ X1 result
in the same output for all x̃2 ∈ X2. This is in contradiction to the construction of X2. We conclude
that there is only one value that passes the test carried out by A, and this is P1’s correct input x1.
That is, Z obtains P1’s correct input from A, and so outputs 1, except with negligible probability.

The proof is concluded by showing that in the ideal process, there does not exist a simulator
S that can cause Z to output 1 with probability that is negligibly close to 1. This can be seen as
follows. The simulator S sends some input x̃2 to Ff and receives back f2(x1, x̃2). Furthermore, S
sends x̃2 before receiving any information about x1. Therefore, we can view the ideal process as
one where S first sends x̃2 to Ff and then Z chooses P1’s input x1 uniformly from X1. Now, by our
contradicting assumption, since f is not completely revealing for P1, for every x̃2 there exist two
distinct inputs x̃1, x̃

′
1 ∈ X1 such that f2(x̃1, x̃2) = f2(x̃′1, x̃2). Therefore, with probability 2/|X1|,

we have that x1 ∈ {x̃1, x̃
′
1}. In this case, information theoretically, S can send Z the correct x1

with probability at most 1/2. We conclude that in the ideal process, Z outputs 0 with probability
at least 1/|X1|, for every ideal process simulator S. Since the size of X1 is polynomial in k, we have
that Z distinguishes the real and ideal processes with non-negligible probability, in contradiction
to the assumed security of Πf .

Impossibility of oblivious transfer. We remark that Theorem 4.7 can be used to rule out the
possibility of securely realizing the 2-out-of-1 oblivious transfer functionality [r81, egl85]. This is
because this functionality is clearly not completely revealing for the “sender”.

21

Relaxations of UC. Notice that in the proof of Theorem 4.7, the environment Z is fixed.
Therefore, the theorem and proof remain the same for the relaxed definition where the order of
quantifiers between the environment and simulator is reversed. In contrast, if the environment is
assumed to be a uniform machine, then success is only defined with respect to uniform environments
(in particular, this means that X1 and X2 must be uniformly generated). This is still very general
and is equivalent for functions that have finite domains.

5 Characterizations for Deterministic Functions

This section is organized as follows: We first present a characterization for the case of single-input
functions (i.e., functions that depend on only one of the two inputs). Next, we show that functions
that do not have an insecure minor or an embedded XOR actually depend on only one input. This
is combined to provide a full characterization of same-output functions. Following this, we provide
a characterization of single-output functions for the special case that the function domain is finite.

5.1 Characterization for Single-Input Functions

In this section, we show that the notion of “efficient invertibility” in Definition 4.1 actually fully
characterizes the single-input functions that can and cannot be securely realized in the framework
of universal composability. Recall that we have already proven that it is impossible to securely
realize functions that are not efficiently invertible in Theorem 4.2.

Theorem 5.1 Let f : X → {0, 1}∗ be a polynomial-time function and let Ff be a functionality
that receives x from P1 and sends f(x) to P2. Then, Ff can be securely realized in the plain model
by a non-trivial protocol if and only if f is efficiently invertible. (The above holds also when P1 and
P2 are reversed.)

Proof: As we have mentioned, the fact that Ff cannot be securely realized if f is not efficiently
invertible has already been shown in Theorem 4.2. It therefore remains to prove that if f is
efficiently invertible, then Ff can be securely realized.

This is achieved by the following simple protocol: Upon input x and security parameter k,
party P1 computes y = f(x) and runs the inverting machine M on (1k, y). Then, P1 sends P2 the
value x′ output by M . (In order to guarantee security against an external adversary that does not
corrupt any party, the value x′ will be sent encrypted, say using a shared key that is the result
of a universally composable key exchange protocol run by the parties [ck02].) Simulation of this
protocol is demonstrated by constructing a simulator who receives y = f(x), and simulates P1

sending P2 the output of M(1k, y). The proof is straightforward and so details are omitted.

Relaxations of UC. Following the proof of Theorem 4.2, we discussed the existence of analogous
impossibility results for the relaxations of UC where the environment Z is uniform and for the
relaxation where the order of quantifiers is reversed. We note that the characterization described
here holds also for the relaxation of UC in which the environment Z is uniform. However, in
the case that the order of quantifiers is reversed, the analogous impossibility result obtained is
only for “hard-on-the-average” distributions. Therefore, we do not obtain a full characterization.
Specifically, we have shown that efficiently invertible functions can be securely realized, and yet
functions with hard-on-the-average distributions cannot. However, there may exist functions that
are not efficiently invertible and do not have such hard-on-the-average distributions. We do not
know whether or not such a function can be securely realized under this relaxation of UC.

22

5.2 Characterization for Same-Output Functions

This section provides a full characterization of the deterministic two-party same-output function-
alities that can be securely realized in the plain model. Let f : X ×X → {0, 1}∗ be a deterministic
two-party function. Each of Theorems 4.3 and 4.4 provides a necessary condition for Ff to be
securely realizable (namely, f should not contain an insecure minor or an embedded-XOR). In
addition, Theorem 5.1 gives a characterization of those functionalities Ff that can be securely
realized, assuming that f depends on the input of one party only. In this section we show that the
combination of these three theorems is actually quite powerful. Indeed, we show that this provides
a full characterization of the two-party, same-output deterministic functions that can be securely
realized. In fact, this characterization turns out to be very simple.

Theorem 5.2 Let f be a polynomial-time same-output two-party function and let Ff be a func-
tionality that receives x1 and x2 from P1 and P2 respectively, and hands both parties f(x1, x2).
Then, Ff can be securely realized in the plain model by a non-trivial protocol if and only if f is an
efficiently invertible function depending on (at most) one of the inputs (x1 or x2).

Proof: First, we prove the theorem for the case that f contains an insecure-minor or an embedded-
XOR (with respect to either P1 or P2). By Theorems 4.3 and 4.4, in this case Ff cannot be securely
realized. Indeed, such functions f do not solely depend on the input of a single party; that is, for
each party there is some input for which the output depends on the other party’s input.

Next, we prove the theorem for the case that f does not contain an insecure-minor (with respect
to either P1 or P2) or an embedded-XOR. We prove that in this case f depends on the input of (at
most) one party and hence, by Theorem 5.1, the present theorem follows. Pick any x ∈ X and let
a = f(x, x). Let B1 = {x1|f(x1, x) = a} and B2 = {x2|f(x, x2) = a}. Since f(x, x) = a then both
sets are non-empty. Next, we claim that at least one of B̄1 and B̄2 is empty; otherwise, if there
exist α1 ∈ B̄1 and α2 ∈ B̄2, then setting α′1 = α′2 = x gives us a minor which is either an insecure
minor or an embedded-XOR. To see this, denote b = f(α1, x) and c = f(x, α2); by the definition
of B̄1, B̄2 both b and c are different than a. Consider the possible values for d = f(α1, α2). If d = b
or d = c, we get an insecure minor; if d = a or d /∈ {a, b, c}, we get an embedded-XOR. Thus, we
showed that at least one of B̄1, B̄2 is empty; assume, without loss of generality, that it is B̄2. There
are two cases:

1. B̄1 is also empty: In this case, f is constant. This follows because when B̄1 = B̄2 = φ, we
have that for every x1, x2, f(x1, x) = f(x, x2) = a. Assume, by contradiction, that there
exists a point (x1, x2) such that f(x1, x2) 6= a (and so f is not constant). Then, x, x1, x, x2

constitutes an insecure minor, and we are done.

2. B̄1 is not empty: In this case, we have that for every x1 ∈ B̄1 the function is fixed (i.e.,
f(x1, ·) is a constant function). This follows from the following. Assume by contradiction
that there exists a point x2 such that f(x1, x) 6= f(x1, x2) (as must be the case if f(x1, ·) is
not constant). We claim that x, x1, x, x2 constitutes an insecure minor. To see this, notice
that f(x, x) = f(x, x2) = a (because B̄2 = φ). However, f(x1, x) 6= f(x1, x2). By definition,
this is an insecure minor. We therefore have that for every x1 ∈ B̄1, the function f(x1, ·) is
constant. In addition, by the definition of B1, for every x1 ∈ B1, we have that f(x1, ·) is also
constant (in particular, it always equals a). Therefore, for every x1, the function f(x1, ·) is
constant. (Note that in the case that B̄1 is empty and B̄2 is not empty, we obtain that for
every x2, the function f(·, x2) is constant.)

23

We conclude that either f is a constant function, or f(x1, ·) is a constant function for every x1, or
f(·, x2) is a constant function for every x2. That is, f depends on the input of at most one party,
as needed.

5.3 Characterization for Single-Output Functions over Finite Domains

This section contains a full characterization of the single-output two-party functions over finite
domains that can be securely realized in the plain model. Recall that a function f = (f1, f2) is
single-output if f1 = λ or f2 = λ.

Theorem 5.3 Let f : X ×X → {0, 1}∗ be a polynomial-time single-output function where X is a
finite set, and let Ff be a functionality that receives x1 from P1 and x2 from P2, and sends f(x1, x2)
to P2. Then, Ff can be securely realized in the plain model by a non-trivial protocol if and only if
f is completely revealing for P1. (The above holds also when P1 and P2 are reversed.)

Proof: We have already proven in Theorem 4.7 that if f is not completely revealing for P1, then
Ff cannot be securely realized. It therefore remains to show the converse. That is, assume that
f is completely revealing for P1. Then, by Definition 4.5, there exists an input x2 such that for
every x1, x

′
1 ∈ X that are not equivalent with respect to f , it holds that f(x1, x2) 6= f(x′1, x2). This

therefore yields the following protocol: Let x1 be P1’s input and let X1 be the set of inputs that
are equivalent to x1 with respect to f2. Then, P1 sends P2 the value x′1 that is lexicographically
the smallest in X1. (Note that X1 can be efficiently computed because f has a finite domain.)

In order to see why this securely realizes Ff , consider the following ideal-process simulator S
(for the case that P2 is corrupt). Simulator S sends x2 to Ff , where x2 is the above-mentioned
input that is guaranteed to exist for f . S then receives back an output y. Since f has a finite
domain, it is possible to efficiently compute the set of values X1 such that for every x1 ∈ X1,
f(x1, x2) = y. By the assumption that f is completely revealing, this set X1 is exactly the set of all
values that are equivalent to x1. S therefore hands the adversary A the lexicographically smallest
value from X1, as it expects to see in a real execution. This completes the proof.

We note that the above proof cannot be extended to functions that are not single-output. For
example, the XOR function over domain {0, 1} is clearly completely revealing. However, if both
parties obtain output, then this function cannot be securely realized, as shown in Theorem 4.4.

6 Probabilistic Same-Output Functionalities

In this section, we concentrate on probabilistic two-party functionalities where both parties obtain
the same output. We show that probabilistic functionalities that generate non-trivial distributions
cannot be securely realized in the plain model in the UC framework. This rules out the possibility
of realizing any “coin-tossing style” functionality, or any functionality whose outcome is “unpre-
dictable” whatever the choice of inputs by the parties. It is stressed, however, that our result does
not rule out the possibility of securely realizing other useful probabilistic functionalities, such as
functionalities where, when both parties remain uncorrupted, they can obtain a random value that
is unknown to the adversary. An important example of such a functionality, that can indeed be
securely realized is key-exchange.

Let f = {fk} be a family of polynomial-time functions where, for each value of the security
parameter k, fk : X × X → {0, 1}∗ is a probabilistic function. We begin by defining the notion
of safe values. Informally, such values have the property that they induce non-trivial distributions

24

over the output. More precisely, let p(·) be a polynomial. We say that x1 ∈ X is a P1-safe
value for p(·) and k if for every x2 ∈ X and all possible output values v ∈ {0, 1}∗ it holds that
Pr[fk(x1, x2) 6= v] > 1/p(k). (Indeed, when the security parameter equals k and P1 inputs this safe
value, the output of the function is chosen from a non-trivial distribution, irrespective of the input
x2.) We define P2-safe values for p(·) and k in an analogous way. A probabilistic function family
f = {fk} as above is said to be unpredictable if there exists a polynomial p(·) such that for infinitely
many k’s, there exist P1-safe values and P2-safe values for p(·) and k. (Note that there must be
infinitely many k’s for which both P1 and P2 have safe values for these k’s; it does not suffice if P1

and P2 have safe values for different values of k only.)
Below, we will prove that unpredictable function families cannot be securely realized in the

plain model. This is quite a broad impossibility result. In order to see this, consider the structure
of a function that is not unpredictable, because, say, P1 does not have safe values. Such a function
has the property that for all but a finite number of k’s, for every x1 ∈ X there exists a value x2 ∈ X
such that almost all of the support of the distribution fk(x1, x2) is concentrated on one point v.
Now, if P2 uses input x2, then the output of the function will have a trivial distribution (i.e., it will
almost always equal a single value v). Thus, it will essentially behave like a deterministic function.9

Theorem 6.1 Let f = {fk} be a family of unpredictable probabilistic polynomial-time same-output
functions and let Ff be a functionality that, given a security parameter k, receives x1 from P1 and
x2 from P2, samples a value v from the distribution of fk(x1, x2), and hands v to both P1 and P2.
Then, Ff cannot be securely realized in the plain model by any non-trivial protocol.

Proof: The proof uses the same ideas as in the proof of Lemma 3.3 and the proofs of impossibility
that use Lemma 3.3. Let f be a family of unpredictable polynomial-time probabilistic functions.
Assume, by contradiction, that Ff can be securely realized by a protocol Πf . We prove that in this
case, there exists an adversary (called Ã below) that can essentially fix the output. This therefore
contradicts the assumption that f is unpredictable.

By the assumption in the theorem, f is a family of unpredictable functions. Therefore, there
exists a polynomial p(·) such that for infinitely many k’s, there exist P1-safe and P2-safe values
for p(·) and k. Let k be one these infinitely many k’s, and let x1 and x2 be the P1-safe and P2-
safe values for p(·) and k, respectively. We are now ready to define a real-life adversary A and an
environment Z. Adversary A controls party P1 and is a dummy adversary who does nothing except
to deliver messages between Z and P2 (exactly like A in Lemma 3.3). Next we define Z who uses
the above safe values x1 and x2. Environment Z writes x2 on P2’s input tape and locally runs P1’s
protocol instructions in Πf on input x1 and the incoming messages that it receives from A (that
are in turn received from P2). At the conclusion of the execution of Πf , the environment Z obtains
an output, called Z’s local P1-output. Then, Z outputs 1 if and only if its local P1-output equals
P2’s output.

We first claim that in the real-life process, Z outputs 1 except with negligible probability. This
follows from the fact that the real-life process looks exactly like an honest execution between P1

and P2. Furthermore, all messages between these honest parties are delivered by the adversary.
Therefore, since Πf is non-trivial, both parties must receive output and this output is correct. (The
formal argument for this is identical to the argument in Lemma 3.3.)

9We note that if the definition of unpredictability is relaxed to require only that there exist infinitely many values
of k for which there is either a P1-safe value or a P2-safe value, then the theorem no longer holds. Indeed, it is possible
to construct such functions that are realizable in the plain model. We remark that in the preliminary version of this
paper that appeared at EUROCRYPT 2003, it was erroneously stated that impossibility holds even for this relaxed
notion of unpredictability.

25

By the assumption that Πf securely realizes Ff , there exists an ideal-process adversary (simu-
lator) S such that Z cannot distinguish between a real execution of Πf with A and an ideal process
execution with S and Ff . In particular, the local P1-output received by Z in the ideal process
must equal the output that P2 receives from Ff . Recall that in an ideal execution, S sends some
input x′1 to Ff . Functionality Ff then samples a value v from fk(x′1, x2) and hands this value to
both P1 (who is controlled by S) and P2. It follows that except with negligible probability, Z’s
local P1-output must be the exact value v that S receives from Ff .

Next, we switch context to a new real-life adversary Ã that controls P2 and a new environment
Z̃. (The proof until this point was similar to the proof of Lemma 3.3. From here on, it is similar to
the proofs of impossibility in Section 4 that use Lemma 3.3.) Let x1 and x2 be the same values as
above (i.e., P1-safe and P2-safe values for p(·) and k). The environment Z̃ writes the input x1 on
P1’s input tape. In addition, Z̃ waits to obtain a value x′1 from the adversary. When it receives this
value, Z̃ samples a value v from the distribution of fk(x′1, x2) and hands this value to the adversary.
Finally, Z̃ outputs 1 if and only if P1 outputs v. We now define Ã who controls P2. Adversary
Ã works by internally running the simulator S from above, and emulating an ideal execution of S
with Z and Ff . Each message that Ã receives from P1, it internally passes to S as if it was sent
by the environment Z. Likewise, any message that S attempts to send to its environment Z, the
adversary Ã externally sends to party P1. When the internal S outputs a value x′1 to be sent to
Ff , adversary Ã hands x′1 to the environment Z̃, obtains the value v back from Z̃, and hands v to
S.

We claim that in a real-life execution of Πf with Z̃ and Ã, party P1 outputs the exact value v
generated by Z̃, except with negligible probability. Consequently, by the definition of Z̃, it follows
that Z̃ outputs 1 in a real execution, except with negligible probability. To see that this holds,
notice that S’s view in an ideal process with Z and Ff is identical to its view when it is internally
invoked by Ã. Furthermore, the real P1 that interacts with Ã has exactly the same view as Z in
the ideal process with S. Therefore, the output of P1 has exactly the same distribution as the local
P1-output of Z in the ideal process with S. We have already shown that Z’s local P1-output in
this case equals v, except with negligible probability. Therefore, the real P1’s output also equals v,
except with negligible probability.

We complete the proof by considering an interaction of Z̃ in an ideal process with Ff and some
ideal-process adversary S̃ that is guaranteed to exist by the assumption that Πf securely realizes
Ff . In this ideal execution, Z̃ first writes x1 and x2 on P1 and P2’s respective input tapes. Then,
Z̃ interacts with S̃ in the same way that it interacted with Ã above. That is, Z̃ waits to receive
some value x′′1 from S̃. Then, it samples a value v from fk(x′′1, x2) and hands v back to S̃. Finally,
Z̃ outputs 1 if and only if P1’s output equals v. The above describes the interaction between Z̃ and
S̃. In the rest of the ideal execution, the honest P1 sends its input x1 to Ff , and S̃ sends Ff some
x̃2 of its choice. The functionality Ff then samples a value w from fk(x1, x̃2) and hands it to both
P1 and P2. Now, Z̃ outputs 1 if and only if w = v (i.e., P1’s output equals v). Furthermore, by the
assumed security of Πf , environment Z̃ outputs 1 except with negligible probability (because this
is the case in a real execution with Ã). We conclude that w = v, except with negligible probability.
However, we claim that since x1 and x2 are P1-safe and P2-safe values for p(·) and k, it must be the
case that with non-negligible probability w does not equal v. In order to see this, we distinguish
between two cases:

1. S̃ sends x′′1 to Z̃ before sending x̃2 to Ff : In this case, Z̃ samples the value v before Ff

samples the value w = fk(x1, x̃2). Since x1 is a P1-safe value for p(·) and k, we have that for
every x̃2 and v, the probability that fk(x1, x̃2) 6= v is greater than 1/p(k).

26

2. S̃ sends x̃2 to Ff before sending x′′1 to Z̃: In this case, we use the reverse argument to above.
That is, w is sampled and fixed before Z̃ samples v = fk(x′′1, x2). Therefore, since x2 is a
P2-safe value for p(·) and k, the probability that fk(x′′1, x2) 6= w is greater than 1/p(k).

We therefore have that for infinitely many k’s, environment Z̃ outputs 0 in the ideal process
(because w 6= v) with probability greater than 1/p(k). In contrast, as we have shown, Z̃ outputs 1
in the real process except with negligible probability. This contradicts the assumption that Πf

securely realizes Ff . We therefore conclude that an unpredictable function f cannot be securely
realized in the plain model.

Relaxations of UC. The proof of Theorem 6.1 remains unchanged for the relaxation of UC
obtained by reversing the order of quantifiers between Z and S. When considering the relaxation
based on limiting Z to be a uniform machine, we must assume that for infinitely many k’s, safe
values can be efficiently and uniformly found.

Universally composable key exchange. As we have mentioned, the probabilistic functionality
of key exchange can be securely realized [ck02]. This does not contradict our results here because
in the case that one of the participants in a key exchange protocol is corrupted, it is explicitly given
the power to singlehandedly determine the value of the output key. Therefore, the key exchange
functionality is not unpredictable (there are no safe values). Note that this makes sense for key
exchange because it is only meant to protect two honest parties from an eavesdropping adversary.

References

[b91] D. Beaver. Secure Multi-party Protocols and Zero-Knowledge Proof Systems Tolerating
a Faulty Minority. Journal of Cryptology, 4(2):75–122, 1991.

[bmm99] A. Beimel, T. Malkin and S. Micali. The All-or-Nothing Nature of Two-Party Secure
Computation. In CRYPTO’99, Springer-Verlag (LNCS 1666), pages 80–97, 1999.

[bgw88] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. In 20th STOC, pages 1–10,
1988.

[c01] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In 42nd FOCS, pages 136–145, 2001. Preliminary full version available at
http://eprint.iacr.org/2000/067, 2000.

[c03] R. Canetti, “On Universally Composable Notions of Security for Signature, Certification
and Authentication” available at http://eprint.iacr.org/2003/239.

[c04] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols (full version). Manuscript, 2004.

[cfgn96] R. Canetti, U. Feige, O. Goldreich and M. Naor. Adaptively Secure Multi-Party Com-
putation. In 28th STOC, pages 639–648, 1996.

[cf01] R. Canetti and M. Fischlin. Universally Composable Commitments. In CRYPTO 2001,
Springer-Verlag (LNCS 2139), pages 19–40, 2001.

27

[ck02] R. Canetti and H. Krawczyk. Universally Composable Key Exchange and Secure Chan-
nels. In Eurocrypt 2002, Springer-Verlag (LNCS 2332), pages 337–351, 2002.

[clos02] R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Composable Two-Party
and Multi-Party Computation. In 34th STOC, pages 494–503, 2002.

[ck89] B. Chor, and E. Kushilevitz. A Zero-One Law for Boolean Privacy. In 21st STOC, pages
62–72, 1989.

[c86] R. Cleve. Limits on the Security of Coin-Flips when Half the Processors are Faulty. In
18th STOC, pages 364–369, 1986.

[egl85] S. Even, O. Goldreich and A. Lempel. A Randomized Protocol for Signing Contracts.
In Communications of the ACM, 28(6):637–647, 1985.

[gmw87] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game – A Com-
pleteness Theorem for Protocols with Honest Majority. In 19th STOC, pages 218–229,
1987.

[gl90] S. Goldwasser and L. Levin. Fair Computation of General Functions in Presence of
Immoral Majority. In CRYPTO’90, Springer-Verlag (LNCS 537), pages 77–93, 1990.

[hnrr04] Danny Harnik, Moni Naor, Omer Reingold, Alon Rosen. Completeness in Two-Party
Secure Computation - A Computational View. 36th STOC, 2004.

[hms03] D. Hofheinz, J. Müller-Quade and R. Steinwandt. On Modeling IND-CCA Se-
curity in Cryptographic Protocols. Cryptology ePrint Archive, Report 2003/024,
http://eprint.iacr.org/, 2003.

[kkmo00] J. Kilian, E. Kushilevitz, S. Micali, and R. Ostrovsky. Reducibility and Completeness
in Private Computations. SICOMP, 29(4):1189–1208, 2000.

[k00] J. Kilian. More General Completeness Theorems for Secure Two-Party Computation.
In 32nd STOC, pages 316–324, 2000.

[k89] E. Kushilevitz. Privacy and Communication Complexity. In 30th FOCS, pages 416–421,
1989.

[l03] Y. Lindell. General Composition and Universal Composability in Secure Multi-Party
Computation. In 44th FOCS, pages 394–403, 2003.

[l04] Y. Lindell. Lower Bounds for Concurrent Self Composition. In the 1st Theory of Cryp-
tography Conference (TCC), Springer-Verlag (LNCS 2951), pages 203–222, 2004.

[mr91] S. Micali and P. Rogaway. Secure Computation. Unpublished manuscript, 1992. Pre-
liminary version in CRYPTO’91, Springer-Verlag (LNCS 576), pages 392–404, 1991.

[r81] M. Rabin. How to Exchange Secrets by Oblivious Transfer. Tech. Memo TR-81, Aiken
Computation Laboratory, Harvard U., 1981.

[rb89] T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multi-party Protocols with
Honest Majority. In 21st STOC, pages 73–85, 1989.

28

[rs91] C. Rackoff and D. Simon. Non-interactive Zero-Knowledge Proof of Knowledge and
Chosen Ciphertext Attack. In CRYPTO’91, Springer-Verlag (LNCS 576), pages 433–
444, 1991.

29

