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Abstract. Recently, Courtois and Pieprzyk proposed an attack on symmetric ciphers that takes advan-
tage of a previously-unexploited property of substitution boxes, or s-boxes, in the round function. This
paper gives a brief overview of this “overdefined system of equations” attack and shows how the attack may
be avoided through the use of round functions that contain a variety of protection mechanisms, including
combinations of operators from different algebraic groups, a circular rotation step, and substitution boxes
(s-boxes) of large dimension.
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1 Introduction

The recent attack by Courtois and Pieprzyk on a class of symmetric ciphers [6] exploits s-boxes
whose polynomial representation creates a system of equations in a set of unknowns that is
“overdefined” in the sense that it contains more than the minimum amount of information
required to determine the unique solution. If the system of equations is not only overdefined,
but also sparse (i.e., contains a relatively small number of monomial terms), then an algorithm
referred to as XSL [6] (a modification of the XL algorithm [11]) may be used to solve the
equations for the unknown key bits and break the cipher with lower complexity than exhaustive
search over the key space. Although an explicit demonstration has not yet been published,
Courtois and Pieprzyk claim that their Overdefined System of Equations (OSE) attack has
shown some success against both Rijndael (AES) [7] and Serpent [4].

Since the publication of the OSE attack, some controversy has arisen over the actual effec-
tiveness of the XSL algorithm (see, for example, [5, 8, 9]). This paper does not attempt to take
a position on that debate. Rather, the formulation of the attack itself is described with respect
to a generic block cipher employing s-boxes for the “confusion” component [12]. The attack is
then examined with regard to its effectiveness against a design procedure used in the CAST
family of ciphers [1–3]. It is shown that ciphers constructed according to this design procedure
are not susceptible to the OSE attack. This lends support to the conjecture that mixing opera-
tions from different algebraic groups is an important design criterion for strengthening ciphers
against a variety of attacks.

The remainder of the paper is organized as follows. Section 2 describes the OSE attack at
a high level, without going into detail on the workings of the XSL algorithm. Section 3 shows
how the CAST design procedure, and the CAST-128 cipher in particular, are immune to this
attack. Section 4 concludes the paper and discusses the significance of its main results.



2 The OSE Attack

Let S() be an s-box with m input bits and n output bits so that y1y2 . . . yn = S(x1, x2, . . . , xm),
or y = S(x). When analyzing cryptographic properties of an s-box such as nonlinearity or strict
avalanche criterion [13], designers and cryptanalysts are typically interested in the mapping
from x to y as a multivariate function (y = f(x)) or as a collection of Boolean functions
(yi = f(x), 1 < i < n). In addition to such analysis, Courtois and Pieprzyk propose examining
the polynomial formed from all the input and output variables: p(x1, x2, . . . , xm, y1, y2, . . . , yn).
For a given degree, the polynomial has the obvious generic form. For example, the quadratic
polynomial for a 3× 3 s-box has the form

P = p(x, y) = x1 ⊕ x2 ⊕ x3 ⊕ y1 ⊕ y2 ⊕ y3 ⊕
x1x2 ⊕ x1x3 ⊕ x1y1 ⊕ x1y2 ⊕ x1y3 ⊕ x2x3 ⊕
x2y1 ⊕ x2y2 ⊕ x2y3 ⊕ x3y1 ⊕ x3y2 ⊕ x3y3 ⊕
y1y2 ⊕ y1y3 ⊕ y2y3 ⊕ 1

The number of terms in this generic quadratic form is T =
(

m+n
2

)
+ m + n + 1, which is 22 for

a 3× 3 s-box.

For a specific s-box, S1, a 2m × T binary matrix M can be constructed where each row,
mi, of the matrix is the polynomial P with the component terms evaluated according to the
definition of S1. An example will help to illustrate the construction of M . Let S1 be the 3× 3
s-box defined as follows:

Input Output

0 6
1 3
2 1
3 5
4 0
5 7
6 4
7 2

which, in binary, is equivalent to

x1 x2 x3 y1 y2 y3

0 0 0 1 1 0
0 0 1 0 1 1
0 1 0 0 0 1
0 1 1 1 0 1
1 0 0 0 0 0
1 0 1 1 1 1
1 1 0 1 0 0
1 1 1 0 1 0



Then m1 is the component terms of P evaluated with x1 = 0, x2 = 0, x3 = 0, y1 = 1, y2 = 1,
and y3 = 0 (i.e., the first row of S1):

m1 = 0001100000000000001001

The row m2 is similarly evaluated with x1 = 0, x2 = 0, x3 = 1, y1 = 0, y2 = 1, and y3 = 1.
The full 8× 22 matrix M that corresponds to S1 is thus

M =



0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 1 1 1 0 1 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 1 1 1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1
1 1 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1
1 1 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0 0 0 1


This matrix has rank, r, at most 8 (the smaller of the row and column dimensions) and

so there are at most 8 linearly independent columns cI and at least 22 − 8 = 14 dependent
columns cD, each of which is equal to some linear combination of the cI . Thus,

cDi
= ai1cI1 ⊕ ai2cI2 ⊕ . . .⊕ ai8cI8 , aij ∈ {0, 1}, 1 ≤ i ≤ (T − r)

(Note that M may be converted to Row Reduced Echelon [10] form, or any other convenient
form, using standard binary matrix reductions so that the cDi

have a simple desired representa-
tion.) Given the rank, r, of M , the cDi

define a set of T − r ≥ 14 simultaneous equations in six
unknowns (x1, x2, x3, y1, y2, y3) which is called “overdefined” because there are more equations
than are theoretically required to determine an exact solution. This set of equations is also said
to be “sparse” (and is claimed to be significantly easier to solve) if a reasonable number of the
aij are equal to 0.

Depending upon how the s-boxes are incorporated into the cipher round function, it may be
possible to string the cDi

together from one round to the next. In many designs, the ith s-box
input at round ` is equal to the XOR sum of a plaintext bit and a round key bit, xi` = bi`⊕ki` .
Thus, in a known or chosen plaintext attack, the unknown variables in the first-round cDi

equations are round-one key bits. The s-box outputs may be expanded and/or permuted prior
to being input to the next round. The cDi

solutions at round `, therefore, become the appropriate
input values to the cDi

equations at round `+1. For example, imagine a matrix M for an s-box
S1 whose independent columns are x1, x2, x3, x1x2, x1x3, x2x3, 1, and y1y3. Furthermore, for the
sake of simple illustration, assume a 2-round cipher whose round function contains only S1 and
whose permutation layer connects the outputs y1, y2, and y3 from round 1 to the inputs x3, x2,
and x1, respectively, in round 2. Let three of the cDi

equations be as follows:

y1 = x2 ⊕ x1x3 ⊕ 1

y2 = y1y3 ⊕ x1 ⊕ x1x3

y3 = x2x3 ⊕ x1x2



Then, at the output of round 2,

y2 = y1y3 ⊕ x1 ⊕ x1x3

= y1y3 ⊕ [[x2x3 ⊕ x1x2]⊕ k1,2]⊕ [[x2x3 ⊕ x1x2]⊕ k1,2] · [x2 ⊕ x1x3 ⊕ 1]⊕ k3,2]

= y1y3 ⊕ [[(b2 ⊕ k2,1)(b3 ⊕ k3,1)⊕ (b1 ⊕ k1,1)(b2 ⊕ k2,1)]⊕ k1,2]⊕
[[(b2 ⊕ k2,1)(b3 ⊕ k3,1)⊕ (b1 ⊕ k1,1)(b2 ⊕ k2,1)]⊕ k1,2] · [[(b2 ⊕ k2,1)⊕ (b1 ⊕ k1,1)(b3 ⊕ k3,1)⊕ 1]⊕ k3,2]

(The second line comes from replacing x1 and x3 in round 2 with y3 and y1 from the output of
round 1, and adding in the relevant round 2 key bits ki,2. The third line comes from replacing
x1, x2, x3 in round 1 with the plaintext bits XORed with the relevant round 1 key bits ki,1.)
Finally, replacing the bi and the yi with the appropriate values from the known or chosen plain-
text/ciphertext pair allows the attacker to determine information about some key bits. Using
many different cDi

equations over many plaintext/ciphertext pairs may result in significant cost
savings over exhaustive search in breaking the cipher.

The primary and overwhelming benefit of the OSE attack compared with many other attacks
such as linear and differential cryptanalysis and their variants is that the relationships computed
between input and output bits hold with equality rather than with some smaller probability.
Probabilistic relationships lead to attack complexities that grow exponentially with the number
of rounds (because the probabilities multiply), whereas equality relationships lead to attack
complexities that grow linearly or polynomially with the number of rounds. This means that a
cipher broken by the OSE attack cannot easily be repaired by the addition of rounds.

Thus, the OSE attack is, in a sense, more devastating to a cipher than previous attacks
and should be considered when a new cipher is being designed. To that end, it is important
to define some design criteria that are guaranteed to render the OSE attack ineffective as a
cryptanalytic tool. This is the goal of the following section.

3 OSE and the CAST Round Function

The CAST design procedure [1] uses large m×n s-boxes with m� n and uses operations from
different algebraic groups both to combine plaintext bits with key bits, and to combine the
outputs from the round function s-boxes. As a concrete instantiation of this design procedure,
the CAST-128 encryption algorithm [1, 2] specifies three different round functions that are used
on a rotating basis throughout the cipher as follows (see [1, 2] for details):



f1 : I = ((km + b)←↩ kr)

f = (((S1[Ia]⊕ S2[Ib])− S3[Ic]) + S4[Id])

f2 : I = ((km ⊕ b)←↩ kr)

f = (((S1[Ia]− S2[Ib]) + S3[Ic])⊕ S4[Id])

f3 : I = ((km − b)←↩ kr)

f = (((S1[Ia] + S2[Ib])⊕ S3[Ic])− S4[Id])

Here, b, km, I, and the output f are 32-bit words; Ia, Ib, Ic, and Id are the first, second, third,
and fourth bytes of I, respectively; S1 - S4 are 8×32 s-boxes; “⊕” is addition modulo 2 (XOR);
“+” and “-” are addition and subtraction modulo 232; and←↩ is circular left rotation by a 5-bit
value kr.

3.1 Complexity due to S-Box Dimension

With respect to the OSE attack by Courtois and Pieprzyk, there are two things to notice
about the CAST-128 s-boxes. First, at size 8 × 32, each s-box can certainly be described by
an overdefined system of equations. In particular, the matrix M describing each s-box will
have 28 = 256 rows and

(
8+32

2

)
+ 8 + 32 + 1 = 821 columns. Thus, the rank of M will be at

most 256 and the number of dependent columns cD will be at least 821− 256 = 565. However,
the second observation is that according to Courtois and Pieprzyk, the complexity of their
OSE attack has a constant factor that is doubly exponential in the size of the s-box [6]. Thus,
unless S has exploitable degenerate properties, dimensions greater than 4 or 5 render the attack
computationally infeasible. This leads to the conclusion that the 8 × 32 s-boxes in CAST-128
are immune to the OSE attack.

3.2 Uncertainty in Estimating S-Box Inputs

It is interesting to note that s-box size is not CAST’s only, or even primary, defense against
the OSE attack. As noted above, in many symmetric ciphers the round key is XORed with
the plaintext bits immediately prior to input to the s-boxes in each round. This means that
in the jth round, the ith input bit xi,j can be replaced with (bi,j ⊕ ki,j) in a cD equation. The
quadratic equation cD can still be evaluated modulo 2 and the relationship that it specifies
between s-box bits still holds with equality. In the CAST round function, the plaintext and key
may instead be combined using addition or subtraction modulo 232. For the case of addition
(the analysis for subtraction is similar), xi,j can no longer be replaced with (bi,j ⊕ ki,j), but
must instead be replaced with (bi,j ⊕ ki,j ⊕ πi,j), where πi,j is the carry value resulting from the
sum (b(i−1),j + k(i−1),j + π(i−1),j). In general,



πp,j =

{
1 : (b(p−1),j + k(p−1),j + π(p−1),j) ≥ 2
0 : otherwise

}
, 1 ≤ p ≤ i

πp,j = 0, p = 0

Thus, prob(xi,j = (bi,j⊕ki,j)) = prob(πi,j = 0) = (1−prob(πi,j = 1)). Now prob(π0,j = 1) = 0 by
definition. It is easy to see that prob(π1,j = 1) = prob(b0,j = 1 AND k0,j = 1) =

(
1
2
· 1

2

)
= 1

4
,

for random vectors b and k. Continuing, we see that

prob(π2,j = 1) = prob((b1,j = 1 AND k1,j = 1 AND π1,j = 0) OR

(b1,j = 1 AND k1,j = 0 AND π1,j = 1) OR

(b1,j = 0 AND k1,j = 1 AND π1,j = 1) OR

(b1,j = 1 AND k1,j = 1 AND π1,j = 1))

=

((
1

2
· 1
2
· 3
4

)
+

(
1

2
· 1
2
· 1
4

)
+

(
1

2
· 1
2
· 1
4

)
+

(
1

2
· 1
2
· 1
4

))
=

(
3

16
+

1

16
+

1

16
+

1

16

)
=

3

8

In general, we have prob(πi,j = 1) =
(

2i−1
2i+1

)
, 1 ≤ i ≤ 31, which approaches 1

2
rapidly as i

grows.

The presence of the carry values in the cD equations changes the nature of these equations
dramatically since the relationships described by those equations now hold with some proba-
bility, rather than with equality. That is, an equation such as y1 = x1,j ⊕ x2,jx3,j ⊕ 1 becomes
y1 = (b1,j ⊕ k1,j)⊕ (b2,j ⊕ k2,j) · (b3,j ⊕ k3,j)⊕ 1 with a probability governed by the probability
that π1,j, π2,j, and π3,j are simultaneously equal to zero. This probability is approximately 1

8

(the exact value depends on the specific (i, j) involved in the equation), rather than 1 (which
is the case when no carry values are possible). If v variables are present in a cD equation, the
probability that the carry values are all simultaneously zero is 2−v, which means that the carries
cannot be ignored in the analysis.

In addition, from the specification of the CAST-128 round functions above it is clear that
another key, kr, is also involved in the modification of the round function input data. That
is, xi,j is not simply the sum of bi,j, ki,j, and πi,j (where ki,j is the ith bit in the jth-round
masking key), but xi,j is a circular rotation of that sum by the value of kr. Taking the carry πi,j

into account means that xi,j depends on bi,j, b(i−1),j, . . . , b0,j and ki,j, k(i−1),j, . . . , k0,j. However,
because the rotation amount could be any value, it follows that xi,j could depend on all bi,j and
all ki,j. Therefore, it is nessary to know all of bi, all of ki, and all of kr in order to know any
bit of xi with certainty. Without such full knowledge, then, nothing exact can be known about
any s-box inputs.



3.3 Uncertainty in Estimating Round Function Outputs

Turning now to the s-box outputs, the fi above show that these are combined using addition
modulo 2, and addition and subtraction modulo 232. Again, addition and subtraction modulo
232 involve carry (or borrow) propagation, and so if the four s-box output vectors are not known
fully then round function output bits cannot be known with certainty. To illustrate, let the four
s-box output vectors be y1, y2, y3, and y4. For round function f3 as described above (f1 and
f2 are similar), f = (((y1 + y2) ⊕ y3) − y4) = (((y1 + y2) ⊕ y3) + (−y4)), since subtraction
is accomplished as a negation of y4 (using 2s complement) followed by an addition. The 2s
complement representation is defined to be 1s complement (a simple complement of every bit)
plus 1. This is equivalent to leaving all least significant bits (in the original vector) up to and
including the first “1” alone, and complementing all the higher-order bits. Thus, in the original
vector, bit i stays the same if and only if every less significant bit is a 0 bit, so that prob(bit i
unchanged) = 2−i, for 1 ≤ i ≤ 31. Therefore, with probability 2−i, bit i will remain unchanged,

and with probability (1− 2−i) =
(

2i−1
2i

)
it will be complemented.

Looking at the ith bit of the round function output, we have

f = (((y1i ⊕ y2i ⊕ πa)⊕ y3i)⊕ (y4i ⊕ πb)⊕ πc)

= y1i ⊕ y2i ⊕ y3i ⊕ y4i ⊕ (πa ⊕ πb ⊕ πc)

where πa is the carry that pertains to bit i from the addition of y1 and y2, πb is the carry that
pertains to bit i from the 2s complement representation of y4, and πc is the carry that pertains
to bit i from the addition of the complemented y4 with the result of ((y1 + y2) ⊕ y3). If an
attacker has only partial information about the s-box outputs, such as y1i, y2i, y3i, and y4i, then
the attacker’s approximation of the ith output bit of the round function by y1i⊕ y2i⊕ y3i⊕ y4i

will only be accurate if π = (πa ⊕ πb ⊕ πc) is zero. Now

prob(π = 0) = prob((πa = 0, πb = 0, πc = 0) OR (πa = 1, πb = 1, πc = 0) OR

(πa = 1, πb = 0, πc = 1) OR (πa = 0, πb = 1, πc = 1))

=

[
2i + 1

2i+1
· 1

2i
· 2

i + 1

2i+1

]
+

[
2i − 1

2i+1
· 2

i − 1

2i
· 2

i + 1

2i+1

]
+[

2i − 1

2i+1
· 1

2i
· 2

i − 1

2i+1

]
+

[
2i + 1

2i+1
· 2

i − 1

2i
· 2

i − 1

2i+1

]
+

≈
[
1

2
· 1

2i
· 1
2

]
+

[
1

2
· 1 · 1

2

]
+[

1

2
· 1

2i
· 1
2

]
+

[
1

2
· 1 · 1

2

]
=

(
1

2i+2
+

1

4
+

1

2i+2
+

1

4

)
=

(
1

2
+

1

2i+1

)



Thus, the attacker can determine the ith bit of the round function output from his partial
knowledge of the s-box outputs with an advantage of approximately 1

2i+1 over a random guess.
Clearly this advantage is negligible for most bits of the output vector. Although it is the case
that for low order bits this advantage may be significant (in particular, for the least significant
bit, π = 0 with probability 1), it is infeasible for an attacker to exploit this over multiple
rounds because at the input stage of the next round, this vector will be rotated by an unknown
amount (determined by the rotation key kr) and so is highly unlikely to remain in a low order
bit position.

3.4 Summary of Protection Against the OSE Attack

As outlined above in this section, the CAST design procedure incorporates several criteria
that contribute in a significant way to its immunity against the OSE attack. These may be
summarized as follows.

• The use of addition and subtraction modulo 232 in the data and key combining stage means
that anything less than full knowledge of all the inputs to the round function leads to only
probabilistic knowledge of each of the s-box inputs.
• Probabilistic knowledge of the s-box inputs leads to a bad estimate of the s-box outputs

because the CAST s-boxes use bent functions, which guarantee that each output bit depends
in a complex, highly-nonlinear way on all input bits (not just a proper subset); see [1] for
details.
• Less than full knowledge of s-box outputs leads to probabilistic knowledge of the round

function outputs because of the use of addition and subtraction modulo 232 in the s-box
output combining stage.
• The use of multiple different round functions means that adjacent round functions behave

differently (this makes it difficult to build characteristics, which are specific round function
attacks chained together over multiple consecutive rounds).
• The presence of the circular rotation operation also ensures that building characteristics is

difficult because the output bits from one round are shifted by an unknown (key-determined)
value prior to being input to s-boxes in the following round.
• The use of s-boxes of large dimension ensures that the calculations required for the OSE

attack are computationally infeasible for the foreseeable future.

Given the fact that all these protective features occur simultaneously in the constructed ci-
pher, it is clear that CAST-designed encryption algorithms are immune to the OSE attack as
described in [6].

4 Conclusion

The Overdefined System of Equations attack by Courtois and Pieprzyk is a relatively new type
of attack against symmetric ciphers. It takes advantage of a previously-unexploited property
of the s-boxes contained in certain classes of these ciphers: an overdefined and sparse system



of equations may be derived from an s-box, resulting in expressions relating specific input and
output bits that hold with equality, rather than with some small probability. Equality in these
expressions, at least theoretically, means that the work factor for the attack grows linearly
with the number of rounds (rather than exponentially, as is the case with many similar attack
methods).

This paper has given a brief overview of the OSE attack and shown how it can be applied
to a toy cipher. The paper then concentrated on design principles that can be employed to
guarantee that the OSE attack will not be applicable to a cipher constructed according to
those principles. It was shown that the CAST design procedure includes a number of principles
in the round function and in the overall algorithm that provide immunity to this attack. For
example, the large s-box dimension makes the OSE attack computationally infeasible, and the
use of circular rotation makes certain that any advantage in some bit positions in one round
will be nullified in subsequent rounds. Of particular significance, however, it was shown that
the mixing of operations from different algebraic groups ensures that the attack complexity will
no longer grow linearly with the number of rounds. This lends support to the conjecture that
mixing operations is an important design criterion for strengthening ciphers against a variety
of attacks.

From this work, we conclude that it is possible to design ciphers with immunity to the OSE
attack. Furthermore, the CAST-128 cipher is a concrete example showing that this is not only
possible, but that such ciphers can be readily implemented and efficient in practice.
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