

HENKOS Stream Cipher
Marius Oliver Gheorghita

331 Cotofenii Fata 207013 Dolj, Romania
redwire05@yahoo.com

Abstract
The purpose of this paper is to revise the HENKOS Stream Cipher
paper present in the archive at 2004/080 and to provide a clear
description of the proposed HENKOS cryptographic algorithm.

Algorithm description
The proposed algorithm is a synchronous stream cipher, more
precisely a binary additive stream cipher because it using the XOR
function to encrypt the plaintext. This variant of the HENKOS stream
cipher uses a named “master key (MK)” of 256 numbers (8-bit
numbers) as a secret key and a named “data key (DK)” of 256 bytes
(correspondent of the initialization vector - IV).

Figure 1. Model of the HENKOS stream cipher

mi – stream of plaintext
ci – stream of ciphertext
zi – keystream
t=SW function;
f=AD function;
Si – internal state i; S0 – initial state;
g=XOR; h= XOR;

Si

f

h g

t
(MK,MKT)

DK

mi

ci zi

Master Key Transformation
In this part of the algorithm, from the master key (MK) is obtained the
“master key transformed” (MKT). This key will be the pair of the
master key in the mixing bytes process from data key initialization
cycle, where the “switch” function described below will use pairs of
(MK, MKT). The numbers from this key are obtained as partial sums
of the numbers from MK and then taking a “mirror image” on these
sums. (e.g. a mirror image of the number 255 is 552)
The master key transformed (MKT) is

MKTi =mirror [(∑
=

i

j

jMK
0

)(%256)]%256, i = 0..255;

Data Key initialization
In this part of the algorithm, transform the data key (DK) in order to
obtain a proper initialization before it can be used to generate the
keystream. It is done using two major functions: one is the “switch”
function (SW), which will mix the bytes of the data key as follows:
- the byte j is switched with byte k in the data key, where j is the
number from the MK in the i position and k is the number from the
MKT in the i position.
DKj = DKj XOR DKk ;DKk = DKj XOR DKk ;DKj = DKj XOR DKk ;
where j = MKi and k=MKTi;
i = 0..255;
The next function is an additive function AD that will replace the byte
from each position with the sum between it and the byte from the
right, except the last byte who is added with first byte.
DKi = DKi + DKi+1 modulo 256 i = 0..254;
DK255 = DK255 + DK0; DK0=initial value, not calculated in this cycle.
After these two transformations, obtain an intermediate data key; to
initialize the data key properly, these cycles will be repeated 64 times,
without producing any output (in the figure the initialization key is the
dashed-line box). After the last cycle a DK is released.

Keystream generation
To obtain the keystream, zi = g(S64+i ,t(S64+i)), where S64 is the output
from the last cycle of key initialization.
For generation of a keystream with predefined length, function g must
be applied as long as necessary, using the functions described above
in the data key initialization cycle.

Encryption/decryption
The encryption/decryption between the plaintext/ciphertext is done
using XOR:
ci=h (mi, zi) ;mi=h (ci, zi) ;ci = ciphertext,mi = plaintext,zi = keystream;

Security analysis
Time/Memory/Data tradeoff attacks
This kind of attack has two phases: During pre-computation phase
the attacker exploits the structure of the stream cipher and
summarizes his findings in large tables. During the attack phase, the
attacker uses these tables and the observed data to determine the
secret key or the internal state of the stream cipher.
The size of the tables in the pre-computation stage, the required
keystream, and the computational effort required to recover the
secret key determine the feasibility of this attack. A simple way to
provide security against this attack in stream ciphers is to increase
the search space. In HENKOS stream cipher the size of the internal
state and the secret key space is 2048 bits.

Chosen-DK Attack
A necessary condition for defeating differential cryptanalysis or
statistical chosen-DK attacks is that the initial states for any two
chosen DK’s are statistically unrelated.
However, in a chosen-DK attack it is possible to reinitialize the cipher
with the same master key but with a data key that differs in only one
position from the previous data key. As long as data keys differ
through the last bit from one byte the keystreams are not correlated,
otherwise they are correlated.
In order to avoid completely these correlated keystreams, possible
variants are: it can be made variable the number of the cycles in the
data key initialization and/or in the SW function used in the keystream
generation, the corresponding pair of the MK values can be
dependant of the DK.

Related Master Key Attack
Related key attack is attempted to find two different master keys that
will produce the same keystream. The cipher isn’t vulnerable to this
kind of attack, it was verified correlation between keystream produces
from related master keys that differ through one bit one of another,

under a fixed data key. The test was made on 2048 keys, starting
from initial key and changed every bit at the time in order to observe
how that modifies the output keystream.
The test verifies also the correlation between all the key pairs derived
from the tested master key and shows that all keystreams are not
correlated. It can be assumed that for keys that differ through more
bits, the possibility to appear correlation between produced
keystreams under the same data key become negligible.

Statistical tests analysis
A keystream generator that exhibits basic statistical biases or
detectable characteristics is weak. I have extensively tested output
from HENKOS using the following statistical test package and have
detected no statistical weaknesses.
The test was done for all of the 2048 keystreams tested for the
related-key attack test; it was used the NIST Statistical Test Suite and
every keystream was analyzed as 100 sequences of 1000000 bit
each (totally the quantity of keystream involved in that test was over
190Gb).
The parameters of the battery were: block frequency length=128;
non-overlapping template block length=9; overlapping template block
length=9; universal block length=7; universal initialization
steps=1280; approximate entropy block length=10; serial block
length=16; linear complexity substring length=500;
Number of keystreams who not pass the tests was under 5%.
The included statistical tests: frequency, block frequency, cumulative
sums, runs, long runs, Marsaglia's rank, spectral (based on the
Discrete Fourier Transform), non-overlapping template matchings,
overlapping template matchings, Maurer's universal statistical,
approximate entropy, random excursions and random excursion-
variant, Lempel-Ziv complexity, linear complexity, and serial.

Summary
This paper is intended to give a clear description regarding the design
and preliminary security analysis of the proposed HENKOS algorithm
in order to receive scrutiny from the cryptologic community.

