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Abstract. It is well known that the NIST statistical test suite was used
for the evaluation of AES candidate algorithms. We have found that the
test setting of Discrete Fourier Transform test and Lempel-Ziv test of
this test suite are wrong. We give four corrections of mistakes in the test
settings. This suggests that re-evaluation of the test results should be
needed.
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1 Introduction

Random and pseudorandom bit generators (RBGs, PRBGs) are used for many
purposes including cryptographic, modeling, and simulation applications. For
cryptographic purpose, they are required in the construction of encryption keys,
other cryptographic parameters, and so on. One of the criteria used to evalu-
ate the Advanced Encryption Standard (AES) candidate algorithms was their
demonstrated suitability as PRBGs. That is, the evaluation of their outputs uti-
lizing statistical tests should not provide any means by which to computationally
distinguish them from truly random sources [1–3].

Cryptographically secure pseudorandom bit generator is defined as a PRBG
that passes the next-bit test [4]. A PRBG is said to pass the next-bit test if
there is no polynomial-time algorithm which, on input of the first l bits of an
output sequence s, can predict the (l+1)st bit of s with probability significantly
greater than 1

2 . It is known that a PRBG passes the next-bit test if and only
if it passes all polynomial-time statistical tests. Although a few PRBGs such as
RSA, BBS are known as cryptographically secure PRBGs under the assumption
that RSA problem and integer factorization are intractable, it is difficult to
prove that some PRBG is cryptographically secure in general. Practically, we
only subject a sample output sequence of the PRBG to various statistical tests,
and evaluate that the sequence possesses a certain attribute that a truly random
sequence would be likely to exhibit. Although various kind of statistical tests are
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proposed so far [5–7], we will focus on NIST 800-22 statistical test suite [8] in
this paper because this test suite was used for the evaluation of AES candidates.

Some statistical tests are based on a statistical hypothesis H0 which is that
a given binary sequence was produced by a random bit generator. The test only
provides P-value which is a measure of the strength of the evidence provided by
the data against the hypothesis. The significance level α of the test of a statistical
hypothesis H0 is the probability of rejecting H0 when it is true. If P-value ≥
α, then the hypothesis H0 is accepted, i.e., the sequence would be considered
to be random with a confidence 1 − α. If P-value < α, then the hypothesis
H0 is rejected, i.e., the sequence would be considered to be non-random with a
confidence 1 − α.

If the significance level α of a test of H0 is too high, then the test may reject
sequences that were, in fact, produced by a random bit generator (such an error
is called a Type I error) . On the other hand, if the significance level α of a test of
H0 is too low, then there is the danger that the test may accept sequences even
though they were not produced by a random bit generator (such an error is called
a Type II error). It is, therefore, important that the test be carefully designed
to have a significance level that appropriate for the purpose at hand. However,
the calculation of the Type II error is more difficult than the calculation of α
because many possible types of non-randomness may exists. Therefore, NIST
statistical test suite, which includes 16 tests, adopts two further analyses in
order to minimize the probability of accepting a sequence being produced by a
good generator when the generator was actually bad [9]. First, For each test,
a set of sequences (sample size m) from output is subjected to the test, and
the proportion of sequences whose corresponding P-value satisfies P-value ≥ α
is calculated. If the proportion (success rate) is close to 1 − α, then the test
is passed, i.e., the set of sequences is accepted. Second, the distribution of P-
values is calculated for each test. And, if these P-value are uniformly distributed
(no obvious bias), then the test is passed. These two analyses are the crucial
difference from the other statistical test suite.

In section 2, we investigate the randomness of sequences generated by various
PRBGs including cellular automata (CA)-based PRBG using the statistical test
suite provided by NIST, and show that results of Discrete Fourier Transform
(DFT) test and Lempel-Ziv Compression test are strange. This suggests that
the NIST test setting of these two tests are wrong. In fact, we identify two
mistakes in the NIST setting of DFT test in section 3. We also identify two
mistakes in the NIST setting of Lempel-Ziv test in section 4. The corrections are
also given in each section. This study is important because this NIST test suite
was used for the evaluation of AES candidates.

1.1 NIST Statistical Test Suite

The NIST statistical test suite is a statistical package consisting of 16 tests
that were developed to test the randomness of arbitrary long binary sequences
produced by either hardware or software based cryptographic random or pseu-
dorandom number generators. These tests focus on a variety different types of
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non-randomness that could exist in a sequence. The 16 tests are listed in Table
1.

Table 1. List of NIST Statistical Tests

Number Test Name

1 Frequency

2 Block Frequency

3 Runs

4 Longest Run

5 Binary Matrix Rank

6 Discrete Fourier Transform

7 Non-overlapping Template Matching

8 Overlapping Template Matching

9 Universal

10 Lempel Ziv Compression

11 Linear Complexity

12 Serial

13 Approximate Entropy

14 Cumulative Sums

15 Random Excursions

16 Random Excursions Variant

For each statistical test, a set of P-values, which is corresponding to the set
of sequences, is produced. Each sequence is called success if the corresponding
P-value satisfies the condition P-value ≥ α, and is called failure otherwise. For
a fixed significance level α, 100α % of P-values are expected to indicate failure1.
For the interpretation of test results, NIST adopts following two approaches,

(1) the examination of the proportion of success-sequences (Success Rate)

If the proportion of success-sequences falls outside of following acceptable
interval, there is evidence that the data is non-random.

P ′ ± 3

√
P ′(1 − P ′)

m
, (1)

where P ′ = 1−α and m is the number of sequences. This interval is determined
to be 99.73% range of normal distribution which is an approximation of the
binomial distribution under the assumption that each sequence is independent
sample.

(2) uniformity of the distribution of P-values

1 All the statistical tests of the NIST statistical test suite have the unique significance
level α = 0.01.
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This examination is accomplished by computing following χ2 value,

χ2 =
10∑

i=1

(Fi − m/10)2

m/10
, (2)

where Fi is the number of P-values in sub-interval [(i-1)*0.1, i*0.1), and m is the
number of sequences (sample size). And, the P-value of P-values is calculated
such that P′-value = igamc (9/2, χ2/2), where igamc(n,x) is the Incomplete
Gamma Function. If P′-value ≥ 0.0001, then the set of P-values can be considered
to be uniformly distributed.

2 Results of the NIST Statistical Test Suite

In this section, we show the results of the NIST statistical test suite for four
PRBGs (AES, SHA1, MUGI, and CA). For each statistical test, two further
analyses described above are executed, and evaluate the set of sequences. We
use 1000 samples of 106 bit sequences for each test. Consequently, 10 (keys) ×
1000 (sample) × 106 (sequence) bits are used for each test in order to investigate
the difference of the results between different keys2. The input parameters we
use are listed in Table 2.

Table 2. Parameters used for NIST Test Suite

Test Name Block Length

Block Frequency 20,000

Non-overlapping Template Matching 9

Overlapping Template Matching 9

Universal (Initialization Steps) 7 (1280)

Linear Complexity 500

Serial 10

Approximate Entropy 10

Table 3 shows the results of AES (128 bit key, OFB mode). All 16 tests are
passed in four cases (key 1, key 2, key 4, and key 8). The success rates of the best
case (key 1) and of the worst case (key 7) are shown in Figure 1. Dotted lines
denote the acceptable interval specified by eq.(1). As we can see, some tests have
many success rates. For example, the non-overlapping template matching test
(number 7) has 148 success rates because one success rate corresponds to the
one template (non-periodic pattern consisting of 9 bits) matching. If at least one
success rates is out of the acceptable interval, then the test is not passed (see key
7 case). While all tests are passed in key 1 case, the non-overlapping template
2 The key is the initial configuration {St=0

i } in CA case.
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Table 3. Results of AES.

Key Success Rate Uniformity

1 pass pass

2 pass pass

3 15 pass

4 pass pass

5 7 10

6 14 10

7 7, 8 pass

8 pass pass

9 pass 10

10 pass 10
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Fig. 1. Success rates of AES for 16 tests. Key 1 (best) and key 7 (worst) cases are
shown in up and down figures, respectively. Dotted lines denote the acceptable interval
(eq.(1) with α = 0.01).

matching test (number 7) and the overlapping template matching test (number
8) are not passed in key 7 case. It is noted that the uniformity of P-values are
not passes only for the Lempel-Ziv test (number 10). The reason why this test
is not passed frequently will be explained later.

A one-dimensional 5-neighborhood CA consist of a line of cells with value
Si= 0 or 1 for i = 0, 1, 2, · · · , N . These cell values are updated in parallel in
discrete time steps according to a fixed rule of the form,

St+1
i = F (St

i−2, S
t
i−1, S

t
i , S

t
i+1, S

t
i+2), (3)

where St
i denotes the i cell value at time t [10–12]. We use following rule

535945230 as a CA-based PRBG [13].

St+1
i = St

i−2 ⊕ St
i+1 ⊕ St

i+2 ⊕
St

i−1 · St
i+1 ⊕ St

i−1 · St
i+2 ⊕ St

i · St
i+1 ⊕
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St
i · St

i+2 ⊕ St
i+1 · St

i+2 ⊕ (4)
St

i−1 · St
i+1 · St

i+2 ⊕ St
i · St

i+1 · St
i+2.

Table 4, 5 and 6 show the results of SHA1, MUGI, and CA, respectively. In CA
case, we use the cell values {St

i} with fixed cell number i as a sequence, and also
use the system size N = 1000 and periodic boundary condition St

1 = St
N+1.

Table 4. Results of SHA1

Key Success Rate Uniformity

1 pass pass

2 pass 10

3 7 pass

4 7 6

5 pass 10

6 7, 15, 16 pass

7 7 pass

8 7 pass

9 pass pass

10 pass 10

Table 5. Results of MUGI

Key Success Rate Uniformity

1 7 pass

2 pass 10

3 10 10

4 pass pass

5 7 pass

6 pass pass

7 pass pass

8 pass pass

9 7 pass

10 pass 6

As we can see, all tests are passed in two cases (SHA1), in four cases (MUGI),
and six cases (CA), respectively. It is noted that results of CA-535945230 case
is better than the cases of well-known good PRBGs such as AES, SHA1, and
MUGI.

If we focus on the uniformity of P-values, only the DFT test (number 6)
and Lempel-Ziv test (number 10) are not passed frequently. If we choose the
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Table 6. Results of CA-535945230

Key Success Rate Uniformity

1 pass pass

2 pass 10

3 pass pass

4 pass 6, 10

5 pass pass

6 pass pass

7 pass 7

8 pass pass

9 pass 10

10 pass pass

sample size m greater than 10000, we cannot find any PRBGs that pass these
two tests even in SHA1 (SHA1 is used for the mean-value and the variance-value
in the distribution of the Lempel-Ziv test [8]). Figure 2 shows that P′-values (the
uniformity of the distribution of P-values) of these two tests rapidly decrease as
the number of samples increases. In other words, these distributions of P-values
indicate a apparent deviation from randomness although we use well-known good
PRBG (SHA1). This observation suggests that these two tests can be consider as
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Fig. 2. The uniformity of P-values in SHA1 case.

an underdeveloped statistical test. Since many statistical tests are based upon
asymptotic approximations, careful work needs to be done to determine how
good an approximation is. However, we originally found that these two tests
have not only approximation problem but also mistakes in theoretical setting.
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3 Corrections of Discrete Fourier Transform (Spectral)
Test

In this section, we focus on the DFT test, and show two mistakes found in the
NIST test setting. The focus of this test is the peak heights in the Discrete Fourier
Transform of the sequence. The purpose of this test is to detect periodic features
in the tested sequence that would indicate a deviation from the assumption of
randomness. The intention is to detect whether the number of peaks exceeding
the 95% threshold is significantly different than 5%. The test description in the
NIST document are follows.

1. The zeros and ones of the input sequence (ε) are converted to values of -1
and +1 to create the sequence X = x1, x2, · · · , xn where xi = 2εi − 1

2. Apply a Discrete Fourier Transform on X to produce: S = DFT (X). A
sequence of complex variables is produced which represents periodic compo-
nents of the sequence of bits at different frequencies.

3. Calculate M = modulus(S′) ≡| S′ |, where S′ is the substring consisting of
the first n/2 elements in S, and the modulus function produces a sequence
of peak heights.

4. Compute T =
√

3n = the 95% peak height threshold value. Under the
assumption of randomness, 95% of the values obtained from the test should
not exceed T .

5. Compute N0 = 0.95n/2. N0 is the expected theoretical (95%) number of
peaks that are less than T .

6. Compute N1 = the actual observed number of peaks in M that are less than
T .

7. Compute d = N1−N0√
n(0.95)(0.05)/2

.

8. Compute P-value = erfc( |d|√
2
).

3.1 The derivation of the threshold T

First, we show the derivation of the threshold T =
√

3n. For a frequency j, DFT
are defined by following equation.

Sj =
n∑

k=1

xkcos(2π
(k − 1)

n
j) + i

n∑
k=1

xksin(2π
(k − 1)

n
j). (5)

Let us consider the square of modulus of Sj ,

| Sj |2 = c2
j + s2

j (6)

, where

cj =
n∑

k=1

xkcos(2π
(k − 1)

n
j) (7)

sj =
n∑

k=1

xksin(2π
(k − 1)

n
j). (8)
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Here, we can simply prove that cj and sj converge to the normal distribution
whose mean µ is zero and variance σ2 is n/2 under the assumption of xk (−1 or
+1 for k = 1, 2, · · · , n) randomness. Therefore, Y = ( cj

σ )2 + ( sj

σ )2 converges to
following distribution function (χ2 distribution with 2 degree of freedom),

P (Y ) =
1
2

exp(−Y

2
). (9)

If we transform Y to Z = Y
2 , we can get following distribution,

P (Z) = exp(−Z). (10)

The threshold T is defined such that the number of peaks exceeding the threshold
T should be 5% under the assumption of randomness. Since

∫ ∞

ZC

exp(−Z)dZ = exp(−ZC) = 0.05, (11)

we can get the value ZC = −ln(0.05) = 2.995732274. From | Sj | =
√

nZ, we
conclude that

T =
√

2.995732274n. (12)

We have found that the deviation of
√

3n from
√

2.995732274n makes the
distribution invalid. Figure 3 shows the distribution of N1 in SHA1 case (300000
samples of n = 106 bit sequence). Note that the expected value of N1, that
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Fig. 3. The distribution of N1 in SHA1 case (300000 samples of n = 106 bit sequence).
Note that the expected value of N1, that is, N0 is 475000.

is, N0 = 0.95n
2 is 475000 in this case. If we set the threshold T =

√
3n, then

the distribution is shifted to the right. So, we have to set the threshold T =√
2.995732274n. This is the first mistakes in DFT test.
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3.2 The theoretical distribution

Because we use the real values xk, the symmetry such as | Sj | = | Sn−j |
appears in peaks. So, the NIST focus on the first n

2 peaks. The test description
in the NIST documents use the theoretical distribution whose mean value µ is
np
2 and variance value σ2 is npq

2 where p = 0.95, q = 0.05, and n = 106 (n
2

times coin tossing with probability p and q). However, this coin tossing is not
independent process. The quantity

∑n/2
j Sj is conserved in this process. In this

case, the variance σ2 becomes npq
4 . Figure 4 shows the fitting of the distribution

of N1 in SHA1 case with the threshold T =
√

2.995732274n and two theoretical
distributions. We can confirm that the distribution becomes to fit to the new
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Fig. 4. The fitting of the distribution of N1 in SHA1 case with the threshold T =√
2.995732274n and two theoretical distributions.

theoretical distribution.

4 Corrections of Lempel-Ziv Compression Test

In this section, we focus on the Lempel-Ziv test, and show two mistakes found
in the NIST test setting. The focus of this test is the number of cumulatively
distinct patterns (words) in the sequence. The purpose of the test is to determine
how far the tested sequence can be compressed. The sequence is considered to be
non-random if it can be significantly compressed. A random sequence will have
a characteristic number of distinct patterns. The test description in the NIST
document are follows.

1. Parse the sequence into consecutive, disjoint and distinct words that will
form a “dictionary” of words in the sequence. This is accomplished by cre-
ating substrings from consecutive bits of the sequence until a substring is
created that has not been found previously in the sequence. The resulting
substring is a new word in the dictionary.
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2. Compute P-value = 1
2erfc(µ−Wobs√

2σ2 ),
where µ = 69588.2019 and σ2 = 73.23726011 when n = 106 (these values
are updated Oct. 26, 1999). Note that since no known theory is available to
determine the exact values of µ and σ, these values were computed using
SHA1.

4.1 The asymmetric distribution

There are asymptotically well-approximated mean formula and the variance for-
mula of the distribution of the Lempel-Ziv test [14, 15]. However, it is known
that above formulas are invalid for the sequence of length less than 107 through
a simulation study using BBS. Therefore, SHA1, which is one of well-known good
PRBGs, is used instead for the mean-value and the variance-value in the NIST
setting [8]. The accuracy of such empirical estimates depends on the randomness
of the generator used. Figure 5 shows the distributions of the number of words
in SHA1 case and CA case (106 samples of n = 106 bit sequence). Two distribu-
tions are almost the same although two algorithms are completely different. We
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Fig. 5. The distribution of the number of words in SHA1 case and CA case. 106 samples
of n = 106 bit sequence are used.

can confirm the subtle asymmetries if we see Fig. 6 carefully. We conclude that
this distribution can be used for the mean and variance values of new setting
of the test. Through the fitting of the distributions, we got the mean value µ
= 69588.09 and variance values σ2

L = 75.574336518 and σ2
R = 72.42178447, for

the left branch and right branch, respectively. Consequently, we got the new
empirical estimates (asymmetric distribution) which are better than the NIST
setting.



12 Song-Ju Kim et al.

0 1000 2000 3000
X*X

10
−7

10
−5

10
−3

10
−1

Lo
g−

P
ro

ba
bi

lit
y

wrong empirical estimate
SHA1

Left Branch

Right Branch

Fig. 6. The distribution of the number of words (SHA1 case) in different scale. The
horizontal axis denotes the square of distance from the mean value for both branchs.
The same data of Fig. 5 is used.

4.2 The effect of discreteness

Despite the best fitting of the distribution, the uniformity of P-values can not be
improved. This is because the distribution of the number of words is too narrow
(the variance is too small). Therefore, the effect of discreteness appeared. In other
words, a variety of the appeared P-values is limited. Figure 7 shows the number
of times of appeared P-values in SHA1 and CA cases. Because the variety of
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Fig. 7. The number of times of appeared P-values in SHA1 and CA cases. 106 samples
of n = 106 bit sequence are used. The numbers described in figure denote the variety
of appeared P-values in each bin.

appeared P-values are two or three in centered bins, we never get the uniformity
of P-values in this situation.
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Because the purpose of checking the uniformity of P-value is to detect the
deviation of the distribution from that of random sequence case, we re-define
the uniformity of P-values only in this test case as the histogram of P-values
itself which is produced by SHA1 and CA5 (106samples). In other words, we use
following formula for the checking of the uniformity instead of eq.(2),

χ2 =
10∑

i=1

(Fi − mSi)2

mSi
, (13)

where m denotes sample size and Si denotes the rate of each i bin which is
computed from the histogram of P-values (106 samples of SHA1 and CA data),
that is, S1 = 0.1097085, S2 = 0.079127, S3 = 0.107691, S4 = 0.084465, S5 =
0.1369235, S6 = 0.091115, S7 = 0.0858035, S8 = 0.1098615, S9 = 0.1028565,
and S10 = 0.0924485.

5 Conclusion

We corrected two points for DFT test setting,

1. The correction of the threshold T from
√

3n to
√

2.995732274n.
2. The correction of the variance σ2 of theoretical distribution from npq

2 to npq
4 .

We also corrected two points for Lempel-Ziv test,

1. The setting of standard distribution which has no algorithm dependence.
This asymmetric normal distribution has its mean value µ = 69588.09 and
variance values σ2

L = 75.574336518 and σ2
R = 72.42178447, for the left branch

and right branch, respectively, in n = 106 case.
2. the re-definition of the uniformity of P-values as the histogram of P-values

itself which is produced by SHA1 and CA5 (106samples).

Figure 8 shows the P′-values behavior after corrections when the number of
samples increases. As a result, P′-values of two test become improved (compare
with Fig. 2).

Although the checking of the uniformity of P-values was not executed in the
evaluation of AES candidate algorithms, the used P-value itself has nonsense in
these two tests. This suggests that re-evaluation of the test results should be
needed.
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