
Differential Fault Analysis on A.E.S.

P. Dusart∗, G. Letourneux†, O. Vivolo‡

01/10/2002

Abstract

We explain how a differential fault analysis (DFA) works on AES 128, 192 or 256 bits.

Contents

1 Introduction 1

2 The description of the AES 2
2.1 Representation chosen for GF (28) . 2
2.2 Notations used in this article . 3
2.3 AddRoundKey for ith round . 3
2.4 SubByte for ith round . 3
2.5 MixColumn for ith round . 3
2.6 ShiftRows for ith round . 4

3 The description of the attack on computation of AES 4
3.1 Principle of the attack . 4
3.2 Example . 4
3.3 How the injected error acts on the final state . 5

3.3.1 Fault modification . 5
3.3.2 Effect on MixColumn . 5
3.3.3 Effect on AddRoundKey . 5
3.3.4 Effect on last SubBytes . 5
3.3.5 Effect after last ShiftRows . 5
3.3.6 Effect after last AddRoundKey . 5

3.4 Example . 6
3.5 Analysis on information brought by fault . 6
3.6 Example . 8

4 Generalisation 9
4.1 Without fault location . 9
4.2 Hardware Device . 9

A Back to initial key with the last subkey 9

1 Introduction

In September 1996, Boneh, Demillo, and Lipton [2] from Bellcore announced a new type of cryptanalytic
attack which exploits computational errors to find cryptographic keys. Their attack is applicable to public key
cryptosystems such as RSA, excluding secret key algorithms. In [3], E. Biham & A.Shamir extend this attack
to various secret key cryptosystems such as DES, and call it Differential Fault Analysis (DFA). They applied
the differential cryptanalysis to Data Encryption Standard (DES) in case of hardware fault model.

We further assume that the attacker is in physical possession of the tamperproof-device, so that he can repeat
the experiment with the same cleartext and key but without applying the external physical effects. As a result,

∗LACO (UMR CNRS n◦6090), Faculté des Sciences, 123, avenue Albert THOMAS, 87060 Limoges, France
†E.D.S.I. Atalis 1, 1, rue de Paris, 35510 Cesson-Sévigné, France
‡development@edsi-smartcards.com.fr, E.D.S.I. Atalis 1, 1, rue de Paris, 35510 Cesson-Sévigné, France

1

he obtains two ciphertexts derived from the same (unknown) cleartext and key, where one of the ciphertexts is
correct and the other is the result of a computation corrupted by a single error during the computation.

The DES used a 56-bits key which seems to be too short for future. Hence a mondial competition between
secret key cryptosystems has been realized. The requirements of this standard is to replace DES standard: a
symmetric cryptosystem with 128 to 256 key sizes, which can be easily implemented in hardware. On Oct. 2,
2000, NIST choose Rijndael to be the Advanced Encryption Standard (AES). AES uses a 128, 192 or 256 bits
key with a 128 bits input message. It works on bytes with an algebraic structure which is the finite field GF(28).
Some studies showed that it is resistant to linear and differential cryptanalysis.

The major critique of DFA was the practical feasibility of the theory. But some authors [4] have designed
practical experimentations of this kind of attack with the possibility to inject the fault in a temporal windows
which can be clearly related with program running process. By exposing a sealed tamperproof device such as
a smartcard to certain physical effects (e.g., ionizing or microwave radiation), one can induce with reasonable
probability a fault at a short random bit location in one of the registers at some intermediate stage in the
cryptographic computation. In practice, the perturbation can change more than one bit. We assume that it
can change up to one byte anywhere between the last two MixColumn operations of AES.

For DFA on DES, the attacker knows the differential input and output of the touched SBox. For AES,
contrary to DES, we don’t have the value of the differential fault ε which could be obtained by considering
the left part of the final DES state at round 16. For AES, if we consider a single fault before the SubBytes
transformation, we can’t go back to the key (There are 127 possibilities of the injected fault and 256 possibilities
of a single byte of the round key, so the AES is protected against classical differential analysis.).

When the injected fault is becoming several induced faults (at least two) occuring in different bytes of the
state, we can intersect each set of possible induced faults (the cardinal of intersection is lower than 63) and so
we find a set of possible values (at most 128) for several bytes of the last subkey.

Further we find the last subkey with enough pairs of correct cipher/fault cipher. Once known this subkey
is, we can find easily the key. For the sake of simplicity, we first assume that the first byte of the state before
the MixColumn transformation of the nine round is replaced by a unknown value. The induced fault is going
to be propagated by the MixColumn and spread over four bytes of the state. There is a linear relation between
the four induced faults. For each byte is possible to find a set of possible value of induced fault, and then a set
of possible values for the roundkey 10.

In this paper, we show that AES is sensitive to Fault Analysis. We have implemented this attack on a
personal computer. Our analysis program found the full AES-128 key by analysing less than 50 ciphertexts.

2 The description of the AES

In this article, we use a description slightly different from the original AES submission FIPS PUB 197 [1]. We
describe AES using matrix on GF (28) but we try to keep the notations of [1].

The AES is a block cipher with block length to 128 bits, and support key lengths Nk of 128, 192 or 256
bits. The AES is a key-iterated block cipher : it consists of the repeated application of a round transformation
on the state. The number of rounds is denoted Nr and depends on the key length (Nr = 10 for 128 bits,
Nr = 12 for 192 bits and Nr = 14 for 256 bits).

The AES transforms a state, noted S ∈ M4(GF (28)) , (i.e. S is a matrix 4x4 with its coefficients in
GF (28)) to another state in M4(GF (28)). The key K is expanded into Nr +1 subkeys noted Ki ∈ M4(GF (28))
(i = 0, 1, . . . , Nr).

A round of an encryption with AES is composed of four main operations :

1. AddRoundKey

2. MixColumn

3. SubBytes

4. ShiftRows

2.1 Representation chosen for GF (28)

The representation chosen in [1] of GF (28) is GF (2)[X]/ < m >, where < m > is the ideal generated by the
irreducible polynomial m ∈ GF (2)[X], m = x8 + x4 + x3 + x + 1.

2

2.2 Notations used in this article

We use four notations for representing an element in GF (28), which are equivalent to one another:

1. x7 + x6 + x4 + x2, the polynomial notation

2. {11010100}b, the binary notation

3. ’D4’, the hexadecimal notation

4. 212, the decimal notation

2.3 AddRoundKey for ith round

The AddRoundKey transformation consists of an addition of matrix in M4(GF (28)) between the state and the
subkey of the ith round. We denote by Si,A the state after the ith AddRoundKey.

M4(GF (28)) −→ M4(GF (28))
S 7−→ Si,A = S + Ki

2.4 SubByte for ith round

The SubByte transformation consists in applying on each element of the matrix S an elementary transformation
s. We denote by Si,Su the state after the ith SubByte.

M4(GF (28)) −→ M4(GF (28))

S =

S[1] S[5] S[9] S[13]
S[2] S[6] S[10] S[14]
S[3] S[7] S[11] S[15]
S[4] S[8] S[12] S[16]

 7−→ Si,Su =

s(S[1]) s(S[5]) s(S[9]) s(S[13])
s(S[2]) s(S[6]) s(S[10]) s(S[14])
s(S[3]) s(S[7]) s(S[11]) s(S[15])
s(S[4]) s(S[8]) s(S[12]) s(S[16])

 ,

where s is the non linear application defined by

GF (28) −→ GF (28)

x 7−→ s(x) =
{

a ∗ x−1 + b, if x 6= 0,
b, if x = 0.

a is a linear invertible application over GF (2), a ∈ M8(GF (2)), ∗ is the multiplication of matrices over GF (2)
and x−1 = {b0b1...b7}b is seen as a GF (2)-vector equal to tranpose of the vector (b0, · · · , b7). The value of b =
’63’∈ GF (28) and

a =

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

.

2.5 MixColumn for ith round

The MixColumn transformation consists of a multiplication of matrices in M4(GF (28)), between the state and
a fixed matrix A0 of M4(GF (28)). We denote by Si,M the state after the ith MixColumn.

M4(GF (28)) −→ M4(GF (28))
S 7−→ Si,M = A0.S,

where A0 is defined by

A0 =

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 .

3

2.6 ShiftRows for ith round

The ShiftRows transformation is a byte transposition that cyclically shifts the rows of the state over different
offsets. We denote by Si,Sh the state after the ith ShiftRows.

M4(GF (28)) −→ M4(GF (28))

S =

S[1] S[5] S[9] S[13]
S[2] S[6] S[10] S[14]
S[3] S[7] S[11] S[15]
S[4] S[8] S[12] S[16]

 7−→ Si,Sh =

S[1] S[5] S[9] S[13]
S[6] S[10] S[14] S[2]
S[11] S[15] S[3] S[7]
S[16] S[4] S[8] S[12]

 .

3 The description of the attack on computation of AES

First, we are going describe an attack on AES in a simple case and after that we will see how we can generalize
this attack. The goal of the attack is to recover the key KNr. Once we discover the subkey KNr, it is easy to
get the key K, see appendix A.

3.1 Principle of the attack

We suppose that we can change a single byte of the state after the ShiftRow of the Nr − 1 round and we know
the index of the faulty element of state (this last supposition can be omitted, it is more easier to explain the
mechanism). The new value of the element of the state is supposed unknown. The fault ε is spread over four
bytes on the output state. For each modified elements on the output state, we find a set of possible fault ε.
Moreover we can intersect the possible values ε for these four sets, we obtain a small set thus reducing the
number of required ciphertext for the full analysis. Finally for each fault, we deduce some possible values of
four elements of the last roundkey. Repeating ciphertexts, we find four bytes of roundkey 10.

This attack still works out, even with more general assumptions on the fault locations, such as faults without
knowing the fault locations before the 9th MixColumn transformation. We also expect that faults in round 8
(before the 8th MixColumn transformation) might be useful for the analysis, thus growing the number of required
ciphertext for the full analysis. With our example, we need ten ciphertexts to get four bytes of roundkey 10,
when we don’t make hypothesis about the fault locations.

3.2 Example

We use the same example as Appendix B of [1]. The following diagram shows the values in the final States
array as the Cipher progresses for a block length and a Cipher Key length of 16 bytes each (i.e., Nb = 4 and
Nk = 4).

Input= ’32 43 F6 A8 88 5A 30 8D 31 31 98 A2 E0 37 07 34’

Cipher Key= ’2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C’

Output= ’39 25 84 1D 02 DC 09 FB DC 11 85 97 19 6A 0B 32’

The fault propagation appears in grey tint and in hexadecimal notation:

After ShiftRows 9 Fault injected 1E After Mixcolumn K9

87 F2 4D 97 99 F2 4D 97 7B 40 A3 4C AC 19 28 57
6E 4C 90 EC 6E 4C 90 EC 29 D4 70 9F ⊕ 77 FA D1 5C
46 E7 4A C3 46 E7 4A C3 8A E4 3A 42 66 DC 29 00
A6 8C D8 95 A6 8C D8 95 CF A5 A6 BC F3 21 41 6E

After AddRoundKey 9 After SubBytes 10 After ShiftRows 10 value of K10

D7 59 8B 1B 0E CB 3D AF 0E CB 3D AF D0 C9 E1 B6
5E 2E A1 C3 58 31 32 2E 31 32 2E 58 ⊕ 14 EE 3F 63
EC 38 13 42 CE 07 7D 2C 7D 2C CE 07 F9 25 0C 0C
3C 84 E7 D2 EB 5F 94 B5 B5 EB 5F 94 A8 89 C8 A6

4

Output with Faults

DE 02 DC 19
25 DC 11 3B
84 09 C2 0B
1D 62 97 32

The injected error in the state, give four errors in the final state.

3.3 How the injected error acts on the final state

We denote by F the faulty state. Now we describe each step from the Nr − 1th MixColumn to the end, and
assume that we replace the first element of the state by an unknown value. Let ε ∈ GF (28)− {0} defined by

FNr−1,Sh[1] = SNr−1,Sh[1] + ε.

3.3.1 Fault modification

Obviously

FNr−1,Sh = SNr−1,Sh +

ε 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

3.3.2 Effect on MixColumn

FNr−1,M = SNr−1,M + A0.

ε 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 = SNr−1,M +

2.ε 0 0 0
ε 0 0 0
ε 0 0 0

3.ε 0 0 0

 .

3.3.3 Effect on AddRoundKey

FNr−1,A = SNr−1,A +

2.ε 0 0 0
ε 0 0 0
ε 0 0 0

3.ε 0 0 0

 .

3.3.4 Effect on last SubBytes

We can define ε
′

0, ε
′

1, ε
′

2, ε
′

3 (the differential faults) by the following equation

FNr,Su = SNr,Su +

ε
′

0 0 0 0
ε
′

1 0 0 0
ε
′

2 0 0 0
ε
′

3 0 0 0

 .

3.3.5 Effect after last ShiftRows

FNr,Sh = SNr,Sh +

ε
′

0 0 0 0
0 0 0 ε

′

1

0 0 ε
′

2 0
0 ε

′

3 0 0

 .

3.3.6 Effect after last AddRoundKey

FNr,A = SNr,A +

ε
′

0 0 0 0
0 0 0 ε

′

1

0 0 ε
′

2 0
0 ε

′

3 0 0

 .

FNr,A is the faulty output for a cipher. Comparing the states FNr,A with SNr,A, it is easy to get the values of
ε
′

0, ε
′

1, ε
′

2 and ε
′

3.

5

3.4 Example

Always, in hexadecimal notation, we find

Output with faults Output without fault Error

DE 02 DC 19 39 02 DC 19 E7 00 00 00
25 DC 11 3B ⊕ 25 DC 11 6A = 00 00 00 51
84 09 C2 0B 84 09 85 0B 00 00 47 00
1D 62 97 32 1D FB 97 32 00 99 00 00

The differential faults are ε′0 = ’E7’, ε′1 = ’51’, ε′2 = ’47’ and ε′3 = ’99’.

3.5 Analysis on information brought by fault

The only operation that could bring information about the key KNr
is the last SubBytes transformation.

Consequently we have four equations where x0, x1, x2, x3, ε are unknown variables. We want to solve the
following equations (in xi and ε) :

s(x0 + 2.ε) = s(x0) + ε′0
s(x1 + ε) = s(x1) + ε′1
s(x2 + ε) = s(x2) + ε′2

s(x3 + 3.ε) = s(x3) + ε′3

All these equations belong to a generalized equation

s(x + c.ε) + s(x) = ε′, (1)

where c =’01’, ’02’ or ’03’ and let us analyse it.

Definition 1 We define the set of solutions of (1) in ε by

Sc,ε′ =
{
ε ∈ GF (28) : ∃x ∈ GF (28), s(x + c.ε) + s(x) = ε′

}
.

Definition 2 Consider the linear application over GF (2):

l : GF (28) −→ GF (28)
x 7−→ x2 + x

Denote by E1 = Im(l) be the GF (2)-vector space image of l and dimGF (2)(E1) = 7. If θ ∈ E1, then there
are two solutions x1, x2 ∈ GF (28) of equation x2 + x = θ, and the solutions verify x2 = x1 + 1.

Definition 3 Let λ ∈ GF (28), λ 6= 0 and define φλ an isomorphism of GF (2)-vector spaces

φλ : GF (28) −→ GF (28)
x 7−→ λ.x

and let Eλ = Im(φλ|E1) be the GF (2)-vector space image of φλ restricted to E1. Moreover dimGF (2)(Eλ) = 7.

Proposition 1 There is a bijective application φ between E∗
1 (= E1 − {0}) and Sc,ε′ .

φ : E∗
1 −→ Sc,ε′

t 7−→ (c(a−1 ∗ ε′).t)−1.

Sc,ε′ have 127 elements.

Proof: Let ε ∈ Sc,ε′ , then ∃x ∈ GF (28) such that (1) holds.
Assume x 6= 0 and x 6= c.ε, we get

x2 + c.ε.x = (a−1 ∗ ε′)−1.c.ε.

We denote by t = x.(c.ε)−1 ∈ GF (28)− {0}, then we have

t2 + t = (a−1 ∗ ε′)−1.(c.ε)−1. (2)

Therefore (a−1 ∗ ε′)−1(c.ε)−1 ∈ E∗
1 . Reciprocally for θ ∈ E∗

1 we can define (a−1 ∗ ε′)−1.(c.θ)−1 ∈ Sc,ε′ .
Assume x = 0 or x = c.ε, (1) becomes a ∗ (c.ε)−1 = ε′. We obtain ε = ((a−1 ∗ ε′).c)−1, this case is included in

6

the previous case because 1 ∈ E∗
1 . We see for the case θ = 1, the equation (1) has four solutions in x. In brief,

there exists a bijection map between E∗
1 and Sc,ε′ :

E∗
1

φλ−→ Eλ − {0} −→ Sc,ε′

t 7−→ λ.t 7−→ (λ.t)−1.

where λ = c(a−1 ∗ ε′).

2

Proposition 2 The following statements hold for λ1, λ2 ∈ GF (28)− {0}:

dimGF (2)(Eλ1 ∩ Eλ2) =
{

7 If λ1 = λ2

6 Otherwise

Proof: This proof comes from the following lemma : 2

Lemma 1 For λ1, λ2 ∈ GF (28)− {0}, we get

Eλ1 = Eλ2 ⇐⇒ λ1 = λ2.

Proof: This lemma is equivalent to this assertion : for λ ∈ GF (28)− {0},

Eλ = E1 ⇐⇒ λ = 1.

Let us prove this statement and assume that λE1 = E1. Remark that E1 = {e = {e7e6 · · · e0}b ∈ GF (28) −
{0}/e7 = e5}. Hence {1, x, x2, x3, x4, x6, x5 + x7} is a basis of E1. Multiply the basis’s vectors vi with λ =
{λ7 · · ·λ0}b. As λvi ∈ E1, we have (λvi)7 = (λvi)5. We obtain 7 relations (λ7 = λ5, λ6 = λ4, λ5 = λ3 + λ7,
λ4 = λ6 + λ2 + λ7, λ7 + λ3 = λ5 + λ1 + λ6, λ5 + λ1 = λ3 + λ4, λ6 + λ5 = λ7 + λ3). We solve this system to
obtain λ7 = λ6 = λ5 = λ4 = λ3 = λ2 = λ1 = 0. The solution λ = 0 doesn’t match. We have λ = 1. 2

Proposition 3 For λ1, λ2, λ3 ∈ GF (28)− {0}, we get:

dimGF (2)(Eλ1 ∩ Eλ2 ∩ Eλ3) =

7 If λ1 = λ2 = λ3

6 If rankGF (2){λ−1
1 , λ−1

2 , λ−1
3 } = 2

5 Otherwise

Proof: It comes from proposition 2 and this following lemma 2

Lemma 2 For λ1, λ2, λ3 ∈ GF (28)− {0}, we get

Eλ1 ∩ Eλ3 = Eλ2 ∩ Eλ3 ⇐⇒ λ−1
3 = λ−1

1 + λ−1
2 or λ1 = λ2.

Proof:

1. ⇐
Let x ∈ Eλ1 ∩ Eλ3 , then ∃y, t ∈ E1 such that x = λ1.y = λ3.t.

y = λ−1
1 .λ3.t = λ−1

2 .λ3.t + t,

y − t = λ−1
2 .λ3.t ∈ E1,

and
x = λ3.t = λ2.(y − t) ∈ Eλ2

2. ⇒
Assume that λ1 6= λ2, and let us show ∀t ∈ E1, λ3.(λ−1

1 + λ−1
2).t ∈ E1.

Let x = λ3.t ∈ Eλ3 :

• If x ∈ Eλ1 then x ∈ Eλ2 therefore ∃s1, s2 ∈ E1 such that x = λ1.s1 = λ2.s2 and we get λ3.(λ−1
1 +

λ−1
2).t = s1 + s2 ∈ E1.

• If x /∈ Eλ1 then x /∈ Eλ2 therefore we get λ−1
1 .x /∈ E1 and λ−1

2 .x /∈ E1. We have λ3.(λ−1
1 + λ−1

2).t =
λ−1

1 .x + λ−1
2 .x ∈ E1 (because ∀u /∈ E1 and ∀v /∈ E1 then u + v ∈ E1).

7

We showed that Eλ3.(λ−1
1 +λ−1

2) = E1 and with the lemma 1 we get λ−1
3 = λ−1

1 + λ−1
2 .

2

Proposition 4 Finally for λ1, λ2, λ3, λ4 ∈ GF (28)− {0}, we get:

Ê = Eλ1 ∩ Eλ2 ∩ Eλ3 ∩ Eλ4 ,

dimGF (2)(Ê) =

7 If λ1 = λ2 = λ3 = λ4

6 If rankGF (2){λ−1
1 , λ−1

2 , λ−1
3 , λ−1

4 } = 2
5 If rankGF (2){λ−1

1 , λ−1
2 , λ−1

3 , λ−1
4 } = 3

4 Otherwise

Definition 4 We considered four equations in a different way, but the committed fault is common to these four
equations, that is why we introduce the set of possible committed faults S :

S = S2,ε′0

⋂
S1,ε′1

⋂
S1,ε′2

⋂
S3,ε′3

.

Moreover the cardinal of S is smaller than the cardinal of Sc,ε. It allows to reduce the space of the faults, and
so to use fewer faultly calculations to go back up to the key.

Corollary 1 If two of the four following values 2−1.ε′0, ε′1, ε′2, 3−1.ε′3 are not equal, we have

Card (S2,ε′0

⋂
S1,ε′1

⋂
S1,ε′2

⋂
S3,ε′3

) ≤ 63.

Proposition 5 For a differential fault ε′, let ε ∈ S∩Sc,ε′ be a fault value and define θ = ((a−1 ∗ε′).c.ε)−1 ∈ E∗
1

and α, β the two solutions (in GF (28)) of the equation t2 + t = θ. The possible values of key KNr [i] (for some
i, it is the index of element in the state) are

• If θ 6= 1, then there are two possible values of KNr [i]

KNr [i] = s(c.ε.α) + FNr,A[i] or KNr [i] = s(c.ε.β) + FNr,A[i]

• If θ = 1, then there are four possible values of KNr [i]

KNr [i] = s(c.ε.α) + FNr,A[i] or KNr [i] = s(c.ε.β) + FNr,A[i]

or KNr [i] = b + FNr,A[i] or KNr [i] = s(c.ε) + FNr,A[i]

Proof:

• If θ 6= 1, we know that θ ∈ E1, then there are two solutions α, β of t2 + t = θ. We deduce two solutions
from (1) noted {x1, x2}, by x1 = c.ε.α and x2 = c.ε.β.

• If θ = 1, we know that 1 ∈ E1, then there are two solutions α, β of t2 + t = 1. We deduce two solutions
from (1) noted {x1, x2}, by x1 = c.ε.α and x2 = c.ε.β. Moreover there are also two trivial solutions of
(1) : x3 = 0 and x4 = c.ε.

Once we get a solution x of (1), it is easy to get a possible value of KNr
[i]. 2

By applying this proposition to the four faulty elements of the state, we can deduce four sets of possible
values for KNr

[0], KNr
[7], KNr

[10] and KNr
[13]. Then by repeating the insertion of faults in a calculation, and

by intersecting these four sets we get rather quickly a single value for KNr [0], KNr [7], KNr [10] and KNr [13].

3.6 Example

Remember our example:

s(x0 ⊕ 2.ε) = s(x0)⊕ ’E7’
s(x1 ⊕ ε) = s(x1)⊕ ’51’
s(x2 ⊕ ε) = s(x2)⊕ ’47’

s(x3 ⊕ 3.ε) = s(x3)⊕ ’99’

8

Let E1 = {’01’..’1F’,’40’..’5F’,’A0’..’BF’,’E0’..’FF’} and Sc,ε′ = {(c.(a−1 ∗ ε′).e)−1, e ∈ E1}.
We compute

S2,’E7’

⋂
S1,’51’

⋂
S1,’47’

⋂
S3,’99’

= {’01’, ’04’, ’13’, ’1E’, ’21’, ’27’, ’33’, ’3B’, ’48’, ’4D’, ’50’, ’53’, ’55’, ’5D’, ’64’, ’65’,
’7E’, ’7F’, ’80’, ’83’, ’8D’, ’8F’, ’93’, ’A7’, ’A8’, ’A9’, ’AB’, ’B3’, ’B8’, ’C9’, ’F6’}

We get (the real value of K10[0] is ’D0’)

K10[0] ∈ {’03’, ’06’, ’09’, ’0C’, ’10’, ’15’, ’1A’, ’1F’, ’21’, ’24’, ’2B’, ’2E’, ’32’, ’37’, ’38’, ’3D’, ’43’, ’46’, ’49’,
’4C’, ’50’, ’55’, ’5F’, ’61’, ’64’, ’6B’, ’6E’, ’72’, ’77’, ’78’, ’7D’, ’83’, ’86’, ’89’, ’8C’, ’90’, ’95’, ’9A’, ’9F’, ’A1’,
’A4’, ’AB’, ’AE’, ’B2’, ’B7’, ’B8’, ’C3’, ’C6’, ’C9’, ’CC’, ’D0’, ’D5’, ’DA’, ’DF’, ’E1’, ’E4’, ’EB’, ’EE’, ’F2’,

’F7’, ’F8’, ’FD’}

With the five faults {’1E’, ’E1’, ’B3’, ’16’, ’9E’}, we obtain a correct and single value of K10[0] =’D0’, K10[7],
K10[10], K10[13].

4 Generalisation

4.1 Without fault location

In this section, we assume that the fault is on a byte, between the last two MixColumn. It’s the same case than
previously except that the fault can be confined on the byte 1 to 16. The fault is propagated by the MixColumn
and spread on 4 bytes of the state. On the first line of the differential state matrix, we have a induced fault. We
can determine from which column the injected fault belongs by considering the column of induced fault. Next
we analyse the four possibilities of line position for the injected fault with the method presented in previous
section.

4.2 Hardware Device

Suppose that you can physically modify an hardware AES device. First, compute ciphers for more than ten
random plaintexts with AES device. Next, modify by example the design by cutting lines and connecting them
to the earth (or Vcc) temporaly between two bytes during the round located two rounds before the end. It
amounts to having a byte of round Nk − 2, always replaced by ’00’ (or ’FF’). Compute an other time the same
messages with the tampered device. With random plaintexts, the faulty byte is like an random fault. This fault
is passed on four faults at round Nk − 1 and sixteen faults at round Nk. It is this differential matrix we can
analyse error by error to find the last round key.

A Back to initial key with the last subkey

See [1] for additional informations about w and RotWord, Rcon and SubWord functions.

Let us denote by Kn[j] the jth byte of the nth roundkey and w[i] as in [1]. We have

Kn = (w[Nkn], w[Nkn + 1], · · · , w[Nkn + Nk − 1]).

We have the following relations (for Nk = 4, 6):
for Nk 6 i < Nb ∗ (Nr + 1), i 6= 0 mod Nk,

w[i] = w[i−Nk]⊕ w[i− 1]
i.e. w[i−Nk] = w[i]⊕ w[i− 1]

and for i = 0 mod Nk,

w[i] = w[i−Nk]⊕ SubWord(RotWord(w[i− 1]))⊕ Rcon[i/Nk]
i.e. w[i−Nk] = w[i]⊕ SubWord(RotWord(w[i− 1]))⊕ Rcon[i/Nk]

Hence, we have
for 0 6 i < Nb ∗ (Nr + 1)−Nk, i 6= 0 mod Nk,

w[i] = w[i + Nk]⊕ w[i + Nk − 1] (3)

9

and for i = 0 mod Nk,

w[i] = w[i + Nk]⊕ SubWord(RotWord(w[i + Nk − 1]))⊕ Rcon[(i + Nk)/Nk] (4)

With AES-256, you must add an Subword operation when i ≡ 4 mod Nk. So we can deduce previous key from
the ending subkey and step by step obtain K0 with is the cipherkey.

RecoverKey(byte Finalkey[4*Nk], word w[Nb*(Nr+1)], Nk)
begin

word temp
i = Nb * (Nr+1)-1
j = Nk - 1
while (j >= 0)

w[i] = word(Finalkey[4*j], Finalkey[4*j+1],
Finalkey[4*j+2], Finalkey[4*j+3])

i = i-1
j = j-1

end while
{here, "i" must be equal to Nb * (Nr+1) - Nk - 1}

while (i >= 0)
temp = w[i+Nk-1]
if (i mod Nk = 0)

temp = SubWord(RotWord(temp)) xor Rcon[i/Nk+1]
else if (Nk > 6 and i mod Nk = 4)

temp = SubWord(temp)
end if
w[i] = w[i+Nk] xor temp
i = i - 1

end while
end

Figure 1: Pseudo Code for Key Recovery.

Remark 1 On AES-128, it is sufficient to know K10 to find the cipher key, but on AES-256, you must know
K13 and K14.

References

[1] FIPS PUB 197 : Avanced Encryption Standard,
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[2] Boneh, DeMillo, and Lipton, On the Importance of Checking Cryptographic Protocols for Faults, Lecture
Notes in Computer Science, Advances in Cryptology, proceedings of EUROCRYPT’97, pp. 37-51, 1997.

[3] E. Biham & A.Shamir, Differential Fault Analysis of Secret Key Cryptosystems, CS 0910, Proceedings of
Crypto’97.

[4] Ross J. Anderson, Markus G. Kuhn: Tamper Resistance - a Cautionary Note, The Second USENIX Work-
shop on Electronic Commerce Proceedings, Oakland, California, November 18-21, 1996, pp 1-11, ISBN
1-880446-83-9.

10

