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Abstract. In this paper, we introduce a notion of Oblivious Keyword
Search (OKS). Let W be the set of possible keywords. In the commit
phase, a database supplier T commits n data. In each transfer subphase, a
user U can choose a keyword w ∈W adaptively and find Search(w) without
revealing w to T , where Search(w) is the set of all data which includes w
as a keyword.

We then show two efficient protocols such that the size of the commit-
ments is only O(nB) regardless of the size of W , where B is the size of each
data. It is formally proved that U learns nothing more than Search(w) and
T gains no information on the keywords which U searched for. We further
present a more efficient adaptive OTn

k protocol than the previous one [19]
as an application of our first OKS protocol.

Keywords: oblivious transfer, blind signature, oblivious polynomial evalu-
ation.

1 Introduction

1.1 Background

The notion of oblivious transfer (OT ) was introduced by Rabin [22]. It has
many flavors such as 1-out-of-2 OT (OT 2

1 ) [13], 1-out-of-n OT (OTn
1 ), under

the name of ANDOS [5, 6], adaptive k-out-of-n OT (adaptive OTn
k ) [19], and
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oblivious polynomial evaluation (OPE) [18]. Each of them is a two party
protocol between a sender S and a chooser C.

In a OT 2
1 protocol, S has two secret strings M0 and M1, and C has a

secret bit b. C learns Mb, but nothing more. S gains no information on
b. Essentially every known suggestion of public-key cryptography allows
to implement OT 2

1 protocols. Therefore, OT 2
1 protocols can be based on

factoring, Diffie-Hellman and so on. See [1] for ElGamal based OT2
1 protocol,

for example. [20] proved its security formally in the random oracle model.
OT , OT 2

1 and OT n
1 are all equivalent in the information theoretic sense

[5, 12, 7].
On the other hand, an adaptive OTn

k protocol consists of a commit phase
and a transfer phase. In the commit phase, a sender S commits n secret
strings M1, · · · ,Mn. In each transfer subphase j (1 ≤ j ≤ k), a chooser
C chooses an index ij adaptively and obtains Mij . (ij may depend on all
the previous information C learned.) However, C learns nothing more and S
gains no information on i1, · · · , ik. Naor and Pinkas [19] showed two adaptive
OTn

k protocols, a DDH based protocol and a random oracle based one, such
that each transfer subphase involves log2 n invocations of a OT 2

1 protocol.
In a more theoretical aspect, Kilian [16] and Goldreich and Vainish [15]

showed that we can implement general oblivious function evaluation by using
a OT 2

1 protocol, i.e. S can let C evaluate any function f(X) for the input
x∗ without revealing f(X) to C while S gains no information on x∗.

OPE is a special case such that f(X) is a polynomial over a field F.
Naor and Pinkas [18] showed an efficient OPE protocol whose complexity
does not depend on F, except that it uses a OT 2

1 protocol over F. A modified
version of this protocol works if the polynomial reconstruction problem is
hard [4, page 64]. (Naor and Pinkas first assumed that the noisy polynomial
problem is hard in [18]. However, this assumption was shown to be weaker
than expected in [4].)

1.2 Our Contribution

In this paper, we introduce a notion of Oblivious Keyword Search (OKS).
In an OKS protocol, there is a database supplier who possesses some se-
cret data. It allows a user to search and retrieve the data containing some
keywords chosen by the user in such a way that the chosen keywords are
unknown to the data supplier.

That is, let W be the set of possible keywords. In the commit phase, a
database supplier T commits n data (through a CD-ROM or DVD). In each
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transfer subphase, a user U can choose a keyword w ∈ W adaptively and
find Search(w) on the pay-per-view basis without revealing w to T , where
Search(w) is the set of all data which includes w as a keyword. This is
a new and interesting cryptographic primitive that should have real-world
applications.

We then show two efficient protocols, one is based on the one-more RSA
inversion problem and the other is based on the polynomial reconstruction
problem. In our protocols, the size of the commitments is only O(n ×
B) regardless of the size of W , where B is the length of each data. It is
formally proved that U learns nothing more and T gains no information on
the keywords which U searched for in the random oracle model. We further
present a more efficient adaptive OTn

k protocol than the previous one [19]
as an application of our second OKS protocol.

More formally, a k-out-of-n OKS protocol (OKSn
k protocol) is a two-

party protocol between a database supplier T and a user U . In the commit
phase, T commits n data B1, . . . , Bn such that

Bi = (wi, ci)

where wi ∈W is a keyword and ci is a content. The transfer phase consists
of k subphases. In each subphase j (1 ≤ j ≤ k), U chooses a keyword
w∗

j ∈ W adaptively and learns Search(w∗
j ). (Remember that Search(w∗

j )
is the set of all data which includes w∗

j as a keyword.) However, U learns
nothing more about the data and S gains no information on the keywords
w∗

1, · · · , w∗
k which U searched for.

Our first OKSn
k protocol uses the RSA blind signature scheme [9] which

is often used for e-cash systems. Bellare et.al proved that the RSA blind
signature scheme is secure if the One-More RSA-inversion problem is hard
[2, 3]. We prove that our first OKSn

k protocol is secure under the same
assumption.

Our first protocol is very efficient. However, the intractability assump-
tion on the One-More RSA-inversion problem is new and very strong [3,
page 4]. Therefore, we show our second OKSn

k protocol which is based on
a more widely accepted assumption.

Our second OKSn
k protocol uses an OPE protocol. It is known that

there exists an OPE protocol if the polynomial reconstruction problem is
hard [18, 4]. Our second protocol is secure under this assumption.

We further present a more efficient adaptive OTn
k protocol than the

previous one [19] as an application of our first OKSn
k protocol. At each
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transfer subphase, it requires executing the RSA blind signature scheme
once while the previous scheme [19] requires log2 n invocations of a OT 2

1

protocol. The proposed adaptive OTn
k protocol is secure if the One-More

RSA-inversion problem is hard.
See the following table for comparison.

Protocol Assumption Each Transfer Phase
Our first OKSn

k One-More RSA RSA-BS once
Our secondOKSn

k Polynomial reconst. OPE once
Our adaptive OTn

k One-More RSA RSA-BS once
Adaptive OTn

k of [19] for example, DDH log2 n of OT 2
1

(BS stands for “blind signature scheme”.)

1.3 Comparison with Adaptive OTn
k

Remember that {w1, · · · , wn} ⊂ W is the set of keywords which actually
appear in the database, where W is the set of all possible keywords. We
require that

• U does not know {w1, · · · , wn}.

• Suppose that wi appears Li times in the data base. Then U should
not be able to know even Li.

Actually, we can construct an OKSn
k protocol by using an adaptive OTn

k

protocol as follows. Consider a |W |×n matrix such that the ith row includes
all the indices of data whose keyword is ŵi, where ŵi is the ith element of W .
Then the size of the sender’s commitments will be O(n|W | + nB) because
some keyword ŵ ∈W may appear in all the n data.

In the proposed OKSn
k protocols, on the contrary, the size of the com-

mitments is only O(nB) independently of W .

1.4 Other Related Work

In [10], the private retrieval by keywords problem is discussed in the context
of private information retrieval (PIR) [11, 17, 14, 8]. In this problem, T has
n strings M1, · · · ,Mn and U has a keyword w. A solution to this problem is
a protocol which allows U to find out if there exists Mj such that Mj = w.
That is, the output of U is yes or no. This problem is clearly different from
ours.
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In [23], Song, Wagner and Perrig considered the following scenario. Sup-
pose that Alice does secret keyword searches playing with Bob. Then Alice
first encrypts the data and gives the ciphertexts to Bob. On the other hand,
in our paper, Bob encrypts the data and gives the ciphertexts to Alice.
Hence our problem is different from [23] and it is impossible to apply their
technique to our problem.

1.5 Organization of the Paper

In Sec. 2, we introduce a model and definitions of OKSn
k protocols. In Sec. 3,

we show our first OKSn
k protocol which is based on the RSA blind signature

scheme. In Sec. 4, we present a more efficient adaptive OTn
k protocol than

the previous one [19] as an application of our first OKSn
k protocol. In Sec. 5,

we show our second OKSn
k protocol which is based on OPE.

Throughout the paper, all players are probabilistic polynomial-time in-
teractive Turing machines. l denotes a security parameter.

2 Oblivious Keyword Search

In this section, we introduce a notion of Oblivious Keyword Search (OKS).
A k-out-of-n OKS protocol (OKSn

k protocol) is a two-party protocol between
a database supplier T and a user U as follows. Let W be the set of keywords.
In the commit phase, T commits n data B1, . . . , Bn such that

Bi = (wi, ci)

where wi ∈W and ci is a content. Define

Search(w) = {(i, ci) | wi = w}.

The transfer phase consists of k subphases. At each subphase j (1 ≤ j ≤ k),
U chooses a keyword w∗

j ∈ W adaptively and learns Search(w∗
j ). However,

C learns nothing more and S gains no information on w∗
1, · · · , w∗

k. More
formally,

(The User’s Security) A protocol is secure for the user if for any malicious
database supplier T̃ , the view of T̃ for w∗

1, · · · , w∗
k and that for w̃∗

1, · · · , w̃∗
k

are computationally indistinguishable for any (w∗
1, · · · , w∗

k) �= (w̃∗
1, · · · , w̃∗

k).

(The Database’s Security) We make a comparison with an ideal world:
A trusted third party (TTP) first receives (B1, · · · , Bn) from a database
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supplier. The TTP next tells Search(w∗
j ) to the user on her request w∗

j for
1 ≤ j ≤ k.

Definition 2.1 We say that a protocol is ε(l)-secure for the database if for
any malicious user Ũ , there exists a simulator A that plays the role of the
user in the ideal world such that for any polynomial time distinguisher D,

|Pr(D(the output of Ũ) = 1)− Pr(D(the output of A) = 1)| < ε(l). (1)

Definition 2.2 We say that a protocol is secure for the database if the above
ε(l) is negligible.

Definition 2.3 We say that a protocol is an OKSn
k protocol if it is secure

for the user and the database.

3 OKSn
k Protocol Based on RSA Blind-Signature

In this section, we show an efficient OKSn
k protocol under the intractability

assumption of the one-more RSA-inversion problem. In this OKSn
k protocol,

RSA blind signature scheme is executed once at each transfer subphase.

3.1 RSA Blind Signature Scheme

In a blind signature scheme, Bob can ask Alice to sign a message M without
revealing M . Let (N, e) be an RSA public key of Alice and let d be the secret
key. Let H be a random hash function. Then the RSA blind signature
scheme is described as follows.

(Step 1) Suppose that Bob wishes to get Alice’s signature of a message M .
Then he first chooses a random number r and computes

Y = reH(M) mod N.

He sends Y to Alice.

(Step 2) Alice computes S′ = Y d mod N and sends it back to Bob.

(Step 3) Bob obtains a signature S of M as

S = S ′/r = H(M)d mod N.
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To define the security, we consider a forger who is allowed to play the
role of Bob. His task is to compute m + 1 message-sgnature pairs while he
is allowed to make at most m ∈ N queries to Alice for some m. We say that
the RSA blind signature scheme is secure if the success probability of any
polynomial time bounded forger is negligible.

Formally [21, 2], let F be a forger who has access to RSA-inversion oracle
(Alice) and hash oracle H. Consider the following experiment, where l is a
security parameter.

Experiment EXPforge
F (l): Run F . Suppose that

((M1, x1), · · · , (Mm+1, xm+1))← F(N, e, l),

where m ∈ N. If the following are all true, then return 1 else return 0:

• ∀i ∈ {1, · · · ,m + 1} : H(Mi) = xe
i mod N .

• Messages M1, · · · ,Mm+1 are all distinct.

• F made at most m queries to its RSA-inversion oracle.

Definition 3.1 The RSA blind signature scheme is polynomially-secure against
one-more forgery if the probability Pr(EXPforge

F (l) = 1) is negligible for any
forger F whose time-complexity is polynomial in the security parameter l.

Bellare et al. proved that the RSA blind signature scheme is secure if the
RSA known target inversion problem (RSA-KTI) is hard [2, 3]. In RSA-KIT
problem, an adversary is given m + 1 random targets y1, · · · , ym+1 ∈ ZN .
His task is to compute yd

1 , · · · , yd
m+1 mod N while he is allowed to make at

most m queries to RSA-inversion oracle.
Formally, let A be an adversary who has access to RSA-inversion oracle.

Consider the following experiment, where l is a security parameter and let
m : N→ N be a function of l.

Experiment EXPinv
A,m(l): Choose yi ∈ Z∗

N randomly for i = 1 to m(l) + 1.
Run A. Suppose that

(x1, · · · , xm(l)+1)← A(N, e, l, y1, · · · , ym(l)+1).

If the following are both true, then return 1 else return 0:

• ∀i ∈ {1, · · · ,m(l) + 1} : yi = xe
i mod N .
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• A made at most m(l) oracle queries.

Definition 3.2 The RSA known target inversion problem (RSA-KTI) is
hard if the probability Pr(EXPinv

A,m(l) = 1) is negligible for all polynomially
bounded m(·) and for any adversary A whose time-complexity is polynomial
in the security parameter l.

Proposition 3.1 If RSA-KTI is hard, then the RSA blind signature scheme
is polynomially-secure against one-more forgery.

RSA-KTI is also called the one-more RSA inversion problem.

3.2 OKSn
k Protocol Based on RSA Blind Signature

Let G be a pseudo-random generator.

Commit phase T generates a public key (N, e) and a secret key d of
RSA. T publishes (N, e). Next for i = 1, . . . , n, T computes

Ki = (H(wi))d mod N,

Ei = G(wi‖Ki‖i) ⊕ (0l‖ci),

where || denotes concatination. T sends E1, . . . , En to U .

Transfer phase At each transfer phase j,

(Step 1) U chooses a keyword w∗
j .

(Step 2) U chooses a random element r and computes

Y = reH(w∗
j ) mod N.

U sends Y to T .

(Step 3) T computes K ′ = Y d mod N and sends it to U .

(Step 4) U computes

K = K ′/r = H(w∗
j )

d mod N.

Then let J = ∅. For i = 1, . . . , n, U computes

(ai‖bi) = Ei ⊕G(w∗
j ‖K‖i).

If ai = 0l, then U adds (i, bi) to J .
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3.3 Security

Correctness: At each transfer phase j, the final J is equal to Search(w∗
j )

with probability at least 1− n/2l.

User’s security: T has no information on w∗
1, · · · , w∗

k because they are
blinded in the RSA blind signature scheme.

We next prove the database’s security by assuming that RSA-KTI is
hard. For any malicious Ũ who queries to T (for RSA blind signatures) k
times, we will show a simulator A in the ideal world. In the commit phase,
A generates (N, e, d) and sends (N, e) to Ũ . A also chooses E1, · · · , En

randomly and sends them to Ũ . In the transfer phase, A behaves in the
same way as T . A can do this because A chooses (N, e, d) by itself. Finally
A outputs the output of Ũ .
A simulates H as follows. If Ũ queries w to H for the first time, then A

chooses a random string yw and sets H(w) = yw. It is clear that A simulates
H perfectly.
A simulates G as follows. Wlog, we can assume that Ũ queries w to H

before Ũ queries w‖K‖i to G. Let cnt = 0. Let QA-list be empty. Suppose
that Ũ queries w‖K‖i to G for the first time.

1. If K �= H(w)d mod N , then A sets G(w‖K‖i) at random.

2. Suppose that K = H(w)d mod N .
If w is included in QA-list, then goto 4.
Else, let cnt := cnt + 1.

3. If cnt ≥ k + 1, then A sets G(w‖K‖i) at random.
ElseA queries w to the TTP and receives Search(w). A adds (w,Search(w))
to QA-list.

4. Suppose that w is included in QA-list, i.e., (w,Search(w)) ∈ QA-list.
If i is included in Search(w), i.e. (i, ci) ∈ Search(w) for some ci, then
A sets

G(w‖K‖i) = Ei ⊕ (0l‖ci).

Otherwise, A sets G(w‖K‖i) at random.

Let BAD be the event that cnt ≥ k + 1. If BAD does not occur, then
A simulates G perfectly. Note that Pr(BAD) is the probability that Ũ
succeeds in the one-more forgery attack on the RSA blind signature scheme.
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From Proposition 3.1, it is negligible if the RSA known target inversion
problem (RSA-KTI) is hard. Consequently, the outputs of A and Ũ are
indistinguishable if the RSA known target inversion problem (RSA-KTI) is
hard.

Therefore, we obtain the following theorem.

Theorem 3.1 The above OKSn
k protocol is secure if the RSA known target

inversion problem (RSA-KTI) is hard.

4 Application to an Adaptive OTn
k Protocol

In this section, we first show that if there exists an OKSn
k protocol, then

there exists an adaptive OTn
k protocol. We next present an adaptive OTn

k

protocol which is obtained from this implication and our OKSn
k protocol of

Sec. 3.2. The security is proved similarly to Sec. 3.2 under the intractability
assumption of RSA-KTI.

This protocol executes the RSA blind signature scheme once at each
transfer subphase. Therefore, it is more efficient than the previous adaptive
OTn

k protocol [19] which requires log2 n invocations of a OT 2
1 protocol at

each transfer subphase.

4.1 Adaptive Oblivious Transfer

An adaptive k-out-of-n Oblivious Transfer OTn
k protocol consists of a com-

mit phase and a transfer phase. In the commit phase, the sender S commits
n secret strings M1, · · · ,Mn. In each transfer subphase j (1 ≤ j ≤ k), a
chooser C chooses an index ij adaptively and obtains Mij . (ij may depend
on all the previous information C learned.) However, C learns nothing more
than Mi1 , · · · ,Mik and S gains no information on i1, · · · , ik. More formally,

(The Chooser’s Security) For any malicious sender S̃, the view of S̃ for
i1, · · · , ik and that for i′1, · · · , i′k are computationally indistinguishable for
any (i1, · · · , ik) �= (i′1, · · · , i′k).

(The Sender’s Security) We make a comparison with an ideal world: A
trusted third party (TTP) first receives (M1, · · · ,Mn) from the sender. The
TTP next tells Mij to the chooser on her request ij for 1 ≤ j ≤ k.

The requirement is that for any malicious chooser C̃, there exists a sim-
ulator A that plays the role of the chooser in the ideal world such that the
output of A is computationally indistinguishable from the output of C̃.
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4.2 New Adaptive OT n
k Protocol

Theorem 4.1 Suppose that there exists an OKSn
k protocol. Then there

exists an adaptive OTn
k protocol which executes the OKSn

k protocol once.

(Proof) In the OKSn
k protocol, let wi = i for 1 ≤ i ≤ n. Then it is easy to

see that we obtain an adaptive OTn
k protocol.

Q.E.D

Our adaptive OTn
k protocol is described as follows.

Commit phase S generates a public key (N, e) and a secret key d of
RSA. S publishes (N, e). Next for i = 1, . . . , n, S computes

Ki = (H(i))d,
Ei = G(Ki‖i) ⊕Mi,

where M1, . . . ,Mn are the secret messages of S. S sends E1, . . . , En to C.
Transfer phase At each transfer phase j,

(Step 1) C chooses ij.

(Step 2) C chooses a random element r and computes

Y = reH(ij) mod N.

C sends Y to S.

(Step 3) S computes K ′ = Y d mod N and sends it to C.

(Step 4) C computes
K = K ′/r = H(ij)d mod N

and obtains Mij as Mij = Eij ⊕G(K‖ij).

5 OKSn
k Protocol Based on OPE

In this section, we show an OKSn
k protocol such that an oblivious polynomial

evaluation (OPE) protocol is executed at each transfer subphase. It is known
that there exists an OPE protocol if the polynomial reconstruction problem
is hard [4, page 64]. Our protocol is secure under the same assumption.

Let F be a finite field.

Problem 5.1 (Polynomial reconstruction) Given as input integers k, t, and
n points (x1, y1), · · · , (xn, yn) ∈ F2, outputs all univariate polynomila P of
degree at most k such that yi = P (xi) for at least t values of i.
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5.1 Oblivious Polymonial Evaluation (OPE)

In an Oblivious Polynomial Evaluation OPE(τ,F) protocol, S has a secret
polynomial f(X) of degree at most τ over a finite field F, and C has a secret
field element x∗. In the protocol, C learns f(x∗), but nothing more. S gains
no information about x∗. The security is formally defined as follows.

(The Chooser’s Security) A protocol is secure for the chooser if for any
x0, x1 ∈ F and for any malicious sender S̃, the view of S̃ for x = x0 and that
for x1 are computationally indistinguishable given f(X).

(The Sender’s Security) We make a comparison with an ideal world in
which a trusted third party (TTP) receives f(X) from a sender and x∗ from
a chooser. He then tells f(x∗) to the chooser.

Definition 5.1 We say that a protocol is ε(l)-secure for the sender if for
any malicious chooser C̃, there exists a simulator A that plays the role of the
chooser in the ideal world such that for any polynomial time distinguisher
D,

|Pr(D(the output of C̃) = 1)− Pr(D(the output of A) = 1)| < ε(l).

Definition 5.2 We say that a protocol is secure for the sender if the above
ε(l) is negligible.

Definition 5.3 We say that a protocol is an OPE(τ,F) protocol if it is
secure for the chooser and the sender.

5.2 Protocol for k = 1

In what follows, suppose that |F| ≥ |W | and let G be a pseudo-random
generator.

For simplicity, we first show a OKSn
1 protocol.

Commit phase T chooses a random polynomial f(X) = aX + b over F
such that a �= 0. T then computes

Ki = f(wi)
Ei = G(Ki‖i)⊕ (0l‖ci)

for i = 1, . . . , n, where ‖ denotes concatenation. T sends E1, . . . , En to U .
(Note that f(wi) �= f(wj) if wi �= wj because a �= 0.)

Transfer phase

12



(Step 1) U chooses a keyword w∗.

(Step 2) T and U run an OPE(1,F) protocol so that U learns K0 = f(w∗).

(Step 3) Let J = φ. For i = 1, . . . , n, U computes

(ai, bi) = Ei ⊕G(K0‖i).

If ai = 0l, then U adds (i, bi) to J .

Correctness: It is easy to see that the final J is equal to Search(w∗) with
probability at least 1− n/2l.

User’s security: T has no information on w∗ from the chooser’s security
of the OPE(1,F) protocol.

We next prove the database’s security in the random oracle model. In
the random oracle model, we say that a protocol is (q, ε(l))-secure for the
database if eq.(1) holds for any malicious user Ũ who makes at most q queries
to the random oracle G. Then the following theorem holds.

Theorem 5.1 Suppose that the underlying OPE(1,F) protocol is ε′(l)-secure
for the sender. Then our protocol is (q, ε(l))-secure for the database, where

ε(l) = ε′(l) +
q

|F| − 1
.

A proof is given in the next subsection.

5.3 Proof of Theorem 5.1

Wlog, we can consider that any malicious user Ũ consists of (Ũ0, Ũ1, Ũ2) as
follows.

• Ũ0 receives E1, · · · , En from T and outputs view∗ = (α,E1, · · · , En),
where α is the random input to Ũ .

• Ũ1 has an auxiliarly input view∗. It executes the OPE(1,F) protocol
with T and outputs view1, where view1 is the view that Ũ1 saw and
view1 includes view∗.

• Ũ2 has an auxiliarly input view1 and outputs the output of Ũ .
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There exists a simulator B which simulates Ũ1 from the sender’s security
of the OPE protocol. That is, the output of B is indistinguishable from
that of Ũ1 if they have the same auxiliarly input view∗. By using this B, we
consider an imaginal protocol (T ′, Ũ ′) as follows, where T ′ plays the role of
the TTP in the ideal world of the OPE protocol.

Step 1’. T ′ chooses f(X) and computes E1, · · · , En in the same way as in
the original protocol. T ′ then sends E1, · · · , En to Ũ ′.

Step 2’. Ũ ′ runs B with the auxiliarly input view∗ = (α,E1, · · · , En), where
α is a random string. In this process, suppose that B queries w∗ to
the TTP in the ideal world of OPE. Then

Step 2’-1. Ũ ′ queries w∗ to T ′.
Step 2’-2. T ′ gives K0 = f(w∗) to Ũ ′. Ũ ′ then gives K0 to B.

B finally outputs view′
1

Step 3’. Ũ ′ runs Ũ2 with the auxiliarly input view′
1. Ũ ′ then outputs the

output of Ũ2.

Now we show a simulator A for Ũ of our OKS protocol. A behaves
similarly to T ′ by using B and Ũ2 as subroutines as follows.

Step a. A chooses E1, · · · , En randomly and runs B with the auxiliarly
input view∗ = (α,E1, · · · , En), where α is a random string.

Step b. If B queries w∗, then A chooses a random string K0 which has
never been queried to the random oracle G and gives K0 to B.

A also queries w∗ to the TTP in the ideal world of OKS and receives
Search(w∗).

Step c. B finally outputs view′′
1 .

Step d. A runs Ũ2 with the auxiliarly input view′′
1 and outputs the output

of Ũ2.

A simulates the random oracle G as follows. Suppose that (K‖i) is
queried to G. If it happened before K0 is chosen (at Step b), then A sets
G(K‖i) at random. Otherwise, if K = K0 and i is included in Search(w∗),
then A sets

G(K‖i) = Ei ⊕ (0l‖ci),
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where (i, ci) ∈ Search(w∗). Else, A sets G(K‖i) at random.
Let β denote the output of Ũ , β′ denote the output of Ũ ′ and β′′ denote

the output of A. Then we can show the following lemmas for any fixed
distinguisher D.

Lemma 5.1

|Pr(D(β) = 1)− Pr(D(β′) = 1)| < ε′(l).

(Proof) Suppose that this lemma does not hold. Then consider a distin-
guisher D′ between {view1} and {view1} as follows. On input view1/view′

1,
D′ runs Ũ2 with the auxiliarly input view1/view′

1. D′ then gives the output
β/β′ of Ũ2 to D. Then we have

|Pr(D′(view1) = 1)− Pr(D′(view′
1) = 1)| ≥ ε′(l)

from our assumption.
On the other hand, B is a simulator of Ũ1 and they have the same

auxiliarly input view∗. Therefore, their outputs must be indistinguishable.
Hence we must have

|Pr(D′(view1) = 1)− Pr(D′(view′
1) = 1)| < ε′(l).

However, this is a contradiction. Q.E.D.

Lemma 5.2

|Pr(D(β′) = 1)− Pr(D(β′′) = 1)| ≤ q

|F| − 1
.

(Proof) In the imaginal protocol (T ′, Ũ ′):

• Let BAD1 be the event that Ũ ′ queries some (K‖i) to G such that
K = f(wi) before K0 is given to Ũ ′.

• Let BAD2 be the event that Ũ ′ queries some (K‖i) to G such that
K = f(wi) and i is not included in Search(w∗) after K0 is given to
Ũ ′.

Let BAD be the event that BAD1 or BAD2 occurs. If BAD does
not occur in the imaginal protocol (T ′, Ũ ′), then A simulates G perfectly.
Therefore,

Pr(D(β′) = 1 | ¬BAD) = Pr(D(β′′) = 1).
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It is clear that

Pr(D(β′) = 1) = Pr(D(β′) = 1,BAD)+Pr(D(β′) = 1 | ¬BAD) Pr(¬BAD).

Therefore,

Pr(D(β′) = 1) ≤ Pr(BAD) + Pr(D(β′′) = 1)
Pr(D(β′) = 1) ≥ Pr(D(β′) = 1 | ¬BAD) Pr(¬BAD)

= Pr(D(β′′) = 1)(1 − Pr(BAD))
= Pr(D(β′′) = 1)− Pr(D(β′′) = 1)Pr(BAD))
≥ Pr(D(β′′) = 1)− Pr(BAD))

Hence
|Pr(D(β′) = 1)− Pr(D(β′′) = 1)| ≤ Pr(BAD).

We next estimate Pr(BAD). Suppose that Ũ ′ queries to G at most
q1 times before K0 is given and at most q2 times after K0 is given, where
q1 + q2 ≤ q. It is easy to see that for any wi and for any K,

Pr(f(wi) = K) =
1
|F| ,

where the probability is taken over f(X) = aX + b such that a �= 0. There-
fore,

Pr(BAD1 occurs) ≤ q1

|F| .

Similarly,

Pr(f(wi) = K | f(w∗) = K0) ≤
1

|F| − 1
for any wi �= w∗ and any K. Therefore,

Pr(BAD2 occurs) ≤ q2

|F| − 1
.

Hence
Pr(BAD) ≤ Pr(BAD1) + Pr(BAD2) ≤

q

|F| − 1
. (2)

Q.E.D.
Therefore we obtain that

|Pr(D(β) = 1)− Pr(D(β′′) = 1|
= |Pr(D(β) = 1)− Pr(D(β′) = 1) + Pr(D(β′) = 1)− Pr(D(β′′) = 1|
≤ |Pr(D(β) = 1)− Pr(D(β′) = 1)|+ |Pr(D(β′) = 1)− Pr(D(β′′) = 1|
< ε′(l) +

q

|F| − 1
.
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5.4 Protocol for k ≥ 2

We next show a OKSn
k protocol for k ≥ 2. Let P (k,F) be the set of poly-

nomials of degree at most k over F. We assume that

gcd(k, |F| − 1) = 1. (3)

Definition 5.4 For a given database B1, · · · , Bn, we say that f(X) ∈ P (k,F)
is good if

f(wi) �= f(wj)

for any wi �= wj .

Lemma 5.3 If f(X) ∈ P (k,F) is chosen randomly, then

Pr(f(X) is good) ≥ 1−
(

n

2

)
1
|F| .

(Proof) Let
f(X) = a0 + a1X + · · ·+ akX

k.

Then for x1 �= x2, it holds f(x1) = f(x2) if and only if

a1(x1 − x2) + · · ·+ ak(xk
1 − xk

2) = 0.

For the above equation, ak is uniquely determined from given a0, · · · , ak−1

because xk
1 �= xk

2 from eq.(3). Therefore,

Pr(f(x1) = f(x2)) =
|{a0, · · · , ak−1}|
|{a0, · · · , ak}|

=
|F|k
|F|k+1

=
1
|F|

Now the probability that f(wi) = f(wj) for some wi �= wj is at most(n
2

)
1
|F| . Therefore, we obtain Lemma 5.3.

Q.E.D.
Suppose that |F| �

(n
2

)
. Then a randomly chosen f(X) ∈ P (k,F) is

good with high probability from lemma 5.3.
Now our OKSn

k protocol is obtained by slightly modifying the OKSn
1

protocol of Sec. 5.2 as follows.
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• In the commit phase, T chooses a good f(X) ∈ P (k,F) randomly by
trial and error.

• At Step 2 of the transfer phase, T and U run an OPE(k,F) protocol.

The rest of the protocol is the same as Sec. 5.2. The correctness and the
user’s security are clear. We can prove the database’s security similarly to
Theorem 5.1.

6 Conclusion

In this paper, we introduced a notion of Oblivious Keyword Search (OKS).
We then showed two efficient protocols such that the size of the commitments
is only O(nB) regardless of the size of W , where nB is the size of the
database and W is the set of all possible keywords.

• The first scheme assumes the intractability of the one-more RSA-
inversion problem and the second one assumes the intractability of
the polynomial reconstruction problem.

• The first scheme is more efficient. The second scheme is based on a
more widely accepted assumption.

We further presented a more efficient adaptive OTn
k protocol than the

previous one [19] as an application of our first OKS protocol.
Usually, each content would have more than one keywords. Therefore,

it will be a further work to construct an efficient protocol which can handle
more than one keywords. It will also be a further work to derive a lower
bound on the size of commitments.
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