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Abstract

We propose a new security measure for commitment protocols, called Universally Composable
(UC) Commitment. The measure guarantees that commitment protocols behave like an “ideal
commitment service,” even when concurrently composed with an arbitrary set of protocols.
This is a strong guarantee: it implies that security is maintained even when an unbounded
number of copies of the scheme are running concurrently, it implies non-malleability (not only
with respect to other copies of the same protocol but even with respect to other protocols), it
provides resilience to selective decommitment, and more.

Unfortunately two-party uc commitment protocols do not exist in the plain model. However,
we construct two-party uc commitment protocols, based on general complexity assumptions,
in the common reference string model where all parties have access to a common string taken
from a predetermined distribution. The protocols are non-interactive, in the sense that both
the commitment and the opening phases consist of a single message from the committer to the
receiver.
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1 Introduction

Commitment is one of the most basic and useful cryptographic primitives. On top of being intriguing
by itself, it is an essential building block in many cryptographic protocols, such as Zero-Knowledge
protocols (e.g., [gmw91, bcc88, d89]), general function evaluation protocols (e.g., [gmw87, ghy88,
g98]), contract-signing and electronic commerce, and more. Indeed, commitment protocols have
been studied extensively in the past two decades (e.g., [B82, n91, ddn00, novy92, b96, dio98,
ff00, dkos01] ).

The basic idea behind the notion of commitment is attractively simple: A committer provides
a receiver with the digital equivalent of a “sealed envelope” containing a value x. From this point
on, the committer cannot change the value inside the envelope, and, as long as the committer does
not assist the receiver in opening the envelope, the receiver learns nothing about x. When both
parties cooperate, the value x is retrieved in full.

Formalizing this intuitive idea is, however, non-trivial. Traditionally, two quite distinct basic
flavors of commitment are formalized: unconditionally binding and unconditionally secret commit-
ment protocols (see, e.g., [g95]). These basic definitions are indeed sufficient for some applications
(see there). But they treat commitment as a “stand alone” task and do not in general guarantee
security when a commitment protocol is used as a building-block within other protocols, or when
multiple copies of a commitment protocol are carried out together. A good first example for the lim-
itations of the basic definitions is the selective decommitment problem [dnrs99], that demonstrates
our inability to prove some very minimal composition properties of the basic definitions.

Indeed, the basic definitions turned out to be inadequate in some scenarios, and stronger variants
that allow to securely “compose” commitment protocols —both with the calling protocol and with
other invocations of the commitment protocol— were proposed and successfully used in some spe-
cific contexts. One such family of variants make sure that knowledge of certain trapdoor information
allows “opening” commitments in more than a single way. These include chameleon commitments
[bcc88], trapdoor commitments [fs90] and equivocable commitments [b96]. Another strong variant
is non-malleable commitments [ddn00], where it is guaranteed that a dishonest party that receives
an unopened commitment to some value x will be unable to commit to a value that depends on x in
any way, except for generating another commitment to x. (A more relaxed variant of the [ddn00]
notion of non-malleability is non-malleability with respect to opening [dio98, ff00, dkos01].)

These stronger measures of security for commitment protocols are indeed very useful. However
they only solve specific problems and stop short of guaranteeing that commitment protocols main-
tain the expected behavior in general cryptographic contexts, or in other words when composed
with arbitrary protocols. To exemplify this point, notice for instance that, although [ddn00] re-
mark on more general notions of non-malleability, the standard notion of non-malleability considers
only other copies of the same protocol. There is no guarantee that a malicious receiver is unable
to “maul” a given commitment by using a totally different commitment protocol. And it is indeed
easy to come up with two commitment protocols C and C′ such that both are non-malleable with
respect to themselves, but an adversary that plays a receiver in C can generate a C′-commitment
to a related value, before the C-commitment is opened.

This work proposes a measure of security for commitment protocols that guarantees the “enve-
lope-like” intuitive properties of commitment even when the commitment protocol is concurrently
composed with an arbitrary set of protocols. In particular, protocols that satisfy this measure
(called universally composable (uc) commitment protocols) remain secure even when an unbounded
number of copies of the protocol are executed concurrently in an adversarially controlled way; they
are resilient to selective decommitment attacks; they are non-malleable both with respect to other
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copies of the same protocol and with respect to arbitrary commitment protocols. In general, a
uc commitment protocol successfully emulates an “ideal commitment service” for any application
protocol (be it a Zero-Knowledge protocol, a general function evaluation protocol, an e-commerce
application, or any combination of the above).

This measure of security for commitment protocols is very strong indeed. It is perhaps not
surprising then that uc commitment protocols which involve only the committer and the receiver do
not exist in the standard “plain model” of computation where no set-up assumptions are provided.
(We formally prove this fact.) However, in the common reference string (crs) model things look
better. (The crs model is a generalization of the common random string model. Here all parties
have access to a common string that was chosen according to some predefined distribution. Other
equivalent terms include the reference string model [d00] and the public parameter model [ff00].)
In this model we construct uc commitment protocols based on standard complexity assumptions.
A first construction, based on any family of trapdoor permutations, uses a different copy of the
crs for each copy of the protocol. Said otherwise, this construction requires the length of the
reference string to be linear in the number of invocations of the protocol throughout the lifetime of
the system. A second protocol, based on any claw-free pair of trapdoor permutations, uses a single,
short reference string for an unbounded number of invocations. The protocols are non-interactive,
in the sense that both the commitment and the decommitment phases consist of a single message
from the committer to the receiver. We also note that uc commitment protocols can be constructed
in the plain model, if the committer and receiver are assisted by third parties (or, “servers”) that
participate in the protocol without having local inputs and outputs, under the assumption that a
majority of the servers remain uncorrupted.

1.1 On the new measure

Providing meaningful security guarantees under composition with arbitrary protocols requires using
an appropriate framework for representing and arguing about such protocols. Our treatment is
based in a recently proposed such general framework [c01]. This framework builds on known
definitions for function evaluation and general tasks [gl90, mr91, b91, pw94, c00, dm00, pw01],
and allows defining the security properties of practically any cryptographic task. Most importantly,
in this framework security of protocols is maintained under general concurrent composition with an
unbounded number of copies of arbitrary protocols. We briefly summarize the relevant properties
of this framework. See more details in Section 2.1 and in [c01].

As in prior general definitions, the security requirements of a given task (i.e., the functionality
expected from a protocol that carries out the task) are captured via a set of instructions for a
“trusted party” that obtains the inputs of the participants and provides them with the desired
outputs. However, as opposed to the standard case of secure function evaluation, here the trusted
party (which is also called the ideal functionality) runs an arbitrary algorithm and in particular may
interact with the parties in several iterations, while maintaining state in between. Informally, a
protocol securely carries out a given task if running the protocol amounts to “emulating” an ideal
process where the parties hand their inputs to the appropriate ideal functionality and obtain their
outputs from it, without any other interaction.

In order to allow proving the concurrent composition theorem, the notion of emulation in [c01]
is considerably stronger than previous ones. Traditionally, the model of computation includes
the parties running the protocol and an adversary, A, and “emulating an ideal process” means
that for any adversary A there should exist an “ideal process adversary” (or, simulator) S that
results in similar distribution on the outputs for the parties. Here an additional adversarial entity,
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called the environment Z, is introduced. The environment generates the inputs to all parties,
reads all outputs, and in addition interacts with the adversary in an arbitrary way throughout
the computation. (Allowing the environment to freely interact with the adversary is crucial for
the composability properties ot he definition.) A protocol is said to securely realize a given ideal
functionality F if for any adversary A there exists an “ideal-process adversary” S, such that no
environment Z can tell whether it is interacting with A and parties running the protocol, or with S
and parties that interact with F in the ideal process. (In a sense, here Z serves as an “interactive
distinguisher” between a run of the protocol and the ideal process with access to F . See [c01]
for more motivating discussion on the role of the environment.) Note that the definition requires
the “ideal-process adversary” (or, simulator) S to interact with Z throughout the computation.
Furthermore, Z cannot be “rewound”.

The following universal composition theorem is proven in [c01]. Consider a protocol π that
operates in a hybrid model of computation where parties can communicate as usual, and in addition
have ideal access to (an unbounded number of copies of) some ideal functionality F . Let ρ be a
protocol that securely realizes F as sketched above, and let πρ be the “composed protocol”. That is,
πρ is identical to π with the exception that each interaction with some copy of F is replaced with a
call to (or an invocation of) an appropriate instance of ρ. Similarly, ρ-outputs are treated as values
provided by the appropriate copy of F . Then, π and πρ have essentially the same input/output
behavior. In particular, if π securely realizes some ideal functionality G given ideal access to F
then πρ securely realizes G from scratch.

To apply this general framework to the case of commitment protocols, we formulate an ideal
functionality Fcom that captures the expected behavior of an “ideal commitment service”. Univer-
sally Composable (uc) commitment protocols are defined to be those that securely realize Fcom.
Our formulation of Fcom is a straightforward transcription of the “envelope paradigm”: Fcom first
waits to receive a request from some party C to commit to value x for party R. (C and R are
identities of two parties in a multiparty network). When receiving such a request, Fcom records
the value x and notifies R that C has committed to some value for him. When C later sends a
request to open the commitment, Fcom sends the recorded value x to R, and halts. (Some other
variants of Fcom are discussed within.) The general composition theorem now implies that running
(multiple copies of) a uc commitment protocol π is essentially equivalent to interacting with the
same number of copies of Fcom, regardless of what the calling protocol does. In particular, the call-
ing protocol may run other commitment protocols and may use the committed values in any way.
As mentioned above, this implies a strong version of non-malleability, security under concurrent
composition, resilience to selective decommitment, and more.

The definition of security and composition theorem carry naturally to the crs model as well.
However, this model hides a caveat: The composition operation requires that each copy of the uc

commitment protocol will have its own copy of the crs. Thus, applying the composition theorem
to protocols that securely realize Fcom as described above is highly wasteful of the reference string.
In order to capture protocols where multiple commitments may use the same short reference string
we formulate a natural extension of Fcom that handles multiple commitment requests. We call this
extension Fmcom.

We remark that the definition allows uc commitment protocols to be computationally secret
and computationally binding only, achieving neither property unconditionally. In fact, one of
the constructions presented here merely attains this computational security level but is indeed
universally composable.
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1.2 On the constructions

At a closer look, the requirements from a uc commitment protocol boil down to the following
two requirements from the ideal-process adversary (simulator) S. (a). When the committer is
corrupted (i.e., controlled by the adversary), S must be able to “extract” the committed value
from the commitment. (That is, S has to come up with a value x such that the committer will
almost never be able to successfully decommit to any x′ 6= x.) This is so since in the ideal process
S has to explicitly provide Fcom with a committed value. (b). When the committer is uncorrupted,
S has to be able to generate a kosher-looking “simulated commitment” c that can be “opened”
to any value (which will become known only later). This is so since S has to provide adversary
A and environment Z with the simulated commitment c before the value committed to is known.
All this needs to be done without rewinding the environment Z. (Note that non-malleability is not
explicitly required in this description. It is, however, implied by the above requirements.)

From the above description it may look plausible that no simulator S exists that meets the
above requirements in the plain model. Indeed, we formalize and prove this statement for the case
of protocols that involve only a committer and a receiver. (In the case where the committer and
the receiver are assisted by third parties, a majority of which is guaranteed to remain uncorrupted,
standard techniques for multiparty computation are sufficient for constructing uc commitment
protocols. See [c01] for more details.)

In the crs model the simulator is “saved” by the ability to choose the reference string and plant
trapdoors in it. Here we present two uc commitment protocols. The first one (that securely realizes
functionality Fcom) is based on the equivocable commitment protocols of [dio98], while allowing
the simulator to have trapdoor information that enables it to extract the values committed to by
corrupted parties. However, the equivocability property holds only with respect to a single usage of
the crs. Thus this protocol fails to securely realize the multiple commitment functionality Fmcom.

In the second protocol (that securely realizes Fmcom), the reference string contains a description
of a claw-free pair of trapdoor permutations and a public encryption key of an encryption scheme
that is secure against adaptive chosen ciphertext attacks (CCA) (as in, say, [ddn00, rs91, bdpr98,
cs98]). Commitments are generated via standard use of a claw-free pair, combined with encrypting
potential decommitments. The idea to use CCA-secure encryption in this context is taken from
[l00, dkos01].

Both protocols implement commitment to a single bit. Commitment to arbitrary strings is
achieved by composing together several instances of the basic protocol. Finding more efficient uc

string commitment protocols is an interesting open problem.

Applicability of the notion. In addition to being an interesting goal in their own right, uc

commitment protocols can potentially be very useful in constructing more complex protocols with
strong security and composability properties. To demonstrate the applicability of the new notion,
we show how uc commitment protocols can be used in a simple way to construct strong Zero-
Knowledge protocols without any additional cryptographic assumptions.

Related work. Pfitzmann et. al. [pw94, pw01] present another definitional framework that
allows capturing the security requirements of general reactive tasks, and prove a concurrent com-
position theorem with respect to their framework. Potentially, our work could be cast in their
framework as well; however, the composition theorem provided there is considerably weaker than
the one in [c01].
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Organization. Section 2 shortly reviews the general framework of [c01] and presents the ideal
commitment functionalities Fcom and Fmcom. Section 3 demonstrates that functionalities Fcom and
Fmcom cannot be realized in the plain model by a two-party protocol. Section 4 presents and proves
security of the protocols that securely realize Fcom and Fmcom. Section 5 presents the application
to constructing Zero-Knowledge protocols.

2 Defining UC commitments

Section 2.1 shortly summarizes the relevant parts of the general framework of [c01], including the
general framework for defining security and the composition theorem. Section 2.1.2 defines the crs

model. Section 2.2 defines the ideal commitment functionalities, Fcom and Fmcom.

2.1 The general framework

As sketched in the Introduction, protocols that securely carry out a given task (or, protocol problem)
are defined in three steps, as follows. First, the process of executing a protocol in the presence of
an adversary and in a given computational environment is formalized. Next, an “ideal process” for
carrying out the task at hand is formalized. In the ideal process the parties do not communicate
with each other. Instead they have access to an “ideal functionality”, which is essentially an
incorruptible “trusted party” that is programmed to capture the desired requirements from the
task at hand. A protocol is said to securely realize a task if the process of running the protocol
“emulates” the ideal process for that task. In the rest of this subsection we overview the model
for protocol execution (called the real-life model), the ideal process, and the notion of protocol
emulation.

Protocol syntax. Following [gmra89, g95], a protocol is represented as a system of interactive
Turing machines (ITMs), where each ITM represents the program to be run within a different
party. Specifically, the input and output tapes model inputs and outputs that are received from
and given to other programs running on the same machine, and the communication tapes model
messages sent to and received from the network. Adversarial entities are also modeled as ITMs; we
concentrate on a non-uniform complexity model where the adversaries have an arbitrary additional
input, or an “advice”.

The adversarial model. [c01] discusses several models of computation. We concentrate on a
model where the network is asynchronous without guaranteed delivery of messages. The commu-
nication is public (i.e., all messages can be seen by the adversary) but ideally authenticated (i.e.,
messages cannot be modified by the adversary). In addition, parties have unique identities.1 The
adversary is adaptive in corrupting parties, and is active (or, Byzantine) in its control over cor-
rupted parties. Any number of parties can be corrupted. Finally, the adversary and environment
are restricted to probabilistic polynomial time (or, “feasible”) computation.

1Indeed, the communication in realistic networks is typically unauthenticated, in the sense that messages may be
adversarially modified en-route. In addition, there is no guarantee that identities will be unique. Nonetheless, since
authentication and the guarantee of unique identities can be added independently of the rest of the protocol, we allow
ourselves to assume ideally authenticated channels and unique identities. See [c01] for further discussion.

5



Protocol execution in the real-life model. We sketch the process of executing a given protocol
π (run by parties P1, ..., Pn) with some adversary A and an environment machine Z with input z.
All parties have a security parameter k ∈ N and are polynomial in k. The execution consists of a
sequence of activations, where in each activation a single participant (either Z, A, or some Pi) is
activated. The activated participant reads information from its input and incoming communication
tapes, executes its code, and possibly writes information on its outgoing communication tapes and
output tapes. In addition, the environment can write information on the input tapes of the parties,
and read their output tapes. The adversary can read messages off the outgoing message tapes
of the parties and deliver them by copying them to the incoming message tapes of the recipient
parties. (It is stressed that only messages that were generated by parties can be delivered. The
adversary cannot modify or duplicate messages.) The adversary can also corrupt parties, with the
usual consequences that it learns the internal information known to the corrupted party and that
from now on it controls that party.

The environment is activated first; once activated, it may write information on the input tape
of either one of the parties or of the adversary. That entity is activated once the activation of the
environment is complete (i,e, once the environment enters a special waiting state.) If no input tape
was written into then the execution halts. Once a party completes its activation the environment
is activated again. Whenever the adversary delivers a message to some party P in some activation,
then this party is activated next. Once P ’s activation is complete, the environment is activated
again. If in some activation the adversary delivers no messages then the environment is activated
as soon as the adversary completes its activation. Notice that this mechanism allows environment
and the adversary to exchange information freely using their input and output tapes, between each
two activations of some party. The output of the protocol execution is the output of Z. (Without
loss of generality Z outputs a single bit.)

Let realπ,A,Z(k, z, ~r) denote the output of environment Z when interacting with adversary A
and parties running protocol π on security parameter k, input z and random input ~r = rZ , rA, r1 . . . rn
as described above (z and rZ for Z, rA for A; ri for party Pi). Let realπ,A,Z(k, z) denote the
random variable describing realπ,A,Z(k, z, ~r) when ~r is uniformly chosen. Let realπ,A,Z denote
the ensemble {realπ,A,Z(k, z)}k∈N,z∈{0,1}∗ .

The ideal process. Security of protocols is defined via comparing the protocol execution in the
real-life model to an ideal process for carrying out the task at hand. A key ingredient in the ideal
process is the ideal functionality that captures the desired functionality, or the specification, of that
task. The ideal functionality is modeled as another ITM that interacts with the environment and
the adversary via a process described below. More specifically, the ideal process involves an ideal
functionality F , an ideal process adversary S, an environment Z on input z and a set of dummy
parties P̃1, ..., P̃n. The dummy parties are fixed and simple ITMS: Whenever a dummy party is
activated with input x, it forwards x to F , say by copying x to its outgoing communication tape;
whenever it is activated with incoming message from F it copies this message to its output. F
receives information from the (dummy) parties by reading it off their outgoing communication
tapes. It hands information back to the parties by sending this information to them. The ideal-
process adversary S proceeds as in the real-life model, except that it has no access to the contents of
the messages sent between F and the parties. In particular, S is responsible for delivering messages
from F to the parties. It can also corrupt dummy parties, learn the information they know, and
control their future activities.

The order of events in the ideal process is the same as in the real-life process, with the exception
that here, if a dummy party P̃ is activated by an input value coming from the environment then (this
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value is copied to the outgoing communication tape of P̃ and) the ideal functionality is activated
next. Once the ideal functionality completes its activation (having perhaps sent messages to the
adversary or dummy parties), P̃ is activated one again. It is stressed that in the ideal process there
is no communication among the parties. The only “communication” is in fact idealized transfer of
information between the parties and the ideal functionality.

Let idealF ,S,Z(k, z, ~r) denote the output of environment Z after interacting in the ideal process
with adversary S and ideal functionality F , on security parameter k, input z, and random input
~r = rZ , rS , rF as described above (z and rZ for Z, rS for S; rF for F). Let idealF ,S,Z(k, z) denote
the random variable describing idealF ,S,Z(k, z, ~r) when ~r is uniformly chosen. Let idealF ,S,Z
denote the ensemble {idealF ,S,Z(k, z)}k∈N,z∈{0,1}∗ .

Securely realizing an ideal functionality. We say that a protocol ρ securely realizes an ideal
functionality F if for any real-life adversary A there exists an ideal-process adversary S such that
no environment Z, on any input, can tell with non-negligible probability whether it is interacting
with A and parties running ρ in the real-life process, or it is interacting with A and F in the
ideal process. This means that, from the point of view of the environment, running protocol ρ is
‘just as good’ as interacting with an ideal process for F . (In a way, Z serves as an “interactive
distinguisher” between the two processes. Here it is important that Z can provide the process in
question with adaptively chosen inputs throughout the computation.)

Definition 1 Let X = {X(k, a)}k∈N,a∈{0,1}∗ and Y = {Y (k, a)}k∈N,a∈{0,1}∗ be two distribution
ensembles over {0, 1}. We say that X and Y are indistinguishable (written X c≈ Y) if for any c ∈ N
there exists k0 ∈ N such that |Pr(X(k, a) = 1)− Pr(Y (k, a) = 1)| < k−c for all k > k0 and all a.

Definition 2 ([c01]) Let n ∈ N. Let F be an ideal functionality and let π be an n-party protocol.
We say that π securely realizes F if for any adversary A there exists an ideal-process adversary S
such that for any environment Z we have idealF ,S,Z

c≈ realπ,A,Z .

2.1.1 On the composition theorem

The hybrid model. In order to state the composition theorem, and in particular in order to
formalize the notion of a real-life protocol with access to an ideal functionality, the hybrid model of
computation with access to an ideal functionality F (or, in short, the F-hybrid model) is formulated.
This model is identical to the real-life model, with the following additions. On top of sending
messages to each other, the parties may send messages to and receive messages from an unbounded
number of copies of F . Each copy of F is identified via a unique session identifier (SID); all messages
addressed to this copy and all message sent by this copy carry the corresponding SID. (The SIDs
are chosen by the protocol run by the parties.)

The communication between the parties and each one of the copies of F mimics the ideal process.
That is, once a party sends a message to some copy of F , that copy is immediately activated and
reads that message off the party’s tape. Furthermore, although the adversary in the hybrid model
is responsible for delivering the messages from the copies of F to the parties, it does not have access
to the contents of these messages. It is stressed that the environment does not have direct access
to the copies of F . (Indeed, here the security definition will require that the environment will be
unable to tell whether it is interacting with the real-life model or the hybrid model.)
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Replacing a call to F with a protocol invocation. Let π be a protocol in the F-hybrid
model, and let ρ be a protocol that securely realizes F (with respect to some class of adversaries).
The composed protocol πρ is constructed by modifying the code of each ITM in π so that the first
message sent to each copy of F is replaced with an invocation of a new copy of π with fresh random
input, and with the contents of that message as input. Each subsequent message to that copy of
F is replaced with an activation of the corresponding copy of ρ, with the contents of that message
given to ρ as new input. Each output value generated by a copy of ρ is treated as a message received
from the corresponding copy of F .

Theorem statement. In its general form, the composition theorem basically says that if ρ
securely realizes F then an execution of the composed protocol πρ “emulates” an execution of
protocol π in the F-hybrid model. That is, for any real-life adversary A there exists an adversary H
in the F-hybrid model such that no environment machine Z can tell with non-negligible probability
whether it is interacting with A and πρ in the real-life model or it is interacting with H and π in
the F-hybrid model:

Theorem 3 Let F be an ideal functionality. Let π be a protocol in the F-hybrid model, and let ρ
be a protocol that securely realizes F . Then for any real-life adversary A there exists a hybrid-model
adversary H such that for any environment machine Z we have realπρ,A,Z

c≈ hyb
F
π,H,Z .

A more specific corollary of the general theorem states that if π securely realizes some function-
ality G in the F-hybrid model, and ρ securely realizes F in the real-life model, then πρ securely
realizes G in the real-life model. (Here one has to define what it means to securely realize function-
ality G in the F-hybrid model. This is done in the natural way.)

Theorem 4 ([c01]) Let F ,G be ideal functionalities. Let π be an n-party protocol that realizes G
in the F-hybrid model and let ρ be an n-party protocol that securely realizes F . Then protocol πρ

securely realizes G.

2.1.2 The common reference string (crs) model.

In the common reference string (crs) model it is assumed that all the participants have access to a
common string that is drawn from some specified distribution. (This string is chosen ahead of time
and is made available before any interaction starts.) In the present framework we re-cast the crs

model framework as a hybrid model with ideal access to a functionality Fcrs, that is parameterized
by a distribution D and described in Figure 1 below.

Functionality Fcrs

Fcrs proceeds as follows, when parameterized by a distribution D.

1. When activated for the first time on input (value, sid), choose a value d R← D and send d
back to the activating party. In each other activation return the value d to the activating
party.

Figure 1: The Common Reference String functionality

Notice that this formalization has the usual properties of the crs model. Specifically:
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• In the real-life model of computation the parties have access to a common and public string
that is chosen in advance according to some distribution (specified by the protocol run by the
parties).

• In the ideal process for some functionality (say, for Fcom defined below) there is no use of
the random string. Consequently an ideal process adversary that operates by simulating a
real-life adversary may play the role of Fcrs for the simulated adversary. This means that
the ideal process adversary may choose the common string in any way it wishes.

Furthermore, since the ideal process makes no use of the random string, the validity of the ideal
process is not affected by the fact that the protocol runs in the Fcrs-hybrid model. We are thus
guaranteed that our notion of security remains valid.

Protocol composition in the crs model. Some words of clarification are in order with respect
to the composition theorem in the crs model. It is stressed that each copy of protocol ρ within
the composed protocol πρ should have its own copy of the reference string, i.e. a separate instance
of Fcrs, (or equivalently uses a separate portion of a long string). If this is not the case then
the theorem no longer holds in general. As seen below, the security requirements from protocols
where several copies of the protocol use the same instance of the reference string can be captured
using ideal functionalities that represent multiple copies of the protocol within a single copy of the
functionality.

2.2 The commitment functionalities

We propose ideal functionalities that represent the intuitive “envelope-like” properties of commit-
ment, as sketched in the introduction. Two functionalities are presented: functionality Fcom that
handles a single commitment-decommitment process, and functionality Fmcom that handles multi-
ple such processes. Recall that the advantage of Fmcom over Fcom is that protocols that securely
realize Fmcom may use the same short common string for multiple commitments. (In contrast,
applying the composition theorem to protocols that realize Fcom requires using a different common
string for each commitment.) Indeed, realizing Fmcom is more challenging than realizing Fcom.
Some further discussion on the functionalities and possible variants appears in Section 2.2.1.

Both functionalities are presented as bit commitments. Commitments to strings can be obtained
in a natural way using the composition theorem. It is also possible, in principle, to generalize Fcom

and Fmcom to allow commitment to strings. Such extensions may be realized by string-commitment
protocols that are more efficient than straightforward composition of bit commitment protocols.
Finding such protocols is an interesting open problem.

Functionality Fcom, described in Figure 2, proceeds as follows. The commitment phase is
modeled by having Fcom receive a value (Commit, sid , Pi, Pj , b), from some party Pi (the committer).
Here sid is a Session ID used to distinguish among various copies of Fcom, Pj is the identity of
another party (the receiver), and b ∈ {0, 1} is the value committed to. In response, Fcom lets the
receiver Pj and the adversary S know that Pi has committed to some value, and that this value
is associated with session ID sid . This is done by sending the message (Receipt, sid , Pi, Pj) to
Pj and S. The opening phase is initiated by the committer sending a value (Open, sid , Pi, Pj) to
Fcom. In response, Fcom hands the value (Open, sid , Pi, Pj , b) to Pj and S.

Functionality Fmcom, presented in Figure 3, essentially mimics the operation of Fcom for multiple
commitments. In addition to the session ID sid , functionality Fmcom uses an additional identifier, a
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Functionality Fcom

Fcom proceeds as follows, running with parties P1, ..., Pn and an adversary S.

1. Upon receiving a value (Commit, sid , Pi, Pj , b) from Pi, where b ∈ {0, 1}, record the value
b and send the message (Receipt, sid , Pi, Pj) to Pj and S. Ignore any subsequent Commit
messages.

2. Upon receiving a value (Open, sid , Pi, Pj) from Pi, proceed as follows: If some value b was pre-
viously recoded, then send the message (Open, sid , Pi, Pj , b) to Pj and S and halt. Otherwise
halt.

Figure 2: The Ideal Commitment functionality for a single commitment

Commitment ID cid, that is used to distinguish among the different commitments that take place
within a single run of Fmcom. The record for a committed value now includes the Commitment
ID, plus the identities of the committer and receiver. To avoid ambiguities, no two commitments
with the same committer and verifier are allowed to have the same Commitment ID. It is stressed
that the various Commit and Open requests may be interleaved in an arbitrary way. Also, note that
Fmcom allows a committer to open a commitment several times (to the same receiver).

Functionality Fmcom

Fmcom proceeds as follows, running with parties P1, ..., Pn and an adversary S.

1. Upon receiving a value (Commit, sid , cid , Pi, Pj , b) from Pi, where b ∈ {0, 1}, record the tuple
(cid , Pi, Pj , b) and send the message (Receipt, sid , cid , Pi, Pj) to Pj and S. Ignore subsequent
(Commit, sid , cid , Pi, Pj , ...) values.

2. Upon receiving a value (Open, sid , cid , Pi, Pj) from Pi, proceed as follows: If the tuple
(cid , Pi, Pj , b) is recorded then send the message (Open, sid , cid , Pi, Pj , b) to Pj and S. Oth-
erwise, do nothing.

Figure 3: The Ideal Commitment functionality for multiple commitments

Definition 5 A protocol is a universally composable (uc) commitment protocol if it securely real-
izes functionality Fcom. If the protocol securely realizes Fmcom then it is called a reusable-crs uc

commitment protocol.

2.2.1 Discussion

On duplicating commitments. Notice that functionalities Fcom and Fmcom disallow “copying
commitments”. That is, assume that party A commits to some value x for party B, and that the
commitment protocol in use allows B to commit to the same value x for some party C, before A
decommitted to x. Once A decommits to x for B, B will decommit to x for C. Then this protocol
does not securely realize Fcom or Fmcom. This requirement may seem hard to enforce at first,
since B can always play “man in the middle” (i.e., forward A’s messages to C and C’s messages
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to A.) We enforce it using the unique identities of the parties. (Recall that unique identities are
assumed to be provided via an underlying lower-level protocol that also guarantees authenticated
communication.)

On the difference between Fcom and Fmcom. Securely realizing Fmcom is considerably more
demanding than securely realizing Fcom. In particular, a protocol that securely realizes Fcom

does not need to explicitly guarantee “independence” (or, “non-malleability”) among different
commitments: this independence is taken care of by the general composition theorem. In contrast,
in order to securely realize Fmcom a protocol has to explicitly guarantee independence among the
different commitments handled by the same copy of Fmcom. Independence from other copies of
Fmcom and from other protocols is guaranteed via the general composition theorem.

Some variants of Fcom and Fmcom. Functionalities Fcom and Fmcom capture one standard vari-
ant of commitment protocols. Other variants are possible, providing different security properties.
We sketch a few:

1. The functionalities can be modified so that the adversary does not receive the opened value
x. This captures the concern that the opening of the commitment should be available only
to the receiver.

2. The functionalities can be modified so that the receiver of the commitment provides the
functionality with acknowledgments for obtaining the commitment and the opening, and the
functionality forwards these acknowledgments to the committer. This may be useful in cases
where the committer has to make sure that the receiver accepted the commitment and/or the
opening.

3. The functionalities can be modified so that the adversary receives no messages whatsoever.
This captures the concern that the adversary does not learn whether a commitment protocol
took place at all. (This requirement has a flavor of protection against traffic analysis.)

4. Functionalities Fcom and Fmcom don’t specify an “error message,” to be generated by the
receiver, in case where the committer provides the receiver with an invalid opening of some
committed value. (Instead, the current specification instructs the receiver to ignore invalid
decommitments.) An alternative formulation would instruct the functionality to notify the
receiver when it receives an invalid (Open,...) message from the committer.

3 Impossibility of UC Commitments in the Plain Model

This section demonstrates that in the plain model (i.e., without access to some ideal functionality)
there cannot exist universally composable commitment protocols that do not involve third parties
in the interaction and allow for successful completion when both the sender and the receiver are
honest. This impossibility result holds even under the more liberal requirement that for any real-
life adversary and any environment there should be an ideal-model adversary (i.e., under a relaxed
definition where the ideal-model simulator may depend on the environment).

We remark that universally composable commitment protocols exist in the plain model if the
protocol makes use of third parties (namely, servers), as long as a majority of the servers remain
uncorrupted. This follows from a general result in [c01], where it is shown that practically any
functionality can be realized in this setting.
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Say that a protocol π between n parties P1, . . . , Pn is bilateral if all except two parties stay
idle and do not transmit messages. A bilateral commitment protocol π is called terminating if,
with non-negligible probability, the honest receiver Pj accepts a commitment of the honest sender
Pi and outputs (Receipt, sid, Pi, Pj), and moreover if the honest receiver, upon getting a valid
decommitment for a message m and sid from the honest sender, outputs (Open, sid, Pi, Pj ,m) with
non-negligible probability.

Theorem 6 There exist no bilateral, terminating protocol π that securely realizes functionality
Fcom in the plain model. This holds even if the ideal-model adversary S is allowed to depend on
the environment Z.

Proof: The idea of the proof is as follows. Consider a protocol execution between an adversarially
controlled committer Pi and an honest receiver Pj , and assume that the adversary merely sends
messages that are generated by the environment, and relays to the environment the messages sent
to Pi. The environment secretly picks a random bit b at the beginning and generates the messages
for Pi by running the protocol of the honest committer for b and Pj ’s answers. In order to simulate
this behavior, the ideal-model adversary S must be able to provide the ideal functionality with
a value for the committed bit. In other words, the simulator has to “extract” the committed bit
from the messages generated by the environment, without the ability to rewind the environment.
However, as will be seen below, if the commitment scheme allows the simulator to successfully
extract the committed bit, then the commitment is not secure in the first place (in the sense that
a corrupted receiver can obtain the value of the committed bit from interacting with an honest
committer).

More precisely, let the bilateral protocol π take place between the sender Pi and the receiver
Pj . Consider the following environment Z and real-life adversary A. At the outset of the execution
the adversary A corrupts the committer Pi. Then, in the sequel, A has the corrupted committer
send every message it receives from Z, and reports any reply received by Pj to Z. The environment
Z secretly picks a random bit b and follows the program of the honest sender to commit to b, as
specified by π. Once the the honest receiver has acknowledged the receipt of a commitment, Z
lets A decommit to b by following protocol π. Once the receiver outputs (Open, sid, Pi, Pj , b′), Z
outputs 1 if b = b′ and outputs 0 otherwise.

Since the receiver outputs a receipt before the decommitment starts, an ideal-model adversary
S for the pair A,Z must send (Commit, sid, Pi, Pj , b′) to Fcom before learning the bit b in the
decommitment step. However, the honest receiver outputs the bit b′ it gets in the opening step
from Fcom, and this implies that a successful S must come up with the true bit b already at the
commitment step, which contradicts the secrecy of the commitment protocol.

Formally, suppose that there is an ideal-model adversary S such that realπ,A,Z≈idealFcom,S,Z .
Then we construct a new environment Z ′ and a new real-life adversary A′ for which there is no
appropriate ideal-model adversary for π. This time, A′ corrupts the receiver Pj at the beginning.
During the execution A′ obtains messages form the honest committer Pi and feeds these messages
into a virtual copy of S. The answers of S, made on behalf of an honest receiver, are forwarded to Pi
in the name of the corrupted party Pj . At some point, S creates a submission (Commit, sid, Pi, Pj , b′)
to Fcom; the adversary A′ outputs b′ and halts. If S halts without creating such a submission then
A′ outputs a random bit and halts.

The environment Z ′ instructs the honest party Pi to commit to a randomly chosen secret bit
b. (No decommitment is ever carried out.) Conclusively, Z ′ outputs 1 iff the adversary’s output b′

satisfies b = b′.
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By the termination property, we obtain from the virtual simulator S a bit b′ with non-negligible
probability. This bit is a good approximation of the actual bit b, since S simulates the real protocol
π except with negligible error. Hence, the guess of A′ for b is correct with 1/2 plus a non-negligible
probability. But for a putative ideal-model adversary S ′ predicting this bit b with more than non-
negligible probability over 1/2 is impossible, since the view of S ′ in the ideal process is statistically
independent from the bit b. (Recall that the commitment to b is never opened). 2

4 UC Commitment schemes in the crs model

We present two basic approaches for constructions of uc commitment protocols in the common
reference string (crs) model. The protocol presented in Section 4.1 securely realizes functionality
Fcom, i.e., each part of the public string can only be used for a single commitment. It is based on any
trapdoor permutation. The protocol presented in Section 4.2 securely realizes Fmcom, i.e., it reuses
the public string for multiple commitments. This protocol requires potentially stronger assumptions
(either the existence of claw-free pairs of trapdoor permutations or alternatively secure encryption
and non-interactive perfectly-secret trapdoor commitments). Nonetheless, in the presence of an
adaptive adversary this solution only works if the honest players faithfully erase some parts of
their internal randomness. In Section 4.3 we give sufficient conditions under which data erasure
can be avoided, and show that these conditions can be met under the Decisional Diffie-Hellman
assumption for example.

4.1 One-Time Common Reference String

The construction in this section works in the common random string model where each part of the
commitment can be used for only one commitment. It is based on the equivocable bit commitment
scheme of Di Crescenzo et al. [dio98], which in turn is a clever modification of Naor’s commitment
scheme [n91].

4.1.1 Preliminaries

Let G be a pseudorandom generator stretching n-bit inputs to 4n-bit outputs. For security pa-
rameter n the receiver in [n91] sends a random 4n-bit string σ to the sender, who picks a random
r ∈ {0, 1}n, computes G(r) and returns G(r) or G(r) ⊕ σ to commit to 0 and 1, respectively.
To decommit, the sender transmits b and r. By the pseudorandomness of G the receiver cannot
distinguish the two cases, and with probability 2−2n over the choice of σ it is impossible to find
openings r0 and r1 such that G(r0) = G(r1)⊕ σ.

In [dio98] an equivocable version of Naor’s scheme has been proposed. Suppose that σ is not
chosen by the receiver, but rather is part of the common random string. Then, if instead we set
σ = G(r0)⊕G(r1) for random r0, r1, and let the sender give G(r0) to the receiver, it is later easy
to open this commitment as 0 with r0 as well as 1 with r1 (because G(r0) ⊕ σ = G(r1)).. On the
other hand, choosing σ in that way in indistinguishable from a truly random choice.

4.1.2 Description of Commitment Scheme

We describe a uc bit commitment protocol UCCOneTime (for universally composable commitment
scheme in the one-time-usable common reference string model). The idea is to use the [dio98]
scheme with a special pseudorandom generator that has a trapdoor property. Specifically, we use
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the Blum-Micali-Yao generator but with trapdoor permutations instead of one-way permutations
[y82, bm84]. Let KGen denote an efficient algorithm that on input 1n generates a random public
key pk and the trapdoor td . The key pk describes a trapdoor permutation fpk over {0, 1}n. Let
B(·) be a hard core predicate for fpk . Define a pseudorandom generator expanding n bits to 4n
bits with public description pk by

Gpk (r) =
(
f

(3n)
pk (r), B(f (3n−1)

pk (r)), . . . , B(fpk (r)), B(r)
)

where f (i)
pk (r) is the i-th fold application of fpk to r. An important feature of this generator is that

given the trapdoor td to pk it is easy to tell whether a given y ∈ {0, 1}4n is in the range of Gpk .
The public random string in our scheme consists of a random 4n-bit string σ, together with two

public keys pk0, pk1 describing trapdoor pseudorandom generators Gpk0
and Gpk1

; both generators
stretch n-bit inputs to 4n-bit output. The public keys pk0, pk1 are generated by two independent
executions of the key generation algorithm KGen on input 1n. Denote the corresponding trapdoors
by td0 and td1, respectively.

Commitment scheme UCCOneTime

public string:

σ — random string in {0, 1}4n

pk0, pk1 — keys for generators Gpk0
, Gpk1

: {0, 1}n → {0, 1}4n

commitment for b ∈ {0, 1} with SID sid:

compute Gpkb(r) for random r ∈ {0, 1}n
set y = Gpkb(r) for b = 0, or y = Gpkb(r)⊕ σ for b = 1
send (Com, sid , y) to the receiver

Upon receiving (Com, sid , y) from Pi, Pj outputs (Receipt, sid , cid , Pi, Pj)

decommitment for y:

send b, r to the receiver
receiver checks y ?= Gpkb(r) for b = 0, or y ?= Gpkb(r)⊕ σ for b = 1.

If the verification succeeds then Pj outputs (Open, sid , Pi, Pj , b).

Figure 4: Commitment Scheme in the One-Time-Usable Common Reference String Model

In order to commit to a bit b ∈ {0, 1}, the sender picks a random string r ∈ {0, 1}n, computes
Gpkb(r), and sets y = Gpkb(r) if b = 0, or y = Gpkb(r) ⊕ σ for b = 1. The sender passes y to
the receiver. In the decommitment step the sender gives (b, r) to the receiver, who verifies that
y=Gpkb(r) for b = 0 or that y = Gpkb(r)⊕ σ for b = 1. See also Figure 4.

4.1.3 Basic Properties

Clearly, the scheme is computationally hiding and statistically binding. An important observation
is that our scheme inherits the equivocability property of [dio98]. In a simulation we replace σ by
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Gpk0
(r0)⊕Gpk1

(r1) and therefore, if we transmit y = Gpk (r0) to a receiver, then we can later open
this value with 0 by sending r0 and with 1 via r1.

Moreover, if we are given a string y∗ generated by the adversary, and we know the trapdoor
td0 to pk0, then it is easy to check if y∗ is an image under Gpk0

and therefore represents a 0-
commitment. Unless y∗ belongs to the range of Gpk0

and, simultaneously, y∗ ⊕ σ belongs to the
range of Gpk1

, the encapsulated bit is unique and we can extract the correct value with td0. (We
stress, however, that this property will not be directly used in the proof. This is so since there the
crs has a different distribution, so a more sophisticated argument is needed.)

4.1.4 Security

To summarize, our commitment scheme supports equivocability and extraction. We are now ready
to prove that the protocol securely realizes functionality Fcom:

Theorem 7 Protocol UCCOneTime securely realizes functionality Fcom in the crs model.

Proof: We describe the ideal-model adversary S. This adversary runs an execution with the
environment Z and, in parallel, simulates a virtual copy of the real-life adversary A in a black-box
way. That is, S acts as an interface between A and Z by imitating a copy of a real execution of
π for A, incorporating Z’s ideal-model interactions and vice versa forwarding A’s messages to Z.
More precisely,

1. At the outset the simulator S prepares σ by selecting key pairs (pk0, td0)←KGen(1n) and
(pk1, td1)←KGen(1n) and setting σ = Gpk0

(r0) ⊕ Gpk1
(r1) for random r0, r1 ∈ {0, 1}n. We

call this a fake string σ with respect to preselected values pk0, pk1, Gpk0
(r0) and Gpk1

(r1).
Next, S starts the simulation of A and the execution with Z on the fake string σ and pk0, pk1.

2. If at some point in the execution the environment Z writes a message (Commit, sid, Pi, Pj , b)
on the tape of the uncorrupted party P̃i, and P̃i copies this to the functionality Fcom, then
the ideal-model simulator —who cannot read the actual bit, but is informed about the com-
mitment by receiving (Receipt, sid, Pi, Pj)— tells A that Pi has sent y = Gpk0

(r0) to Pj .

3. If at some point in the execution Z instructs an uncorrupted party P̃i to decommit and this
party has previously correctly committed to some secret bit b. Then the ideal-model adversary
S must have sent the value y = Gpk0

(r0) on behalf of Pi in the black-box simulation of A.
In the ideal model, S now learns b from P̃i via Fcom and opens y in the simulation of A
accordingly, using the equivocability property.

4. If the simulated adversary A lets some corrupted party Pi send (Com,sid,y∗) to an honest
party Pj then S verifies with the help of the trapdoor td0 whether y∗ is in the range of
Gpk0

(·) or not. If so, S sends a message (Commit, sid, Pi, Pj , 0) on behalf of the party to the
functionality; else S sends (Commit, sid, Pi, Pj , 1) to Fcom.

5. If A tells a corrupted party Pi to open a valid commitment y∗ correctly with bit b∗, then
S compares b∗ to the previously extracted bit and stops if they differ; otherwise S sends
(Open, sid, Pi, Pj) in the name of the party to Fcom. If Pi is supposed to decommit incorrectly,
then S also sends an incorrect opening to the functionality.
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6. Whenever the simulated A demands to corrupt a party, S corrupts this party in the ideal
model and learns all internal information of the party. Now S first adapts possible decommit-
ment information about a previously given but yet unopened commitment of this party, like
in the case of an honest party decommitting. After this, S gives all this adjusted information
to A.

In order to show that the environment’s output in the real-life model is indistinguishable from
its output in the ideal-process, we consider the following three random variables:2

Real/Genuine: The output of Z in a real-life execution with parties running the protocol and adver-
sary A. This amounts to choosing a uniformly distributed σ and random pk0, pk1 by running
KGen and publishing this as the public string; then run the protocol in the real-life model
with A and Z on this string.

Real/Fake: The output of Z from the following interaction. Choose a fake string σ together with
random pk0, pk1, like the simulator, involving preselected values Gpk0

(r0) and Gpk1
(r1). Run

the real-life protocol with A,Z on the fake string; if an honest party is supposed to commit to
a bit b let this party compute the commitment by using the preselected values: y = Gpk0

(r0)
if b = 0 and y = Gpk1

(r1) ⊕ σ for b = 1. If the honest party is later asked to decommit,
then the opening is done by sending b and the value rb. At the end of the execution, output
whatever Z returns.

Ideal/Fake: The output of Z in an execution in the ideal process with S and Fcom (on a fake public
string chosen by S).

Indistinguishability of Real/Genuine and Real/Fake. Let us presume, for sake of contradiction,
that Z tells apart the hybrids Real/Genuine and Real/Fake with non-negligible probability. From
this, we construct an algorithm deciding if an input is truly random or pseudorandom. Details
follow.

We are given the security parameter n, a random public key pk of a trapdoor pseudorandom
generator Gpk : {0, 1}n → {0, 1}4n together with a string z ∈ {0, 1}4n, either chosen at random or
produced by applying Gpk . We are supposed to predict in which way z has been generated.

To distinguish a random z and a pseudorandom z we use the environment Z distinguishing
Real/Genuine and Real/Fake. For this, we generate a string σ similar to the procedure of S, but
we deploy the given string z. Then we basically emulate a real-life execution simulating all honest
parties; in particular, we read all the incoming messages from Z. More specifically,

• generation of public string:

– pick a bit c at random and set pk1−c = pk for the given public key (the bit c is our guess
for the bit of an honest party committing)

– generate another key pair (pk c, td c)←KGen(1n)

– select rc ∈ {0, 1}n at random and set σ = Gpkc(rc)⊕ z

• emulation:

– simulate the real-life protocol with A,Z on σ, pk0, pk1

2Abusing notation, the same symbols will be typically used to refer to the output of Z from an experiment and
to the experiment itself.
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– if an uncorrupted party Pi is told by Z to commit to a bit b, then we stop immediately
with output 0 if b 6= c (i.e., our guess is wrong). In the case b = c we send Gpkc(rc) for
b = c = 0 and z for b = c = 1 in the name of Pi and continue the simulation; when Z
later instructs Pi to decommit, we transmit b(= c) and rc. Analogously, we present b, rc
to A if this party is corrupted before decommitting.

– if the adversary A corrupts the sender Pi before this party is giving the commitment,
then we stop with probability 1/2 (this provides symmetry to the first case and simplifies
the analysis); otherwise we go on with the real-life simulation.

• output:

– given that we have not stopped yet, simply copy Z’s output.

To analyze the advantage of our algorithm we start with the case that z is a uniformly distributed
4n-bit string. Then σ is also random and our prediction c is hidden information-theoretically from
A and Z at the outset of the execution. Therefore, the probability that we stop prematurely with
output 0 is 1/2, independent of the fact whether A plays the committer or lets an honest party
commit. Conditioning on that we enter the final output step, it is easy to see that Z’s output is
identically distributed to a sample of Real/Genuine.

Now let z be produced by sampling Gpk (·). In this case σ corresponds to a fake string. Also,
the public string does not reveal anything to A and Z about c. We conclude again that we stop
early with probability 1/2, regardless of who commits. Additionally, given that we reach the final
step, Z’s output is distributed like a sample from Real/Fake.

Hence, in both experiments Real/Genuine and Real/Fake we output 1 with half the probability
that Z returns 1. It follows that if Z’s advantage separating Real/Genuine and Real/Fake equals

ε(n) = |Prob [Z outputs 1 in experiment Real/Genuine]
− Prob [Z outputs 1 in experiment Real/Fake]| ,

then our advantage distinguishing pseudorandom from random inputs equals ε(n)/2. In particular,
if ε(n) is non-negligible, so is ε(n)/2, and this contradicts the pseudorandomness of the generator.

Indistinguishability of Real/Fake and Ideal/Fake. Obviously, given that A does not manage
to send some y∗ in the range of Gpk0

and to open this value later correctly with b∗ = 1, the two
experiments are identical. Thus, it suffices to bound the probability for such a mismatch. We show
that this probability is negligible because of the pseudorandomness of the generators.

Suppose that the probability in experiment Ideal/Fake that A commits for a corrupted party
to y∗ such that y∗ and y∗ ⊕ σ are images under Gpk0

and Gpk1
, respectively, is not negligible.

Construct the following algorithm: the input to the algorithm is n, a public key pk and a 4n-bit
string z, and the output is a bit indicating whether z is random or pseudorandom.

1. set pk1 = pk , generate another random key pair (pk0, td0) and define σ = Gpk0
(r0) ⊕ z for

random r0 ∈ {0, 1}n.

2. emulate the Ideal/Fake experiment with S,Z on σ, pk0, pk1; abort if an honest party is in-
structed to commit.

3. if A lets a corrupted party commit to y∗, check —with the help of td0— if y∗ is an image
under Gpk0

. If this corrupted party then also gives a correct opening of y∗ for b∗ = 1, then
stop and output 1.
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4. in any other case, return 0.

Observe that this algorithm merely returns 1 if the verification with td0 yields a preimage r∗0 under
Gpk0

and if the adversary also reveals r∗1 such that

Gpk0
(r∗0) = y∗ = Gpk1

(r∗1)⊕ σ = Gpk1
(r∗1)⊕Gpk0

(r0)⊕ z

But for random z the probability that

z ∈
{
Gpk0

(r0)⊕Gpk0
(r∗0)⊕Gpk1(r∗1)

∣∣ r0, r
∗
0, r
∗
1 ∈ {0, 1}

n}
is at most 2−n. Thus, in this case, our algorithm outputs 1 with exponentially small probability only.
On the other hand, if z is pseudorandom then our algorithm outputs 1 with the same probability as
the adversary A produces a mismatch in the experiment Ideal/Fake. By assumption, this probability
is non-negligible. Therefore, the overall advantage of our algorithm is non-negligible, too, refuting
the fact that the generator is pseudorandom. This concludes the proof. 2

4.2 Reusable Common Reference String: Erasing Parties

The drawback of the construction in the previous section is that a fresh part of the random string
must be reserved for each committed bit. In this section, we overcome this disadvantage under a
potentially stronger assumption, namely the existence of claw-free trapdoor permutation pairs. We
concentrate on a solution that only works for erasing parties in general, i.e., security is based on
the parties’ ability to irrevocably erase certain data as soon as they are supposed to. In the next
section we present a solution that does not require data erasure.

4.2.1 Preliminaries

Basically, a claw-free trapdoor permutation pair is a pair of trapdoor permutations with a common
range such that it is hard to find two elements that are preimages of the same element under the
two permutations. More formally, a key generation KGenclaw outputs a random public key pk claw

and a trapdoor td claw. The public key defines permutations f0,pk claw
, f1,pk claw

: {0, 1}n → {0, 1}n,
whereas the secret key describes the inverse functions f−1

0,pk claw
, f−1

1,pk claw
. It should be infeasible to

find a claw x0, x1 with f0,pk claw
(x0) = f1,pk claw

(x1) given only pk claw. For ease of notation we usually
omit the keys and write f0, f1, f

−1
0 , f−1

1 instead. Claw-free trapdoor permutation pairs exist for
example under the assumption that factoring is hard [gmri88]. For a more formal definition see
[g95].

We also utilize an encryption scheme E = (KGen,Enc,Dec) secure against adaptive-chosen
ciphertext attacks, i.e., in the notation of [bdpr98] the encryption system should be IND-CCA2.
On input 1n the key generation algorithm KGen returns a public key pkE and a secret key skE .
An encryption of a message m is given by c←EncpkE (m), and the decryption of a ciphertext c is
DecskE (c). It should always hold that DecskE (c) = m for c←EncpkE (m), i.e., the system supports
errorless decryption. Again, we abbreviate EncpkE (·) by Enc(·) and DecskE (·) by Dec(·). IND-
CCA2 encryption schemes exist for example under the assumption that trapdoor permutations exist
[ddn00]. A more efficient solution, based on the decisional Diffie-Hellman assumption, appears in
[cs98]. Both schemes have errorless decryption.
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Commitment scheme UCCReUse

public string:

pk claw — public key for claw-free trapdoor permutation pair f0, f1

pkE — public key for encryption algorithm Enc

commitment by party Pi to party Pj to b ∈ {0, 1} with identifier sid, cid:

compute y = fb(x) for random x ∈ {0, 1}n;
compute cb←Enc(x, Pi) with randomness rb;
compute c1−b←Enc(0n, Pi) with randomness r1−b;
erase r1−b;
send (Com, sid , cid , (y, c0, c1)), and record (sid , cid , b, x, rb).
Upon receiving (Com, sid , cid , (y, c0, c1)) from Pi, Pj outputs (Receipt, sid , cid , Pi, Pj)

decommitment for (Pi, Pj , sid , cid , b, x, rb):

Send (Dec, sid , cid , b, x, rb) to Pj .
Upon receiving (Dec, sid , cid , b, x, rb), Pj verifies that y ?= fb(x),

that cb is encryption of (x, Pi) under randomness rb
where Pi is the committer’s identity
and that cid has not been used with this committer before.
If the verification succeeds then Pj outputs (Open, sid , cid , Pi, Pj , b).

Figure 5: Commitment Scheme with Reusable Reference String

4.2.2 Description of the Commitment Scheme

The commitment scheme UCCReUse (for universally composable commitment with reusable reference
string) is displayed in Figure 5. The (reusable) public string contains random public keys pk claw

and pkE . For a commitment to a bit b the sender Pi obtains a value y by applying the trapdoor
permutation fb to a random x ∈ {0, 1}n, computes cb←EncpkE (x, Pi) and c1−b←EncpkE (0

n, Pi), and
sends the tuple (y, c0, c1) to the receiver. The sender is also instructed to erase the randomness
used for the encryption of (0n, Pi) before the commitment message is sent. This ciphertext is called
a dummy ciphertext.

To open the commitment, the committer Pi sends b, x and the randomness used for encrypting
(x, Pi). The receiver Pj verifies that y = fb(x), that the encryption randomness is consistent with
cb, and that cid was never used before in a commitment of Pi to Pj .

4.2.3 Basic Properties

We remark that including the sender’s identity in the encrypted strings plays an important role
in the analysis. Essentially, this precaution prevents a corrupted committer from “copying” a
commitment generated by an uncorrupted party.

The fact that the dummy ciphertext is never opened buys us equivocability. Say that the
ideal-model simulator knows the trapdoor of the claw-free permutation pair. Then it can compute
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the preimages x0, x1 of some y under both functions f0, f1 and send y as well as encryptions of
(x0, Pi) and (x1, Pi). To open it as 0 hand 0, x0 and the randomness for ciphertext (x0, Pi) to the
receiver and claim to have erased the randomness for the other encryption. For a 1-decommitment
send 1, x1, the randomness for the encryption of (x1, Pi) and deny to know the randomness for the
other ciphertext. If the encryption scheme is secure then it is intractable to distinguish dummy
encryptions from fake ones. Hence, this procedure is indistinguishable from the actual steps of the
honest parties.

Analogously to the extraction procedure for the commitment scheme in the previous section,
here an ideal-process adversary can also deduce the bit from an adversarial commitment (y∗, c∗0, c

∗
1)

if it knows the secret key of the encryption scheme. Specifically, decrypt c∗0 to obtain (x∗0, P
∗
i ); if

x∗0 maps to y∗ under f0 then let the guess be 0, else predict 1. This decision is only wrong if the
adversary has found a claw, which happens only with negligible probability.

4.2.4 Security

We are now ready to prove that protocol UCCReUse securely realizes functionality Fmcom:

Theorem 8 Protocol UCCReUse securely realizes functionality Fmcom in the crs model.

Proof: As in the proof of Theorem 7 we present an ideal-process adversary S simulating a virtual
copy of the real-life adversary A and relaying messages of A and the environment Z. The ideal-
process adversary is defined by the following actions:

1. the simulator S chooses keys (pk claw, td claw)←KGenclaw(1n) and (pkE , skE)←KGenE(1n), de-
fines the public string to be the pair pk claw, pkE , and simulates an execution of A with Z on
pk claw, pkE .

2. If during this execution the environment Z lets an uncorrupted party P̃i send a message
(Commit, sid, cid, Pi, Pj , b) to the functionality then the ideal-model simulator is informed
about the commitment but not the bit itself. The simulator picks a random x0 ∈ {0, 1}n, com-
putes y = f0(x0) and x1 = f−1

1 (y) as well as encryptions c0←Enc(x0, Pi) and c1←Enc(x1, Pi).
Tell A that party Pi has sent sid, cid, (y, c0, c1).

3. If an uncorrupted party P̃i is instructed by Z to open a commitment to some bit b, then
the ideal-model adversary learns b from Fmcom. Pretend in the simulation of A that the
previously sent (y, c0, c1) equals a b-commitment by sending b, xb and the randomness to
encrypt cb; claim that the randomness for the other encryption has been deleted.

4. If the simulated A lets some corrupted party Pi commit to an honest party Pj by sending
(Com, sid∗, cid∗, (y∗, c∗0, c

∗
1)), then S decrypts c∗0 with skE to (x∗, P ∗i ) and checks whether P ∗i =

Pi and if cid∗ has not been used in a commitment of Pi to Pj before; if either condition is
violated then ignore this message. Else, S sends a message (Commit, sid∗, cid∗, Pi, Pj , b) on
behalf of Pi to the functionality, where the bit b is determined as follows. If c∗0 was previously
used in a (simulated) commitment (y, c∗0, c1) or (y, c0, c

∗
0) of Pi when Pi was still uncorrupted,

then the bit b is set to the bit that this previous commitment was opened to (either by an
instruction of Z or upon corruption of Pi); otherwise, if f0(x∗) = y∗ then b = 0, else b = 1.

5. If A tells a corrupted party Pi to open a commitment (Com, sid∗, cid∗, (y∗, c∗0, c
∗
1)) correctly

with bit b∗, then S compares b∗ to the previously extracted bit for these IDs and aborts if the
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bits are different; in case of equality S sends (Open, sid, cid, Pi, Pj) in the name of the party
to Fmcom. If A lets Pi give an incorrect opening, then S can ignore this message because the
functionality does not open it.

6. Assume that A demands to corrupt a party in the black-box simulation. Then S gets all
internal information from this party by corrupting it in the ideal model. S modifies all
decommitment information about unopened commitments of this party to match the received
data and hands this modified internal information to A.

The proof that the Z’s output in the real-life is indistinguishable from its output in the ideal
process is in the line of the proof for Theorem 7. We investigate again three hybrid variables:

Real/Genuine: The output of Z of an interaction in the real-life model with adversary A and parties
running the protocol.

Real/Fake: The output of Z from the following hybrid interaction in the real-life model with ad-
versary A. The interaction is identical to Real/Genuine, except that honest parties use the
following way to commit to a bit b: instead of sending correct values (y, c0, c1) the honest
player now sends y = f0(x0) for random x0, cb←Enc(x0, Pi) and c1−b←Enc(x1, Pi) where
x1 = f−1

1 (y). (The randomness used for generating c1−b is erased.) The opening for this
commitment consists of b, xb and the randomness used to encrypt cb.

Ideal/Fake: The output of Z in an execution in the ideal process with S and Fmcom.

Suppose that the extreme hybrids Real/Genuine and Ideal/Fake are distinguishable. This means
either that the hybrids Real/Genuine and Real/Fake iare distinguishable or that the hybrids Real/Fake
and Ideal/Fake are distinguishable. We will show that this leads to a contradiction to the claw-
freeness or to the chosen ciphertext security of the encryption scheme.

Real/Genuine and Real/Fake are indistinguishable. Assume that the variables Real/Genuine
and Real/Fake are distinguishable. The only difference between the two executions is that honest
parties in Real/Fake send encryptions of claws instead of encryptions of 0n. But since the encryption
scheme is secure this difference should be negligible. We prove this rigorously.

We remark that our analysis uses an alternative (but equivalent) formalization of IND-CCA2
security. This formalization has been introduced by Bellare et al. [bdjr97] in the private-key
setting under the name left-or-right security against chosen ciphertext attacks, and has been shown
to be equivalent to IND-CCA2 in the public-key model in [bbm00]. Basically, security is defined
as follows: the adversary gets a public key pkE and is allowed to query adaptively a so-called left-
or-right encryption oracle for pairs of messages (m0,m1). This left-or-right oracle answers with
an encryption of mCB under EncpkE (·), where the secret challenge bit CB is randomly chosen at
the beginning but is fixed throughout the whole attack. The adversary is also given access to
the decryption oracle DecskE (·); as usual, the adversary is not allowed to query the decryption
oracle for ciphertexts obtained from the left-or-right encryption oracle. Finally, the adversary is
supposed to output a guess for CB. For such an LR-CCA2 scheme the prediction probability of
any polynomially-bounded adversary should not exceed 1/2 by a non-negligible amount.

Given environment Z that distinguishes between Real/Genuine and Real/Fake, we construct
a successful distinguisher for the LR-CCA2 property of the encryption scheme E ; in fact, this
distinguisher never queries the decryption oracle, so left-or-right security against chosen plaintext
attacks (CPA) [bbm00] suffices in this step.
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Distinguisher DCPA gets 1n and a random public key pkE obtained by running KGenE(1n) as
input. Let CB be the random bit that determines if the left-or-right encryption oracle returns
ciphertexts of the left (CB = 0) or the right (CB = 1) messages. DCPA tries to predict CB by
simulating a real-life execution:

1. DCPA picks (pk claw, td claw)←KGenclaw(1n)

2. DCPA imitates a real-life execution of A with Z on pk claw, pkE . In particular, DCPA plays all
honest parties and reads all the messages sent from Z to the other parties.

3. if an honest party Pi is told to commit to a bit b then DCPA —who knows b— selects
xb ∈ {0, 1}n at random, and computes y = fb(xb), x1−b = f−1

1−b(y) as well as cb←Enc(xb, Pi).
Then, DCPA gives the pair (0n, Pi), (x1−b, Pi) (in this order) to the left-or-right encryption
oracle. Denote the answer by c1−b. Send (y, c0, c1) on behalf of the honest party.

4. if the honest party is asked to decommit (or, similarly, is corrupted before decommitting)
then DCPA presents b, xb and the randomness for producing cb.

5. at the end, copy Z’s output

If the left-or-right oracle always encrypts the left message (0n, Pi) then DCPA simulates a real-
life execution with correctly behaving honest parties. We conclude that the probability that DCPA

outputs 1 in this case equals the probability that Z returns 1 in experiment Real/Genuine. Also,
if the oracle has encrypted all the right messages (x1−b, Pi) then DCPA simulates the experiment
Real/Fake and outputs 1 exactly if Z gives output 1 in this experiment. Hence,

Prob [DCPA outputs CB]
= Prob [CB = 1∧Z outputs 1] + Prob [CB = 0∧Z outputs 0]
= 1

2 · Prob [Z outputs 1 in experiment Real/Fake]
+1

2 · Prob [Z outputs 0 in experiment Real/Genuine]
= 1

2 · Prob [Z outputs 1 in experiment Real/Fake]
+1

2 · (1− Prob [Z outputs 1 in experiment Real/Genuine])
= 1

2 + 1
2 · (Prob [Z outputs 1 in experiment Real/Fake]

− Prob [Z outputs 1 in experiment Real/Genuine])

DCPA’s prediction probability is therefore bounded away from 1/2 by a non-negligible function,
contradicting the left-or-right property of the encryption scheme E .

Real/Fake and Ideal/Fake are indistinguishable. The only point in which the two experiments
could diverge is if during the simulation S hands Fmcom a value b in the name of some corrupted
party, and later this corrupted party manages to successfully decommit to b∗ 6= b. More precisely,
define the following bad event B: Event B occurs if during the run of S the following happens: (a)
The simulated A generates a commitment (Com, sid , cid , (y, c0, c1)) in the name of some corrupted
party Pi, (b) S hands Fmcom a value (Commit, sid , cid , b), and (c) The simulated A later generates
a valid opening of (Com, sid , cid , (y, c0, c1)) to a value b∗ 6= b. Then, as long as event B does not
occur the view of Z in experiment Real/Fake is identical to its view in Ideal/Fake. So it remains to
demonstrate that event B occurs with negligible probability.
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We would like to demonstrate that last statement via reduction to the security of the claw-
free pair (f0, f1). However, a direct reduction does not seem to work. We thus first show that if
event B occurs in Ideal/Fake with non-negligible probability, then this should also be true if we
replace the simulated commitments of honest parties in A’s simulation with commitments where
we correctly put a dummy ciphertext into the tuple instead of an encryption of (x1−b, Pi). Call
this new experiment Ideal/Genuine. That is, experiment Ideal/Genuine is identical to experiment
Ideal/Fake with the exception that in Ideal/Genuine the simulator S ‘magically knows’ the real
values committed to by the uncorrupted parties, and generates genuine commitments for these
values. We show that if the probability of event B in the two experiments differs by non-negligible
amount then it is possible to break the CCA security of the encryption scheme E .

Claim 9 The probability of event B in experiment Ideal/Fake differs from the probability of event
B in experiment Ideal/Genuine by at most a negligible amount.

Proof: We first observe that in order for event B to happen, the simulated adversary A must
generate a message (Com, sid , cid , (y, c0, c1)) such that c0 decrypts to (x0, Pi), c1 decrypts to (x1, Pi),
f0(x0) = f1(x1) = y, and cid was never used before for a commitment of Pi to Pj . If this event
occurs then we say that A has found a claw.

Assume towards contradiction that there exist an environment Z and adversary A such that the
probabilities that A finds a claw in the two interactions differ by a non-negligible amount. From
this we devise a distinguisher DCCA for E that works similarly to the distinguisher DCPA above,
but runs an adaptive chosen ciphertext attack against the left-or-right security. DCCA gets 1n and
a random public key pkE obtained by running KGenE(1n) as input, together with oracle access to a
left-or-right encryption oracle initialized with random bit CB, and to the decryption oracle Dec(·).

1. DCCA generates (pk claw, td claw)←KGenclaw(1n)

2. DCCA follows the pattern of a ideal-model execution of S with Z on keys pk claw, pkE ; DCCA

also executes a black-box simulation of A. In contrast to S, who cannot read Z’s messages
to honest parties, DCCA gets to know all messages.

3. Whenever an uncorrupted party Pi commits to a value b, DCCA does the following: first select
a random xb ∈ {0, 1}n and compute y = fb(xb), x1−b = f−1

1−b(y) and cb←Enc(xb, Pi). Next the
distinguisher queries the left-or-right encryption oracle about (x1−b, Pi) and (0n, Pi) in this
order and stores the answer in c1−b. Finally, DCCA sends (y, c0, c1) in the name of the honest
party.

4. If an uncorrupted party Pi is asked to decommit (or corrupted before opening) then DCCA

presents the corresponding values of b, xb and the randomness for cb.

5. If the simulated A lets some corrupted party Pi commit to an honest party Pj by sending
(Com, sid∗, cid∗, (y∗, c∗0, c

∗
1)), then DCCA proceeds as follows:

(a) If c∗0 has not been returned from the left-or-right encryption oracle of DCCA before,
then DCCA asks its decryption oracle to decrypt c∗0 and proceeds like the ideal-model
adversary S.

(b) Otherwise, if c∗0 has been returned from the left-or-right encryption oracle, then DCCA

has sent this value in a commitment (y, c∗0, c1) or (y, c0, c
∗
0) in the name of some honest

party. If this has been a different party than Pi then ignore the adversary’s message. Else
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(c∗0 appeared in a commitment of Pi before Pi was corrupted), recall the corresponding
bit from the previous commitment and proceed like the ideal-model adversary S.

6. If A tells a corrupted party to open a commitment (Com, sid∗, cid∗, (y∗, c∗0, c
∗
1)) correctly with

bit b∗, then DCCA compares b∗ to the previously extracted bit for sid∗, cid∗ and halts with
output 1 if they are distinct; Otherwise DCCA proceeds as the ideal-model adversary.

7. If A halts without finding a claw then output 0 and halt.

The analysis of DCCA is almost identical to the case of distinguisher DCPA above and is omitted.
This completes the proof of Claim 9. 2

It remains to prove that A finds claws in experiment Ideal/Genuine with negligible probability
only. But this follows from the claw-freeness of the trapdoor permutation pair. To be more
precise, given an environment Z and adversary A that find claws in Ideal/Genuine, we construct an
algorithm that finds claws in the claw-free pair: Given 1n and a random pk claw, generate (pkE , skE);
simulate the experiment Ideal/Genuine by reading Z’s commitment instructions to honest parties
and giving a correct commitment, involving a dummy encryption. For A committing in the black-
box simulation extract the bit using the secret key skE . If at some step A generates a claw by
outputting a preimage xb∗ under fb∗ for some y∗ for which we have extracted a preimage x1−b∗

under f1−b∗ before, then we output this pair and stop. If this event would occur with non-negligible
probability it would render the claw-freeness wrong. 2

Relaxing the need for claw-free pairs. The above scheme was presented and proven using
any claw-free pair of trapdoor permutations. However, it is easy to see that the claw-free pair
can be substituted by chameleon (aka. trapdoor) commitments a la [bcc88]. That is, any non-
interactive perfectly-secret trapdoor commitment works. Such commitments exist for instance
under the hardness of the discrete logarithm or factoring problem. Further relaxing the underlying
hardness assumptions is an interesting open problem..

4.3 Reusable Common Reference String: Non-Erasing Parties

A careful look at the proof of Theorem 8 shows that, instead of letting the sender generate a
ciphertext and erase the randomness, it is sufficient to enable the parties to obliviously generate
a “ciphertext-like” string without knowing the plaintext, but such that a simulator can produce
a correct ciphertext and a fake random string suggesting that the ciphertext has been obtained
by the oblivious sampling procedure. Then the honest parties can use the sampling mechanism to
produce the dummy ciphertext, while the simulator is still able to place the fake encryption into
the commitment and to find fake randomness making it look like a dummy ciphertext. We show
how this can be done under certain conditions, and show that these conditions can be met if the
encryption scheme in use is that of [cs98].

4.3.1 Preliminaries: Obliviously Samplable Encryption Scheme

We formalize the requirement for the oblivious sampling procedure of the encryption scheme in the
following definition:

Definition 10 A public-key encryption scheme E = (KGen,Enc,Dec) is obliviously samplable with
respect to chosen-plaintext attacks if there are probabilistic polynomial-time algorithms sample, fake
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such that for any probabilistic polynomial-time algorithm A the probability that ExperimentA(1n) =
1 is negligibly close to 1/2, where
ExperimentA(1n):

• a secret random bit CB ∈ {0, 1} is chosen

• generate a key pair (pk , sk)←KGen(1n)

• invoke A on pk to obtain a message m

• generate the challenge:

– if CB = 0 then sample a pseudo-ciphertext csample←sample(pk , 0|m|) (with randomness
rsample) and return (csample, rsample) to A. (Note: this case corresponds to the adversary’s
view when the committer is honest.)

– if CB = 1 then encrypt m to c←Enc(pk ,m), calculate rfake←fake(pk , c) and hand
(c, rfake) to A (Note: this case corresponds to the adversary’s view when the commit-
ter is played by the simulator.)

• output 1 if and only if A’s output equals CB

If the probability for ExperimentA(1n) = 1 remains negligibly close to 1/2 even if A is additionally
allowed to query the decryption oracle Dec(sk , ·) during the attack for any values different than the
challenge, then the scheme is called obliviously samplable with respect to chosen-ciphertext attacks.

In particular, it should hold that sample maps to c under randomness rfake for fake’s output
(c, rfake) with overwhelming probability, i.e., the fake output should look like an oblivious sample.
Note that the sample algorithm gets the length of m as additional input, since the length of a
message can be deduced from the ciphertext. Also note that an obliviously samplable encryption
scheme is semantically secure against the corresponding type of attack.

4.3.2 Example of Obliviously Samplable Encryption Scheme

In the Cramer-Shoup encryption scheme [cs98] the public key consists of a group G of prime order
q, two generators g1, g2 of G and three group elements c, d, h as well as a universal one-way hash
function H. To encrypt a message m ∈ G compute

u1 = gr1, u2 = gr2, e = hrm, α = H(u1, u2, e), v = crdr

and output the ciphertext (u1, u2, e, v).
Let us assume that p = qw + 1 for some w not divisible by q, and that G is a subgroup of

order q in Z∗p (and that w is public). Then in order to obliviously sample a random group element
in G we first generate a random element in Z∗p by picking a random bit string of length 2|p| and
interpreting it as a number between 1 and p − 1 by reduction modulo p of the bit string viewed
as an integer. Then we raise this element to the w-th power and return it. We remark that this
element is statistically close to a uniformly chosen one from G. We call this sampling process the
oblivious element generation for G.

The oblivious element generation for G is invertible in the sense that, given a random group
element h ∈ G we can efficiently generate a random element hp in Z∗p (and a corresponding bit
string of length 2|p|) mapping to h if raised to the w-th power. Namely, let g be a generator of
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Z∗p . Solve the equation xw = 1 mod q for x, pick a random integer i between 0 and w − 1 and
define the element hp := hxgiq mod p. Since the giq’s are w-th roots of unity, it is readily verified
that indeed hwp = h mod p and that hp is uniformly distributed among the preimages of h under
exponentiation with w. Adding for random j between 0 and p − 1 the value jp to hp over the
integers gives a 2|p|-bit string whose distribution is statistically close to the uniform distribution
on bit strings mapping to h with the oblivious element generation.

We describe our algorithms sample and fake. Algorithm sample on input pk , 0|m| simply generates
four random group elements u1, u2, e, v with independent executions of the element generation
procedure for G and returns them, together with all the randomness for these executions. Algorithm
fake, on the other side, given pk and a correct ciphertext c = (u1, u2, e, v), runs the inverse process
to the element generation for G as described above for each element and returns the derived bit
strings.

The fact that the outputs of sample and fake are indistinguishable under the Decisional Diffie-
Hellman assumption follows from the proof in [cs98]. This is true even if the adversary has access to
the decryption oracle. Altogether, the Cramer-Shoup scheme is obliviously samplable with respect
to chosen-ciphertext attacks.

4.3.3 Description and Security of Commitment Scheme

Besides being obliviously samplable with respect to adaptive chosen-ciphertext attacks, we again
presume that the encryption scheme E is uniquely decipherable. Modify the scheme UCCReUse

insofar as the sender does not compute the dummy ciphertext c1−b←Enc(0n, Pi) and then erases
the randomness, but rather samples c1−b←sample(pkE , 0`) (where ` denotes the length of (0n, Pi))
with randomness rsample obliviously. In the decommitment step or if corrupted, the sender reveals
rsample for this part of the commitment. Call this scheme UCCReUse/NotErase.

Theorem 11 Protocol UCCReUse/NotErase securely realizes functionality Fmcom in the crs model.

Proof: The proof of the theorem is almost identical to the one in the case of erasing parties. Only
this time the ideal-model simulator works slightly different when an uncorrupted party commits or is
corrupted or decommits. Namely, for a commitment the simulator in Theorem 8 sends encryptions
of (x0, Pi) and (x1, Pi) in the name of this party; after having learned the actual bit b in case of
corruption or decommitment, the simulator there then claims to have erased the randomness for
the wrong value x1−b. In our case, the simulator also encrypts both values in the commitment
phase, but in the reveal step it invokes algorithm fake on public key pkE and the ciphertext for the
wrong value x1−b to produce a fake random string. Besides the true randomness used to produce
the encryption of xb, the simulator hands the fake randomness to the adversary in order to prove
that the ciphertext for x1−b has been sampled obliviously.

In the proof of Theorem 8, the indistinguishability of the simulator’s way to commit and decom-
mit on behalf of honest parties and the behavior of the actual sender relies on the indistinguishability
of fake and dummy encryptions. Specifically, we have reduced indistinguishability of simulations
twice to the left-or-right security of the encryption system, one time in a chosen-plaintext attack and
the other time in a chosen-ciphertext attack. In these reductions the left-or-right oracle encrypts
either all left messages (0n, Pi) or all right messages (x1−b, Pi). Which messages are encrypted, the
left or right ones, corresponds to the behavior of honest parties or the simulator.

Except for the reductions to left-or-right security the proof of Theorem 8 remains unchanged.
In particular, the behavior of S in case that the committer is corrupted remains unchanged. The
simulation remains valid since the encryption scheme remains uniquely decipherable.
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To adapt the proof to the simulation here it is sufficient to extend the notion of left-or-right
security to obliviously samplable encryption schemes. Namely, the so-called sample-or-encrypt
oracle is initialized with a challenge bit CB and the adversary is given the public key pk and is
allowed to hand messages m to the oracle and either receives a sample (csample, rsample) if CB = 0 or
a ciphertext c of m with fake randomness rfake if CB = 1. The adversary is supposed to predict CB

with non-negligible advantage. If for any efficient adversary mounting a chosen-plaintext attack the
advantage predicting CB is negligible, then the scheme is called sample-or-encrypt secure against
chosen-plaintext attacks. If the adversary is also allowed to submit queries to the decryption oracle
—all different from the answers of the sample-or-encrypt oracle— then the scheme is said to be
sample-or-encrypt secure against chosen-ciphertext attacks.

In analogy to the proof in [bbm00] it follows that the encryption scheme is sample-or-encrypt
secure against chosen-plaintext attacks if the encryption system if obliviously samplable with respect
to chosen-plaintext attacks. Additionally, if the encryption scheme is obliviously samplable with
respect to chosen-ciphertext attacks, then the system is sample-or-encrypt secure against such
attacks.

Here, instead of passing (0n, Pi) and (x1−b, Pi) to the left-or-right oracle, we forward the message
(x1−b, Pi) to the sample-or-encrypt oracle to obtain either an oblivious sample csample and the
randomness rsample, or a ciphertext of the message (x1−b, Pi) together with a fake random string.
Denote the answer by (c1−b, r1−b) and let the simulator transmit c1−b as part of the commitment.
Later, in the decommitment phase or upon corruption, the simulator reveals r1−b on behalf of
the sender. As the choice of the sample-or-encrypt oracle determines whether we simulate honest
parties (if the oracle returns oblivious samples) or the simulator (if the oracle produces correct
ciphertexts and fake randomness), it is easy to see that the proof of Theorem 8 carries over to this
case. 2

5 Application to Zero-Knowledge

In order to exemplify the power of UC commitments we show how they can be used to construct
simple Zero-Knowledge (ZK) protocols with strong security properties. Specifically, we formulate
an ideal functionality, Fzk, that implies the notion of Zero-Knowledge in a very strong sense. (In
fact, Fzk implies concurrent and non-malleable Zero-Knowledge proofs of knowledge.) We then
show that in the Fcom-hybrid model (i.e., in a model with ideal access to Fcom) there is a 3-round
protocol that securely realizes Fzk with respect to any NP relation. Using the composition theorem
of [c01], we can replace Fcom with any uc commitment protocol. (This of course requires using
the crs model, unless we involve third parties in the interaction. Also, using functionality Fmcom

instead of Fcom is possible and results in a more efficient use of the common string.)
Functionality Fzk, described in Figure 6, is parameterized by a binary relation R(x,w).. It

first waits to receive a message (verifier, id, Pi, Pj , x) from some party Pi, interpreted as saying
that Pi wants Pj to prove to Pi that it knows a value w such that R(x,w) holds. Next, Fzk waits
for Pj to explicitly provide a value w, and notifies Pi whether R(x,w) holds. (Notice that the
adversary is notified whenever either the prover or the verifier starts an interaction. It is also
notified whether the verifier accepts. This represents the fact that ZK is not traditionally meant
to hide this information.)

We demonstrate a protocol for securely realizing FR
zk

with respect to any NP relation R. The
protocol is a known one: It consists of n parallel repetitions of the 3-round protocol of Blum for
graph Hamiltonicity, where the provers commitments are replaced by invocations of Fcom. The
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Functionality Fzk

Fzk proceeds as follows, running with parties P1, ..., Pn and an adversary S. The functionality is
parameterized by a binary relation R.

1. Wait to receive a value (verifier, id, Pi, Pj , x) from some party Pi. Once such a value is
received, send (verifier, id, Pi, Pj , x) to S, and ignore all subsequent (verifier...) values.

2. Upon receipt of a value (prover, id, Pj , Pi, x′, w) from Pj , let v = 1 if x = x′ and R(x,w)
holds, and v = 0 otherwise. Send (id, v) to Pi and S, and halt.

Figure 6: The Zero-Knowledge functionality, Fzk

protocol (in the Fcom-hybrid model) is presented in Figure 7.
It will be seen that the Fcom-hybrid model the protocol securely realizes Fzk without any

computational assumptions, and even if the adversary and the environment are computationally
unbounded. (Of course, in order to securely realize Fcom the adversary and environment must be
computationally bounded.) Also, in the Fcom-hybrid model there is no need in a common reference
string. That is, the crs model is needed only for realizing Fcom.

Let FH
zk

denote functionality Fzk parameterized by the Hamiltonicity relation H. (I.e.,
H(G, h) = 1 iff h is a Hamiltonian cycle in graph G.)

Theorem 12 Protocol hc securely realizes FH
zk

in the Fcom-hybrid model.

Proof (sketch): Let A be an adversary that operates against protocol hc in the Fcom-hybrid
model. We construct an ideal-process adversary (i.e., a simulator) S such that no environment Z
can tell whether it is interacting with A and hc in the Fcom-hybrid model or with S in the ideal
process for FH

zk
.

Simulator S runs a simulated copy of A. Messages received from Z are forwarded to the
simulated A, and messages sent by the simulated A to its environment are forwarded to Z. In
addition:

1. If A, controlling a corrupted party P , starts an interaction as a prover with an uncorrupted
party V , then S records the values that A sends to Fcom, plays the role of V (i.e., S provides
A with a random set of bits c1, ..., cn), and records A’s responses. Now S simulates V ’s
decision algorithm and if V accepts then S finds a Hamiltonian cycle h in G and hands g
to FH

zk
. Else S hands an invalid cycle h′ in G (say, the all-zero cycle) to FH

zk
. It remains to

describe how S finds a Hamiltonian cycle h in G. This is done as follows: S looks for a k such
that ck = 1 and the cycle h decommitted to by A, combined with the committed permutation
πk, point to a Hamiltonian cycle in G. If such a k is not found then S aborts; but, as claimed
below, this will occur only with probability 2−n/2.

2. If an uncorrupted party P starts an interaction with a corrupted party V then S learns from
FH

zk
whether V should accept or reject, and simulates the view of A accordingly. Notice that

S has no problem carrying out the simulation since it simulates for A an interaction with
Fcom where Fcom is played by S himself. Thus, S is not bound by the “commitments” and
can “open” them in whichever way it pleases.
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Protocol Hamilton-Cycle (hc)

1. Given input (Prover, id, P, V,G, h), where G is a graph over nodes 1, ..., n, the prover P
proceeds as follows. If h is not a Hamiltonian cycle in G, then P sends a message reject to
V . Otherwise, P proceeds as follows for k = 1, ..., n:

(a) Choose a random permutation πk over [n].

(b) Using Fcom, commit to the edges of the permuted graph. That is, for each (i, j) ∈ [n]2

send (Commit,(i, j, k), P, V, e) to Fcom, where e = 1 if there is an edge between πk(i)
and πk(j) in G, and e = 0 otherwise. (Here the value (i, j, k) serves as the session ID for
the commitment.)

(c) Using Fcom, commit to the permutation πk. That is, for l = 1, ..., L send
(Commit,(l, k), P, V, pl) to Fcom where p1, ..., pL is a representation of πk in some agreed
format.

2. Given input (Verifier, id, V, P,G), the verifier V waits to receive either reject from P ,
or (Receipt,(i, j, k), P, V ) and (Receipt,(l, k), P, V ) from Fcom, for i, j, k = 1, ..., n and
l = 1, ..., L. If reject is received, then V output 0 and halts. Otherwise, once all the
(Receipt,...) messages are received V randomly chooses n bits c1, ..., cn and sends to P .

3. Upon receiving c1, ..., cn from V , P proceeds as follows for k = 1, ..., n:

(a) If ck = 0 then send (Open,(i, j, k), P, V ) and (Open,(l, k), P, V ) to Fcom for all i, j =
1, ..., n and l = 1, ..., L.

(b) If ck = 1 then send (Open,(i, j, k), P, V ) to Fcom for all i, j = 1, ..., n such that the edge
πk(i), πk(j) is in the cycle h.

4. Upon receiving the appropriate (Open,...) messages from Fcom, the verifier V verifies that
for all k such that ck = 0 the opened edges agree with the input graph G and the opened
permutation πk, and for all k such that ck = 1 the opened edges are all 1 and form a cycle. If
verification succeeds then output 1, otherwise output 0.

Figure 7: The protocol for proving Hamiltonicity in the Fcom-hybrid model

3. If two uncorrupted parties P and V interact then S simulates for A the appropriate protocol
messages. This case is very similar to the case of corrupted verifier, since this is an Arthur-
Merlin protocol.

4. Party corruptions are dealt with in a straightforward way. Corrupting the verifier provides
the adversary with no extra information (again, since the protocol is Arthur-Merlin). When
the prover is corrupted S corrupts the prover in the ideal process, obtains w, and generates
an internal state of the prover that matches the protocol stage and whether R(x,w) holds.
Generating such a state is not problematic since S is not bound by any “commitments”,
and it can freely choose π1, ...πk to match the (simulated) conversation up to the point of
corruption.

Given that S does not abort in Step 1, the validity of the simulation is straightforward. We show
that S aborts with probability at most 2−n/2. Say that index k ∈ [n] is valid if applying the kth
committed permutation to the input graph G results in the kth committed graph. If less than n/2
of the indices are valid then V accepts with probability at most 2−n/2. However, if at least n/2 of
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the indices are valid then with probability at least 1 − 2−n/2 V has ck = 1 for at least one valid
index k. In this case, S will not fail since V accepts only if the decommitted cycle h, together with
the permutation πk, points to a Hamiltonian cycle in G. 2

Remark: Notice that Theorem 12 holds even if the environment and the real-life adversary are
allowed to be computationally unbounded. In this case, the complexity of S is polynomial in the
complexity of A (and is independent of the complexity of Z). This means that the only place where
cryptographic assumptions are needed is in realizing Fcom.
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