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1 Introduction

We introduce a new class of computational problems which we call the “one-more-RSA-inversion”
problems. We then use problems from this class as a basis to prove security of Chaum’s RSA-
based blind signature scheme [12]. We begin with a high-level description of our approach and its
motivation.

Example. Blind signature schemes are the central cryptographic component of digital-cash schemes,
used to enable a Withdrawer to obtain a Bank’s signature on some token without revealing this
token to the bank, thereby creating a valid but anonymous e-coin. Chaum’s RSA-based blind sig-
nature scheme [12] is simple and practical, and (assuming the underlying hash function is properly
chosen) has so far resisted attacks. Yet there seems little hope of proving its security based on the
“standard” one-wayness assumption about the RSA function: the security of the scheme seems to
rely on different, and perhaps stronger, properties of RSA.

The gap between proofs and practice. The above is a common situation in cryptography.
It exhibits a gap created by the computational assumptions we prefer to make and the schemes we
want to use.

The reliance on unproven computational properties of RSA for security naturally inclines us
to be conservative and to stick to standard assumptions, of which the favorite is that RSA is one-
way. Designers who have worked with RSA know, however, that it seems to have many additional
strengths. These are typically exploited, implicitly rather than explicitly, in their designs. The
resulting schemes might well resist attack but are dubbed “heuristic” because no proof of security
based on the standard assumption seems likely. This leads designers to seek alternative schemes
that can be proven secure under the standard assumptions. If the alternatives have cost comparable
to that of the original scheme then they are indeed attractive replacements for the latter. But often
they are more expensive. Meanwhile, the use of the original practical scheme is being discouraged
even though it might very well be secure.

Making new assumptions. We suggest that practical RSA-based schemes that have resisted
attack (for example, Chaum’s RSA-based blind signature scheme) might be manifestations of
strengths of the RSA function that have not so far been properly abstracted or formalized. We
suggest that one should build on the intuition of designers and formulate explicit computational
problems that capture the above-mentioned strengths and suffice to prove the security of the scheme.
These problems can then be studied, to see how they relate to other problems and to what extent
we can believe in them as assumptions. This process will lead to a better understanding of the
security of schemes. It will also highlight computational problems that might then be recognized
as being at the core of other schemes, and enlarge the set of assumptions we might be willing to
make, leading to benefits in the design or analysis of other schemes.

This paper. In this paper, we formalize a class of computational problems which we call one-more-
RSA-inversion problems. They are natural extensions of the RSA-inversion problem underlying
the notion of one-wayness to a setting where the adversary has access to a decryption oracle. We
study several specific problems in this class and the relations between them, and then show how the
assumed hardness of some of these problems leads to a proof of security of Chaum’s blind signature
scheme in the random oracle model [7].

The one-more-RSA-inversion problems. Recall that associated to a modulus N and an
encryption exponent e are the RSA function and its RSA-inverse defined by

RSAN,e(x) = xe mod N and RSA−1
N,e(y) = yd mod N
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where x, y ∈ Z∗
N and d is the decryption exponent. To invert RSA at a point y ∈ Z∗

N means to
compute x = RSA−1

N,e(y). The commonly made and believed assumption that the RSA function is
one-way says that the following problem is (computationally) hard: Given N, e and a random target
point y ∈ Z∗

N , compute yd mod N . In this paper we are interested in settings where the legitimate
user (and hence the adversary) has access to an oracle RSA−1

N,e(·) for the inverse RSA function. (The
adversary can provide a value y ∈ Z∗

N to its oracle and get back x = RSA−1
N,e(y) = yd mod N , but

it is not directly given d.) A security property apparently possessed by RSA is that an adversary
can only make “trivial” use of this oracle. We capture this in the following way. The adversary is
given some random target points y1, . . . , yn ∈ Z∗

N , and we say it wins if the number of these points
whose RSA-inverse it manages to compute exceeds the number of calls it makes to its oracle. That
is, it computes “one more RSA-inverse.”

Within this framework we consider two specific problems. In the known-target inversion prob-
lem, the adversary, to win, must output the inverses of all target points, using a number of de-
cryption oracle queries that is one fewer than the number of target points. In the chosen-target
inversion problem, the adversary does not have to compute the RSA-inverses of all target points
but instead can choose to invert any number of them that it likes, and wins as long as the number
of decryption oracle queries that it makes is strictly fewer than the number of target points it
correctly inverts.

Note that the special case of the known-target inversion problem in which there is just one
target point is exactly the problem underlying the notion of one-wayness. In this sense, we consider
security against known-target inversion to be a natural extension of one-wayness to a setting where
the adversary has access to an RSA-inversion oracle.

The formal definitions of the problems provided in Section 2 are parameterized via the number
of target points, and, for the chosen-target inversion problem, also the number of these that the
adversary inverts. These parameterized formulations are more convenient for the proof of our main
result. An alternative, un-parameterized formulation that seems more convenient for applications
is provided and proved equivalent to the original formulation in Section 5.

As noted in Remark 2.5, these problems can be hard only if factoring does not reduce to RSA
inversion. Some evidence that the latter is true is provided by Boneh and Venkatesan [11].

Relations among one-more-RSA-inversion problems. It is easy to see that if the chosen-
target inversion problem is hard then so is the known-target inversion problem. However, it is
conceivable that the ability to choose the target points might help the adversary considerably. Our
main result is that this is not so. Corollary 4.2 says that the chosen-target inversion problem is
hard if and only if the known-target inversion problem is hard. We prove this by showing how,
given any polynomial-time adversary B that solves the known-target inversion problem, we can
design a polynomial-time adversary A that solves the chosen-target inversion problem with about
the same probability. The reduction exploits linear algebraic techniques which in this setting are
complicated by the fact that the order φ(N) of the group over which we must work is not known
to the adversary.

Security of Chaum’s RSA-based blind signature scheme. In Chaum’s RSA-based blind
signature scheme, the signer’s public key is N, e, and its secret key is N, d where these quantities
are as in the RSA system. The signature of a message M is

x = RSA−1
N,e(H(M)) = H(M)d mod N (1)

where H: {0, 1}∗ → Z∗
N is a public hash function. A message-tag pair (M,x) is said to be valid

if x is as in Equation (1). The blind signature protocol enables a user to obtain the signature
of a message M without revealing M to the signer, as follows. The user picks r at random in
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Z∗
N , computes M = re · H(M) mod N , and sends M to the signer. The latter computes x =

RSA−1
N,e(M) = M

d mod N and returns x to the user, who extracts the signature x = x · r−1 mod N
of M from it. Two properties are desired, blindness and unforgeability. Blindness means the signer
does not learn anything about M from the protocol that it did not know before, and it is easy
to show that this is unconditionally true [12]. Unforgeability in this context is captured via the
notion of one-more-forgery of Pointcheval and Stern [27, 28]. (The standard notion of [18] does
not apply to blind signatures.) The forger can engage in interactions with the signer in which it
might not follow the prescribed protocol for the user. (As discussed further in Section 6 there are,
in general, a variety of attack models for these interactions [27, 28, 20, 25], but in the case of the
RSA blind signature protocol, all are equivalent.) Nothing prevents it from coming up with one
valid message-tag pair per protocol execution (to do this, it just has to follow the user protocol)
but we want it to be hard to come up with more. We ask that the number of valid message-tag
pairs that a forger can produce does not exceed the number of executions of the blind-signature
protocol in which it engages with the signer.

It is the unforgeability property that has been the open question about the RSA-based blind
signature scheme. Michels, Stadler and Sun [24] show that one can successfully obtain one-more
forgery if the hash function is poorly implemented. Here, we will assume that the hash function
is a random oracle. (The forger and signer both get an oracle for H.) In that case, the signature
scheme is the FDH scheme of [8]. This scheme is proven to meet the standard security notion for
digital signatures of [18] in the random oracle model assuming that RSA is one-way [8, 13], but
this result will not help us here. To date, no attacks against the one-more-forgery goal are known
on the blind FDH-RSA signature scheme. We would like to support this evidence of security with
proofs.

When the forger interacts with a signer in Chaum’s blind signature protocol detailed above, the
former effectively has access to an RSA-inversion oracle: it can provide the signer any M ∈ Z∗

N and
get back M

d mod N . It is the presence of this oracle that makes it unlikely that the one-wayness of
RSA alone suffices to guarantee unforgeability. However, the one-more-RSA-decryption problems
were defined precisely to capture settings where the adversary has an RSA-inversion oracle, and we
will be able to base the security of the signature scheme on hardness assumptions about them.

In Lemma 6.4, we provide a reduction of the security against one-more-forgery of the FDH-
RSA blind signature scheme, in the random oracle model, to the security of the RSA chosen-target
inversion problem. Appealing to Corollary 4.2 we then get a proof of unforgeability for the blind
FDH-RSA scheme, in the random oracle model, under the assumption that the RSA known-target
inversion problem is hard. These results simplify the security considerations of the blind FDH-RSA
scheme by eliminating the hash function and signature issues from the picture, leaving us natural
problems about RSA to study.

Discussion. An obvious criticism of our results is that the proof of security of the blind FDH-
RSA signature scheme is under a novel and extremely strong assumption which is not only hard to
validate but crafted to have the properties necessary to prove the security of the signature scheme.
This is true, and we warn that the assumptions should be treated with caution. But we suggest
that our approach and results have pragmatic value. Certainly, one could leave the blind RSA
signature scheme unanalyzed until someone proves security based on the one-wayness of RSA, but
this is likely to be a long wait. Meanwhile, we would like to use the scheme and the practical thing
to do is to understand the basis of its security as best we can. Our results isolate clear and simply
stated properties of the RSA function that underlie the security of the blind signature scheme and
make the task of the security analyst easier by freeing him or her from consideration of properties
of signatures and hash functions. It is better to know exactly what we are assuming, even if this is
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very strong, than to know nothing at all.

One-more-discrete-logarithm problems. The analogues of the one-more-RSA-inversion prob-
lems can be formulated for any family of one-way permutations. Section 7 provides formulations
of the one-more-discrete-log problems that underly the discrete exponentiation one-way permuta-
tion in appropriate groups, and proves that the known-target inversion and chosen-target inversion
problems have polynomially-equivalent computational complexity. This proof is actually easier
than the one for RSA because in the discrete log case the order of the group is public information.

Other RSA-related assumptions. Other non-standard RSA-related computational problems
whose study has been fruitful include: strong-RSA, introduced in [16, 3] and used effectively in
[17, 14]; dependent-RSA [26]; and an additive RSA related problem from [21]. For more information
about RSA properties and attacks see [10].

Relation to preliminary version of this paper. A preliminary version of this paper appeared
as [4]. The version you are reading contains the following extensions or additions: Corollary 4.2
(and hence Corollary 6.3) in the preliminary version of this paper had made the assumption that
the RSA encryption exponent is a prime number, an assumption removed in this paper; the alter-
native formulations of the one-more-inversion problems in Section 5 are new; this paper provides
the definitions and proofs about one-more-discrete-logarithm problems that were claimed in the
preliminary version.

Subsequent work. Since the one-more-inversion problems were introduced in the preliminary
version of this paper [4], they have found numerous other uses:
• Bellare and Palacio [6] prove that the GQ identification scheme [19] is secure against imperson-

ation under active (and concurrent) attack under the assumption that the RSA known-target
inversion problem is hard, and that Schnorr’s identification scheme [30] is secure against im-
personation under active (and concurrent) attack assuming that the known-target one-more-
discrete-logarithm problem is hard. In both cases, they are answering quite long-standing open
questions.

• Assuming hardness of the RSA known-target inversion problem, Bellare and Neven [5] prove
the security of an RSA based transitive signature scheme suggested by Micali and Rivest [23].

• These problems have been used to prove security of some practical two-party RSA-based sig-
nature protocols [9].

2 The One-More-RSA-Inversion Problems

Throughout this paper, k ∈ N denotes the security parameter. An RSA key generator is a (ran-
domized) poly(k)-time algorithm KeyGen that on input k returns a triple (N, e, d) where: the
modulus N is a product of two, distinct odd primes p, q and satisfies 2k−1 ≤ N < 2k; the encryp-
tion exponent e and decryption exponent d are elements of Z∗

ϕ(N) satisfying ed ≡ 1 (mod N) where
ϕ(N) = (p− 1)(q − 1). We say that KeyGen is a prime-exponent RSA key generator if e is always
a prime number.

In this paper, we do not pin down any particular choice of key generator, but rather formulate
computational problems in which the key generator is a parameter. For this purpose, we now fix
an RSA key generator KeyGen that will be referred to throughout. (There are numerous different
possible RSA key generators, which might differ in the distribution or structure of the primes p, q
chosen, or the values of the encryption exponent. For example, one might want to use e = 3, in
which case p, q would be chosen such that neither p−1 nor q−1 is a multiple of 3. Another common
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choice is that both p and q are random primes of approximately equal length, and e is chosen at
random from Z∗

ϕ(N).)
In this section we define the parameterized versions of the known-target and chosen-target RSA

inversion problems. The alternative formulations are presented in Section 5.
Our definitional paradigm is to associate to any given adversary an advantage function which

on input the security parameter k returns the probability that an associated experiment returns 1.
The problem is hard if the advantage of any adversary of time-complexity poly(k) is negligible, and
is easy if it is not hard.

2.1 Definitions of the problems

As an introduction to the notions we introduce, it is useful to recall the standard notion, couching
it in a way more suitable for comparison with the new notions.

Definition 2.1 (Single-Target Inversion Problem: RSA-STI) Let k ∈ N be the security pa-
rameter. Let A be an adversary. Consider the following experiment:

Experiment Exprsa-sti
A (k)

(N, e, d) R← KeyGen(k)
y

R← Z∗
N ; x← A(N, e, k, y)

If xe ≡ y (mod N) then return 1 else return 0

We define the advantage of A via

Advrsa-sti
A (k) = Pr[Exprsa-sti

A (k) = 1 ] .

The RSA-STI problem is said to be hard —in more standard terminology, RSA is said to be
one-way— if the function Advrsa-kti

A,m (·) is negligible for any adversary A whose time-complexity is
polynomial in the security parameter k.

We now proceed to define the known-target inversion problem. We denote by (·)d mod N the
oracle that takes input y ∈ Z∗

N and returns its RSA-inverse yd. An adversary solving the known-
target inversion problem is given oracle access to (·)d mod N and is given m(k) + 1 targets where
m : N → N. Its task is to compute the RSA-inverses of all the targets while submitting at most
m(k) queries to the oracle.

Definition 2.2 (Known-Target Inversion Problem: RSA-KTI[m]) Let k ∈ N be the security
parameter, and let m : N → N be a function of k. Let A be an adversary with access to an
RSA-inversion oracle (·)d mod N . Consider the following experiment:

Experiment Exprsa-kti
A,m (k)

(N, e, d) R← KeyGen(k)
For i = 1 to m(k) + 1 do yi

R← Z∗
N

(x1, . . . , xm(k)+1)← A(·)d mod N (N, e, k, y1, . . . , ym(k)+1)
If the following are both true then return 1 else return 0

– ∀i ∈ {1, . . . ,m(k) + 1} : xe
i ≡ yi (mod N)

– A made at most m(k) oracle queries
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We define the advantage of A via

Advrsa-kti
A,m (k) = Pr[Exprsa-kti

A,m (k) = 1 ] .

The RSA-KTI[m] problem is said to be hard if the function Advrsa-kti
A,m (·) is negligible for any

adversary A whose time-complexity is polynomial in the security parameter k. The RSA-KTI is
said to be hard if RSA-KTI[m] is hard for all polynomially-bounded m(·).

Notice that RSA-KTI[0] is the same as RSA-STI. That is, the standard assumption that RSA is
one-way is exactly the same as the assumption that RSA-KTI[0] is hard.

We proceed to the chosen-target inversion problem. An adversary solving this problem is given
access to an RSA-inversion oracle as above, and n(k) target points, where n : N → N. Its task is
to compute the RSA-inverses of m(k) + 1 of the given targets, where m : N→ N and m(k) < n(k),
while submitting at most m(k) queries to the oracle. The adversary indicates which m(k) + 1
points, out of the n(k) target points, it has chosen to invert, by outputting an injective map π as
specified below. We assume that the adversary outputs this map in a canonical format such as a
list of values (π(1), π(2), . . .).

Definition 2.3 (Chosen-Target Inversion Problem: RSA-CTI[n, m]) Let k ∈ N be the se-
curity parameter, and let m,n : N → N be functions of k such that m(·) < n(·). Let B be an
adversary with access to an RSA-inversion oracle (·)d mod N . Consider the following experiment:

Experiment Exprsa-cti
B,n,m(k)

(N, e, d) R← KeyGen(k)
For i = 1 to n(k) do yi

R← Z∗
N

(π, x1, . . . , xm(k)+1)← B(·)d mod N (N, e, k, y1, . . . , yn(k))
If the following are all true then return 1 else return 0

– π : {1, . . . ,m(k) + 1} → {1, . . . , n(k)} is injective
– ∀i ∈ {1, . . . ,m(k) + 1} : xe

i ≡ yπ(i) (mod N)
– A made at most m(k) oracle queries

We define the advantage of B via

Advrsa-cti
B,n,m(k) = Pr[Exprsa-cti

B,n,m(k) = 1 ] .

The RSA-CTI[n, m] problem is said to be hard if the function Advrsa-cti
B,n,m(·) is negligible for any

adversary B whose time complexity is polynomial in the security parameter k. The RSA-CTI
problem is said to be hard if RSA-CTI[n, m] is hard for all polynomially-bounded n(·) and m(·)
where m(·) < n(·).

2.2 Simple relations among the problems

We note a few simple relations before going to the main result.

Remark 2.4 Let n, m: N → N be polynomially-bounded functions of the security parameter k
such that m(·) < n(·). If the RSA-CTI[n, m] problem is hard then so is the RSA-KTI[m] problem.
This is justified as follows: given an adversary A for RSA-KTI[m], we let B be the adversary for
RSA-CTI[n, m] that runs A on input the first m(k) + 1 of B’s target points and returns the values
returned by A, together with the map π defined by π(i) = i for i = 1, . . . ,m(k) + 1. Then B’s
advantage is the same as A’s.
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Remark 2.5 If factoring reduces to RSA inversion then there exists a polynomially-bounded func-
tion m: N → N such that RSA-KTI[m] is easy. (So the assumption that either the known-target
or chosen-target inversion problems is hard is at least as strong as the assumption that factoring
does not reduce to RSA inversion.) Let us briefly justify this. Assume that factoring reduces to
RSA inversion. This means there is a polynomial-time algorithm R such that the probability that
the following experiment returns 1 is non-negligible:

(N, e, d) R← KeyGen(k)
p← R(·)d mod N (N, e, k)
If p 6= 1 and p 6= N and p divides N then return 1 else return 0.

Let m: N → N be a polynomially-bounded, polynomial-time computable function such that the
number of oracle queries made by R is strictly less than m(k) whenever the security parameter is
k in the experiment above. We define adversary A as follows:

Adversary A(·)d mod N (N, e, k, y1, . . . , ym(k)+1)
p← R(·)d mod N (N, e, k)
Compute d from p and N/p
Compute and return yd

1 , . . . , yd
m(k)+1 mod N

The adversary A runs the algorithm R, answering to its inversion queries with the answers from
its own oracle. It uses the fact that possession of the prime factors of N enables computation of
the decryption exponent d, and having computed d, it can of course compute the RSA-inversions
of as many points as it pleases.

We will now present some technical lemmas, and then proceed to the proof of Theorem 4.1. The
reader might prefer to begin with Section 4 and refer to Section 3 as needed.

3 Technical Lemmas

Below, if s ≥ 1 is an integer then Is denotes the s by s identity matrix.

Lemma 3.1 Let s ≥ 1 be an integer, and let

C =

 c1,1 · · · c1,s
...

...
cs,1 · · · cs,s

 and D =

 d1,1 · · · d1,s
...

...
ds,1 · · · ds,s


be integer matrices such that C ·D = det(C) · Is. Suppose N, e is an RSA public key and N, d is
the corresponding secret key. Suppose yi, yi, vi ∈ Z∗

N for i = 1, . . . , s are related via

yi ≡ v−e
i ·

s∏
j=1

y
cj,i

j (mod N) . (2)

Let xi = yd
i mod N for i = 1, . . . , s. Then, for j = 1, . . . , s, we have

(yd
j )det(C) ≡

s∏
i=1

(vi · xi)di,j (mod N) . (3)

Proof of Lemma 3.1: Let δl,j = 1 if l = j and 0 otherwise. Since C ·D = det(C) · Is we know
that

s∑
i=1

cl,idi,j = det(C) · δl,j (4)
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for all l, j = 1, . . . , s. We now verify Equation (3). Suppose 1 ≤ j ≤ s. In the following, computa-
tions are all mod N . From Equation (2), we have

s∏
i=1

(vi · xi)di,j =
s∏

i=1

vi ·

(
v−e
i ·

s∏
l=1

y
cl,i

l

)d
di,j

=
s∏

i=1

[
vi · v−1

i ·
s∏

l=1

(yd
l )cl,i

]di,j

.

Simplifying the last expression, we obtain
s∏

i=1

s∏
l=1

(yd
l )cl,idi,j =

s∏
l=1

s∏
i=1

(yd
l )cl,idi,j =

s∏
l=1

(yd
l )

∑s
i=1 cl,idi,j =

s∏
l=1

(yd
l )det(C)·δl,j

where the last equality is by Equation (4). Finally, we use the fact that δl,j = 1 if l = j and 0
otherwise. This tells us that the above is (yd

j )det(C) as desired.

Lemma 3.2 Let N, e be an RSA public key and N, d the corresponding secret key. Let α ∈ N and
y, z ∈ Z∗

N . If gcd(α, e) = 1 and (yd)α ≡ z (mod N) then (zayb)e ≡ y (mod N) where a, b are the
unique integers such that aα + be = 1.

Proof of Lemma 3.2: This is a standard calculation:

(zayb)e = (ydα)aeybe = yαa+be = y1 = y

where the computations are all mod N .

Next, we consider a question in probabilistic linear algebra. Let q ≥ 2 and s ≥ 1 be integers.
Let GLP(s, q) denote the probability that gcd(det(M), q) = 1 when M is an s by s matrix formed
by choosing all entries uniformly and independently from Zq. Then we have the following lower
bounds:

Lemma 3.3 Let q ≥ 2 and s ≥ 1 be integers, and assume q ≤ 2k. Then,

GLP(s, q) ≥ 1
2862

· 1
ln(k)2

. (5)

Furthermore, if q is prime, the following better lower bound holds:

GLP(s, q) ≥ 1− 1
q
− 1

q2
. (6)

The proof of the above lemma is in Appendix A.

4 The Equivalence Result

We provide a converse to the claim of Remark 2.4.

Theorem 4.1 Let n, m: N→ N be polynomially-bounded functions satisfying m(·) < n(·). Then
for any adversary B, there exists an adversary A so that

Advrsa-cti
B,n,m(k) ≤ O(ln(k)2) ·Advrsa-kti

A,m (k) , (7)

and A has time-complexity

TA(k) = TB(k) + O
(
k3n(k)m(k) + k4m(k) + k2m(k)5 + km(k)6

)
(8)

where TB(·) is the time-complexity of B. Furthermore, if KeyGen is a prime-exponent key generator
then Equation (7) can be improved to

Advrsa-cti
B,n,m(k) ≤ 9

5
·Advrsa-kti

A,m (k) . (9)
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Algorithm A(·)d mod N (N, e, k, y1, . . . , ym(k)+1)
1 q ← e ; s← m(k) + 1
2 For i = 1, . . . , n(k) do
3 v[i] R← Z∗

N

4 For j = 1, . . . , s do c[j, i] R← Zq

5 yi ← v[i]−e
∏s

j=1 y
c[j,i]
j mod N

6 (π, x1, . . . , xs)← B(·)d mod N (N, e, k, y1, . . . , yn(k))
7 For j = 1, . . . , s do

vj ← v[π(j)]
For l = 1, . . . , s do cj,l ← c[j, π(l)]

8 C ←

 c1,1 . . . c1,s
...

...
cs,1 . . . cs,s


9 α← det(C)
10 If α = 0 then abort
11 Compute a matrix

D =

 d1,1 . . . d1,s
...

...
ds,1 . . . ds,s


with integer entries such that C ·D = det(C) · Is

12 For j = 1, . . . , s do
13 zj ←

∏s
i=1(vi · xi)di,j mod N

14 If gcd(α, e) 6= 1 then abort
15 Compute a, b ∈ Z such that aα + be = 1 via extended Euclid algorithm
16 For j = 1, . . . , s do
17 xj ← za

j · yb
j mod N

18 Return x1, . . . , xs

Figure 1: Adversary A of the proof of Theorem 4.1.

In this theorem, the time-complexity of the adversary refers to the function which on input k returns
the execution time of the full associated experiment including the time taken to compute answers
to oracle calls, plus the size of the code of the adversary, in some fixed model of computation. This
convention simplifies the concrete security considerations in the theorem.

A simple consequence of Theorem 4.1 and Remark 2.4 is the following equivalence, which is our
main result:

Corollary 4.2 Let n, m: N→ N be polynomially-bounded functions satisfying m(·) < n(·). Then
the RSA-KTI[m] problem is hard if and only if the RSA-CTI[n, m] problem is hard.

Now we present the proof of Theorem 4.1.

Proof of Theorem 4.1: The adversary A is depicted in Figure 1. Its input is (N, e, k and)
s = m(k) + 1 target points y1, . . . , ys. Its goal is to compute yd

1 , . . . , y
d
s mod N .

10



Adversary A will begin by computing n(k) points y1, . . . , yn(k) as a (randomized) function of the
given points y1, . . . , ys. The property we want these to have is that, given the RSA-inverses of
any s of the points y1, . . . , yn(k), it is possible to extract in polynomial time the RSA-inverses of
the original target points, at least with high probability. If such a “reversible embedding” can be
implemented then A’s work is complete since invoking B on the points y1, . . . , yn(k) will cause the
RSA-inverses of some s of these points to be returned. The question is, thus, how to compute and
later reverse this “reversible embedding.”

Lines 2–5 of Figure 1 show how to compute it. For each j, the point yj is created by first raising
each of y1, . . . , ys to a random power and then multiplying the obtained quantities. (This product
is then multiplied by a random group element of which A knows the RSA-inverse in order to make
sure that y1, . . . , yn(k) are uniformly and independently distributed and thus are appropriate to
feed to B.) A detail worth remarking here is the choice of the range from which the exponents
c[j, i] are chosen. This is Zq where we have set q equal to the encryption exponent e. We will see
the reasons for this choice later.

Once the points y1, . . . , yn(k) have been defined, B is invoked. In executing B, adversary A will
invoke its own oracle to answer RSA-inversion oracle queries of B. Notice that this means that the
number of oracle queries made by A is exactly equal to the number made by B which is s−1 = m(k).
Assuming that B succeeds, A is in possession of xj ≡ yd

π(j) (mod N) for j = 1, . . . , s where π(j)
are indices of B’s choice that A could not have predicted beforehand. The final step is to recover
the RSA-inverses of the original target points.

To this end, A creates the matrix C shown in line 8 of the code. If this matrix has zero determinant
then A will not be able to reverse its embedding and aborts. Assuming a non-zero determinant, A
would like to invert matrix C. Since the entries are exponents, A would like to work modulo φ(N)
but A does not know this value. Instead, it works over the integers. A can compute a “partial”
RSA-inverse, namely an integer matrix D such that C ·D is a known integer multiple of the s by s
identity matrix Is. The integer multiple in question is the determinant of C, and thus the matrix
D is the adjoint of C. (We will discuss the computation of D more later.) Lines 12–18 show how
A then computes x1, . . . , xs which we claim equal yd

1 , . . . , yd
s .

We now proceed to the detailed analysis. Let NS be the event that gcd(det(C), e) = 1. Let
“A succeeds” denote the event that xi = yd

i for all i = 1, . . . , s. Let “B succeeds” denote the event
that xj = yd

π(j) for all j = 1, . . . , s. Then,

Pr[ A succeeds ] ≥ Pr[ A succeeds ∧B succeeds ∧NS ]
= Pr [ A succeeds | B succeeds ∧NS ] · Pr[ B succeeds ∧NS ] . (10)

We claim that

Pr [ A succeeds | B succeeds ∧NS ] = 1 (11)
Pr[ B succeeds ∧NS ] ≥ GLP(s, q) ·Advrsa-cti

B,n,m(k) . (12)

Equations (10), (11), and (12), together with Lemma 3.3, imply Equation (7). So it remains
to verify Equations (11), (12) and the time-complexity claimed in Equation (8). We begin with
Equation (11). Lemma 3.1 tells us that, assuming that B succeeds and that det(C) 6= 0, after
line 13 of Figure 1, we have

(yd
j )det(C) ≡ zj (mod N) (13)
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Code Cost

“For” loop at line 2 O(k3) · n(k) · s

det(C) O(s4k + s3k2)

Matrix D s2 ·O(s4k + s3k2)

“For” loop at line 12 O(k2s) ·O(sk)

Lines 14, 15 O(sk) ·O(k)

“For” loop at line 16 O(k2) ·O(k2s)

Total O(k3n(k)s + k4s + k2s5 + ks6)

Figure 2: Costs of computations of the algorithm of Figure 1. Recall that s = m(k) + 1

for j = 1, . . . , s. Assume gcd(α, e) = 1. Then Equation (13) and Lemma 3.2 imply that at line 17
we have xe

j = yj for all j = 1, . . . , s, in other words, A succeeds. Now, note that event NS implies
that det(C) 6= 0. This completes the proof of Equation (11).

We now move on to the proof of Equation (12). Due to the random choice of v[1], . . . , v[n(k)],
the points y1, . . . , yn(k) computed at line 5 and then fed to B are uniformly and independently
distributed over Z∗

N regardless of the choices of c[j, i]. This means that the events “B succeeds”
and NS are independent and also that the probability of the former is the advantage of B. Thus,
we have

Pr[ B succeeds ∧NS ] = Pr[NS ] · Pr[ B succeeds ] = Pr[NS ] ·Advrsa-cti
B,n,m(k) .

By definition of NS we have

Pr[NS ] = GLP(s, q) .

So Equation (12) follows. Now, if KeyGen is a prime-exponent key generator, we note that q = e
(line 1 in Figure 1), so q is a prime, and q ≥ 3 for RSA. Then, we can apply Equation (6) from
Lemma 3.3 to obtain Equation (9) in Theorem 4.1 as follows.

Pr[NS ] = GLP(s, q) ≥ 1− 1
q
− 1

q2
= 1− 1

e
− 1

e2
≥ 1− 1

3
− 1

32
=

5
9

.

If KeyGen is not a prime-exponent key generator, we note that q = e and apply Equation (5) from
Lemma 3.3 to obtain Equation (7) in Theorem 4.1.

We now justify the claim of Equation (8) about the time complexity. The costs of various steps of
the algorithm of the adversary A are summarized in Figure 2. We now briefly explain them. As in
the code, we let s = m(k) + 1. The “For” loop beginning at line 2 involves n(k) · s exponentiations
of k-bit exponents which has the cost shown. Computation of determinants is done using the
algorithm of [1]. This takes O(r4(log(r) + k) + r3k2) time to compute the determinant of an r by r
integer matrix each of whose entries is at most k-bits long. (Although somewhat faster algorithms
are known [15], they are randomized, and for simplicity, we use a deterministic algorithm.) We
use this algorithm in Step 9. In the worst case, e (and hence q) is k-bits long. So the entries of
C are at most k-bits long, and the cost of computing det(C) is O(s4(log(s) + k) + s3k2), which is
O(s4k + s3k2) since log(s) = O(k). The matrix D is the adjoint matrix of C, namely the transpose
of the co-factor matrix of C. We compute it by computing the co-factors using determinants.
This involves computing s2 determinants of submatrices of C so the cost is at most s2 times the
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cost of computing the determinant of C. Line 13 involves computing exponentiations modulo N
with exponents of the size of entries in D. The Hadamard bound tells us that the entries of D
are bounded in size by O(s(log(s) + k), which simplifies to O(sk), so the cost is this many k-bit
multiplications. Euclid’s algorithm used for lines 14 and 15 runs in time the product of the lengths
of α and e. Finally, the lengths of a, b cannot exceed this time, and they are the exponents in
line 17.

5 Alternative Formulations of the Problems

We consider formulations of the one-more-RSA-inversion problems that are an alternative to the
parameterized formulations of Section 2, and prove them equivalent to the original ones. This is
useful because the alternative formulations are often more convenient in using the one-more-RSA-
inversion problems as assumptions in proving the security of other schemes, and, in particular,
these formulations are used in Section 6 and in [6, 5].

In these analogues, rather than directly giving an adversary the points to invert as inputs, we
allow the adversary to query a challenge oracle to obtain the points. A challenge oracle is an oracle
that takes no input and simply returns a random challenge point in Z∗

N , where N is the RSA
modulus, each time it is queried. (The point is chosen independently and uniformly from Z∗

N each
time the oracle is invoked.) The adversary is given access to this oracle and the RSA-inversion
oracle. With this setup we consider the known-target and chosen-target versions of the problem in
turn.

In the alternative formulation of the known-target inversion problem, the adversary is considered
successful if it outputs correct inverses of all the points returned in response to queries it makes to
its challenge oracle, while querying its decryption oracle a number of times that is strictly fewer than
the number of times it queries its challenge oracle. This differs from the previous, parameterized
formulation of the problem in that the number of target points m is a random variable that depends
on the adversary’s inputs and coin tosses. This might lead one to think that the adversary’s power
is increased, but, as we will see, the two formulations end up being equivalent.

Definition 5.1 (Known-Target Inversion Problem, alternative formulation: RSA-AKTI)
Let k ∈ N be the security parameter. Let A be an adversary with access to the RSA-inversion oracle
(·)d mod N and the challenge oracle ON . Consider the following experiment:

Experiment Exprsa-akti
A (k)

(N, e, d) R← KeyGen(k)
(x1, . . . , xm)← A(·)d mod N,ON (N, e, k) where m is the number of queries to ON

Let y1, . . . , ym be the challenges returned by ON

If the following are both true then return 1 else return 0
– ∀i ∈ {1, . . . ,m} : xe

i ≡ yi (mod N)
– A made strictly fewer than m queries to (·)d mod N

We define the advantage of A via

Advrsa-akti
A (k) = Pr[Exprsa-akti

A (k) = 1 ] .

The RSA-AKTI problem is said to be hard if the function Advrsa-akti
A (·) is negligible for any

adversary A whose time-complexity is polynomial in the security parameter k.
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In the alternative formulation of the chosen-target inversion problem, the adversary must provide
correct inverses of some of the points returned by the challenge oracle while making a number of
decryption oracle queries strictly fewer than the number of points it outputs. But the number of
points the adversary chooses to invert is up to the adversary, i.e., it is a random variable in the
adversary’s inputs and coin tosses.

Definition 5.2 (Chosen-Target Inversion Problem, alternative formulation: RSA-ACTI)
Let k ∈ N be the security parameter. Let B be an adversary with access to the RSA-inversion
oracle (·)d mod N and the challenge oracle ON . Consider the following experiment:

Experiment Exprsa-acti
B (k)

(N, e, d) R← KeyGen(k)
(π, x1, . . . , xm)← B(·)d mod N,ON (N, e, k) where m is an integer
Let n be the number of queries to ON

Let y1, . . . , yn be the challenges returned by ON

If the following are all true then return 1 else return 0
– π : {1, . . . ,m} → {1, . . . , n} is injective
– ∀i ∈ {1, . . . ,m} : xe

i ≡ yπ(i) (mod N)
– B made strictly fewer than m queries to (·)d mod N

We define the advantage of B via

Advrsa-acti
B (k) = Pr[Exprsa-acti

B (k) = 1 ] .

The RSA-ACTI problem is said to be hard if the function Advrsa-acti
B (·) is negligible for any

adversary B whose time-complexity is polynomial in the security parameter k.

The following theorem states that the original and alternative known-target inversion problems are
computationally equivalent.

Theorem 5.3 The RSA-KTI problem is hard if and only if the RSA-AKTI problem is hard.

Proof of Theorem 5.3: First, for any polynomial-time adversary A, we show that there exists
a polynomial-time adversary B and a polynomially-bounded function m such that for all k

Advrsa-akti
A (k) ≤ Advrsa-kti

B,m (k) .

It follows that if the RSA-KTI problem is hard then the RSA-AKTI problem is also hard. The
construction is as follows. By assumption, A has running time polynomial in k. So we can choose a
polynomial-time computable, polynomially bounded function m: N→ N such that m(k) is strictly
more than the running time of A in Exprsa-akti

A (k) for all k ∈ N. We now construct adversary B as
shown below.

Algorithm B(·)dmodN (N, e, k, y1, ..., ym(k)+1)
count← 0
Run A on input (N, e, k), replying to its oracle queries as follows:

If A makes a query to its challenge oracle then
count← count + 1 ; Return ycount to A

If A makes a query y to its decryption oracle then
Query y to (·)d mod N ; Return the response to A

14



Until A halts with some output (x1, ..., xcount)
For i = count + 1, ...,m(k) + 1 do

Query yi to (·)d mod N ; Let xi be the response
Return (x1, ..., xm(k)+1)

Our assumption that m(k) exceeds the running time of A means that B will not run out of target
points to provide A. If A is successful, it must invert m′+1 points while making at most m′ queries
to its inversion oracle, for some m′. Regardless of the value of m′, adversary B will invert m(k)+1
points while making m(k) queries to its decryption oracle.

Second, let B be any polynomial-time adversary, and m: N→ N any polynomial-time computable,
polynomially-bounded function. We show that there is a polynomial-time adversary A such that
for all k

Advrsa-kti
B,m (k) ≤ Advrsa-akti

A (k) .

It follows that if the RSA-AKTI problem is hard then the RSA-KTI[m] problem is hard for
all polynomially-bounded functions m and hence the RSA-KTI problem is hard. (If m is not
polynomial-time computable, it can be bounded above by a polynomial-time computable func-
tion, so restricting our construction to polynomial-time computable functions is enough.) The
construction is as follows. The adversary A first computes m(k), using the assumption that m is
polynomial-time computable. It then submits m(k)+1 queries to its challenge oracle ON to obtain
m(k) + 1 challenges. Then, it runs B with the challenges as inputs, replying to B’s queries via its
own RSA-inversion oracle. It terminates when B does and outputs what B outputs.

An analogous result is true for the chosen-target versions of the problems.

Theorem 5.4 The RSA-CTI problem is hard if and only if the RSA-ACTI problem is hard.

Proof of Theorem 5.4: First, for any polynomial-time adversary A, we show that there exists a
polynomial-time adversary B and polynomially-bounded functions n, m such that m(·) < n(·) and
for all k

Advrsa-acti
A (k) ≤ Advrsa-cti

B,n,m(k) .

It follows that if the RSA-CTI problem is hard then the RSA-ACTI problem is also hard. The
construction is as follows. By assumption, A has running time polynomial in k. So we can choose a
polynomial-time computable, polynomially bounded function m: N→ N such that m(k) is strictly
more than the running time of A in Exprsa-akti

A (k) for all k ∈ N. We let n(·) = m(·) + 1. We now
construct adversary B as shown below.

Algorithm B(·)dmodN (N, e, k, y1, ..., yn(k))
count← 0
Run A on input (N, e, k), replying to its oracle queries as follows:

If A makes a query to its challenge oracle then
count← count + 1 ; Return ycount to A

If A makes a query y to its decryption oracle then
Query y to (·)d mod N ; Return the response to A

Until A halts with some output (π, x1, ..., xcount)
i← 0
For j = count + 1, ..., n(k) do
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i← i + 1
If i is not in the range of π then

Query yi to (·)d mod N ; Let xj be the response
Set π(j) to i

Return (π, x1, ..., xn(k))

Second, let B be any polynomial-time adversary, and n, m: N → N any polynomial-time com-
putable, polynomially-bounded functions satisfying m(·) < n(·). We show that there is a polynomial-
time adversary A such that for all k

Advrsa-cti
B,n,m(k) ≤ Advrsa-acti

A (k) .

As in the proof of Theorem 5.3, it follows that if the RSA-ACTI problem is hard then the RSA-CTI
problem is hard. The construction is as follows. The adversary A first computes n(k),m(k), using
the assumption that the functions in question are polynomial-time computable. It then submits
n(k) queries to its challenge oracle ON to obtain n(k) challenges. Then, it runs B with the
challenges as inputs, replying to B’s queries via its own RSA-inversion oracle. It halts when B does
and outputs what B outputs.

6 The RSA Blind Signature Scheme

The RSA blind signature scheme [12] consists of three components: the key generation algorithm
KeyGen described in Section 2; the signing protocol depicted in Figure 3; and the verification
algorithm. The signer has public key N, e and secret key N, d. Here H: {0, 1}∗ → Z∗

N is a public
hash function which in our security analysis will be modeled as a random oracle [7]. In that case,
the signature schemes is the FDH-RSA scheme of [8]. A message-tag pair (M,x) is said to be valid
if xe mod N is equal to H(M). The verification algorithm is the same as that of FDH-RSA: to
verify the message-tag pair (M,x) using a public key (N, e), one simply checks if the message-tag
pair is valid.

Unforgeability. In the standard formalization of security of a digital signature scheme —-
namely unforgeability under adaptive chosen-message attack [18]— the adversary gets to submit
messages of its choice to the signer and obtain their signature, and is then considered successful if
it can forge the signature of a new message. This formalization does not apply for blind signatures
because here nobody submits any messages to the signer to sign, and in fact the user is supposed
to use the signer to compute a signature on a message which the signer does not know. Instead, we
use the notion of security against one-more-forgery introduced in [27, 28]. The adversary (referred
to as a forger in this context) is allowed to play the role of the user in the blind signature protocol.
After some number of such interactions, it outputs a sequence of message-tag pairs. It wins if the
number of these that are valid exceeds the number of protocol instances in which it engaged.

There are numerous possibilities with regard to the manner in which the adversary is allowed
to interact with the signer, giving rise to different attack models. Some that have been considered
are the sequential [27, 28] (where the adversary must complete one interaction before beginning
another), the parallel [27, 28] or adaptive-interleaved [20] (where the adversary can engage the
signer in several concurrent interactions), and a restricted version of the latter called synchronized-
parallel [25]. However, in the blind signature protocol for FDH-RSA, the signer has only one move,
and in this case the power of all these different types of attacks is the same.

Notice that in its single move the signer simply inverts the RSA function on the value supplied
to it by the user in the previous move. Thus, the signer is simply an RSA inversion oracle. With
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User Signer

Input: N, e,M Input: N, d

r
R← Z∗

N

M ← re ·H(M) mod N

M -

x← (M)d mod N
x�

x← r−1 · x mod N

Figure 3: Blind signing protocol for FDH-RSA

this simplification we can make the following definition for security against one-more forgery which
will cover all types of attacks.

Below, we let [{0, 1}∗ → Z∗
N ] denote the set of all maps from {0, 1}∗ to Z∗

N . It is convenient to
let the notation H

R← [{0, 1}∗ → Z∗
N ] mean that we select a hash function H at random from this

set. The discussion following the definition clarifies how we implement this selection of an object
at random from an infinite space.

Definition 6.1 [Unforgeability of the blind FDH-RSA signature scheme] Let k ∈ N be
the security parameter. Let F be a forger with access to an RSA-inversion oracle and a hash oracle,
denoted (·)d mod N and H(·), respectively. Consider the following experiment:

Experiment Exprsa-omf
F (k)

H
R← [{0, 1}∗ → Z∗

N ]
(N, e, d) R← KeyGen(k)
((M1, x1), . . . , (Mm, xm))← F (·)d mod N,H(·)(N, e, k) where m is an integer
If the following are all true, then return 1 else return 0:

– ∀i ∈ {1, . . . ,m} : H(Mi) ≡ xe
i mod N

– Messages M1, . . . ,Mm are all distinct
– F made strictly fewer than m queries to its RSA-inversion oracle

We define the advantage of the forger F via

Advrsa-omf
F (k) = Pr[Exprsa-omf

F (k) = 1 ] .

The FDH-RSA blind signature scheme is said to be polynomially-secure against one-more forgery
if the function Advrsa-omf

F (·) is negligible for any forger F whose time-complexity is polynomial in
the security parameter k.

We need a convention regarding choosing the function H since it is an infinite object. The conven-
tion is that we do not actually view it as being chosen all at once, but rather view it as being built
dynamically and stored in a table. Each time a query of M to the hash oracle is made, we charge
the cost of the following: check whether a table entry H(M) exists and if so return it; otherwise,
pick an element y of Z∗

N at random, make a table entry H(M) = y, and return y. Furthermore, as
above, we adopt the convention that the time-complexity refers to the entire experiment. In this
regard, the cost of maintaining this table-based implementation of the hash function is included.
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Security. We show that the FDH-RSA blind signature scheme is secure as long as the RSA
known-target inversion problem is hard.

Theorem 6.2 For any forger F attacking the FDH-RSA blind signature scheme, there exists an
adversary A for the RSA known-target inversion problem such that

Advrsa-omf
F (k) ≤ O(ln(k)2) ·Advrsa-akti

A (k) ,

and the time-complexity of A is polynomial in the time-complexity of F .

As a simple corollary, we have:

Corollary 6.3 [Unforgeability of the FDH-RSA blind signature scheme] If the RSA known-
target inversion problem is hard, then the FDH-RSA blind signature scheme is polynomially-secure
against one-more forgery.

Theorem 6.3 follows from Theorem 4.1, Theorem 5.3, Theorem 5.4, and the following lemma saying
that the FDH-RSA blind signature scheme is secure if the RSA chosen-target inversion problem is
hard.

Lemma 6.4 If the RSA chosen-target inversion problem is hard, then the FDH-RSA blind signa-
ture scheme is polynomially-secure against one-more forgery. Concretely, for forger F , there exists
an adversary B so that

Advrsa-omf
F (k) ≤ Advrsa-acti

B (k)

and the time-complexity of B is polynomial in the time-complexity of the forger F .

Proof of Lemma 6.4: Adversary B uses the forger F to achieve its goal by running F and
providing answers to F ’s oracle queries. In response to hash-oracle queries, B simply returns its
own targets to F . RSA-Inversion oracle queries of F are forwarded by B to its own RSA-inversion
oracle and the results returned to F .

A detailed description of B is in Figure 4. It uses a subroutine Find that looks for a given value in
a given array. Specifically, it takes as its inputs an array of values A and a target value a assumed
to be in the array, and returns the least index i such that a = A[i].

The simulation is a largely straightforward use of random oracle techniques [7, 8] so we confine
the analysis to a few remarks. Note that B simulates hash-oracle queries corresponding to the
messages in the message-tag pairs output by F in case these are not already made. This ensures
that the advantages of the two algorithms are identical. The time spent by B to maintain the hash-
oracle table is the same as that spent in Exprsa-omf

F (k) as per the conventions discussed following
Definition 6.1. We omit the details.

7 One-more-discrete-log: Problems and Results

We describe the discrete-log analogues of the one-more-RSA-inversion problems and then state a
theorem analogous to Theorem 4.1.

The security parameter is denoted by k ∈ N as before. A group generator is a randomized,
poly(k) time algorithm that on input k returns a triple (G, q, g) such that: 2k−1 ≤ q < 2k; G is (the
description of) a group of order q; and g is a generator of G. Additionally, if q is an odd prime, then
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Algorithm B(·)d mod N,ON (N, e, k)
1 count ← 0
2 Initialize associative arrays Hash and Ind to empty
3 Initialize arrays Msg , X to empty
4 Run F on input N, e, k replying to its oracle queries as follows:
5 When F submits a hash query M do
6 If Hash[M ] is undefined then
7 count ← count + 1 ; Hash[M ]← ON ; Msg [count ]←M
8 Return Hash[M ]
9 When F submits an RSA-inversion query y do
10 Submit y to the RSA-inversion oracle (·)d mod N and

return its response.
11 ((M1, x1), . . . , (Mm, xm))← F
12 For j = 1 to m, do
13 If Hash[Mj ] is undefined then
14 count ← count + 1 ; Hash[Mj ]← ON ; Msg [count ]←Mj

15 Ind [j]← Find(Msg ,Mj) ; X[Ind [j]]← xj

16 Return (Ind , X[Ind [1]], . . . , X[Ind [s]])

Figure 4: Adversary B for the proof of Lemma 6.4.

we refer to the algorithm as a prime-order group generator. Group operations (multiplication and
inverse) are assumed to be poly(k)-time. There are numerous possible choices of group generators,
so rather than pin one down, we formulate computational problems in which the generator is a
parameter. For that purpose, we fix a group generator KeyGen for the rest of this section.

7.1 Definitions of the problems

We recall the standard notion, couching it in a way more suitable for comparison with the new
notions.

Definition 7.1 (Single-Target Discrete Log Problem: DL-ST) Let k ∈ N be the security
parameter. Let A be an adversary. Consider the following experiment:

Experiment Expdl-st
A (k)

(G, q, g) R← KeyGen(k)
x

R← Zq ; y ← gx ; z ← A(G, q, g, y, k)
If y = gz then return 1 else return 0

We define the advantage of A via

Advdl-st
A (k) = Pr[Expdl-st

A (k) = 1 ] .

The DL-ST problem —in more standard terminology, the discrete log problem— is said to be hard
if the function Advdl-st

A (·) is negligible for any adversary A whose time-complexity is polynomial
in the security parameter k.
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We now present the parameterized formulations of the one-more-discrete-logarithm problems in the
style of Section 2. Alternative formulations in the style of Section 5 can be easily provided, and
can be proved equivalent to the parameterized ones by arguments analogous to those in Section 5.
We note that the alternative formulation of the known-target version of the problem is presented
and used in [6]. We now proceed to define the known-target inversion problem.

We denote by dlogg(·) the oracle that takes input y ∈ G and returns its discrete log, namely a
value x ∈ Zq such that y = gx. An adversary solving the known-target discrete log problem is given
oracle access to dlogg(·) and is given m(k) + 1 targets where m : N → N. Its task is to compute
the discrete logs of all the targets while submitting at most m(k) queries to the oracle.

Definition 7.2 (Known-Target Discrete Log Problem: DL-KT[m]) Let k ∈ N be the security
parameter, and let m : N→ N be a function of k. Let A be an adversary with access to a discrete-log
oracle dlogg(·). Consider the following experiment:

Experiment Expdl-kt
A,m (k)

(G, q, g) R← KeyGen(k)
For i = 1 to m(k) + 1 do xi ← Zq ; yi ← gxi

(z1, . . . , zm(k)+1)← Adlogg(·)(G, q, g, k, y1, . . . , ym(k)+1)
If the following are both true then return 1 else return 0

– ∀i ∈ {1, . . . ,m(k) + 1} : yi = gzi

– A made at most m(k) oracle queries

We define the advantage of A via

Advdl-kt
A,m (k) = Pr[Expdl-kt

A,m (k) = 1 ] .

The DL-KT[m] problem is said to be hard if the function Advdl-kt
A,m (·) is negligible for any adversary

A whose time-complexity is polynomial in the security parameter k. The known-target inversion
problem is said to be hard if DL-KT[m] is hard for all polynomially-bounded m(·).

Notice that DL-KT[0] is the same as DL-ST. That is, the standard assumption that discrete
logarithm problem is hard is exactly the same as the assumption that DL-KT[0] is hard.

We proceed to the chosen-target inversion problem. An adversary solving this problem is given
access to a discrete-log oracle as above, and n(k) targets where n : N→ N. Its task is to compute
m(k) + 1 discrete logs of the given targets, where m : N → N and m(k) < n(k), while submitting
at most m(k) queries to the oracle. The choice of which targets to compute the discrete log is up
to the adversary. This choice is indicated by the range of the injective map π.

Definition 7.3 (Chosen-Target Discrete Log Problem: DL-CT[n, m]) Let k ∈ N be the
security parameter, and let m,n : N → N be functions of k such that m(·) < n(·). Let B be an
adversary with access to a discrete-log oracle dlogg(·). Consider the following experiment:

Experiment Expdl-ct
B,n,m(k)

(G, q, g) R← KeyGen(k)
For i = 1 to n(k) do xi

R← Zq ; yi ← gxi

(π, z1, . . . , zm(k)+1)← Bdlogg(·)(G, q, g, k, y1, . . . , yn(k))
If the following are all true then return 1 else return 0

– π : {1, . . . ,m(k) + 1} → {1, . . . , n(k)} is injective
– ∀i ∈ {1, . . . ,m(k) + 1} : yi = gzπ(i)

– A made at most m(k) oracle queries
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We define the advantage of B via

Advdl-ct
B,n,m(k) = Pr[Expdl-ct

B,n,m(k) = 1 ] .

The DL-CT[n, m] problem is said to be hard if the function Advdl-ct
B,n,m(·) is negligible for any

adversary B whose time complexity is polynomial in the security parameter k. The chosen-target
discrete log problem is said to be hard if DL-CT[n, m] is hard for all polynomially-bounded n(·)
and m(·).

7.2 The equivalence result

The following theorem is the analogue of Corollary 4.2.

Theorem 7.4 Let n, m: N→ N be polynomially-bounded functions satisfying m(·) < n(·). Then
the DL-KT[m] problem is hard if and only if the DL-CT[n, m] problem is hard.

Proof of Theorem 7.4: It is easy to see that if the DL-KT[m] problem is hard then so is the
DL-CT[n, m] problem. We concentrate on the converse. For any adversary B, we show that there
exists an adversary A so that

Advdl-ct
B,n,m(k) ≤ O(ln(k)2) ·Advdl-kt

A,m (k) (14)

and A has time-complexity equal to that of B plus poly(k). Furthermore, if KeyGen is a prime-order
group generator, then Equation (14) can be improved to

Advdl-ct
B,n,m(k) ≤ 9

5
·Advdl-kt

A,m (k) . (15)

The adversary A takes G, q, g, and s = m(k) + 1 target points y1, . . . , ys. Its goal is to compute
x1, . . . , xs such that yi = gxi for any i ∈ {1, . . . , s}. The proof follows the same approach as that
of Theorem 4.1. Figure 5 describe the adversary A in detail. We denote the adversary solving
the RSA-CTI[n, m] problem by B. The analysis is similar to that in the proof of Theorem 4.1.
As before, let NS be the event that gcd(det(C), q) = 1. Let “A succeeds” denote the event that
yi = gxi for all i = 1, . . . , s. Let “B succeeds” denote the event that yj = gxπ(j) for all j = 1, . . . , s.
Then,

Pr[ A succeeds ] ≥ Pr[ A succeeds ∧B succeeds ∧NS ]
= Pr [ A succeeds | B succeeds ∧NS ] · Pr[ B succeeds ∧NS ]
= 1 · Pr[ B succeeds ∧NS ]
= Pr[ B succeeds ] · Pr[NS ]
= Pr[NS ] ·Advdl-ct

B,n,m(k) .

If KeyGen is a prime-order group generator, then we note that q ≥ 3 and apply Equation (6) from
Lemma 3.3 to obtain Equation (15) as follows.

Pr[NS ] = GLP(s, q) ≥ 1− 1
q
− 1

q2
≥ 1− 1

3
− 1

32
=

5
9

.

If KeyGen is not a prime-order group generator, then we apply Equation (5) from Lemma 3.3 to
obtain Equation (14).

We have not stated the concrete-security of the reduction, but it is worth making a remark about
how concrete-security is measured. Recall that in the RSA case, the time-complexity of an ad-
versary was defined as that of the entire associated experiment, including the time to compute
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Algorithm Adlogg(·)(G, q, g, k, y1, . . . , ym(k)+1)
1 s← m(k) + 1
2 For i = 1, . . . , n(k) do
3 v[i] R← Zq

4 For j = 1, . . . , s do c[j, i] R← Zq

5 yi ← gv[i]
∏s

j=1 y
c[j,i]
j

6 (π, x1, . . . , xs)← Bdlogg(·)(G, q, g, k, y1, . . . , yn(k))
7 For j = 1, . . . , s do

vj ← v[π(j)]
For l = 1, . . . , s do cj,l ← c[j, π(l)]

8 C ←


c1,1 . . . c1,s

...
...

cs,1 . . . cs,s


9 α← det(C)
10 If α = 0 then abort
11 Compute a matrix

D =


d1,1 . . . d1,s

...
...

ds,1 . . . ds,s


with integer entries such that C ·D = det(C) · Is

12 For j = 1, . . . , s do
13 zj ←

∑s
i=1 (xi − vi) · di,j mod q

14 If gcd(α, q) 6= 1 then abort
15 β ← α−1 mod q
16 For j = 1, . . . , s do
17 xj ← β · zj mod q
18 Return x1, . . . , xs

Figure 5: Adversary A of the proof of Theorem 7.4.

replies to oracle queries. With regard to the decryption oracle, this meant cubic time, since the
computation is done by an oracle in possession of the trapdoor information d. This convention
regarding measurement of time-complexity must be dropped in the discrete-logarithm case, since
the time to compute discrete-logarithms is exponential, and the complexity estimates end up being
meaningless if we adopt the same convention as we did for RSA.
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A Proof of Lemma 3.3

Let q ≥ 2 and s ≥ 1 be integers. We define the set of s by s matrices over the ring Zq and denote it
by Ms(q). This is the set of all s by s matrices with entries in Zq. The matrices in Ms(q) are added
and multiplied modulo q, meaning that the underlying computations on entries are performed
modulo q. A matrix A ∈ Ms(q) is said to be invertible if there exists a matrix B ∈ Ms(q) such
that AB = BA = Is. We let GLs(q) denote the set of all invertible matrices in Ms(q). This is the
so-called general linear group under matrix multiplication modulo q.
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We will state various linear algebraic facts without proof. The first of these is that a matrix
over a ring is invertible if and only if its determinant is invertible in the underlying ring [2]. Since
the ring here is Zq, this in turn means that a matrix over a ring is invertible if and only if its
determinant is relatively prime to q.

Fact A.1 [2] Let q ≥ 2 and s ≥ 1 be integers. Then,

GLs(q) = {M ∈ Ms(q) : gcd(det(M), q) = 1 } .

We are interested in the probability GLP(s, q) that gcd(det(M), q) = 1 when M is chosen uniformly
at random from Ms(q). We first apply Fact A.1 to see that

GLP(s, q) =
|GLs(q)|
|Ms(q)|

.

The denominator above is easy to compute. We now turn to estimating the numerator. This will
require a few more facts. We say that q = qn1

1 · · · q
nk
k is the prime factorization of q if 2 ≤ q1 <

q2 < · · · < qk are primes and n1, . . . , nk ≥ 1 are integers.

Fact A.2 [22] Let q ≥ 2 and s ≥ 1 be integers, and let q = qn1
1 · · · q

nk
k be the prime factorization

of q. Then,

GLs(q) ' GLs(qn1
1 )× · · · ×GLs(q

nk
k ) ,

where ' denotes group isomorphism.

The above reduces the computation of GLs(q) to computation of the same quantity for the case
where q is a prime power. The following fact gives the exact number of elements for the latter.

Fact A.3 [22] Let q ≥ 2 be a prime and let s, n ≥ 1 be integers. Then,

|GLs(qn)| =

qs2 ·
∏s−1

j=0

(
1− qj−s

)
if n = 1

qs2(n−1) · |GLs(q)| otherwise.
(16)

When q is a prime, it is tempting to think that the determinant of a random matrix from Ms(q) is a
random value and hence that GLP(s, q) = 1−1/q. This, however, is not true. For example, a simple
computation shows that GLP(2, q) = 1− 1/q − 1/q2 + 1/q3 for any prime q. The following lemma
provides bounds for the probability of the complement event, namely the probability SMP(s, q) that
gcd(det(M), q) 6= 1 when M is chosen uniformly at random from Ms(q). This is the probability
that a matrix chosen at random from Ms(q) is not invertible modulo q.

Lemma A.4 Let q ≥ 2 be a prime and let s ≥ 1 be an integer. Then,
1
q
≤ SMP(s, q) ≤ 1

q
+

1
q2

.

Recall that ϕ(·) denotes the Euler Phi function. The following lower bound is a corollary of Rosser
and Schoenfeld [29, Theorem 15].

Fact A.5 [29] Let n ≥ 3 be an integer. Then,
ϕ(n)

n
≥ 1

286
· 1
ln ln(n)

.
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We conclude the proof of Lemma 3.3 given the above, and then return to prove Lemma A.4.

Proof of Lemma 3.3: Let q = qn1
1 · · · q

nk
k be the prime factorization of q. Below, we obtain

Equation (17) by Fact A.1; Equation (18) by Fact A.2; Equation (19) by Fact A.3; and Equation (20)
by Lemma A.4:

GLP(s, q) =
|GLs(q)|
|Ms(q)|

(17)

=

∣∣GLs(qn1
1 )× · · · ×GLs(q

nk
k )
∣∣

qs2 (18)

=
∏k

i=1 |GLs(qni
i )|∏k

i=1 qnis2

i

=
k∏

i=1

|GLs(qni
i )|

qnis2

i

=
k∏

i=1

q
(ni−1)s2

i · |GLs(qi)|
qnis2

i

(19)

=
k∏

i=1

|GLs(qi)|
qs2

i

=
k∏

i=1

GLP(s, qi)

≥
k∏

i=1

(
1− 1

qi
− 1

q2
i

)
. (20)

If q is prime, the lower bound is 1− 1
q −

1
q2 as claimed. If q is not prime, we derive a lower bound

as follows. The inequality 1−x−x2 ≥ (1−x)2 is valid for all real numbers x ≤ 1/2. Above qi ≥ 2,
and hence 1/qi ≤ 1/2, and hence we get

GLP(s, q) ≥
k∏

i=1

(
1− 1

qi

)2

=

[
k∏

i=1

(
1− 1

qi

) ]2

. (21)

Let n = q1 · · · qk. Applying Fact A.5 and letting lg(·) denote the logarithm to base two, we have

k∏
i=1

(
1− 1

qi

)
=

ϕ(n)
n

≥ 1
286
· 1
ln ln(n)

≥ 1
286
· 1
ln ln(q)

≥ 1
286
· 1
ln lg(q)

.

Combining the above with Equation (21) completes the proof of Lemma 3.3.
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Proof of Lemma A.4: Let M ∈ Ms(q). For i = 1, . . . , s, let Mi denote the vector which is the
i-th column of M , and let LIi denote the event that the vectors M1, . . . ,Mi are linearly independent
over Zq. It is convenient to let LI0 be the event having probability one. Let SMP(s, q, i) = Pr[¬LIi ]
for i = 0, . . . , s, and note that SMP(s, q) = SMP(s, q, s). Fact A.3 implies that

GLP(s, q) =
s−1∏
j=0

(
1− qj−s

)
. (22)

We use it to derive the desired lower bound. (The upper bound is derived by a separate inductive
argument.) Upper bounding the product term of Equation (22) by a single, smallest term for the
product, we obtain

SMP(s, q) ≥ 1−
(

1− 1
q

)
=

1
q

.

For the upper bound, we first claim that the following recurrence is true for i = 0, . . . , s:

SMP(s, q, i) =


0 if i = 0
qi−1

qs
+
(

1− qi−1

qs

)
· SMP(s, q, i− 1) if i ≥ 1

(23)

The initial condition is simply by the convention we adopted that Pr[LI0 ] = 1. The recurrence is
justified as follows for i ≥ 1:

SMP(s, q, i) = Pr[¬LIi ]
= Pr [ ¬LIi | LIi−1 ] · Pr[LIi−1 ] + Pr [ ¬LIi | ¬LIi−1 ] · Pr[¬LIi−1 ]
= Pr [ ¬LIi | LIi−1 ] · (1− SMP(s, q, i− 1)) + 1 · SMP(s, q, i− 1)
= Pr [ ¬LIi | LIi−1 ] + (1− Pr [ ¬LIi | LIi−1 ]) · SMP(s, q, i− 1)

=
qi−1

qs
+
(

1− qi−1

qs

)
· SMP(s, q, i− 1) .

We claim that

SMP(s, q, i) ≤ qi

qs
· 1
q − 1

for i = 0, . . . , s . (24)

This will be justified below. It already gives us an upper bound on SMP(s, q) = SMP(s, q, s),
namely 1/(q − 1), but this is a little worse than our claimed upper bound. To get the latter, we
use the recurrence for i = s and use Equation (24) with i = s− 1. This give us

SMP(s, q) = SMP(s, q, s) =
qs−1

qs
+
(

1− qs−1

qs

)
· SMP(s, q, s− 1)

≤ qs−1

qs
+
(

1− qs−1

qs

)
· q

s−1

qs
· 1
q − 1

Simplifying this further, we get

SMP(s, q) ≤ 1
q

+
(

1− 1
q

)
·
(

1
q

)
·
(

1
q − 1

)
=

1
q

+
(

q − 1
q

)
·
(

1
q2
− 1

q

)
≤ 1

q
+

1
q2

.

This is the claimed upper bound. It remains to justify Equation (24) which we do by induction on
i. When i = 0, Equation (24) puts a positive upper bound on SMP(s, q, 0), and hence is certainly
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true. So assume i ≥ 1. Substituting into the recurrence of Equation (23), we get

SMP(s, q, i) =
qi−1

qs
+
(

1− qi−1

qs

)
· SMP(s, q, i− 1)

≤ qi−1

qs
+ SMP(s, q, i− 1) .

Using the inductive hypothesis and simplifying, we have

SMP(s, q, i) ≤ qi−1

qs
+

qi−1

qs

1
q − 1

=
qi−1

qs

(
1 +

1
q − 1

)
=

qi

qs
· 1
q − 1

as desired.
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