
Computational integrity with a public random string from

quasi-linear PCPs.

Eli Ben-Sasson1 Iddo Ben-Tov1 Alessandro Chiesa2 Ariel Gabizon1

Daniel Genkin1,3 Matan Hamilis1 Evgenya Pergament1 Michael Riabzev1

Mark Silberstein1 Eran Tromer3 Madars Virza4

June 22, 2016

1Technion — Israel Institute of Technology
2University of California, Berkeley
3Tel Aviv University
4Massachusetts Institute of Technology

A party running a computation remotely may benefit from misreporting its output,
say, to lower its tax. Cryptographic protocols that detect and prevent such falsi-
ties hold the promise to enhance the security of decentralized systems with stringent
computational integrity requirements, like Bitcoin [Nak09]. To gain public trust it is
imperative to use publicly verifiable protocols that have no “backdoors” and which
can be set up using only a short public random string. Probabilistically Checkable
Proof (PCP) systems [BFL90, BFLS91, AS98, ALM+98] can be used to construct
astonishingly efficient protocols [Kil92, Mic00] of this nature but some of the main
components of such systems — proof composition [AS98] and low-degree testing via
PCPs of Proximity (PCPPs) [BGH+05, DR06] — have been considered efficient only
asymptotically, for unrealistically large computations; recent cryptographic alterna-
tives [PGHR13, BCG+13a] suffer from a non-public setup phase.
This work introduces SCI, the first implementation of a scalable PCP system (that uses
both PCPPs and proof composition). We used SCI to prove correctness of executions of
up to 220 cycles of a simple processor (Figure 1) and calculated (Figure 2) its break-even
point [SVP+12, SMBW12]. The significance of our findings is two-fold: (i) it marks
the transition of core PCP techniques (like proof composition and PCPs of Proximity)
from mathematical theory to practical system engineering, and (ii) the thresholds
obtained are nearly achievable and hence show that PCP-supported computational
integrity is closer to reality than previously assumed.

1 Introduction

Computational Integrity An unobserved party is often required to execute a program P on
data x. Yet, that party might benefit from misreporting the output y. For example:

1. Individuals and companies may benefit financially from reporting lower tax payments; in this
case P is the program that computes tax, x is the tax-relevant data and y is the resulting tax.

1

2. Criminals may benefit if an innocent individual (or no individual) is prosecuted based on faulty
crime-scene data analysis, and corrupt law enforcement officials to reach this outcome. In this
case P is the program that analyzes crime-scene data, x may contain the cryptographic hashes of
(i) a criminal DNA database and (ii) DNA fingerprints taken from the crime-scene, and y would
be the name of a suspect.

3. Health-care and other insurance companies may benefit from mis-computing policy rates. In
this case P may be a government-approved program that computes policy rates, x is the medical
history of an individual (including, perhaps, her genetic profile) and y is her policy rate.

Naturally, correctness and integrity of the input data x are preliminary requirements for obtaining
a correct output y; the input x often arrives from third parties hence changing it maliciously to
x′ 6= x would require their collusion and can be deterred by existing cryptographic means. Instead,
the main focus of this work is on ensuring the integrity of the computation P itself, e.g., ensuring
that reported tax y is correct with respect to input x and program P. In spite of incentives to cheat,
we often assume that unobserved parties operate with computational integrity (CI) meaning that CI
statements like

τ(P,x,y,T) := “y is the output of program P on input x after T steps” (*)

are considered true, even when the party making the statement could benefit from replacing y
with y′ 6= y. The assumption that parties operate with computational integrity is backed by (i)
legislation and (ii) regulation, and also relies on (iii) the economic value of “integrity” to individuals,
businesses and government. Manual enforcement of CI via audits and reports by trusted third parties
is labor-intensive, and yet leaves the door open to corruption of those third parties. Automated
CI based on cryptography (also called delegation of computation [GKR08], certified computation
[CMT12] and verifiable computation [GGP10]) could potentially replace this manual labor and,
more importantly, introduce integrity to settings in which it is currently too costly to achieve.
Bitcoin [Nak09] serves as an ongoing large-scale attempt of building a monetary system based on
cryptographic CI; irrespective of the outcome of this experiment, it inspires us to try and broaden
the applications of cryptographic CI to other areas of life.
Interactive proof (IP) systems [BM88, GMR89] revolutionized cryptographic CI by initiating
an approach that led (see below) to a viable theoretical solution to the problem of discovering false
CI statements. In such systems the party that makes the CI statement (*) is represented by a
prover which is a (randomized) algorithm. The prover tries to convince a verifier — an efficient
randomized algorithm — that (*) is true via a court-of-law-style interactive protocol in which the
verifier “interrogates” the prover over several rounds of communication. The protocol ends with the
verifier announcing its verdict which is either to “accept” τ(P,x,y,T) as true, or to “reject” it. The
systems we focus on have only one-sided error: all true statement can be supported by a prover
that causes the verifier to accept them but the verifier may err and accept falsities; the probability
of error is known as the soundness-error.
Probabilistically checkable proof (PCP) systems1 [BFL90, BFLS91, AS98, ALM+98] are
a particularly efficient multi-prover interactive proof (MIP) system [BGKW88] in terms of the
amount of communication between prover and verifier, verification time, the number of rounds of
interaction and soundness-error. Here, the prover writes once a string of bits π(P,x,y,T) known as a

1PCPs are also known as holographic, and transparent proof systems.

2

PCP; its length is polynomial in the execution time T . Total verifier running time is poly log T ,
which is (i) negligible compared to the näıve solution of re-executing P at a cost of T steps and
(ii) nearly-optimal because every proof system for general CI statements must have the verifier
running time be at least Ω(log T). Using a single round, the verifier asks to read a small (randomly
selected) number of bits of π(P,x,y,T); clearly the verifier cannot read more bits than its running time
(poly log T) allows, and this amount can be further reduced to a small constant that is independent
of T (cf. [Raz95, H̊as01, Din07, MR08]). Initial constructions required proofs of length poly(T)
but length has been reduced since then [HS00, BSVW03, BGH+06] and state-of-the-art proofs
are of quasi-linear length in T , i.e., length T · poly log T [BS08, Din07, BGH+05, Mie09] and can
be computed in quasi-linear time as well [BCGT13a]. The system reported — called Scalable
Computational Integrity (SCI) — implements the quasi-linear PCP system with certain improvements
(described later).

In certain cases the program P uses auxiliary inputs that the prover wishes to keep private, like
passwords, financial data and medical information. Privacy-preserving, or zero knowledge (ZK),
proofs [GMR89] can be constructed from any PCP system in polynomial time [Kil92, DFK+92,
KPT97] (cf. [IKOS09, IMS12, MX13, IMSX15]). Certain “algebraic” PCP systems, including SCI,
can be converted to zero-knowledge with only a quasilinear increase in running time [BCGV16];
implementing this enhancement is left to future work.

A PCP verifier requires random access to bits of π(P,x,y,T); a näıve implementation in which
prover sends the whole proof to the verifier would cost poly(T) communication (and verification
time) but a Cryptographically Strong Hash (CSH) function, like SHA256, can be used to reduce
communication and verifier running time to poly log T [Kil92]. The three messages transmitted
between prover and verifier ((1) prover sends proof; (2) verifier sends queries; (3) prover answers
queries) can be reduced to a single message from the prover, if we assume both parties have access
to the same random function [Mic00]; this is simulated, typically as well as here, by applying the
Fiat-Shamir heuristic [FS87]. The single message (published by the prover) is known as a succinct
computationally sound (CS) proof π̂; its length is poly log T and it can now be appended to τ(P,x,y,T)
and then publicly verified in time poly log T with no further interaction with the prover. We refer
to π̂ as a hash-based (CI) proof to emphasize that the only cryptographic primitive needed to
implement it is a CSH.

Prior CI solutions In spite of the asymptotic efficiency of PCPs, prior CI approaches (recounted
below) did not implement a PCP system. To quote from the recent authoritative survey [WB15], the
reason for this was that “the proofs arising from the PCP theorem (despite asymptotic improvements)
were so long and complicated that it would have taken thousands of years to generate and check
them, and would have needed more storage bits than there are atoms in the universe”. Due to this
view (which this work challenges), four main alternatives have been explored recently. Like SCI,
all rely on arithmetization [LFKN92], the reduction of computational integrity statements (*) to
systems of low-degree polynomials over finite fields. But in contrast to SCI, all previous solutions
circumvent the use of core PCP techniques like proof composition [AS98], low-degree testing and
the use of PCPs of proximity (PCPP) [BGH+05, DR06]; these techniques are crucial for obtaining
succinct proofs with a public setup process, discussed below.

IP-based: The proofs for muggles approach [GKR08] scales down Interactive Proofs (IP) and
leads to excellent solutions for a limited yet interesting class of programs: those with high
parallelism and small memory consumption; prover time for IP-based systems was reduced to

3

quasi-linear [CTY11] and implemented in a number of works [CMT12, Tha13, VSBW13].

LPCP-based: [IKO07] proposed using additively homomorphic encryption (AHE) and linear
PCPs (LPCP) to build CI proof systems that are interactive, and where the verifier’s work is
amortized over multiple statements; cf. [SBW11, SVP+12, SMBW12] for implementations of
LPCP-based systems.

KOE-based: A sequence of works [Gro10, GGP10, Lip12, BCI+13, GGPR13] improved on [IKO07]
by relying on Knowledge Of Exponent (KOE) assumptions and bilinear pairings over elliptic
curves. KOE-based systems were implemented in [PGHR13, SBV+13, BCG+13a, BCTV14b,
WSR+15], and further optimizations of this latter system for specific applications related to
Bitcoin [Nak09] such as smart contracts [KMS+15] and anonymous payment systems [BCG+14]
are already being evaluated by commercial entities [Gre16].

IVC-based: KOE-based systems require a proving key kP (discussed below) that is longer than
T , the number of computation cycles. Incrementally verifiable computation (IVC) [Val08] and
bootstrapping [BCCT13] shorten the length of kP to poly log T and an IVC-based system has
been implemented recently [BCTV14a].

Comparing SCI to prior CI solutions SCI improves qualitatively on all previous solutions in
terms of its setup (or “preprocessing”): it requires only a short public random string. Like IVC-based
systems, SCI is one-shot universally scalable (OSUS), a property not obtained by IP-, LPCP- and
KOE-based systems, and thus is the first system that is OSUS with a public setup. (Quantitatively,
SCI is more efficient than the IVC-based system [BCTV14a] in the OSUS setting; see Table 1 for
more quantitative comparisons.) We discuss the significance of these properties after explaining
them.
One-shot universal scalability (OSUS) A CI system is universally scalable if for any fixed
program P, prover running time is bounded by Tpoly log T and verification time is at most poly log T
where T is the number of machine cycles2. If the same asymptotic running times hold even for a
single execution of P, and where the setup (“preprocessing”) is carried out by the verifier (and hence
setup-cost is part of the total verification-cost), we shall say the CI solution is one-shot universally
scalable (OSUS). IP-based systems are efficient only for highly-parallel computations, thus are not
universally scalable. LPCP- and KOE-based systems are universally scalable but not OSUS because
they require a proving key kP that is longer than T which must be generated by the verifier (in the
one-shot setting). Of all prior solutions, only IVC-based ones are OSUS, like SCI.
Public setup All implemented solutions prior to SCI, if instantiated as publicly verifiable CI
systems, require a setup phase (“preprocessing”), the output of which is a pair of keys (kP, kV), one
needed for proving statements, the other for verifying them. A “trapdoor key” ktpdr is associated
with (kP, kV) and can be used to forge pseudo-proofs of false statements. Furthermore, ktpdr can
be recovered by the parties that run the preprocessing phase. Secure multi-party computation can
boost security by “distributing knowledge” of the trapdoor among several parties [BCG+15] so that
all of them have to be compromised to recover ktpdr; but this does not remove the concern that
ktpdr has been recovered by collusion of all parties, or retrieved by a central party eavesdropping
to all of them. Even if ktpdr has not been recovered by anyone, its mere existence may erode trust

2Formally, a CI system is universally scalable if for any language L ∈ NTIME(T (n))) prover running time is
T (n)poly log T (n) and verifier running time is poly log T (n) where n denotes input length.

4

in such systems. (Cf. [BFS16] for a recent discussion of setup-attacks and their implications and
mitigations.) In contrast, SCI requires only a short public random string when instantiated as a
publicly verifiable noninteractive CI system.
Discussion The combination of OSUS and public setup which is unique to SCI has three implications:
(i) the ease of setting up and modifying CI systems based on it is relatively small, (ii) the trust
assumptions made by parties using it are comparatively minor and hence (iii) it seems more suitable
than existing solutions for use in decentralized and public settings, like Bitcoin. We repeat and
stress that many such applications require zero-knowledge proofs, a property achieved by prior
solutions and not achieved by SCI; augmenting SCI to obtain zero knowledge seems within reach
[BCGV16] but is outside the scope of our work.

The challenges involved in building scalable universal PCP systems We faced three main
challenges when attempting to construct PCP systems that scale well and apply to general programs:
(i) implementing the recursive proof composition [AS98] technique applied to PCPs of proximity
(PCPPs) [BGH+05, DR06] (ii) constructing quasi-linear PCPP systems for Reed-Solomon (RS)
error correcting codes [RS60] of huge message length [BS08] that require, in particular, quasi-linear
time algorithms for interpolation and multi-point evaluation of large-degree polynomials over finite
fields of characteristic 2; and (iii) reducing general programs that include jumps, loops, and random
access memory (RAM) instructions to succinct Algebraic Constraint Satisfaction Problem (sACSP)
instances that “capture” the corresponding CI statement (*). To overcome the blowup (i) that is
due to recursive PCPP composition, we replace PCPPs with interactive oracle proofs of proximity
(IOPPs) [EB16, BBGR16, BCG+16] and increase the number of rounds of interaction between
prover and verifier; the extra rounds can be removed in the random oracle model [EB16]. To address
(ii) we built a dedicated library that implements finite field arithmetic efficiently [BHST16] and used
it to further implement additive Fast Fourier Transforms (aFFT) [GM10] that perform interpolation
and multi-point evaluation in quasi-linear time and in parallel (via multi-threading). To solve (iii)
and reduce general programs to PCP systems efficiently, we devise a novel reduction from general
programs for random access machines to sACSP instances. We describe these three contributions in
more detail in the Methods and Supplemental Information sections.

2 Measurements

SCI was applied to two programs computing the NP-complete subset-sum problem (cf. Appendix C
in Supplemental Information); we explain this choice after introducing the two programs. The input
to the subset-sum problem is an integer array A of size n and a target integer t; the problem is
to decide whether there exists a subset A′ ⊂ A that sums to t. The CI statement addressed here
is the co-NP version of the problem, stating “no subset of A sums to t” and denoted by τ(A,n,t).
The two programs differ in their time and space consumption. The first one exhaustively tries all
possible subsets, requiring 2n cycles but only O(1) memory, hence can be executed using only the
local registers of the machine and with no random access to memory. The second program uses
sorting and runs in time O(2n/2), a quadratic improvement over the exhaustive solution but it also
requires Θ(2n/2) memory and hence uses the random access memory. We denote the two programs
by Pexh and Psort, respectively.

5

On choice of programs We would like to run SCI on “real-world” applications like the examples
given in the introduction but our current scalability is not up to par. This situation is similar to
that of the very first works on other CI solutions (cf. [CTY11, SBW11, PGHR13, BCG+13a]):
initial reports discussed only small word-size machines, restricted functionality and simple programs.
Like some of those works (most notably, [BCTV14b]) we use the 16-bit version of the TinyRAM
architecture as our model of computation, and support all of its assembly code even though these
two programs use only a subset of it. We focus on subset-sum for two reasons: (i) it is a natural
NP-complete problem that is often used in cryptographic applications but more importantly (ii) it
allows us to display the effect of time–space tradeoffs on our CI solution (cf. Figure 2).

Measurement range Input array size n ranged between 3–16. Prover data was measured on a
“large” server with 32 AMD Opteron cores at clock rate 3.2 GHz and 512 Gigabytes of RAM, running
with two threads per core (total of 64 threads); to bound the single-core/thread prover time one may
multiply the stated times by ×32/× 64 respectively. Verifier data was measured on a “standard”
laptop, a Lenovo T440s with Intel core i7-4600 at clock rate 2.1 GHz and 12 Gigabytes RAM. We
stress that verifier succinctness for one-shot programs allows us to measure verifier running time
independently of prover running time, all the way up to 247 machine cycles. Both prover and verifier
were measured for 1-bit security and 80-bit security using state-of-the-art PCPP and IOPP security
estimates [BBGR16].

Prover time and memory The left column of Figure 1 presents the running time (top) and
memory consumption (bottom) of the Prover for both Pexh and Psort as a function of the number of
machine cycles of the simulated machine for both 1-bit and 80-bit security level. The two main
observations from these figures are that (i) resources scale quasi-linearly with number of cycles and
(ii) Psort is more costly than Pexh due to its random access memory usage, which increases proof
length by × logO(1) T factor for a T -cycle execution (cf. Methods). Figure 2 compares time and
memory as a function of the size on the input array n and shows that for n ≥ 8 the quadratic
running-time improvement of Psort over Pexh outweighs the ×O(log T) factor required by random
access to memory, both for 1-bit and 80-bit security level.

Verifier time and query complexity The right column of Figure 1 shows verifier running
time (top) and query complexity (bottom) for both programs for both 1-bit and 80-bit security
levels. Notice the ≈ 213–223× factor improvement of verifier over prover in both parameters (recall
1MB = 210KB) and the increase in running time as a function of security due to repetition. For
small n verifier running time is greater than that of the näıve verifier which re-runs the program.
However, since naive verification grows like 2n for Pexh and like 2n/2 for Psort, for n ≥ 22 (at 80-bit
security) our verifier is more efficient than the näıve one for Pexh, and for n ≥ 48 the verifier for
Psort is more efficient than the näıve one (cf. Figure 3).

Quantitative comparison with other CI implementations Table 1 compares SCI to two
recent CI systems, one KOE-based [BCG+13a] and the other IVC-based GGPR [BCTV14a]. One
sees that SCI has shorter and simpler setup but larger post-setup communication complexity and
verification time, as predicted by theory. Two other important differences are: (i) proofs in SCI are
not zero-knowledge whereas prior solutions are, and (ii) the setup of SCI is not only shorter but also

6

Table 1: Quantitative comparison of SCI with KOE-based [BCG+13a] and IVC-based [BCTV14a]
solutions. Data measured on executions of 216 cycles of Pexh at an 80-bit security level on the same
machine with 32 AMD Opteron cores at clock rate 3.2 GHz and 512 Gigabytes of RAM. Notice the
proving time of SCI is ∼ ×2 slower than KOE-based and ∼ ×150 faster than IVC-based. Regarding total
communication complexity, SCI is more efficient than prior solutions but less efficient when measuring
only post-processing communication. The main difference between SCI and prior solutions is quantitative:
in SCI, setup requires only a public random string whereas prior solutions require private randomness
associated with a trapdoor that may compromise security.

KOE-based IVC-based SCI

Verifier
setup

time ∼ 28 min ∼ 10 sec <0.01 sec
key length ∼ 18.9 GB 43 MB 16 bytes

Prover
time ∼ 18 min 4.2 days ∼ 41 min
memory ∼ 216 GB 2.9 GB ∼ 135 GB

Verifier
postprocessing

time <10 ms ∼ 25 ms ∼ 0.5 sec
communication
complexity

230 bytes 374 bytes ∼ 42.5 MB

Verifer total
time ∼ 28 min ∼ 10 sec ∼ 0.5 sec
communication
complexity

∼ 18.9 GB 43 MB ∼ 42.5 MB

comprised only of a public random string, whereas prior solutions require private setup and involve
a trapdoor that can be used to forge proofs of false statements.

3 Overview of construction

The construction of the PCP π(P,x,y,T) for the computational statement τ(P,x,y,T) follows the rather
complex process detailed in [BS08, BGH+06, BCGT13b, BCGT13a] which we summarize next (see
Appendix A in Supplemental Information). The statement τ(P,x,y,T) is converted into an instance
ψ(P,x,y,T) of an algebraic constraint satisfaction problem (ACSP) over a finite field3 F of characteristic
2 and τ(P,x,y,T) is used by prover and verifier as described next.

Prover To construct the PCP, the prover executes P on input x and encodes the execution trace
by a Reed-Solomon [RS60] codeword a(P,x,y,T) evaluated over an additive sub-group of F. The
ACSP instance ψ(P,x,y,T) is applied to a(P,x,y,T) as described in [BS08, Equation (3.2)] to obtain
an additional RS-codeword, denoted b(P,x,y,T) = ψ(P,x,y,T)(a(P,x,y,T)), that “attests” to the fact that
a(P,x,y,T) encodes a valid execution trace, and hence, in particular, its output is correct. Each of
the two codewords is appended with a PCP of proximity (PCPP) for the RS-code [BS08], denoted
πa, πb, respectively. The PCP π(P,x,y,T) is defined to be the concatenation of a(P,x,y,T), b(P,x,y,T), πa
and πb.

Verifier The verifier queries the four parts of the PCP in the following manner: First it invokes
an RS-PCPP verifier that queries a(P,x,y,T) and πa to “check” that a(P,x,y,T) is close in Hamming
distance to a codeword of the RS-code; it repeats this process with respect to b(P,x,y,T) and πb.
Second and last, the verifier queries a(P,x,y,T) and b(P,x,y,T) and uses ψ(P,x,y,T) to check that the two

3SCI uses the field of size 264 which suffices for the computations measured here.

7

6 8 10 12 14 16 18 20 22

1min

10min

1hr

3hr
6hr

12hr

log2 # TinyRAM cycles

ti
m

e
(l

og
sc

a
le

)

Prover time vs # TinyRAM cycles (log scale)

10 20 30 40 50

2ms

4ms

8ms

67ms

125ms

250ms

500ms

log2 # TinyRAM cycles

Verifier time vs # TinyRAM cycles (log scale)

6 8 10 12 14 16 18 20 22

10

15

20

25

log2 # TinyRAM cycles

lo
g
2

le
n

gt
h

(M
B

)

PCP length

Pexh (1 bit security)

Pexh (80 bit security)

Psort (1 bit security)

Psort (80 bit security)

10 20 30 40 50
0

5

10

log2 # TinyRAM cycles

lo
g
2

q
u

er
y

co
m

p
.

(K
B

)

Verifier query complexity

Figure 1: Comparison of prover (left) and verifier (right) running time (top) and memory consumption
(bottom). The sharp drop in query complexity is due to transition from 2 to 3 levels of recursion in
the RS-PCPP; as seen in the top-right, this has little effect on overall verifier running time, which is
significantly smaller than prover running time, and also grows at a considerably slower rate as a function
of # cycles. Answers to verifier queries provided by random strings which simulates accurately actual
proofs because verifier is non-adaptive, i.e., its running time is independent of the proof content.

8

2 4 6 8 10 12 14 16 18

10 sec

1min

10min

1hr
3hr
6hr

12hr

array size n

Prover time vs array size

Pexh (1 bit sec.)

Pexh (80 bit security)

Psort (1 bit security)

Psort (80 bit security)

0 5 10 15 20

215

220

array size

PCP length (MB) vs array size

Figure 2: Prover running time (left) and memory consumption (right) as a function of input array size
n. For n ≥ 8 the quadratic running-time improvement of Psort over Pexh overcomes the ×poly log T
factor overhead of Pexh due to random memory access; this holds for both 1-bit and 80-bit security level.

9 12 15 18 21 24

1ms
2ms
4ms
8ms

125ms
250ms
500ms

array size n

Cutoff point for Pexh

Näıve

SCI (1 bit security)

SCI (80 bit security)

20 24 28 32 36 40 44 48

1ms
2ms
4ms
8ms

125ms
250ms
500ms

array size n

Cutoff point for Psort

Näıve

SCI (1 bit security)

SCI (80 bit security)

Figure 3: Computation of the break-even point [SVP+12, SMBW12], the minimal input size n for which
näıve verification via re-execution becomes more costly than PCP-based verification. For Pexh at 80-bit
security this threshold is at n = 22 and for Psort it is significantly higher, estimated around n = 48, due
to quadratic improvement in running time of the latter program.

9

codewords encode a valid computation of P that starts with x and reaches y within T cycles. In
this process we rely on the “locality” of the mapping ψ(P,x,y,T) : a(P,x,y,T) → b(P,x,y,T) which means
that each entry of b(P,x,y,T) depends on a small number of entries of a(P,x,y,T). In what follows we
elaborate on the novel aspects of this reduction as implemented in SCI.

From assembly code to succinct ACSP The efficiency of the ACSP instance ψ(P,x,y,T) is
measured by three parameters that we seek to minimize: circuit, degree, and query complexity,
denoted C(P,x,y,T), D(P,x,y,T), Q(P,x,y,T) respectively. Circuit size affects both proving and verification
time; degree affects PCP length and reducing it decreases running time and memory consumption
on the prover side; query complexity affects the length of communication between prover and verifier
(and the length of computationally sound (CS) proofs π̂) as well as verifier running time. Each
parameter can be optimized at the expense of the other two, and the challenge is to reach an efficient
balance between all three.

Our starting point is a program P, i.e., a sequence of instructions for a random access machine
(RAM). For simplicity we first focus on instructions that access only (local) registers; random access
memory instructions are discussed below. Each instruction specifies the input and output register
locations and an operation applied to the inputs, called the opcode. We build ψ(P,x,y,T) bottom-up
(cf. Appendix B in Supplemental Information for a detailed example). Each opcode op appearing in
P (like xor, add, jump, etc.) is specified by an algebraic definition over F; in other words, we specify
a set of multi-variate polynomials Pop ⊆ F[X1, X2, . . . , Xm] such that the set of common zeros of
Pop correspond to correct input-output tuples for op. Program flow is controlled by multiplying
each polynomial in Pop by a multivariate Lagrange “selector” polynomial that, based on the value v
of the program counter (PC), annihilates all constraints that are irrelevant for enforcing the vth
instruction of P. For a program with ` lines these selector polynomials have degree dlog `e. The
resulting ACSP has circuit size O(`) and degree and query complexity are log `+O(1); the constants
hidden by asymptotic notation depend on the machine specification.

Random access memory instructions The execution trace of P is the length–T sequence of
machine states that describes the computation. To verify the integrity of random access memory
instructions (such as load and store) we follow [BCGT13a, BCGT13b] and use a pair of execution
traces. The first trace, tracetime, is sorted increasingly by time, and the second, tracemem, is
sorted lexicographically first by memory location, then by time. RAM-related execution validity is
verified “locally” by inspecting pairs of consecutive elements in tracemem, just like non-RAM related
instructions are verified “locally” by inspecting pairs of consecutive elements in tracetime. To further
reduce proof length and query complexity, each state of tracemem contains only the information
needed to check memory consistency — an address, its content and the type of memory access
(load/store); let s denote the number of field elements in a single line of tracemem.

To prove that tracemem and tracetime refer to the same execution, the prover must describe a
permutation between the two, and the verifier must check its validity. To achieve this SCI uses
a non-blocking Beneš switching network [Clo53, Ben65a] embedded in an affine graph over F (cf.
[BS08, BCGT13b] for definitions). Using this method, adding RAM-related instructions to a
program adds only O(T · log T) field elements to the PCP and increases query complexity by a small
constant.

10

Reducing proof construction time via Interactive Oracle Proofs of Proximity (IOPP)
A significant portion of the prover running time and memory consumption are dedicated to the
construction of the PCP of Proximity (PCPP) for a(P,x,y,T) and for b(P,x,y,T). The full PCPP for

an RS-codeword of degree N is of length O(N log2.6N) which is quite large in our applications.
Observing that (i) these PCPPs are built using recursive PCPP composition [BGH+06], and (ii)
only a small fraction of recursive branches are explored by the verifier, we increase the number of
rounds of interaction and use a notarized interactive proof of proximity (NIPP) [BBGR16], a special
case of interactive oracle proofs of proximity (IOPP) [EB16, BCG+16] to reduce proof length to
4N + O(

√
N). The added rounds of interaction can be removed in the random oracle model to

obtain computationally sound proofs [EB16].

Parallel implementation of PCPPs for RS codes To reduce the time required to encode the
execution trace into a pair of RS-codewords, SCI uses parallel algorithms for finite field operations
and for dealing with polynomials over finite fields of characteristic 2. To speed up basic field
operations (most notably, multiplication) a dedicated algebraic library was built, that utilizes
parallel hardware on multi-core CPU. Interpolation and evaluation of polynomials over affine spaces
of size N are computed in quasilinear time using so-called additive Fast Fourier Transform (aFFT)
[GM10].

4 Concluding remarks

SCI is the first implementation of a system of computational integrity that achieves asymptotic one
shot universal scalability (OSUS) with a setup key that is merely a public random string. Prior
solutions required a setup procedure that involves keys which could be used to forge proofs of
falsities. While the computer programs on which SCI was tested are of limited applicability, the
simpler setup assumptions of SCI make it a natural starting point for building further applications —
most notably zero knowledge proofs — for use in decentralized networks.

Acknowledgements

We thank Ohad Barta, Lior Greenblatt, Shaul Kfir, Gil Timnat and Arnon Yogev for programming
support in early stages of this work. The research reported here has received funding from the
following sources, sorted alphabetically: the Center for Science of Information (CSoI), an NSF
Science and Technology Center, under grant agreement CCF-0939370; the European Community’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement number 240258; the Israeli
Science Foundation (grants 1501/14,1138/14);

11

References

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. Journal of the ACM, 45(3):501–555,
1998. Preliminary version in FOCS ’92.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new characterization of NP.
Journal of the ACM, 45(1):70–122, 1998. Preliminary version in FOCS ’92.

[BBGR16] Eli Ben-Sasson, Iddo Ben-Tov, Ariel Gabizon, and Michael Riabzev. Improved concrete efficiency
and security analysis of reed-solomon pcpps, 2016. URL: http://eccc.hpi-web.de/report/
2016/073.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and
bootstrapping for SNARKs and proof-carrying data. In Proceedings of the 45th ACM Symposium
on the Theory of Computing, STOC ’13, pages 111–120, 2013.

[BCG+13a] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs
for C: Verifying program executions succinctly and in zero knowledge. In Proceedings of the 33rd
Annual International Cryptology Conference, CRYPTO ’13, pages 90–108, 2013.

[BCG+13b] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. TinyRAM
architecture specification v2.00, 2013. URL: http://scipr-lab.org/tinyram.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer,
and Madars Virza. Zerocash: Decentralized anonymous payments from Bitcoin. In Proceedings
of the 2014 IEEE Symposium on Security and Privacy, SP ’14, pages 459–474, 2014.

[BCG+15] Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and Madars Virza. Secure
sampling of public parameters for succinct zero knowledge proofs. In 2015 IEEE Symposium on
Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 287–304, 2015.
URL: http://dx.doi.org/10.1109/SP.2015.25, doi:10.1109/SP.2015.25.

[BCG+16] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas Spooner.
Short interactive oracle proofs with constant query complexity, via composition and sumcheck.
Electronic Colloquium on Computational Complexity, 2016. TR16–046.

[BCGT13a] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. Fast reductions from RAMs
to delegatable succinct constraint satisfaction problems. In Proceedings of the 4th Innovations in
Theoretical Computer Science Conference, ITCS ’13, pages 401–414, 2013.

[BCGT13b] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. On the concrete efficiency
of probabilistically-checkable proofs. In Proceedings of the 45th ACM Symposium on the Theory
of Computing, STOC ’13, pages 585–594, 2013.

[BCGV16] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, and Madars Virza. Quasi-linear size zero
knowledge from linear-algebraic PCPs. In Theory of Cryptography - 13th International Conference,
TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part II, pages 33–64, 2016.
doi:10.1007/978-3-662-49099-0_2.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct
non-interactive arguments via linear interactive proofs. In Proceedings of the 10th Theory of
Cryptography Conference, TCC ’13, pages 315–333, 2013.

[BCTV14a] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge via
cycles of elliptic curves. In Proceedings of the 34th Annual International Cryptology Conference,
CRYPTO ’14, pages 276–294, 2014.

12

http://eccc.hpi-web.de/report/2016/073
http://eccc.hpi-web.de/report/2016/073
http://scipr-lab.org/tinyram
http://dx.doi.org/10.1109/SP.2015.25
http://dx.doi.org/10.1109/SP.2015.25
http://dx.doi.org/10.1007/978-3-662-49099-0_2

[BCTV14b] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive
zero knowledge for a von Neumann architecture. In Proceedings of the 23rd USENIX Security
Symposium, San Diego, CA, USA, August 20-22, 2014., pages 781–796, 2014.

[Ben65a] Václav E. Beneš. Mathematical theory of connecting networks and telephone traffic, 1965. URL:
http://opac.inria.fr/record=b1083990.

[Ben65b] Václav E. Beneš. Mathematical theory of connecting networks and telephone traffic. New York,
Academic Press, 1965.

[BFL90] László Babai, Lance Fortnow, and Carsten Lund. Nondeterministic exponential time has two-
prover interactive protocols. In Proceedings of the 31st Annual Symposium on Foundations of
Computer Science, SFCS ’90, pages 16–25, 1990.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations
in polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium on Theory of
Computing, STOC ’91, pages 21–32, 1991.

[BFS16] Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. Nizks with an untrusted crs: Security
in the face of parameter subversion. Cryptology ePrint Archive, Report 2016/372, 2016. http:
//eprint.iacr.org/.

[BGH+05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Short
PCPs verifiable in polylogarithmic time. In Proceedings of the 20th Annual IEEE Conference on
Computational Complexity, CCC ’05, pages 120–134, 2005.

[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Robust
PCPs of proximity, shorter PCPs, and applications to coding. SIAM Journal on Computing,
36(4):889–974, 2006. Preliminary versions of this paper have appeared in Proceedings of the 36th
ACM Symposium on Theory of Computing and in Electronic Colloquium on Computational
Complexity.

[BGKW88] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. Multi-prover interactive
proofs: how to remove intractability assumptions. In Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, STOC ’88, pages 113–131, 1988.

[BHST16] Eli Ben-Sasson, Matan Hamilis, Mark Silberstein, and Eran Tromer. Fast multiplication in
binary fields on gpus via register cache. In Proceedings of the 2016 International Conference on
Supercomputing, ICS ’16, 2016.

[BM88] László Babai and Shlomo Moran. Arthur-Merlin games: a randomized proof system, and a
hierarchy of complexity class. Journal of Computer and System Sciences, 36(2):254–276, 1988.

[BS08] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM Journal
on Computing, 38(2):551–607, 2008. Preliminary version appeared in STOC ’05.

[BSVW03] Eli Ben-Sasson, Madhu Sudan, Salil Vadhan, and Avi Wigderson. Randomness-efficient low
degree tests and short PCPs via epsilon-biased sets. In Proceedings of the 35th Annual ACM
Symposium on Theory of Computing, STOC ’03, pages 612–621, 2003.

[Clo53] Charles Clos. A study of non-blocking switching networks. Bell System Technical Journal,
32(2):406–424, mar 1953. URL: http://dx.doi.org/10.1002/j.1538-7305.1953.tb01433.x,
doi:10.1002/j.1538-7305.1953.tb01433.x.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified computation
with streaming interactive proofs. In Proceedings of the 4th Symposium on Innovations in
Theoretical Computer Science, ITCS ’12, pages 90–112, 2012.

[CTY11] Graham Cormode, Justin Thaler, and Ke Yi. Verifying computations with streaming interactive
proofs. Proceedings of the VLDB Endowment, 5(1):25–36, 2011.

13

http://opac.inria.fr/record=b1083990
http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1002/j.1538-7305.1953.tb01433.x
http://dx.doi.org/10.1002/j.1538-7305.1953.tb01433.x

[CZ15] Alessandro Chiesa and Zeyuan Allen Zhu. Shorter arithmetization of nondeterministic
computations. Theoretical Computer Science, 600:107 – 131, 2015. URL: http://www.

sciencedirect.com/science/article/pii/S0304397515006647, doi:http://dx.doi.org/

10.1016/j.tcs.2015.07.030.

[DFK+92] Cynthia Dwork, Uriel Feige, Joe Kilian, Moni Naor, and Shmuel Safra. Low communication 2-
prover zero-knowledge proofs for NP. In Proceedings of the 12th Annual International Cryptology
Conference, CRYPTO ’92, pages 215–227, 1992.

[Din07] Irit Dinur. The PCP theorem by gap amplification. Journal of the ACM, 54(3):12, 2007.

[DR06] Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof of the
PCP theorem. SIAM J. Comput., 36(4):975–1024, 2006. URL: http://dx.doi.org/10.1137/
S0097539705446962, doi:10.1137/S0097539705446962.

[EB16] Nicholas Spooner Eli Ben-Sasson, Alessandro Chiesa. Interactive oracle proofs. IACR Cryptology
ePrint Archive, 2016:116, 2016. URL: http://eprint.iacr.org/2016/116.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to identification and
signature problems. In Proceedings of the 6th Annual International Cryptology Conference,
CRYPTO ’87, pages 186–194, 1987.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In Proceedings of the 30th Annual Conference on
Advances in Cryptology, CRYPTO’10, pages 465–482, Berlin, Heidelberg, 2010. Springer-Verlag.
URL: http://dl.acm.org/citation.cfm?id=1881412.1881445.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs
and succinct NIZKs without PCPs. In Proceedings of the 32nd Annual International Conference
on Theory and Application of Cryptographic Techniques, EUROCRYPT ’13, pages 626–645,
2013.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: Inter-
active proofs for Muggles. In Proceedings of the 40th Annual ACM Symposium on Theory of
Computing, STOC ’08, pages 113–122, 2008.

[GM10] Shuhong Gao and Todd Mateer. Additive fast fourier transforms over finite fields. IEEE Trans.
Inf. Theor., 56(12):6265–6272, December 2010. URL: http://dx.doi.org/10.1109/TIT.2010.
2079016, doi:10.1109/TIT.2010.2079016.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 18(1):186–208, 1989. Preliminary version appeared
in STOC ’85.

[Gre16] Andy Greenberg. Zcash, an untraceable bitcoin alternative, launches in alpha, January 2016.
[Wired.com; posted online 20-January-2016].

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Proceedings of
the 16th International Conference on the Theory and Application of Cryptology and Information
Security, ASIACRYPT ’10, pages 321–340, 2010.

[H̊as01] Johan H̊astad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–859,
2001.

[HS00] Prahladh Harsha and Madhu Sudan. Small PCPs with low query complexity. Computational
Complexity, 9(3–4):157–201, Dec 2000. Preliminary version in STACS ’91.

[IKO07] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient arguments without short PCPs.
In Proceedings of the Twenty-Second Annual IEEE Conference on Computational Complexity,
CCC ’07, pages 278–291, 2007.

14

http://www.sciencedirect.com/science/article/pii/S0304397515006647
http://www.sciencedirect.com/science/article/pii/S0304397515006647
http://dx.doi.org/http://dx.doi.org/10.1016/j.tcs.2015.07.030
http://dx.doi.org/http://dx.doi.org/10.1016/j.tcs.2015.07.030
http://dx.doi.org/10.1137/S0097539705446962
http://dx.doi.org/10.1137/S0097539705446962
http://dx.doi.org/10.1137/S0097539705446962
http://eprint.iacr.org/2016/116
http://dl.acm.org/citation.cfm?id=1881412.1881445
http://dx.doi.org/10.1109/TIT.2010.2079016
http://dx.doi.org/10.1109/TIT.2010.2079016
http://dx.doi.org/10.1109/TIT.2010.2079016

[IKOS09] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge proofs from
secure multiparty computation. SIAM J. Comput., 39(3):1121–1152, 2009.

[IMS12] Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. On efficient zero-knowledge PCPs. In
Proceedings of the 9th Theory of Cryptography Conference on Theory of Cryptography, TCC ’12,
pages 151–168, 2012.

[IMSX15] Yuval Ishai, Mohammad Mahmoody, Amit Sahai, and David Xiao. On zero-knowledge PCPs:
Limitations, simplifications, and applications, 2015. Available online. URL: http://www.cs.
virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In Proceedings of the 24th
Annual ACM Symposium on Theory of Computing, STOC ’92, pages 723–732, 1992.

[KMS+15] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou. Hawk:
The blockchain model of cryptography and privacy-preserving smart contracts. Cryptology
ePrint Archive, Report 2015/675, 2015. http://eprint.iacr.org/.

[KPT97] Joe Kilian, Erez Petrank, and Gábor Tardos. Probabilistically checkable proofs with zero
knowledge. In Proceedings of the 29th Annual ACM Symposium on Theory of Computing,
STOC ’97, pages 496–505, 1997.

[LFKN92] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. J. ACM, 39(4):859–868, October 1992. URL: http://doi.acm.org/
10.1145/146585.146605, doi:10.1145/146585.146605.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-knowledge
arguments. In Proceedings of the 9th Theory of Cryptography Conference on Theory of Cryptog-
raphy, TCC ’12, pages 169–189, 2012.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–1298,
2000. Preliminary version appeared in FOCS ’94.

[Mie09] Thilo Mie. Short PCPPs verifiable in polylogarithmic time with o(1) queries. Annals of
Mathematics and Artificial Intelligence, 56:313–338, 2009.

[MR08] Dana Moshkovitz and Ran Raz. Two-query PCP with subconstant error. Journal of the ACM,
57:1–29, June 2008. Preliminary version appeared in FOCS ’08.

[MX13] Mohammad Mahmoody and David Xiao. Languages with efficient zero-knowledge pcps are in
SZK. In Proceedings of the 10th Theory of Cryptography Conference, TCC ’13, pages 297–314,
2013.

[Nak09] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, May 2009. URL: http:
//www.bitcoin.org/bitcoin.pdf.

[PGHR13] Brian Parno, Craig Gentry, Jon Howell, and Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. In Proceedings of the 34th IEEE Symposium on Security and Privacy,
Oakland ’13, pages 238–252, 2013.

[Raz95] Ran Raz. A parallel repetition theorem. In Proceedings of the 27th Annual ACM Symposium on
Theory of Computing, STOC ’95, pages 447–456, 1995.

[RS60] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of the Society for
Industrial and Applied Mathematics, 8(2):300–304, 1960. URL: http://dx.doi.org/10.1137/
0108018, arXiv:http://dx.doi.org/10.1137/0108018, doi:10.1137/0108018.

[SBV+13] Srinath Setty, Benjamin Braun, Victor Vu, Andrew J. Blumberg, Bryan Parno, and Michael
Walfish. Resolving the conflict between generality and plausibility in verified computation. In
Proceedings of the 8th EuoroSys Conference, EuroSys ’13, pages 71–84, 2013.

15

http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf
http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf
http://eprint.iacr.org/
http://doi.acm.org/10.1145/146585.146605
http://doi.acm.org/10.1145/146585.146605
http://dx.doi.org/10.1145/146585.146605
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
http://dx.doi.org/10.1137/0108018
http://dx.doi.org/10.1137/0108018
http://arxiv.org/abs/http://dx.doi.org/10.1137/0108018
http://dx.doi.org/10.1137/0108018

[SBW11] Srinath Setty, Andrew J. Blumberg, and Michael Walfish. Toward practical and unconditional
verification of remote computations. In Proceedings of the 13th USENIX Conference on Hot
Topics in Operating Systems, HotOS ’11, pages 29–29, 2011.

[SMBW12] Srinath Setty, Michael McPherson, Andrew J. Blumberg, and Michael Walfish. Making argument
systems for outsourced computation practical (sometimes). In Proceedings of the 2012 Network
and Distributed System Security Symposium, NDSS ’12, 2012.

[SVP+12] Srinath Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J. Blumberg, and Michael
Walfish. Taking proof-based verified computation a few steps closer to practicality. In Proceedings
of the 21st USENIX Security Symposium, Security ’12, pages 253–268, 2012.

[Tha13] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In Proceedings of the 33rd
Annual International Cryptology Conference, CRYPTO ’13, pages 71–89, 2013.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency. In Proceedings of the 5th Theory of Cryptography Conference, TCC ’08, pages 1–18,
2008.

[VSBW13] Victor Vu, Srinath Setty, Andrew J. Blumberg, and Michael Walfish. A hybrid architecture for
interactive verifiable computation. In Proceedings of the 34th IEEE Symposium on Security and
Privacy, Oakland ’13, pages 223–237, 2013.

[WB15] Michael Walfish and Andrew J. Blumberg. Verifying computations without reexecuting them.
Commun. ACM, 58(2):74–84, 2015. URL: http://doi.acm.org/10.1145/2641562, doi:10.

1145/2641562.

[WSR+15] Riad S. Wahby, Srinath T. V. Setty, Zuocheng Ren, Andrew J. Blumberg, and Michael Walfish.
Efficient RAM and control flow in verifiable outsourced computation. In 22nd Annual Network
and Distributed System Security Symposium, NDSS 2015, San Diego, California, USA, February
8-11, 2014, 2015.

16

http://doi.acm.org/10.1145/2641562
http://dx.doi.org/10.1145/2641562
http://dx.doi.org/10.1145/2641562

A Detailed PCP construction

We describe the way a PCP is generated for τ(P,x,y,T), then discuss its verification.

Proof generation The PCP proof π(P,x,y,T) for τ(P,x,y,T) is a concatenation of four sub-proofs:
two codewords in a Reed-Solomon code [RS60] and two quasilinear size PCPs of Proximity (PCPP)
for the RS-codewords [BS08]. To obtain these four sub-proofs, the prover starts by executing
the program P on input x for T steps and records its execution trace — the length–T sequence
of machine states that the machine goes through during execution. Each state is converted to
a sequence of elements in the finite field F of size 264; Auxiliary field elements are appended to
each state to reduce the degree complexity of ψ(P,x,y,T) as described in Section B; let s denote the
total number of field elements per state. The resulting algebraic trace traceaug is thus a table of
N = T · s elements of F, and is viewed as a function from S ⊂ F, |S| = N to F, where S is an
affine space over the two-element field. Prover now computes the low-degree extension (LDE) of
traceaug by interpolating and then evaluating traceaug on a set S′ ⊂ F that is significantly larger
than S. This results in a codeword a(P,x,y,T) of a Reed-Solomon (RS) code [RS60] over F of degree
N − 1 and rate ρ = |S|/|S′|. Next, the ACSP instance ψ(P,x,y,T) is applied to a(P,x,y,T) as described
in [BS08, Equation (3.2)], producing another RS-codeword b(P,x,y,T) = ψ(P,x,y,T)(a(P,x,y,T)), of degree

D(P,x,y,T) · (N − 1) and rate ρ′ = D(P,x,y,T) ·ρ (SCI uses ρ′ = 1
8). Finally, a PCP of proximity (PCPP)

for RS-codes [BS08] is appended to each of a(P,x,y,T) and b(P,x,y,T) to prove that indeed each belongs
to the RS-code of the designated rate — ρ for a(P,x,y,T) and ρ′ for b(P,x,y,T); denote these PCPPs by
πa, πb, respectively. Summing up, the PCP proof π(P,x,y,T) is the concatenation of the four strings
a(P,x,y,T), πa, b(P,x,y,T) and πb.

Proof verification On the verifier side, given ψ(P,x,y,T) as input and oracle access to

π(P,x,y,T) = (a(P,x,y,T), πa, b(P,x,y,T), πb)

as above, the verifier invokes the RS-PCPP verifier of [BS08] on each of (a(P,x,y,T), πa) and
(b(P,x,y,T), πb). Then it checks that a(P,x,y,T) = ψ(P,x,y,T)(b(P,x,y,T)) by sampling both a(P,x,y,T) and
b(P,x,y,T) at a small number of locations (1 +Q(P,x,y,T) per test). To boost soundness, each of the
aforementioned tests is repeated a number of times, using fresh randomness (SCI uses 14 repetitions
to reduce the probability of error to error = 1

2). The verifier “accepts” τ(P,x,y,T) (i.e., proclaims it to
be likely true) if and only if π(P,x,y,T) passes all these checks; the security analysis guarantees that
this verdict is correct with probability 1− error.

B Algebraic definition of general programs as zero locus of low-
degree polynomial system

Our goal here is to explain how SCI converts programs into succinct algebraic CSP (ACSP) instances.
For concreteness this is described for the TinyRAM machine specification [BCG+13b] — a simple
random access machine (RAM) with 16 registers and 16-bit size words that includes opcodes for
logical operations, integer arithmetic, conditional jumps and random access memory instructions;
the same techniques could be adapted to other machine specifications.

17

Algebra preliminaries Fix a basis β0, . . . , β63 for F264 over F2 generated by an irreducible
polynomial h(X). Any sequence of w bits a0, . . . , aw−1 can be naturally mapped to the field element∑w−1

i=0 aiβi as long as w < 64 and vice versa, field elements can be converted to sequences of bits; we
assume this natural mapping and in particular will often identify the a 16-bit sequence (a0, . . . , a15)
with the field element

∑15
i=0 aiβi.

Overview of reduction The reduction from RAM programs to ACSPs has been described in
detail in [BCGT13a] and further improved in [CZ15]; we follow this route. In particular, instructions
that involve the random access memory are verified using affine routing networks as explained in
[BCGT13a] (cf. [CZ15]), although SCI uses an affine graph in which the Beneš network [Ben65b] is
embedded. Boundary constraints (such as the initial and final state of the machine) are enforced as
explained in [BCGT13a]. A remaining problem of great practical importance that remained from
previous works has been how to reduce efficiently the transition function described by a program into
a set of low-degree polynomials whose zero-locus corresponds to a valid evolution of the program’s
transition function. We describe this below. Our reduction works bottom up and has two main
steps. (i) First, we define the input–output relation of each opcode as the zero-locus of a system of
low-degree polynomials. (ii) In similar manner we define the transition function of the program
as the zero-locus of a (larger) system of polynomials, one that uses the definitions of opcodes in
terms of polynomials. The resulting set of polynomials is “glued” into a single large polynomial as
described, e.g., in [BS08, Equation (5.5)] and [BCGT13a, Section 10].

B.1 Algebraic definition of opcodes

Our basic data-unit is called a word, in TinyRAM its size is 16 bits. The atoms of a computer program
are opcodes; each opcode has a fixed amount of input and output words. For example, XOR receives
two words A = (a0, . . . , a15), B = (b0, . . . , b15) and its output is a single word C = (c0, . . . , c15)
where ci = ai⊕ bi and ⊕ denotes exclusive-or; the AND opcode outputs ci = ai∧ bi, the ADD opcode
performs integer addition, etc. (cf. [BCG+13b] for details).

An opcode op with k inputs and ` outputs defines a relation Rop that contains all sequences of
inputs and outputs that correspond to valid executions of op. Continuing with the examples above
and using f to denote the flag,

RXOR =
{

(a, b, c) ∈ {0, 1}3·16 | ai ⊕ bi ⊕ ci = 0
}

RAND =
{

(a, b, c) ∈ {0, 1}3·16 | (ai ∧ bi)⊕ ci = 0
}

RADD =

{
(a, b, c) ∈ {0, 1}3·16 , f ∈ {0, 1} |

15∑
i=0

ai2
i +

15∑
i=0

bi2
i −

(
f · 216 +

15∑
i=0

ci2
i

)
= 0

}

An algebraic opcode is an opcode (as defined above) over an alphabet that is a finite field,
i.e., Rop ⊂ Fk+`. Any finite set is an algebraic set, meaning it can be described as the zero-
locus of a system of polynomials, however, these polynomials may have large degree and/or large
arithmetic complexity, which would harm the efficiency of our reduction. To reduce degree and
arithmetic complexity we shall allow auxiliary variables and consider algebraic sets S over Fk+`+m
such that Rop is the projection of S to the first k + ` variables. Formally, an algebraic constraint
system Aop corresponding to an opcode op with k inputs and ` outputs is a set of polynomials

18

Aop ⊂ F[X1, . . . , Xk, Y1, . . . , Y`, Z1, . . . , Zm] such that

Rop = {x1, . . . , xk, y1, . . . , y` | ∃z1, . . . , zm, Aop(x1, . . . , xk, y1, . . . , y`, z1, . . . , zm) = 0} (1)

We call X1, . . . , Xk the input variables, Y1, . . . , Y` the output variables and Z1, . . . , Zm are auxiliary
variables. While any relation can be defined without any auxiliary variables, the degree of such Aop

may be very large (e.g., in the case of AND, ADD), therefor, to minimize ACSP degree we shall often
use auxiliary variables as shown in the following examples; explanations appear below but notice
XOR uses no auxiliary variables and the AND opcode uses 48 of them. We defer the explanation of
the more complicated ADD opcode to later on.

AXOR = {X1 +X2 + Y1} (2)

AAND =

{
X1 +

15∑
i=0

Ziβi, X2 +
15∑
i=0

Z16+iβi, Y1 +
15∑
i=0

Z32+iβi

}
(3)⋃

{Zj · (Zj + 1) | j = 0, . . . , 47} (4)⋃
{(Zi · Z16+i) + Z32+i | i = 0, . . . , 15} (5)

Recall that addition in F corresponds to exclusive-or, hence XOR has an algebraic constraint
system with a single polynomial of degree 1 and no auxiliary variables, and it satisfies (1). To
see that (3)–(5) form an algebraic constraint system for AND we argue as follows. Suppose
(x1, x2, y1, z0, . . . , z47) belongs to the zero-locus of AAND, i.e., all polynomials in AAND vanish on this
input. Then by (4) we have zj ∈ {0, 1} for j = 0, . . . , 47. By (3) we see that z32+i = zi ∧ z16+i for
i = 0, . . . , 15. Finally, by (3) we see that x1 “packs” z0, . . . , z15 into a single field elements, meaning x1
is the field element whose representation in the basis β0, . . . , β63 is the sequence z0, . . . , z15, 0, 0, . . . , 0
and similarly x2 “packs” z16, . . . , z31 and y1 “packs” z32, . . . , z47. Therefore, y1 is the bitwise and of
x1 and x2, as required by (1).

The constraints of the ADD opcode correspond to the operation of a full binary adder and
appear below ((6)– (10)). In what follows auxiliary variables Z0, . . . , Z15 are used to “unpack” X1,
auxiliary variables Z16, . . . , Z31 “unpack” X2, auxiliary variables Z32, . . . , Z47 are the carry bits
and Z48, . . . , Z63 “unpack” the output Y1; the overflow flag is stored in Y2. The constraint set (6)
“unpacks” both inputs and the output using 16 auxiliary variables each as done in (3) above. The
constraint set (7) checks that each auxiliary variable is boolean (as done in (4)) but now we have 16
additional auxiliary variables for the carry bits, reaching a total of 64 auxiliary variables. The set of
constraints (8) checks that the carry bits (Z32, . . . , Z47) are computed correctly. In (9) the output is
checked to be equal to the exclusive-or of the relevant input and carry bits. Finally, in (10) we check
that the least significant carry and output bits are correct, and that the most significant carry bit
(Z47) equals the overflow flag (Y2).

19

AADD =

{
X1 +

15∑
i=0

Ziβi, X2 +

15∑
i=0

Z16+iβi, Y1 +

15∑
i=0

Z48+iβi

}
(6)⋃

{Zj · (Zi + 1) | j = 0, . . . , 63} (7)⋃
{ZiZ16+i + ZiZ31+i + Z16+iZ31+i + Z32+i | i = 1, . . . , 15} (8)⋃
{Zi + Z16+i + Z32+i + Z48+i | i = 1, . . . , 15} (9)⋃
{Z0 · Z16 + Z32, Z0 + Z16 + Z48, Z63 + Y2} (10)

Complexity of other opcodes The opcodes described above, applied to w-bit registers, require
O(w) constraints and auxiliary variables (RXOR requires O(1) constraints and auxiliary variables).
All other opcodes of the TinyRAM assembly specification [BCG+13b] can be implemented with
O(w) complexity. For most opcodes this can be verified by inspection. For integer multiplication —
i.e., to prove that (

w−1∑
i=0

ai2
i

)
·

(
w−1∑
i=0

bi2
i

)
=

2w−2∑
i=0

ci2
i, ai, bi, ci ∈ {0, 1}

we fix a generator g for the multiplicative group of F (the order of g is 263− 1 for our choice of field)
and then apply repeated squaring to verify that(

g(
∑

i ai2
i)
)(

∑
i bi2

i)
= g(

∑
i ci2

i)

Inspection reveals this solution scales asymptotically like O(w) and for small values, RMUL is twice
as costly as RADD in terms of number of constraints and auxiliary variables.

B.2 Program flow via multi-linear Lagrange polynomials

A program P of length s is a sequence of instructions I0, . . . , Is−1, each instruction contains an opcode
and a list of k inputs and ` outputs, where k and ` should match the number of inputs and outputs
consumed and produced by the opcode, respectively. An input is either a constant (also known as
immediate) or a register location and outputs are invariably register locations. (Instructions related
to random access memory are dealt with separately, below; until then we assume our programs do
not access it and use only the 16 registers.) Each instruction also points to the next instruction in
the program; by default Ij points to Ij+1 but certain instructions (jumps and conditional jumps)
may point to a different instruction, and the pointer may further depend on the value of certain
registers. The program counter (PC) is a special register that contains the number of the current
instruction, and thus takes values in {0, . . . , s− 1}.

A machine state is a pair S = (~PC, ~R) where ~PC holds the value of the program counter and ~R
contains the values of all registers. The program P induces a natural relation RP that contains all

pairs (S = (~PC, ~R), S′ = (~PC′, ~R′)) of machine states such that a single cycle of the machine in state
S (with program counter being ~PC and registers holding values ~R) results in state S′. As done for
opcodes in (1), our purpose in this subsection is to define a system of constraints, denoted AP, that

20

defines RP as its zero-locus, projected onto its first few variables. Formally, let ~PC, ~PC′, ~R, ~R′ denote
variables ranging over F, and recall ~x, ~y, ~z denote variables for opcode inputs, outputs and auxiliary
variables, respectively. Then

RP =
{((

~PC, ~R
)
,
(
~PC′, ~R′

))
| ∃~x, ~y, ~zAP

(
~PC, ~R, ~PC′, ~R′, ~x, ~y, ~z

)
= 0
}

(11)

In words, AP is a set of polynomials whose zero-locus, projected to ~PC, ~R, ~PC′, ~R′, equals the “program
evolution” relation RP.

To minimize degree complexity, the program counter value is recorded via r = dlog se many
variables, denoted PC1, . . . ,PCr, each ranging over {0, 1}. For α ∈ {0, 1}r let

Lα(PC1, . . . ,PCr) =

r∏
i=1

(PCi + αi + 1)

be the Lagrange multi-linear polynomial that evaluates to 1 on α and evaluates to 0 on {0, 1}r \ {α}.
We multiply the polynomials in the algebraic constraint system appearing in the ith instruction by
Li(PC1, . . . ,PCr) where i ∈ {0, 1}r is the binary representation of i. Informally, this has the effect
of applying the set of constraints Aop only when the PC points to an instruction that contains op.
Formally, for each opcode op appearing in the program P, let Iop∈P ⊆ {0, . . . , s− 1} be the set of
program instructions in which op is executed. Then define

Âop∈P =

P ·∑
i∈Iop

Li (PC1, . . . ,PCr) | P ∈ Aop

 (12)

Inputs and outputs to an opcode are checked in a similar way. In particular, let ii,1, . . . , ii,ki denote
the indices of the registers that are the inputs of the opcode in instruction i and let oi,1, . . . , oi,`i be
the indices of output registers of that instruction, then we define

Â
i/o
i =

{
(Xj − Rii,j) · Li (PC1, . . . ,PCr) | j = 1, . . . , ki

}
(13)⋃ {

(Yj − R′oi,j) · Li (PC1, . . . ,PCr) | j = 1, . . . , `i

}
⋃ {

(Rj − R′j) · Li (PC1, . . . ,PCr) | j is not an output register of instruction i
}

In similar fashion, updating the program counter during the ith instruction is defined using a
set of polynomials whose zero locus corresponds to the correct update of PC value. Typically, this
modification simply increments the value of the PC by 1, and this can be done by multiplying each
polynomial in (6)–10) by Li (PC1, . . . ,PCr). Let Âpc

i denote the corresponding set of polynomials.
The final set AP that defines the “program evolution” relation RP is

AP ,
{
Âop∈P | op appears in P

}⋃{
Â

i/o
i | i = 0, . . . , s− 1

}
(14)⋃{

Âpc
i | i = 0, . . . , s− 1

}
and the discussion above shows that its zero locus AP, projected to ~PC, ~R, ~PC′, ~R′, indeed equals

RP.

21

C Two programs computing subset-sum

Code 1 shows a high-level description of the exhaustive subset sum program, and Code 2 gives an
equivalent TinyRAM hand-optimized implementation (cf. Appendix D for discussion of machine
compiled assembly). In Code 1, the variable k is treated as a binary vector that iterates over all the
possible combinations of the inputs. The inputs that correspond to each combination are summed
up by inspecting whether the least significant bit (LSB) of k is 1, and then shifting k rightward.
Code 2 uses the AND,CMPE,SHR TinyRAM instructions for these inspections and shifts. It should be
noted that the instruction set that is needed for Code 2 is uncostly, in particular the cost of the DIV

instruction would have been about twice higher than SHR in terms of the number of field elements
that the prover commits to in a time step.

The total number of time steps T of the ACSP for Code 2 is sufficiently large if the inequality
2n · (9n+ 7) < T holds, where n is the size of the input array. With 16-bit TinyRAM architecture,
n ≤ 16 is also required, unless extra logic is added to Code 2. In this inequality, the term 9n can be
inferred by amortizing the number of TinyRAM instructions that are executed when the LSB of k
is either 0 or 1. For example, T = 220 is sufficient for n = 13 inputs. For a further demonstration of
the dependency between T and n, see Figure 2.

The TinyRAM architecture relies on 16 or less registers, in particular Code 2 needs 5 registers
in total. This helps with keeping the complexity low, as it implies that a relatively small number of
field elements are required per time step. However, this also means that we do not have enough
registers to store the entire input array. Since it is preferable to avoid the poly-logarithmic blowup
of programs with memory, Code 2 employs a special “read-only memory” (ROM) instruction. The
ROM instruction takes a single operand, treats it as an index J ≤ n, and returns the corredponding
array[J] input value. The algebraic constraints of the ROM instruction consist of unpacking the bits
of J and using a selector polynomial to force the prover to use the predefined array[J] field element.
For example, with n = 8, the ROM instruction can be implemented as

2⋃
k=0

{bk(bk + 1)}
⋃
{J +

2∑
k=0

bkx
k,

∑
α,β,γ∈{0,1}

(b0 + α)(b1 + β)(b2 + γ)(R+ Cα,β,γ)},

where R is the returned operand and Cα,β,γ are the array input values that the ACSP instance
specifies. Thus, the degree of the ROM constraints is bounded by dlog ne+ 1, and overall the ROM

instruction is far less complex than deploying the full read/write memory construction.

Code 3 is a subset sum program that computes all the partial sums of half of the input numbers,
as well as the other half, and then does a linear scan to look for two partial sums that add up to the
target value [?©]. The partial sums are first stored in memory in a sorted order, which can be done 6y
in O(n) time due to the following observation: given a sorted list S1, S2, . . . , S2k of all the possible
sums that can be produced from combinations of certain k numbers, and another number m, the
sorted list S1 +m,S2 +m, . . . , S2k +m can be merged into S1, S2, . . . , S2k to obtain one sorted list
of size 2k+1, in linear time. Hence, Code 3 needs to store O(

√
2n) elements in memory, where n is

the size of the input array.
Code 4 gives a hand-optimized TinyRAM implementation of this high-level pseudocode, in which

the dependecy between n and the total number of time steps T is n ≈ 2(T − 7). Section D discusses
the machine compiled code for the same program. As can be seen in Figure 2, Code 4 can thus
cope with greater values of n than Code 2, even after the poly-logarithmic blowup in complexity
that is due to memory handling is taken into account.

22

Notice that unlike the high-level description in Code 3, the Code 4 implementation that we
benchmark actually outputs a bit-string of the correct combination, if one exists (Code 5 and Code 6
do this as well). This extra work is done for a fair comparison with Code 2, that does this “for free”.
However, since subset sum is an NP-complete problem, it makes sense to generate the PCP on
unsatisfiable instances. Therefore, this extra work can be regarded as unnecessary in this context.

Code 1 Pseudocode of the exhaustive search subset sum program

input: n, array[n], target

1: for k = 1 to 2n − 1 do . k loops over all {0, 1}n \ {0n} combinations
2: curr ← k, idx← 0, sum← 0
3: while curr 6= 0 do
4: if 1 = (curr bitwise-and 1) then . LSB of curr is 1?
5: sum← sum+ array[idx]
6: end if
7: curr ← curr/2, idx← idx+ 1
8: end while
9: if sum = target then

10: return k
11: end if
12: end for
13: return 0

Code 2 TinyRAM assembly code of the exhaustive search subset sum program

1: MOVMOVMOV r0, 1
2: CMPECMPECMPE r0, 2n

3: CJMPCJMPCJMP Line#21

4: MOVMOVMOV r1, 0
5: MOVMOVMOV r2, r0
6: MOVMOVMOV r3, 0
7: ANDANDAND r4, r2, 1
8: CMPECMPECMPE r4, 0

9: CJMPCJMPCJMP Line#12

10: ROMROMROM r4, r3
11: ADDADDADD r1, r1, r4
12: SHRSHRSHR r2, r2, 1
13: CMPECMPECMPE r2, 0
14: CJMPCJMPCJMP Line#17

15: ADDADDADD r3, r3, 1
16: JMPJMPJMP Line#7

17: CMPECMPECMPE r1, target
18: CJMPCJMPCJMP Line#22

19: ADDADDADD r0, r0, 1
20: JMPJMPJMP Line#2

21: MOVMOVMOV r0, 0
22: ANSWANSWANSW r0

D Compiling C code to TinyRAM

Our TinyRAM compiler is implemented as a GCC back end, with support for some optimization
techniques. Code 5 shows C source for the memory based subset sum program, and the corresponding
compiled code is given as Code 6. As shown, Code 6 has 21 more instruction than the hand-written
assembly of Code 4. Likewise, the running time of Code 6 is somewhat greater than that of Code 4,
for example with n = 14 it takes 13582 time steps until Code 6 terminates, while Code 4 terminates
in 11231 time steps.

23

Code 3 Pseudocode of the memory based subset sum program

input: n = 2h, array[n], target

1: H1 ← {array[0], array[1], . . . , array[h− 1]}
2: H2 ← {array[h], array[1], . . . , array[n− 1]}
3: for m ∈ {1, 2} do . sort each half
4: let Am,0 be an array of size 1 with Am,0[0] = 0
5: i← 0
6: for x ∈ Hm do
7: let Bm,i be an array of size i and Cm,i be an array of size 2i
8: for k ∈ {0, 1, 2, . . . , 2i − 1} do
9: Bm,i[k]← Am,i[k] + x

10: end for
11: Cm,i ← merge(Am,i, Bm,i) . note: Am,i and Bm,i are already sorted
12: Am,i+1 ← Cm,i
13: i← i+ 1
14: end for
15: end for
16: i← 0, k ← 2h − 1
17: while True do . search for the target
18: if target = A1,h[i] +A2,h[k] then return 1 end if
19: if target > A1,h[i] +A2,h[k] then
20: if i = 2h − 1 then return 0 end if
21: i← i+ 1
22: else
23: if k = 0 then return 0 end if
24: k ← k − 1
25: end if
26: end while

24

Code 4 TinyRAM assembly code of the memory based subset sum program

input: n = 2h, array[n], target, ` = 2h+1 − 2
constants: INPADDR = 216 − 26, ADDR1 = 0, ADDR2 = 214, OFFSET = 215

preprocess: store array[n] at INPADDR

1: MOVMOVMOV r0, INPADDR
2: MOVMOVMOV r1, ADDR1
3: MOVMOVMOV r9, 0
4: STORSTORSTOR r9, r1
5: ADDADDADD r2, r1, OFFSET
6: STORSTORSTOR r9, r2
7: MOVMOVMOV r2, r1
8: ADDADDADD r4, r1, 1
9: MOVMOVMOV r5, r4

10: MOVMOVMOV r8, 1
11: ADDADDADD r9, h
12: LOADLOADLOAD r3, r0
13: JMPJMPJMP Line#44

14: ADDADDADD r0, r0, 1
15: CMPECMPECMPE r9, r0
16: CJMPCJMPCJMP Line#60

17: LOADLOADLOAD r3, r0
18: SHLSHLSHL r8, r8, 1
19: MOVMOVMOV r5, r4
20: JMPJMPJMP Line#44

21: ADDADDADD r7, r4, OFFSET
22: STORSTORSTOR r6, r7
23: ADDADDADD r4, r4, 1
24: CMPECMPECMPE r5, r1
25: CNJMPCNJMPCNJMP Line#36

26: CMPECMPECMPE r5, r2
27: CJMPCJMPCJMP Line#14

28: LOADLOADLOAD r6, r2
29: ADDADDADD r6, r6, r3
30: STORSTORSTOR r6, r4

31: ADDADDADD r6, r2, OFFSET
32: LOADLOADLOAD r6, r6
33: XORXORXOR r6, r6, r8
34: ADDADDADD r2, r2, 1
35: JMPJMPJMP Line#21

36: CMPECMPECMPE r5, r2
37: CNJMPCNJMPCNJMP Line#44

38: LOADLOADLOAD r6, r1
39: STORSTORSTOR r6, r4
40: ADDADDADD r6, r1, OFFSET
41: LOADLOADLOAD r6, r6
42: ADDADDADD r1, r1, 1
43: JMPJMPJMP Line#21

44: LOADLOADLOAD r6, r1
45: LOADLOADLOAD r7, r2
46: ADDADDADD r7, r7, r3
47: CMPGCMPGCMPG r6, r7
48: CJMPCJMPCJMP Line#54

49: STORSTORSTOR r6, r4
50: ADDADDADD r6, r1, OFFSET
51: LOADLOADLOAD r6, r6
52: ADDADDADD r1, r1, 1
53: JMPJMPJMP Line#21

54: STORSTORSTOR r7, r4
55: ADDADDADD r6, r2, OFFSET
56: LOADLOADLOAD r6, r6
57: XORXORXOR r6, r6, r8
58: ADDADDADD r2, r2, 1
59: JMPJMPJMP Line#21

60: CMPACMPACMPA r1, ADDR2

61: CJMPCJMPCJMP Line#64

62: MOVMOVMOV r1, ADDR2
63: JMPJMPJMP Line#3

64: MOVMOVMOV r0, ADDR1 + `
65: LOADLOADLOAD r2, r0
66: LOADLOADLOAD r3, r1
67: ADDADDADD r4, r2, r3
68: CMPECMPECMPE r4, target
69: CJMPCJMPCJMP Line#L83

70: CMPGCMPGCMPG r4, target
71: CJMPCJMPCJMP Line#77

72: CMPECMPECMPE r1, ADDR2 + `
73: CJMPCJMPCJMP Line#82

74: ADDADDADD r1, r1, 1
75: LOADLOADLOAD r3, r1
76: JMPJMPJMP Line#67

77: CMPECMPECMPE r0, ADDR1
78: CJMPCJMPCJMP Line#82

79: SUBSUBSUB r0, r0, 1
80: LOADLOADLOAD r2, r0
81: JMPJMPJMP Line#67

82: ANSWANSWANSW 0
83: ADDADDADD r2, r0, OFFSET
84: LOADLOADLOAD r2, r2
85: ADDADDADD r3, r1, OFFSET
86: LOADLOADLOAD r3, r3
87: SHLSHLSHL r3, r3, H
88: XORXORXOR r2, r2, r3
89: ANSWANSWANSW r2

25

Code 5 C source of the memory based subset sum program

#define N 7

#define TARGET 123

int input[2*N] = {10,20,30,40,50,60,70,-10,-20,-30,-40,-50,-60,70};

int arr[4 * ((1 << (N+1)) - 1)];

int main(void) {

register int *inp = &input[0], *last_inp, *p1, *p2, *next, *next_backup, b;

p1 = p2 = &arr[0]; //phase1: prepare arrays

for(;;) { //prepare each half array

next = next_backup = (p1+2);

*p1 = *(p1+1) = 0; b = 1; last_inp = inp + N;

for(;;) { //iterate over each input

for(;;) { //merge

if(p1 == next_backup) {

while(p2 < next_backup) {

*(next++) = *(p2++) + *inp;

*(next++) = *(p2++) ^ b;

}

break;

}

if(p2 == next_backup) {

while(p1 < next_backup) {

*(next++) = *(p1++);

*(next++) = *(p1++);

}

break;

}

if(*p1 > *p2 + *inp) {

*(next++) = *(p2++) + *inp;

*(next++) = *(p2++) ^ b;

}

else {

*(next++) = *(p1++);

*(next++) = *(p1++);

}

}

if(++inp == last_inp) break;

b = b << 1;

next_backup = next;

}

if(p1 > &arr[0] + (1 << (N+2))) break;

p1 = p2 = next;

}

p1 = &arr[2*((1 << (N+1)) - 1) - 2]; //phase2: search

for(;;) {

if(TARGET == *p1 + *p2)

return *(p1+1) ^ (*(p2+1) << N);

if(TARGET > *p1 + *p2) {

if(p2 == &arr[0] + 4*((1 << (N+1))-1) - 2) break;

p2 = p2 + 2;

}

else {

if(p1 == &arr[0]) break;

p1 = p1 - 2;

}

}

return 0;

}

26

Code 6 TinyRAM assembly code of the compiled subset sum program

input: n = 2h, array[n], target

preprocess: store array[n] at address 0

1: MOVMOVMOV r9, 0
2: MOVMOVMOV r12, 28
3: MOVMOVMOV r8, r12
4: ADDADDADD r13, r8, r4
5: MOVMOVMOV r4, r13
6: MOVMOVMOV r2, 0
7: ADDADDADD r0, r8, 2
8: STORSTORSTOR r2, r0
9: STORSTORSTOR r2, r8

10: MOVMOVMOV r14, 1
11: ADDADDADD r5, r9, 14
12: CMPECMPECMPE r8, r13
13: CNJMPCNJMPCNJMP Line#30

14: CMPAECMPAECMPAE r12, r13
15: CJMPCJMPCJMP Line#72

16: LOADLOADLOAD r3 r12
17: LOADLOADLOAD r2, r9
18: ADDADDADD r2, r3, r2
19: ADDADDADD r12, r12, 2
20: STORSTORSTOR r2, r4
21: ADDADDADD r4, r4, 2
22: LOADLOADLOAD r2, r12
23: XORXORXOR r2, r14, r2
24: ADDADDADD r12, r12, 2
25: STORSTORSTOR r2, r4
26: ADDADDADD r4, r4, 2
27: CMPAECMPAECMPAE r12, r13
28: CNJMPCNJMPCNJMP Line#16

29: JMPJMPJMP Line#72

30: CMPECMPECMPE r12, r13
31: CNJMPCNJMPCNJMP Line#45

32: CMPAECMPAECMPAE r8, r13
33: CJMPCJMPCJMP Line#72

34: LOADLOADLOAD r2, r8
35: ADDADDADD r8, r8, 2
36: STORSTORSTOR r2, r4
37: ADDADDADD r4, r4, 2

38: LOADLOADLOAD r2, r8
39: ADDADDADD r8, r8, 2
40: STORSTORSTOR r2, r4
41: ADDADDADD r4, r4, 2
42: CMPAECMPAECMPAE r8, r13
43: CNJMPCNJMPCNJMP Line#34

44: JMPJMPJMP Line#72

45: LOADLOADLOAD r2, r12
46: LOADLOADLOAD r3, r9
47: ADDADDADD r3, r2, r3
48: LOADLOADLOAD r2, r8
49: CMPGCMPGCMPG r2, r3
50: CNJMPCNJMPCNJMP Line#63

51: LOADLOADLOAD r3, r12
52: LOADLOADLOAD r2, r9
53: ADDADDADD r2, r3, r2
54: ADDADDADD r12, r12, 2
55: STORSTORSTOR r2, r4
56: ADDADDADD r4, r4, 2
57: LOADLOADLOAD r2, r12
58: XORXORXOR r2, r14, r2
59: ADDADDADD r12, r12, 2
60: STORSTORSTOR r2, r4
61: ADDADDADD r4, r4, 2
62: JMPJMPJMP Line#12

63: LOADLOADLOAD r2, r8
64: ADDADDADD r8, r8, 2
65: STORSTORSTOR r2, r4
66: ADDADDADD r4, r4, 2
67: LOADLOADLOAD r2, r8
68: ADDADDADD r8, r8, 2
69: STORSTORSTOR r2, r4
70: ADDADDADD r4, r4, 2
71: JMPJMPJMP Line#12

72: ADDADDADD r9, r9, 2
73: CMPECMPECMPE r9, r5
74: CJMPCJMPCJMP Line#78

75: SHLSHLSHL r14, r14, 1
76: MOVMOVMOV r13, r4
77: JMPJMPJMP Line#12

78: CMPACMPACMPA r8, 1052
79: CJMPCJMPCJMP Line#83

80: MOVMOVMOV r12, r4
81: MOVMOVMOV r8, r4
82: JMPJMPJMP Line#4

83: MOVMOVMOV r4, 1044
84: LOADLOADLOAD r3, r4
85: LOADLOADLOAD r2, r12
86: ADDADDADD r2, r3, r2
87: CMPECMPECMPE r2, target
88: CNJMPCNJMPCNJMP Line#96

89: ADDADDADD r0, r12, 2
90: LOADLOADLOAD r12, r0
91: SHLSHLSHL r12, r12, h
92: ADDADDADD r0, r4, 2
93: LOADLOADLOAD r4, r0
94: XORXORXOR r2, r12, r4
95: JMPJMPJMP Line#110

96: LOADLOADLOAD r3, r4
97: LOADLOADLOAD r2, r12
98: ADDADDADD r2, r3, r2
99: CMPGCMPGCMPG r2, target-1
100: CJMPCJMPCJMP Line#106

101: MOVMOVMOV r2, 2064
102: CMPECMPECMPE r12, r2
103: CJMPCJMPCJMP Line#109

104: ADDADDADD r12, r12, 4
105: JMPJMPJMP Line#84

106: CMPECMPECMPE r4, 28
107: CJMPCJMPCJMP Line#109

108: JMPJMPJMP Line#84

109: MOVMOVMOV r2, 0
110: ANSWANSWANSW r2

27

	Abstract
	1 Introduction
	2 Measurements
	3 Overview of construction
	4 Concluding remarks
	Acknowledgements

	References
	A Detailed PCP construction
	B Algebraic definition of general programs as zero locus of low-degree polynomial system
	B.1 Algebraic definition of opcodes
	B.2 Program flow via multi-linear Lagrange polynomials

	C Two programs computing subset-sum
	D Compiling C code to TinyRAM

