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Abstract

We construct a general-purpose indistinguishability obfuscation (IO) scheme for all polynomial-
size circuits from constant-degree graded encoding schemes in the plain model, assuming the exis-
tence of a subexponentially secure Pseudo-Random Generator (PRG) computable by constant-
degree arithmetic circuits (or equivalently in NC0), and the subexponential hardness of the
Learning With Errors (LWE) problems. In contrast, previous general-purpose IO schemes all
rely on polynomial-degree graded encodings.

Our general-purpose IO scheme is built upon two key components:

• a new bootstrapping theorem that subexponentially secure IO for a subclass of constant-
degree arithmetic circuits implies IO for all polynomial size circuits (assuming PRG and
LWE as described above), and

• a new construction of IO scheme for any generic class of circuits in the ideal graded
encoding model, in which the degree of the graded encodings is bounded by a variant of
the degree, called type degree, of the obfuscated circuits.

In comparison, previous bootstrapping theorems start with IO for NC1, and previous construc-
tions of IO schemes require the degree of graded encodings to grow polynomially in the size of
the obfuscated circuits.
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1 Introduction

Program obfuscation [BGI+01] aims to make computer programs unintelligible while preserving
their functionality. Recently, the first candidate general purpose indistinguishability obfuscation
(IO) scheme for all polynomial-size circuits was proposed by Garg et. al. [GGH+13b]. Soon after
that, an explosion of follow-up works showed the impressive power of IO, not only in obtaining classi-
cal cryptographic primitives, from one-way functions [KMN+14], trapdoor permutations [BPW16],
public-key encryption [SW14a], to fully homomorphic encryption [CLTV15], but also in reach-
ing new possibilities, from functional encryption [GGH+13b], 2-round adaptively secure multi-
party computation protocols [GP15, DKR15, CGP15], succinct garbling in time independent of
the computation time [CHJV15, BGL+15, KLW15, LPST15], to constant-round concurrent ZK
protocol [CLP15]. It seems that IO is charting a bigger and more desirable map of cryptography.

However, the Achilles heel of IO research is that it is still unknown whether general purpose
IO can be based on standard hardness assumptions. So far, all general purpose IO schemes are
constructed in two steps [BR14, BGK+14, PST14a, GLSW14, AGIS14, Zim15, AB15]. First, an IO
scheme for (polynomial size) NC1 circuits is built using some candidate graded encoding schemes.
The latter is an algebraic structure, introduced by Garg, Gentry and Halevi [GGH13a], that enables
homomorphically evaluating certain polynomials over encoded ring elements and testing whether
the output is zero. Next, a bootstrapping theorem transforms an IO scheme for NC1 into one for
P/poly, assuming the LWE assumption [GGH+13b].

Tremendous efforts have been spent on basing the first step on more solid foundations. Un-
fortunately, the state of affairs is that all candidate graded encoding schemes [GGH13a, CLT13,
CLT15, GGH15] are susceptible to the so called “zeroizing attacks” [GGH13a, CHL+15, GHMS14,
BWZ14, CGH+15] to different degrees.

In this work, we approach the problem from a different, more complexity theoretic, angle.

How much can we strengthen the bootstrapping theorem, and hence, simplify the task of
building graded encoding schemes?

We explore answers to this question and obtain the following main result:

Theorem 1 (Informal). Assuming constant-degree PRG and LWE with subexponential hardness,
there is a general purpose IO scheme using only constant-degree graded encodings.

Though our result does not eliminate the need of graded encoding schemes, it weakens the re-
quirement on them to only supporting evaluation of constant-degree polynomials; such a scheme is
referred to as a constant-degree graded encoding scheme. In comparison, previous IO schemes rely
on graded encodings with degree polynomial in the size of the obfuscated circuit. This improvement
is established via a stronger bootstrapping theorem.

• Bootstrapping IO for constant-degree arithmetic circuits. We show that there is a class C of
special-purpose circuits, which is a subclass of constant-degree arithmetic circuits (i.e., corre-
sponding to constant-degree polynomials), such that, subexponentially secure special-purpose
IO for C can be bootstrapped to general purpose IO for P/poly, assuming LWE and the ex-
istence of a (super-linear stretch) PRG computable by constant-degree arithmetic circuits,
referred to as constant-degree PRG, both with subexponential hardness.

• Constant-degree graded encodings suffice. Then, we show that special purpose IO for C can
be constructed from constant-degree graded encoding schemes.
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On the Assumption of Constant-Degree PRG and Generalization. Our results rely on
the assumption that there exists a sub-exponentially secure constant-degree PRG. In our model of
constant degree computations (explained shortly below), such a PRG is also in NC0, by [NS94].
A candidate of such a PRG is Goldreich’s PRG [Gol00], which is closely related with systems of
random k-CSP and has been studied in the contexts of complexity theory and cryptography in
NC0.

All our results can be generalized to work with arbitrary, not necessarily constant-degree, PRGs.
The generalization is parameterized with the degree of the underlying PRG. It shows an interesting
connection between the the degree d(λ) of PRG, with the degree d′(λ) of the circuits that are
“bootstrappable” for IO, and the degree d′′(λ) of the graded encodings sufficient for obtaining
general purpose IO — they are all polynomially related. Because of the general connection w.r.t.
the degree of PRG, we choose to use the term constant-degree PRG (as opposed to PRG in NC0)
in this paper.

Relation with recent works [Pas15, MMN15, BV15a]. At a first glance, our main theorem
is surprising in light of the recent results by [Pas15, MMN15, BV16]. They showed that any
general-purpose IO scheme using ideal constant-degree graded encodings can be transformed into
an IO scheme in the plain model. Alternatively, their results can be interpreted as: Ideal constant-
degree graded encodings do not “help” constructing general-purpose IO schemes. In contrast, our
results says that concrete constant-degree graded encodings imply general-purpose IO (assuming
sub-exponentially secure constant-degree PRG and LWE). The divide stems from the fact that
ideal graded encodings can only be used in a black-box manner, whereas our IO scheme crucially
makes non-black-box use of the underlying graded encoding scheme. Because of the non-black-
box nature of our construction, we actually do not obtain an IO scheme for P/poly in the ideal
constant-degree graded encoding model, and hence we cannot apply the transformation of [Pas15,
MMN15, BV16] to eliminate the use of graded encodings. Also because of its non-black-box nature,
our construction also circumvents the recent lower bound on black-box construction of IO from a
variety of cryptographic primitives by [MMN+16].

Moreover, it is interesting to note that our construction of IO for P/poly uses as a component
the transformation from sub-exponentially secure compact functional encryption to general purpose
IO by [BV15a, AJ15]. Their transformation makes non-black-box use to the underlying functional
encryption, and is in fact the only non-black-box component in our construction. (See Remark 5 for
more details.) Therefore, if there were a black-box transformation from sub-exponentially secure
compact functional encryption to general purpose IO, we would have obtained a general purpose IO
scheme in the ideal constant-degree graded encoding model, and then by [Pas15, MMN15, BV16],
a general purpose IO in the plain model. In summary, the following corollary suggests another
avenue towards realizing IO.

Corollary 1. Assume constant-degree PRG and LWE (with subexponential hardness). If there is
a black-box transformation from any (subexponentially secure) compact functional encryption to an
IO scheme for P/poly, there is an IO scheme for P/poly in the plain model.

1.1 Overview

Our results contain three parts: First, we establish a stronger bootstrapping theorem from IO for
a class {Cλ} of special-purpose constant-degree arithmetic circuits to general-purpose IO. Second,
we show that thanks to the constant-degree property and the simple structure of the special-
purpose circuits, IO for {Cλ} can be constructed using only constant-degree graded encodings. The
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construction of the special-purpose IO scheme makes only black-box use of the constant-degree
graded encodings, and is secure in the ideal model; but, the bootstrapping requires using the code
of the special-purpose IO scheme. Therefore, to stitch the two first parts together, in the third
part, we instantiate the special-purpose IO scheme using semantically secure graded encodings
(c.f. [PST14a]), and obtain general-purpose IO via bootstrapping. Below, we explain each part in
more detail.

1.1.1 Part 1: Bootstrapping IO for constant-degree arithmetic circuits

So far, there are only two bootstrapping techniques in the literature, both starting from IO for NC1.
The first technique, proposed by [GGH+13b], combines fully homomorphic encryption (FHE) and
IO for NC1, where the latter is used to obfuscate a circuit that performs FHE decryption and ver-
ifying the correctness of a computation trace, both can be done in logarithmic depth. The second
technique by [CLTV15] is based on Applebaum’s idea of bootstrapping VBB for NC0 [App14a],
where the underlying IO for NC1 is used for obfuscating a circuit that computes for each in-
put a randomized encoding (w.r.t. that input and the obfuscated circuit), using independent ran-
domness produced by a Puncturable Pseudo-Random Functions (PPRF) [SW14b] computable in
NC1 [BV15b].

In sum, current bootstrapping techniques require the basic IO scheme to be able to handle
complex cryptographic functions. It is an interesting question to ask what is the simplest circuit
class — referred to as a “seed class” — such that, IO for it is sufficient for bootstrapping. In
this work, we reduce the complexity of “seed classes” from NC1 to circuits computable in constant
degree. More specifically,

Proposition 1 (Informal, bootstrapping constant-degree computations). Assume constant-degree
PRG and LWE with subexponential hardness. There is a class of special-purpose constant-degree
circuits {Cλ} with domains {Dλ}, where Dλ ⊆ {0, 1}poly(λ), such that, subexponentially secure IO
for {Cλ} with universal efficiency can be bootstrapped into IO for P/poly.

Let us explain our model of computation and efficiency in more detail.

Model of Constant-Degree Computations and Universal Efficiency Every arithmetic
circuit AC naturally corresponds to a polynomial by associating the ith input wire with a formal
variable xi; the degree of AC is exactly the degree of the polynomial. In this work, we consider
using arithmetic circuit to compute Boolean functions f : {0, 1}n → {0, 1}m, or logic circuits C.
A natural model of computation is the following: Fix a ring R (say, the integers or the reals); a
Boolean function f , or logic circuit C, is computed by an arithmetic circuit AC, if ∀x ∈ {0, 1}n,
C(x) = AC(x) over R (the 0 and 1 bits are mapped to the additive and multiplicative identities of
R respectively). In this work, we consider a even weaker computation model that requires AC to
agree with C over any choice of ring R.

• Constant-Degree Computations: We say that a logic circuit C is computed by an arithmetic
circuit AC, if ∀x ∈ {0, 1}n, C(x) = AC(x), over any ring R. We say that C has degree d if
AC had degree d.

This model of constant-degree computations is quite weak, in fact, so weak that it is equivalent
to NC0. Nisan and Szegedy [NS94] showed that the degree of the polynomial that computes a
Boolean function f over the ring of reals is polynomially related with the decision tree complexity
of f . Therefore, if f has constant degree in our model, it has constant decision tree complexity,
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implying that it is in NC0. In particular, any constant-degree PRG is also in NC0, as mentioned
above.

On the other hand, it is well known that IO for NC0 can be trivially constructed by searching
for canonical representations, which can be done efficiently as every output bit is computed by a
constant-size circuit. Though it would be ideal to bootstrap IO for NC0, we do not achieve this.
Instead, we strengthen the above model of computation by considering partial Boolean functions,
or logic circuits, defined only over a subset D ⊆ {0, 1}n (i.e., we only care about inputs in D).

• Constant-Degree Computations with Partial Domains: We say that a logic circuit C with
domain D ⊆ {0, 1}n is computed by an arithmetic circuit AC, if ∀x ∈ D, C(x) = AC(x), over
any ring R.

A concrete constant-degree partial function that is not computable in NC0 is a variant of the
multiplexer function mux that on input (x, ei), where x, ei ∈ {0, 1}n and the hamming weight of ei
is 1, outputs xi. Clearly, the output bit has to depend on all bits of ei and cannot be computed
in NC0. But, xi can be computed in degree 2 as the inner product of x and ei over any ring R.
Indeed, our bootstrapping theorem starts with IO for a class of special purpose circuits that are
only defined over a sparse, polynomial sized, domain, embedded in an exponential sized domain
{0, 1}n.

Nevertheless, our model of constant degree computations (with potentially partial domains) is
still weak. In particular, it is separated from AC0, since we cannot compute unbounded AND in it.
In the body of the paper, we put even more constraints and say that a class of circuits (as opposed
to a single circuit) is constant degree only if they have universal circuits of constant degrees; we
omit this detail in the introduction.

As a further evidence on how weak our model of constant degree computations are, we show
next that there exists even a statistical IO scheme for such circuits.

Trivial, Statistical IO for Constant Degree Computations Let C be a logic circuit with domain D ∈
{0, 1}n computable by a degree-d arithmetic circuit AC, which corresponds to a degree-d polynomial
p. At a high-level, because degree-d polynomials can be learned in poly(nd) time, we can obfuscate
C in the same time with statistical security. More specifically, the degree-d polynomial p(x) can
be equivalently represented as a linear function L(X) over ` = nd variables, each associated with a
degree d monomial over x1 · · ·xn. To obfuscate C, we simply pick ` inputs x1, · · · , x` ∈ D, such that,
their corresponding monomial values X1, · · · , X` are linearly independent. Now, the obfuscation C̃
of C is simply the set of input output pairs (x1, y1), · · · , (x`, y`) where yi = C(xi) over say GF (2).

Given C̃, we can to evaluate C on any input x ∈ D, since C(x) = L(x) over any ring, in
particular GF (2), and the linear function L can be learned from the set of input output pairs
using Gaussian elimination. Moreover, it is easy to see that obfuscation of any two functionally
equivalent circuits C and C ′ are identically distributed, as C and C ′ have the same truth table and
their obfuscations simply reveal a part of their truth tables.

The above construction, though achieve statistical security, is however, trivial: The truth table
of a degree-d circuit effectively has at most size nd (by Gaussian elimination), and the above
construction simply publishes the effective truth table. As a result, it is not sufficient for our
bootstrapping.

Computationally Secure IO for Constant Degree Computations, with Universal Efficiency. Instead,
we require IO for constant degree computations with better, non-trivial, efficiency. More specifi-
cally,
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• Universal Efficiency: We say that IO for constant degree circuits has universal efficiency, if
its run-time is independent of the degree of the computation. That is, there is a universal
polynomial p, such that, for every d, obfuscating a degree-d circuit C takes time p(1λ, |C|)
for sufficiently large λ.

In fact, our bootstrapping theorem works even if the efficiency of IO for constant degree circuits
grows with the degree, as long as it is bounded by nh(d) for a sufficiently small function h, say,
h(d) = log log(d). For simplicity, we consider the above universal efficiency.

Can We Construct IO for Constant Degree Computations with Universal Efficiency Directly? Our
model of constant-degree computations is quite weak, and the input to the bootstrapping theorem
— IO for a subclass of constant-degree computations with universal efficiency — cuts close to the
boundary of known feasibility, such as IO for NC1, and IO for constant degree computations with
non-universal efficiency. In this work, we construct such an IO scheme using graded encodings, and
leave open the interesting question whether we can construct such an IO scheme directly, without
graded encodings.

Techniques. Towards obtaining IO for P/poly, our starting point is two beautiful recent works by
Bitansky and Vaikuntanathan [BV15a] and Ananth and Jain [AJ15] showing that sub-exponentially
secure (sublinearly) compact FE for NC1 implies IO for P/poly. Unfortunately, so far, the former
is only constructed from IO for NC1. Thus, our goal is constructing compact FE using IO for the
simplest circuits, which when combined with [AJ15, BV15a] bootstraps to IO for P/poly.

The work of Ananth and Jain [AJ15], and another very recent work by the author, Pass, Seth
and Telang [LPST16] already explored this direction: They show that a compact FE scheme for
NC1 circuits with single output bit (which can be based on LWE [GKP+13]) can be transformed
into a compact FE for all NC1 circuits with multiple output bits, using IO for circuits (Turing
machines in [AJ15]) with only a logarithmic number c log λ of input wires. Note that such circuits
have λc-sized truth table, and hence can be trivial obfuscated in size λc. [LPST16] shows that as
long as the obfuscated circuits has size sub-linear in the size of the truth table λεc (matching the
sub-linear compactness of FE), the transformation goes through — they say such an IO scheme
has non-trivial efficiency.

Based on their works, we further simplify the class of circuits we need to build IO for. Our
circuit class has not only polynomial-sized domains, but also only constant degree (as opposed to
being in NC1 as in [AJ15, LPST16]). We achieve this using more refined analysis and a number
of new techniques. Namely, we build a special-purpose PPRF for polynomial sized domain that
is computable in constant degree. Interestingly, the polynomial-sized domain is not of the form
{0, 1}c log λ, rather is embedded sparsely in a much larger domain D ⊂ {0, 1}poly(λ). This crucially
allows us to circumvent lower bounds on the complexity of normal PPRF. Moreover, we design ways
to perform comparisons, such as, testing =, ≥, ≤ relations, between two integers i, i′ ∈ [poly(λ)]
in constant degree; here again, we crucially rely on the fact that we can represent the integers in
a different way, embedded sparsely in a much larger domain. The embedding of the inputs is why
our special-purpose circuits have only partial domain.

1.1.2 Part 2: Special purpose IO in constant-degree ideal graded encoding model

Ideal graded encoding model [GGH13a, BR14, BGK+14, Zim15, AB15] captures generic algebraic
attacks over graded encodings: In this model, players have black-box access to a ring, and can
only perform certain restricted operations over ring elements, and determine whether a “legal”
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polynomial (one satisfying all restrictions) evaluates to 0 or not—this is referred to as a “zero-test
query”.

An important parameter, called the degree of the graded encodings [Pas15, MMN15], is the
maximum degree of (legal) polynomials that can be “zero-tested”. Clearly, the lower the degree is,
the weaker of the graded encodings are. Consider for instance, when the degree is one, the ideal
graded encoding model is equivalent to the generic group model, in which operations are restricted
to be linear (i.e., degree 1 polynomials), and when degree is two, ideal graded encodings capture
idealized groups with bilinear maps. Both special cases have been extensively studied.

So far, general-purpose IO schemes in ideal models all require high degree graded encodings
(polynomial in the size of the circuit being obfuscated) [BR14, BGK+14, Zim15, AB15]. The
dilemma is that such models are so powerful that even general purpose VBB obfuscation is feasible,
which is impossible in the plain model [BGI+01]. Two recent works [Pas15, MMN15] initiated
the study of low-degree ideal graded encodings, showing that when the degree is restricted to a
constant, general purpose VBB obfuscation becomes infeasible. Therefore, constant-degree ideal
graded encoding model is qualitatively weaker than its high-degree counterpart, and is much closer
to the plain model. Nevertheless, we show that it is sufficient for building IO for the simple seed
class that our bootstrapping theorem starts with.

Proposition 2 (Informal, special-purpose IO in ideal model). There is a (sub-exponentially secure)
IO scheme for the class {Cλ} of constant-degree special-purpose circuits in Proposition 1, with
universally efficiency, in the constant-degree ideal graded encoding model.

Our special-purpose IO scheme crucially exploits the constant degree property of our seed class,
as well as the simple structure, described below, of circuits in the class.

Type-Degree Preserving IO Construction. Our main technique is characterizing a general
type of circuits that admit IO schemes with low degree ideal graded encodings. More specifically, we
define a new measure, called type degree, for arithmetic circuits, which is a quantity no smaller than
the actual degree of the circuit, and no larger than the maximum degree of circuits with the same
topology (achieved by a circuit with only multiplication gates). We show that if a class of circuits
have type degree td, then there is an IO scheme for this class using ideal graded encodings of roughly
the same degree O(td); we say that such an IO construction is type-degree preserving. Our type-
degree preserving IO construction is based on the IO scheme of Applebaum and Brakerski [AB15] in
the composite order ideal graded encoding model; we believe that our construction is of independent
interests.

Furthermore, thanks to the simplicity of our special purpose circuits in Proposition 1, we can
show that they not only have constant degree, but also have constant type degree, leading to
Proposition 2.

1.1.3 Part 3: Instantiation with Concrete Graded Encoding Schemes

The final part combine our bootstrapping theorem (Proposition 1) with our special-purpose IO
scheme (Proposition 2) to obtain general-purpose IO, for which we must first instantiate the ideal
graded encodings with concrete ones, for the bootstrapping theorem makes non-black-box use of
the special-purpose IO. Towards this, the technical question is “under what computational hardness
assumption over graded encodings can we prove the security of our special-purpose IO scheme in
the plain model?”

So far, in the literature, there are two works that answer questions like the above. Pass,
Seth and Telang [PST14a] proposed the meta-assumption of semantic security over prime order
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graded encoding schemes, from which the security of a general purpose IO scheme follows via an
explicit security reduction. Subsequently, Gentry, Lewko, Sahai and Waters [GLSW14] proposed
the Multilinear Subgroup Elimination assumption over composite order graded encoding schemes
which improves upon semantic security in terms of simplicity and the number of assumptions in
the family (albeit requiring a sub-exponential security loss).

Following [PST14a], we show that our special purpose IO schemes in Proposition 2 can be
instantiated with any composite order graded encoding schemes satisfying an analogue of semantic
security for composite order rings; importantly, the graded encoding scheme only need to support
constant-degree computation. 1 Hence, combining with our bootstrapping theorem from Part 1,
we obtain a general purpose IO scheme from constant-degree graded encoding schemes.

Proposition 3 (Informal, special-purpose IO in the plain model). There is a (subexponentially
secure) IO scheme for the class {Cλ} of constant-degree special-purpose circuits in Proposition 1,
with universally efficiency, assuming (subexponentially) semantically-secure constant-degree graded
encodings.

Finally, applying our bootstrapping theorem (Proposition 1) on the special-purpose IO scheme
in the above proposition, gives our main theorem (Theorem 1).

We note here that semantic security for graded encodings [PST14a] is a strong assumption, and
our variant for composite order is even slightly stronger. Minimizing the assumption on graded
encodings is a very important question, but, however, not the focus of this paper. We merely
use semantic security to stitch the first two parts of the paper together, which are our main
contributions.

1.1.4 Generalization to Arbitrary PRGs

All our techniques and results are not restricted to work with only constant-degree PRGs, and can
be parameterized w.r.t. the degree of the underlying PRG. The parametrization actually shows an
interesting connection between the degree d of the PRG, with the degree d′ of the seed class for
IO, and with the degree d′′ of the graded encodings sufficient for constructing general purpose IO
— they are all polynomially related.

Proposition 4 (Informal, general bootstrapping theorem). Assume a degree-d(λ) PRG scheme
PRG and LWE with subexponential hardness. There is a class of constant-degree special-purpose
oracle circuits {Cλ}, for which the following holds.

• General Bootstrapping Theorem: Subexponentially secure IO for {CPRGλ } with universal ef-
ficiency can be bootstrapped into IO for P/poly. Moreover, circuits in {CPRGλ } have degree
poly(d(λ)).

• Special-Purpose IO in Ideal Model: There exists a (subexponentially secure) IO scheme for
{CPRGλ } with universal efficiency in degree-poly(d(λ)) ideal graded encoding model.

Therefore, assuming additionally subexponentially semantically secure degree-poly(d(λ)) graded en-
coding schemes, there is an IO scheme for P/poly in the plain model.

When plugging in a constant-degree PRG, we immediately obtain Proposition 1, 2 and 3.
Other interesting special cases include: 1) when plugging in a PRG in AC0 or TC0, the general

1We note that the security of (variants of) our IO scheme could potentially be proven from the multilinear subgroup
elimination assumption of [GLSW14]; we leave this as future work.
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bootstrapping theorem says IO for AC0 or TC0 with universal efficiency suffices for constructing
general purpose IO, 2) when plugging in a PRG with polylogarithmic degree, general purpose IO
can be based on graded encodings with polylogarithmic degree.

Technically, the general bootstrapping theorem follows immediately from the fact that the seed
class of circuits we construct in Part 1 makes only black-box calls to the underlying PRG. Hence,
it can be viewed as a class {Cλ} of constant-degree oracle circuits (such a circuit can be computed
by an arithmetic circuit with additional oracle gates, and its degree is the degree of the arithmetic
circuit when replacing the oracle gates with additions). When plugged-in with an arbitrary PRG of
degree d(λ), we show that the composed circuits, denoted as {CPRGλ } have degree, as well as type
degree, poly(d(λ)). Then, applying our type-degree preserving IO construction in Part 2, yields
immediately a special-purpose IO for the class of composed circuits using degree-poly(d(λ)) ideal
graded encodings. Instantiating the ideal graded encodings with concrete semantically secure ones
gives the final statement in the above Proposition.

1.2 Low Depth PRGs

We briefly survey constructions of low depth PRGs. (See Applebaum’s book [App14b] for more
references and discussions.)

The existence of PRG in TC0 follows from a variety of hardness assumption including intractabil-
ity of factoring, discrete logarithm, or lattice problems (e.g. [NR95, NR97, NRR00, BPR12]). Lit-
erature on PRG in AC0 is limited; more works focus directly on PRG in NC0. On the negative
side, it was shown that there is no PRG in NC0

4 (with output locality 4) achieving super-linear
stretch [CM01, MST03]. On the positive side, Applebaum, Ishai, and Kushilevitz [AIK04] showed
that any PRG in NC1 can be efficiently “compiled” into a PRG in NC0 using randomized encod-
ings, but with only sub-linear stretch. The authors further constructed a linear-stretch PRG in NC0

under a specific intractability assumption related to the hardness of decoding “sparsely generated”
linear codes [AIK08], previously conjectured by Alekhnovich [Ale03]. Unfortunately, to the best
of our knowledge, there is no construction of PRG in NC0 (or even AC0) with super-linear stretch
from well-known assumptions. But, candidate construction exists.

Goldreich’s Candidate PRGs in NC0. Goldreich’s one-way functions f : {0, 1}n → {0, 1}m where
each bit of output is a fixed predicate P of a constant number d of input bits chosen at random, is
also a candidate PRG when m > n. Several works investigated the (in)security of Goldreich’s OWFs
and PRGs: So far, there are no successful attacks when the choice of the predicate P avoids certain
degenerating cases [CEMT09, BQ12, OW14, AL15]. Notably, O’Donnell and Witmer [OW14]
gave evidence for the security of Goldreich’s PRGs with super-linear stretch, showing security
against both subexponential-time F2-linear attacks, as well as subexponential-time attacks using
SDP hierarchies such as Sherali-Adams+ and Lasserre/Parrilo.

1.3 Organization

We provide more detailed technical overviews at the beginning of Section 3, 4, and 6.
In section 2, we formalize our model of constant-degree computations, IO with universal effi-

ciency, and provide basic preliminaries. Definitions related to graded encoding schemes and ideal
graded encoding models are in Section 5. In Section 3, we prove a prelude of our bootstrapping
theorem that identifies a class of special purpose circuits, such that IO for this class with universal
efficiency can be bootstrapped to general purpose IO. In Section 4, we show that the class of spe-
cial purpose circuits identified in Section 3 are computable in constant degree, when the underlying
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PRG is. Then, we construct a universally efficient IO scheme for these special purpose circuits
in constant-degree ideal graded encoding model in Section 6. We show that our special-purpose
IO scheme can be instantiated with any constant-degree graded encoding scheme with semantic
security in Section 7.

2 Preliminaries

Let Z and N denote the set of integers, and positive integers, [n] the set {1, 2, . . . , n}, R denote a
ring, and 0,1 the additive and multiplicative identities.

We denote by PPT probabilistic polynomial time Turing machines. The term negligible is
used for denoting functions that are (asymptotically) smaller than one over any polynomial. More
precisely, a function ν(?) from non-negative integers to reals is called negligible if for every constant
c > 0 and all sufficiently large n, it holds that ν(n) < n−c.

2.1 Models of Computation

Logic Circuits and Partial Domains In this work, by circuit, we mean logic circuits from
{0, 1}∗ to {0, 1}∗, consisting of input gates, output gates, and logical operator gates (AND and OR
gates with fan-in 2 and fan-out > 0, and NEG gate with fan-in 1).

Any circuit with n-bit input wires and m-bit output wires defines a total Boolean function f
mapping {0, 1}n to {0, 1}m. In this work, importantly, we also consider partial functions f defined
only over a (partial) domain D ⊂ {0, 1}n. Correspondingly, we associate a circuit C with a domain
D ⊂ {0, 1}n, meaning that we only care about evaluating C over inputs in D.

Arithmetic Circuits We also consider arithmetic circuits AC consisting of input gates, output
gates and operator gates for addition, subtraction, and multiplication (with fan-in 2 and fan-out
> 0). Every arithmetic circuit AC with n input gates defines a n-variate polynomial P over Z, by
associating the ith input gate with a formal variable xi. We say that AC has degree d if P has
degree d. An arithmetic circuit AC can also be evaluated over any other ring R (different from Z),
corresponding to computing the polynomial P over R.

Boolean Functions Computable by Arithmetic Circuits In this work, we, however, do
not consider evaluating arithmetic circuits over any specific ring. Rather, we say that a Boolean
function f from domain D ⊆ {0, 1}n to range {0, 1}m, is computed/implemented by an arithmetic
circuit AC if for every input x ∈ D with output y = C(x), AC evaluated on x equals to y over any
ring R, where x and y are vectors of ring elements derived from x and y respectively, by mapping 0
to the additive identity 0 and 1 to the multiplicative identity 1 of R. We omit explicitly mentioning
this conversion in the rest of the paper, and simply write AC(x) = C(x).

We stress again that, in our model, a Boolean function f is computable by an arithmetic circuit
only if it produces the correct outputs for all inputs in D, no matter what underlying ring is used.
This restriction makes this model of computation very weak.

Similarly, we say that a circuit C with domain D ⊂ {0, 1}n is computable by an arithmetic
circuit AC, if the Boolean function f : D→ {0, 1}m defined by C is computable by AC.

Circuit Classes and Families of Circuit Classes We use the following terminologies and
notations:
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• A family of circuits C with domain D is simply a set of circuits C ∈ C with common domain
D.

• A class of circuits {Cλ}λ∈N with domains {Dλ}λ∈N is an ensemble of sets of circuits, where
each Cλ is associated with domain Dλ. We use the shorthands {Cλ} and {Dλ}.

• A family of circuit classes {{Cxλ}}
x∈X is a set of circuit classes, where each circuit class {Cxλ}

is indexed by an element x in a (countable) index set X. For convenience, when the index
set X is clear in the context, we use shorthand {{Cxλ}}. A family of circuit classes can also
be associated with domains {{Dxλ}}, meaning that each set Cxλ is associated with domain Dxλ
For example, NC1 circuits can be described as a family of circuit classes

{{
Cdλ
}}d∈N

, where
for every d ∈ N, the circuit class

{
Cdλ
}

contains all circuits of depth d log λ.

Universal (Arithmetic) Circuits Let C be a family of circuits with domain D, where every
C ∈ C is described as an `-bit string, and let U be an (arithmetic) circuit. We say that U is the
universal (arithmetic) circuit of C if every C ∈ C is computed by U(?, C) over domain D. Moreover,
we say that an ensemble of (arithmetic) circuits {Uλ} is the universal (arithmetic) circuits of a
circuit class {Cλ} with domain {Dλ} if for every λ, U is an (arithmetic) universal circuit of Cλ with
domain Dλ.

Degree of (Logic) Circuits Degree is naturally defined for arithmetic circuits as described
above, but not so for logic circuits and Boolean functions. In this work, we define the degrees
of logic circuits and Boolean functions through the degree of the arithmetic circuits that compute
them. Moreover, we also define degrees for families of circuits, circuit classes, and families of circuit
classes, through the degrees of the universal arithmetic circuits that compute them.

Degree of a (logic) circuit: We say that a circuit C with domain D has degree d, if it is com-
putable by an arithmetic circuit of degree d.

Degree of a family of circuits: We say that a family of circuits C with domain D has degree d,
if it has a universal arithmetic circuit U of degree d.

Degree of a class of circuits: We say that a class of circuits {Cλ} with domain Dλ has degree
d(λ), if it has universal arithmetic circuits {Uλ}, with degree d(λ). If d(λ) is a constant
function, then we say {Cλ} has constant degree.

Degree of a family of circuit classes: We say that a family of circuit classes {{Cxλ}} with do-
mains {{Dxλ}} has constant degree, if for every x ∈ X, circuit class {Cxλ} with domains {Dxλ}
has constant degree.

It is important to note that we define the degree of a class of circuits via the degree of its
universal arithmetic circuit, not the degree of individual circuits inside. For example, consider the
natural class of circuits containing all (polynomial-sized) circuits with a fixed constant degree d
(c.f., the class of poly-sized NC0 circuits with a fixed constant depth d), under our definition, it is
not clear whether this class itself has constant degree, as it is not clear (to us) whether there is
a constant degree universal arithmetic circuit that computes all of them. Nevertheless, this more
stringent definition only makes our bootstrapping result that it suffices to construct IO for a family
of circuit classes with constant degree stronger, and makes the task of constructing IO for such a
family easier.
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The Nisan-Szegedy Result. Nisan and Szegedy [NS94] studied the relation between a total
Boolean function f : {0, 1}n → {0, 1}, and the polynomial p that computes it over reals. They
proved that the degree d of p is polynomially related with the decision tree D(f) complexity of f ,
in particular, d ≤ D(f) ≤ 16d8. Therefore, if d is a constant, D(f) is also a constant, and hence
the output bit relies on at most D(f) number of input bits.

Under our model, a function is computed by an arithmetic circuit only if the latter agrees with
the former over any ring, in particular, the reals. Thus, we have,

Corollary 2 ([NS94]). If a total Boolean function f : {0, 1}n → {0, 1} can be computed by an
arithmetic circuit of degree d (in our model), its output bit depends on at most 16d8 input bits.

In contrast, if a Boolean function f is only defined over a partial domain D ⊂ {0, 1}n, then the
above is not true. Roughly speaking, this Corollary implies that any constant-degree PRG in our
model is also in NC0.

2.2 µ-Indistinguishability

Definition 1 (µ-indistinguishability). Let µ : N → [0, 1] be a function. A pair of distribution
ensembles {Xλ}, {Yλ} are µ-indistinguishable if for every non-uniform PPT distinguisher D, every
sufficiently large security parameter λ ∈ N, and auxiliary input z ∈ {0, 1}poly(λ), it holds that

|Pr[x
$← Xλ : D(1λ, x, z) = 1]− Pr[y

$← Yλ : D(1λ, y, z) = 1]| ≤ µ(λ)

Definition 2 (Computational and Sub-exponential Indistinguishability). A pair of distribution
ensembles {Xλ}, {Yλ} are computationally indistinguishable if they are 1/p-indistinguishable for
every polynomial p, and are sub-exponentially indistinguishable if they are µ-indistinguishable for
some sub-exponentially small µ(λ) = 2λ

ε
with a constant ε > 0.

Note that the above definition of sub-exponential indistinguishability is weaker than standard
sub-exponential hardness assumptions that consider distinguisher running in sub-exponential time.

Below, we provide definitions of standard cryptographic primitives using µ-indistinguishability,
which implicitly define variants with polynomial or sub-exponential security.

2.3 Indistinguishability Obfuscation

We recall the notion of indistinguishability obfuscation for a class of circuit defined by [BGI+01],
adding the new dimension that the class of circuits may have restricted domains {Dλ}.
Definition 3 (Indistinguishability Obfuscator (iO) for a circuit class). A uniform PPT machine
iO is a indistinguishability obfuscator for a class of circuits {Cλ}λ∈N (with potentially restricted
domains {Dλ}λ∈N), if the following conditions are satisfied:

Correctness: For all security parameters λ ∈ N, for every C ∈ Cλ, and every input x (in Dλ), we
have that

Pr[C ′ ← iO(1λ, C) : C ′(x) = C(x)] = 1

µ-Indistinguishability: For every ensemble of pairs of circuits {C0,λ, C1,λ}λ satisfying that Cb,λ ∈
Cλ, |C0,λ| = |C1,λ|, and C0,λ(x) = C1,λ(x) for every x (in Dλ), the following ensembles of
distributions are µ-indistinguishable,{

C1,λ, C2,λ, iO(1λ, C1,λ)
}
λ{

C1,λ, C2,λ, iO(1λ, C2,λ)
}
λ
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Definition 4 (IO for P/poly). A uniform PPT machine iOP/poly(?, ?) is an indistinguishability
obfuscator for P/poly if it is an indistinguishability obfuscator for the class {Cλ} of circuits of size
at most λ.

2.4 Indistinguishability Obfuscation with Universal Efficiency

In this work, we consider families of circuit classes, and the task of building a family of indistin-
guishability obfuscators, one for each circuit class.

Definition 5 (IO for Families of Circuit Classes). Let {{Cxλ}}
x∈X be a family of circuit classes

(with potentially restricted domains {Dxλ}). A family of uniform machines {iOx}x∈X is a family

of indistinguishability obfuscators for {{Cxλ}}
x∈X , if for every constant x ∈ X, iOx is an indistin-

guishability obfuscator for the circuit class {Cxλ} (with domains {Dxλ}).

The above definition implicitly requires that for every x ∈ X, iOx runs in some polynomial time,
potentially depending on x. However, depending on how the run-time of iOx vary for different x,
qualitatively different types of efficiency could be considered.

Universal Efficiency: In one end, the run-time of iOx could be (almost) independent of x.

For example, in [GGH+13b], IO for NC1 is defined as a uniform PPT machine iONC1(?, ?, ?),
such that, for every c ∈ N, iOc

NC1(?, ?) = iONC1(c, ?, ?) is an indistinguishability obfuscator
for the class of circuits of depth at most c log λ and size at most λ.

Given that iONC1 is uniform PPT, the run-time of iOc
NC1 is essentially independent of c. In

particular, there exists a universal polynomial p, such that, for every index c, the run-time of
iOc

NC1 is bounded by p(λ, |C|) for every sufficiently large λ (say > |c|).
We refer to this type of efficiency universal efficiency, as the run-time of different iOx’s are
bounded by a universal polynomial.

Non-Universal Efficiency: In the other end, the run-time of iOx could depend (heavily) on x.

For example, the work of [GGH+13b] (and many other follow-up works) presents a construc-
tion of IO for NC1 that runs in time poly(λ, |C|)c (as opposed to a universal polynomial
independent of c). This is because their construction uses branching programs, which has
size O(1)c log λ for circuits with depth c log λ.

To differentiate, we call this type of efficiency non-universal efficiency, as the run-time of
different iOx’s are only bounded by different polynomials px.

In the context of IO for NC1, non-universal efficiency suffices for the purpose of bootstrapping to IO
for P/poly [GGH+13b]. However, as discussed in the introduction, in the context of IO for families
of circuit classes with constant degree, non-universal efficiency is trivial to achieve and is insufficient
for bootstrapping to IO for P/poly. Therefore, we require universal efficiency, formalized below.

Definition 6 (Universal Efficiency). A family of indistinguishability obfuscators {iOx}x∈X for
a family of circuit class {{Cxλ}}

x∈X (with potentially restricted domains {{Dxλ}}) has universal
efficiency, if there exists a universal polynomial p, such that, for every x ∈ X, iOx(1λ, C) runs in
time p(λ, |C|), for every sufficiently large λ (i.e., greater than a constant cx depending on x), and
circuit C ∈ Cxλ.

We note that it is without loss of generality to only consider the run-time of iOx for sufficiently
large λ (> cx), because the security of iOx already only holds for sufficiently large λ.
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2.5 Pseudorandom Generator

Definition 7 (Pseudo-Random Generator (PRG)). Let ` be a computable polynomial. A deter-
ministic polynomial-time uniform machine PRG is a `(λ)-stretch pseudorandom generator if the
following conditions are satisfied:

Syntax For every λ ∈ N and every r ∈ {0, 1}λ, PRG(r) outputs r′ ∈ {0, 1}`(λ)

µ-Indistinguishability: The following ensembles are µ-indistinguishable{
r

$← {0, 1}λ : PRG(r)
} {

r′
$← {0, 1}`(λ)

}
For every λ ∈ N, let PRGλ : {0, 1}λ → {0, 1}`(λ) denote the total Boolean function corresponding to
PRG for λ bit inputs. we say that PRG has degree d, if for every λ, PRGλ has degree d.

Since every PRGλ is a total function, by the Nisan-Szegedy result (Corollary 2), PRG must
belong to NC0.

Claim 1. Every constant-degree PRG is in NC0.

2.6 Puncturable Pseudo-Random Functions

We recall the definition of puncturable pseudo-random functions (PRF) from [SW14b]. Since in
this work, we only uses puncturing at one point, the definition below is restricted to puncturing
only at one point instead of at a polynomially many points.

Definition 8 (Puncturable PRFs). Let n be a computable polynomial and
{
Dλ ⊆ {0, 1}n(λ)

}
an

ensemble of sets. A puncturable family of PRFs with domains {Dλ} is given by a triple of uniform
PPT machines PPRF = (PRF.Gen,PRF.Punc,F) satisfying the following conditions:

Correctness: For every λ ∈ N, and every output K of PRF.Gen(1λ), every input i ∈ Dλ, and
K(−i) = PRF.Punc(K, i), we have that F(K(−i), x) = F(K,x) for all x 6= i.

Pseudorandom at punctured point: For every ensemble {iλ ∈ Dλ}, the following ensembles
(where i = iλ) are µ-indistinguishable.{

K
$← PRF.Gen(1λ),K(−i) = PRF.Punc(K, i) : K(−i), i,F(K, i)

}
{
K

$← PRF.Gen(1λ),K(−i) = PRF.Punc(K, i) : K(−i), i, Uλ)
}

As observed by [BW13, BGI14, KPTZ13], the GGM tree-based construction of PRFs [GGM86]
from pseudorandom generators (PRGs) yields puncturable PRFs. Furthermore, it is easy to see
that if the PRG underlying the GGM construction is sub-exponentially hard, then the resulting
puncturable PRF is sub-exponentially pseudo-random.

2.7 Functional Encryption

We provide the definition of a public key single query functional encryption (FE) scheme with
selective indistinguishability-based security based on that in [BSW12, O’N10].

13



Definition 9 (Selectively-secure Single-Query Public-key Functional Encryption). A tuple of algo-
rithms (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) is a selectively-secure functional encryption scheme
for a class of circuits {Cλ} if it satisfies the following properties.

Completeness: For every λ ∈ N, C ∈ Cλ, message m ∈ {0, 1}∗, and T > max(|C|, |m|),

Pr

 (mpk,msk)← FE.Setup(1λ, T )
c← FE.Enc(1λ,mpk,m)

skC ← FE.KeyGen(msk,C)
: C(m)← FE.Dec(skC , c)

 = 1

Non-Compact Efficiency: There is a universal polynomials p, such that, for every polynomial
T , there is a constant cT and the following holds:

For every λ > cT , the above three algorithms FE.Setup, FE.Enc, FE.KeyGen all run in time
p(λ, T (λ)), when FE.Enc and FE.KeyGen are fed with correctly generated mpk, msk, and C
(as described above in completeness).

µ-Selective-security: For every polynomial T , and every ensemble of circuits and pair of mes-
sages {Cλ,m0,λ,m1,λ}, where Cλ ∈ Cλ, |m0,λ| = |m1,λ| < |Cλ| ≤ T (λ), and Cλ(m0,λ) =
Cλ(m1,λ), the following ensembles of distributions {D0,λ} and {D1,λ} are µ-indistinguishable.

Db,λ =

 (mpk,msk)← FE.Setup(1λ, T (λ))
c← FE.Enc(1λ,mpk,mb,λ)
skC ← FE.KeyGen(msk,Cλ)

: mpk, skC , c


We note that in this work, we only need functional encryption supporting a single secret-key

query for functions with multi-bit outputs. Moreover, the security of the functional encryption
scheme only need to hold with respect to statically chosen challenge messages and functions.

Compact Functional Encryption. Non-compact efficiency only requires algorithms of the FE
scheme to run in time polynomial in the worst-case run-time of the computation. A stronger
notion of efficiency, called compactness (or weakly compactness) was proposed in [AJ15, BV15a],
which requires the encryption algorithm to run in time poly(λ, |m|, log T ) (or poly(λ, |m|)T 1−ε); in
essence, encryption is faster than the computation itself for any sufficiently large polynomial T .

Definition 10 (Compact Functional Encryption [AJ15, BV15a]). We say that a FE scheme for a
class of circuits {Cλ} is compact or (1−ε) weakly-compact for a constant ε ∈ (0, 1), if the efficiency
requirement of Definition 9 is strengthened to the following:

Compactness: The encryption algorithm FE.Enc runs in time

TimeFE.Enc(1
λ,mpk,m) ≤ p(λ, |m|, log T ) .

(1− ε)-Weakly Compactness: The encryption algorithm FE.Enc runs in time

TimeFE.Enc(1
λ,mpk,m) ≤ p(λ, |m|)T 1−ε .
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2.8 Randomized Encoding

In this section, we recall the traditional definition of randomized encoding with simulation secu-
rity [IK02, AIK06].

Definition 11 (Randomized Encoding Scheme for Circuits). A Randomized Encoding scheme RE
consists of two PPT algorithms,

• (Ĉ, x̂)
$← RE.Enc(1λ, C, x): On input a security parameter 1λ, circuit C, and input x, RE.Enc

generates an encoding Ĉx.

• y = RE.Eval(Ĉx): On input Ĉx produced by RE.Enc, RE.Eval outputs y.

Correctness: The two algorithms RE.Enc and RE.Eval satisfy the following correctness condition:
For all security parameters λ ∈ N, circuit C, input x, it holds that,

Pr[Ĉx
$← RE.Enc(1λ, C, x) : Eval(Ĉx) = C(x)] = 1

µ-Simulation Security: There exists a PPT algorithm RE.Sim, such that, for every ensemble
{Cλ, xλ,} where |Cλ|, |xλ| ≤ poly(λ), the following ensembles are µ-indistinguishable for all
λ ∈ N . {

Ĉx
$← RE.Enc(1λ, C, x) : Ĉx

}
{
Ĉx

$← RE.Sim(1λ, C(x), 1|C|, 1|x|) : Ĉx

}
where C = Cλ and x = xλ.

Furthermore, let C be a complexity class, we say that randomized encoding scheme RE is in C, if
the encoding algorithm RE.Enc can be implemented in that complexity class.

3 Bootstrapping IO for Special-Purpose Circuits

In this section, we identify a family of special-purpose circuit classes and show how to bootstrap
IO for this family to all polynomial-sized circuits.

Proposition 5. Assume the following primitives:

• a sub-exponentially secure compact FE scheme FE for Boolean NC1 circuits,

• a sub-exponentially secure PPRF scheme PPRF, and

• a sub-exponentially secure RE scheme RE in NC0.

Then, there is a family of special-purpose circuit classes {{PT,nλ }} indexed by two polynomials T (?)
and n(?) and defined w.r.t. FE, PPRF and RE as in Figure 1, such that, the following holds:

• If there exists a family {iOT,n} of sub-exponentially secure IO schemes for {{PT,nλ }} with
universal efficiency, then there are two sufficiently large polynomials T ∗ and n∗, such that,
iOT ∗,n∗ can be transformed into a (sub-exponentially secure) IO scheme for P/poly.

We note in Section 3.1 that all the underlying primitives of the above Proposition are implied
by the sub-exp hardness of LWE, and provide an overview on the proof of the proposition in
Section 3.2.
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3.1 Instantiating the Underlying Primitives from LWE

The first primitive of Proposition 5—a compact FE for Boolean NC1 circuits—can be derived from
the work of Goldwasser, Kalai, Popa, Vaikuntanathan and Zeldovich [GKP+13]: Assuming sub-exp
LWE, they construct a sub-exp secure FE scheme for the class of polynomial-sized Boolean circuits{
Cn,d(n)

}
with n input bits and depth d(n). Furthermore, the size of the ciphertexts is poly(λ, n, d)

(independent of the size of the circuits); when restricting to Boolean circuits in NC1 (as needed for
Proposition 5), the ciphertexts are compact. Summarizing,

Theorem 2 (Compact FE scheme for Boolean NC1 Circuits [GKP+13]). Assume sub-exponential
hardness of the LWE problem. There exists a sub-exponentially secure compact (single-query, public-
key) FE scheme for the class of Boolean NC1 circuits.

The second primitive—a sub-exp secure PPRF—can be constructed from the necessary assump-
tion of sub-exp secure OWFs [BW13, BGI14, KPTZ13]; but, the evaluation algorithms of these
PPRF schemes have high depth. Recently, Brakerski and Vaikuntanathan [BV15c] showed that
assuming LWE, the depth of the evaluation algorithm can be reduced to logarithmic O(log λ).

Finally, the third primitive—a sub-exp secure RE scheme in NC0—can be constructed from
sub-exp secure low-depth PRG [AIK04, IK02], which is in turn implied by sub-exp secure LWE.

3.2 Overview

Towards the proposition, recall that recent works [BV15a, AJ15, ABSV15] show that to construct
IO for P/poly, it suffices to construct a compact FE scheme for NC1 circuits. Formally,

Theorem 3 ([BV15a, AJ15, ABSV15]). Let n be a sufficiently large polynomial. Assume the
existence of a sub-exponentially secure, and (1 − ε)-weakly-compact (single-query, public-key) FE
scheme for NC1 circuits, and weak PRF in NC1. There exists an indistinguishability obfuscator for
P/poly.

Therefore, the natural direction is constructing compact FE scheme for NC1 circuits using IO
for the special-purpose circuits. We proceed in two steps: For any polynomials T and n, let NC1,T,n

be the subclass of NC1 circuits with at most size T (λ) and at most n(λ) input bits.

• Our first step (in Section 3.3) constructs a (sub-exponentially secure) FE scheme FET,n for
NC1,T,n from any (sub-exponentially secure) IO scheme iOT,n for {PT,nλ } (and the underlying
primitives of Proposition 5), for arbitrary T and n. Importantly, the encryption time of the
resulting FE scheme is directly proportional to the obfuscation time of the underlying IO
scheme:

TimeiOT,n(1λ, C) ≤ pT,n(λ, |C|)
TimeFE.Enc(mpk,m) ≤ pT,n(λ, q(λ, n(λ), log T (λ)))

where q is a universal polynomial independent of T and n. Note that, this does not guarantee
that the resulting FE scheme is compact, since the run-time of the IO scheme may depend on
T arbitrarily, in particular, it is possible that pT,n(λ, |C|) > T (λ), while iOT,n is still a valid
polynomial time IO scheme for {PT,nλ }.

• To overcome the above issue, our next step (in Section 3.4) starts with a stronger premise: The
existence of a family {iOT,n} of IO schemes for the family {{PT,nλ }} with universal efficiency.
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This means for any T, n, the obfuscation time of iOT,n is bounded by a universal polynomial
p, and (for sufficiently large λ)

TimeiOT,n(1λ, C) ≤ p(λ, |C|)
TimeFE.Enc(mpk,m) ≤ p(λ, q(λ, n(λ), log T (λ)))

This essentially means that the FE schemes are compact — encryption time is independent
of T (λ). In particular, for some sufficiently large polynomials T ∗ and n∗, encryption time of
FET

∗,n∗ is much smaller than the time of the computation, that is, p(λ, q(λ, n∗(λ), log T ∗(λ))) <
T ∗. With a closer examination, such an FE scheme FET

∗,n∗ is sufficient for the transforma-
tion of [BV15a, AJ15, ABSV15] to go through. More specifically, the final IO scheme for
P/poly they construct only need to use the underlying FE scheme for NC1 circuits with some
sufficiently large size T ∗ and sufficiently long input length n∗; the proof goes through, as long
as encryption time is sub-linearly (T ∗)1−ε in T ∗.

Putting the two steps together, we conclude Proposition 5.
Technically, the transformation in the first step is similar to that in [AJ15, LPST16]. However,

the former [AJ15] requires IO for a class of special-purpose Turing machines (as opposed circuits).
Our transformation uses the same idea as in [LPST16], but requires a much more refined analysis
in order to identify and simplify the circuits, whose special structure plays a key role later.

3.3 FE for NC1,T,n from IO for {PT,nλ }

Fix arbitrary polynomials T and n. We present an FE scheme FET,n for NC1,T,n from IO for
{PT,nλ }. Our construction starts with a compact FE scheme for Boolean NC1 circuits bFE =
(bFE.Setup, bFE.Enc, bFE.Dec) (as discussed in 3.1, such a scheme can be constructed from LWE),
and transforms it into FET,n. The transformation makes uses of the following additional building
blocks:

• a puncturable PRF PPRF = (PRF.Gen,PRF.Punc,F) for input domain {0, 1}λ.

• a randomized encoding scheme RE = (RE.Enc,RE.Eval) in NC0, and

• an IO scheme iOT,n for circuit class {PT,nλ } consisting all circuits of the form P [λ, T, n,mpk, i∗,K,m1, y,m0]
defined in Figure 1.

Let `mpk(λ) be the maximal length of master public keys of bFE, and `key(λ) that of punctured
keys of PPRF respectively.

Construction of FET,n . For any λ, T = T (λ) and n = n(λ), message m of length n and circuit C

with size at most T and input length at most n. The FE scheme FET,n = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec)
proceeds as follow:

Setup FE.Setup(1λ, T ): Samples (mpk,msk)
$← bFE.Setup(1λ, T ′), where T ′ is a time bound for

circuits C̄ defined below.

Key Generation FE.KeyGen(msk,C): Let C̄(m, i) be a circuit that on input m and i ∈ [T ]
outputs the ith bit yi of the output y = C(m).

Sample skC̄ ← bFE.KeyGen(msk, C̄); output sk = skC̄ .
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Circuit P [T, n,mpk, i∗,K,m<, Π̂,m>](i)

Constant: A security parameter λ ∈ N, a time bound T ∈ N, a threshold i∗ ∈ {0, · · · , T + 1}, a
public key mpk ∈ {0, 1}`mpk of bFE, a punctured key K ∈ {0, 1}`key of PPRF, strings m<,
m> of equal length n, and an RE encoding Π̂.

Input: An index i ∈ [T ].

Procedure:

1. (Ri||R′i) = F(K, i);

2. If i < i∗, set Π̂i = RE.Enc
(
1λ, bFE.Enc, (mpk, m<||i ; Ri) ; R′i

)
.

3. If i = i∗, set Π̂i = Π̂.

4. If i > i∗, set Π̂i = RE.Enc
(
1λ, bFE.Enc, (mpk, m>||i ; Ri) ; R′i

)
.

Output: Encoding Π̂i.

Padding: The hardwired encoding Π̂ is padded to be of length η′(λ, n, log T ), and the circuit is
padded to be of size η(λ, n, log T ), for some polynomials η′ and η specified in Section 3.3.2.

Circuit classes {PT,nλ } contains all circuits of form P [λ, T (λ), n(λ), ∗, ∗, ∗, ∗, ∗], where all wild-card
values satisfy length constraints specified above.

Figure 1: Special-Purpose Circuit P

Encryption FE.Enc(mpk,m):

1. Sample K
$← PRF.Gen(1λ), and puncture it at input 0, K(−0) = PRF.Punc(K, 0).

2. Sample P̃
$← iOT,n(1λ, P ), where P = P [λ, T, n,mpk, 0,K(−0), 0λ, 0κ,m] as defined in

Figure 1.

3. Output ciphertext ξ = P̃ .

Decryption FE.Dec(sk, ξ):

1. Parse ξ as an obfuscated program P̃ ; for i ∈ [T ], compute Π̂i = P̃ (i).

2. For every i ∈ [T ], decode ci = RE.Eval(Π̂i).

3. For i ∈ [T ], evaluate ci with sk to obtain yi = bFE.Dec(sk, ci).

4. Output y = y1|| · · · ||yT .

It is clear that all algorithms above are PPT. Below, we first analyze the encryption efficiency
of FET,n in Lemma 1 and then show its correctness and security in Lemma 2. How large the
special purpose circuits in the construction need to be padded to, i.e., the polynomials η and η′ in
Figure 1, follows implicitly from the security analysis. We thus set η and η′ after the security proof
in Section 3.3.2.

Lemma 1. There exists a universal polynomial q, such that,

if TimeiOT,n(1λ, C) ≤ pT,n(λ, |C|),
then, TimeFE.Enc(mpk,m) ≤ pT,n(λ, q(λ, n(λ), log T (λ)))

Proof. Towards this, we analyze the efficiency of each step of FE.Enc(mpk,m):
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• It follows from the efficiency of PPRF that Step 1 of FE.Enc takes a fixed, universal, polynomial
time q1(λ).

• It follows from the compactness of bFE that the size of the special purpose circuit P is bounded
by and padded to a fixed, universal, polynomial η(λ, n, log T ) (in Figure 1).

• It follows from the efficiency of iOT,n that the second step of encryption takes time TimeiOT,n(1λ, P ) =
pT,n(λ, η(λ, n, log T )).

Therefore, there exists a sufficiently large universal polynomial q w.r.t. which the lemma holds.

Lemma 2. Let bFE, PPRF, RE, iOT,n be defined as above. FE is correct and selectively secure for
NC1 circuits with n(λ)-bit inputs. Moreover, if all primitives are sub-exponentially secure, so is FE.

3.3.1 Proof of Lemma 2

Correctness follows from that of bFE, iOT,n, and RE. More precisely, recall that an honestly gener-
ated ciphertext c = P̃ of a messagem is the obfuscation of the circuit P = P [λ, T, n,mpk, 0,K(−0), 0λ, Π̂,m],
and an honestly generated sk is the secret key skC̄ of bFE for circuit C̄. Then, consider the de-
cryption procedure FE.Dec(sk, ξ):

• In Step 1, by the correctness of iOT,n and construction of P , evaluating P̃ on input i ∈ [T ]
yields an encoding

Π̂i = RE.Enc
(

1λ, bFE.Enc, (mpk, m||i ; Ri) ; R′i

)
• In Step 2, by the correctness of RE, Π̂i decodes to a ciphertext

ci = bFE.Enc(mpk, m||i ; Ri)

• In Step 3, by the correctness of bFE, evaluating ci with sk = skC̄ yields yi = C̄(m||i) = C(m)i.

Therefore, the output y = C(m) is correct.

µ-Selective-security states that for every ensemble of circuits in NC1,T,n and pair of messages of
length n(λ), {Cλ,m0,λ,m1,λ} such that Cλ(m0,λ) = Cλ(m1,λ), the following ensembles of distribu-
tions {D0,λ} and {D1,λ} are µ-indistinguishable.

Db,λ =

 (mpk,msk)← FE.Setup(1λ, T (λ))
sk ← FE.KeyGen(msk,Cλ)
c← FE.Enc(1λ,mb,λ)

: mpk, sk, c


Below, we show that the computational security of bFE, RE, PPRF, and iOT,n implies the compu-
tational selective security of FE. The proof w.r.t. sub-exponential security is syntactically identical.

Fix a security parameter λ, C = Cλ, mb = mb,λ. By construction of FE, the distribution
Db = Db,λ is

Db =


(mpk,msk)← bFE.Setup(1λ, T ′)
skC̄ ← bFE.KeyGen(msk, C̄)

K
$← PRF.Gen(1λ)

Pb = P [λ, T, n,mpk, 0,K, 0λ, 0κ,mb]

: mpk, skC̄ , iOT,n(1λ, Pb)

 . (1)
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Therefore, it boils down to show that iOT,n(1λ, P0) and iOT,n(1λ, P1) are indistinguishable,
given auxiliary information mpk, skC̄ . At a high-level, this follows from the same proof strategy for
obfuscating probabilistic circuits abstracted by [CLTV15], which showed that using sub-exp secure
IO for P/poly and puncturable PRF, one can obfuscate, in an indistinguishable way, probabilistic
circuits whose outputs are indistinguishable for every input. However, here, we require a more fine-
grained proof, using only IO for special-purpose circuits (instead of P/poly), and relying only on
its computationally security (instead of sub-exp security). For completeness, we provide a formal
proof below.

Towards showing the indistinguishability of {D0} and {D1}, we consider a sequence of hybrid
distributions Db

i∗ for i∗ ∈ {0, · · ·T + 1} and b ∈ {0, 1} described below. We will frequently denote by
Π̂i,b an RE encoding of the computation that encrypts message mb||i, using bFE and pseudo-random
coins, more precisely,

Π̂i,b = RE.Enc
(

1λ, bFE.Enc, (mpk, mb||i ; Ri) ; R′i

)
, where (Ri||R′i) = F(K, i) (2)

Hybrid Distribution Db
i∗ for i∗ ∈ {0, · · ·T + 1}: This distribution is identical toD0, except that,

instead of obfuscating circuit P0 (as in equation (1)), it obfuscates another special-purpose
circuit Pi∗,b that differs at the following aspects: (1) Pi∗,b is hardwired with a threshold i∗

(instead of 0), and a PRF key K(−i∗) punctured at point i∗ (instead of K(−0)); and (ii) it
outputs encoding Π̂i,1 for every input i < i∗, encoding Π̂i,0 for every i > i∗, and a hardwired
encoding Π̂ = Π̂i∗,b for i = i∗. More precisely, the distribution is

Di∗,b =
(
Pi∗,b = P [λ, T, n,mpk, i∗,K(−i∗),m1, Π̂i∗,b,m0] : mpk, skC̄ , iOT,n(1λ, Pi∗,b)

)
(3)

where (mpk,msk), skC̄ , and K are sampled identically as in equation (1), and Π̂i∗,b is sampled
as in equation (2).

Given the above hybrid distributions, to show the indistinguishability of {D0} and {D1}, it
suffices to prove the following claim, which shows the indistinguishability of every neighboring
hybrid distributions.

Claim 2. The following distribution ensembles are indistinguishable.

1. Ensembles {D0} and {D0,0} are indistinguishable.

2. For every i∗ ∈ {0, · · · , T} ,ensembles {Di∗,0} and {Di∗,1} are indistinguishable.

3. For every i∗ ∈ {0, · · · , T}, ensembles {Di∗,1} and {Di∗+1,0} are indistinguishable.

4. Ensembles {DT+1,0} and {D1} are indistinguishable.

Proof. All distributions listed in the lemma only differ at which circuits are obfuscated. We argue
their indistinguishability in sequence:

1. The first indistinguishability follows from the indistinguishability of iOT,n.

The circuits P0 and P0,0 obfuscated in distributions D0 and D00 have the same functionality:
For every input i ∈ [T ], both circuits output the encoding Π̂i,0 (because, only the flag bi,>
would be set to 1; see Figure 1). Thus by the security of iOT,n for special purpose circuits,
{D0} and {D0,0} are indistinguishable.
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2. The second indistinguishability follows from the security of PPRF, bFE and RE.

The circuits Pi∗,0 and Pi∗,1 obfuscated in distributions Di∗,0 and Di∗,1 differ only at the
hardwired encoding—Π̂i∗,0 in the former and Π̂i∗,1 in the latter. Thus, to show the indistin-
guishability of Di∗,0 and Di∗,1, it suffices to show the following:{

mpk, skC̄ , Π̂i∗,0

}
≈
{
mpk, skC̄ , Π̂i∗,1

}
If follows from the pseudo-randomness of PPRF at punctured point i∗ that encoding Π̂i∗,b

is indistinguishable from Π̂′i∗,b, which encodes the same computation as Π̂i∗,b does but using
truly random coins. Therefore, it suffices to prove that{

mpk, skC̄ , Π̂′i∗,0

}
≈
{
mpk, skC̄ , Π̂′i∗,1

}
,

where Π̂′i∗,b = RE.Enc
(

1λ, bFE.Enc, (mpk, mb||i∗ ; Ri∗) ; R′i∗
)
,

and Ri∗ ||R′i∗
$← {0, 1}poly(λ) .

The output of encoding Π̂′i∗,b is ci∗,b = bFE.Enc(mpk, mb||i∗ ; Ri∗), a freshly generated
ciphertext of message mb||i∗. Since the two challenge messages m0,m1 have the same output
C(m0) = C(m1), we have C̄(m0||i∗) = C(m0)i∗ = C(m1)i∗ = C̄(m1||i∗). Therefore, it follows
from the selective security of bFE that ciphertext ci∗,b is indistinguishable even given the
master public key mpk, and secret key skC̄ for circuit C̄. That is,

{mpk, skC̄ , ci∗,0 = bFE.Enc(mpk, m0||i∗ ; Ri∗)}

≈
{
mpk, skC̄ , Π̂i∗,1, ci∗,1 = bFE.Enc(mpk, m1||i∗ ; Ri∗)

}
Then, it further follows from the security of RE that the encoding Π̂′i∗,b is also indistinguish-
able, given mpk and skC̄ , which concludes the proof.

3. The third indistinguishability follows from the indistinguishability of iOT,n.

By construction, circuits Pi∗,1 and Pi∗+1,0 obfuscated in Di∗,1 and Di∗+1,0 only differ at how
outputs for inputs i∗ and i∗ + 1 are computed. For i∗, the former directly outputs the
hardwired encoding Π̂i∗,1, whereas the latter internally computes the same encoding. For
i∗ + 1, the former internally computes Π̂i∗+1,0, whereas the latter outputs the hardwired
encoding Π̂i∗+1,0. Nevertheless, since all outputs are identical, by the security of iOT,n for
special purpose circuits, {Di∗,1} and {Di∗+1,0} are indistinguishable.

4. The fourth indistinguishability follows from the indistinguishability of iOT,n.

By construction, circuits PT+1,0 and P1 obfuscated in DT+1,0 and D1 have the same func-

tionality: For every input i ∈ [T ], both circuits output the encoding Π̂i,1 (because, only the
flag bi,< would be set to 1; see Figure 1). Thus by the security of iOT,n, {DT+1,0} and {D1}
are indistinguishable.
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3.3.2 Setting Parameters

Recall that in the special purpose circuits, the length of the hardwired encoding Π̂ and the size
of the special purpose circuits are padded to some polynomials η′(λ, n, log T ) and η(λ, n, log T )
respectively. We now specify them.

Setting η′. For the security proof of FE (especially Claim 2) to go through, we must set η′ to be

the maximal length of Π̂i∗,b for all possible i∗ ∈ {0, · · · , T + 1} and b ∈ {0, 1} (see equation 2).

Since Π̂i∗,b is an RE encoding of the computation bFE.Enc(mpk,mb||i∗;Ri), its generation time is
bounded by TimeRE.Enc(λ,TimebFE.Enc(λ, |mb|+ |i∗|)). Hence, we set

η′(λ, n, log T ) = TimeRE.Enc(λ,TimebFE.Enc(λ, n+ log T )) .

Setting η. In order to apply the security of IO in the proof of Claim 2, we pad every special

purpose circuit P [λ, T, n,mpk, i∗,K,m<, Π̂,m>] to be of the maximal size of all circuits of form
P [λ, T, n, ∗, ∗, ∗,m′<, ∗,m′>], where m′<,m

′
> have the same length n as m< and m> and all wildcard

values satisfy the length constraints specified in Figure 1 and above.
It suffices to analyze the worst-case run-time of these special purpose circuits. The first and

third steps of P run in time poly(λ), and η′(λ, n, log T ) respectively. The second and fourth steps
generate an RE encoding of an encryption of bFE.Enc, by the same analysis above, their run-time
is bound by η′(λ, n, log T ). Therefore, overall the maximal size is bounded by some polynomial
η(λ, n, log T ).

3.4 Obtaining IO for P/poly

By the construction of FE scheme FET,n for NC1,T,n in Section 3.3, we immediately have the
following lemma:

Lemma 3. Assume the same underlying primitives as Proposition 5. Suppose there is a family of
IO schemes {iOT,n} for {{PT,nλ }} with universal efficiency, that is,

TimeiOT,n(1λ, C) ≤ p(λ, |C|) , where p is a universal polynomial.

Then, there is a family of FE schemes {FET,n} for {NC1,T,n} with the following encryption efficiency

TimeFE.EncT,n(mpk,m) ≤ p(λ, q(λ, n(λ), log T (λ))) , where q is a universal polynomial.

Clearly, this family of FE schemes {FET,n} gives a compact FE scheme for NC1 = {NC1,T,n}, and
hence already implies IO for P/poly by Theorem 3 shown in [AJ15, BV15a, ABSV15]. We further
examine their results, and observe that for any compact FE scheme, there exist some sufficiently
large polynomials T ∗ and n∗, such that, the resulting IO for P/poly only uses the FE scheme
to generate keys for NC1 circuits with time bound T ∗(λ) and input length bound n∗(λ). More
precisely, we observe the more refined results of [AJ15, BV15a, ABSV15]

Theorem 4 (Refined version of Theorem 3, implicit in [BV15a, AJ15, ABSV15]). Assume the
existence of a sub-exponentially secure weak PRF in NC1, and a (single-query, public-key) FE
scheme for NC1,T,n, with encryption time bounded by T (λ)1−ε, for sufficiently large polynomials n
and T . Then, there exists an indistinguishability obfuscator for P/poly.
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Fix any constant ε. By Lemma 3, for any two sufficiently large polynomials T ∗, n∗ that satisfy
the following condition, the FE scheme FET

∗,n∗ constructed from iOT ∗,n∗ satisfy the premise of
Theorem 4, in particular, the encryption time is smaller than T ∗(λ)1−ε.

p(λ, q(λ, n∗(λ), log T ∗(λ))) ≤ T ∗(λ)1−ε

Hence, by Theorem 4, iOT ∗,n∗ suffices for building IO for P/poly. This concludes Proposition 5.
For completeness we provide a proof sketch of Theorem 4 in Appendix 8.

4 Special-Purpose Circuits in Constant Degree

Assuming a constant-degree PRG, we show how to implement the special-purpose circuits in Fig-
ure 1 using constant-degree arithmetic circuits.

Proposition 6. Instantiated with a constant-degree PRG, the class of special-purpose circuits
{PT,nλ } in Figure 1 has universal arithmetic circuits {Uλ} of constant degree deg and size u(λ, n, log T )
for a universal polynomial u independent of T, n. Thus, the family of special-purpose circuit classes
{{PT,nλ }} has constant-degree.

Jumping ahead, when later trying to construct an special-purpose IO scheme for the class
of circuit in the above proposition, we not only need to rely on the fact that the circuits have
constant degree, but also that they have additional structure, namely, having constant type degree
(introduced later). Here we first prove the weaker constant degree property, since it is an important
step towards proving the stronger constant type degree property later. Moreover, this property is
interesting on its own, and it already leads to the following strong bootstrapping theorems for IO.
By Proposition 5, and the fact that all underlying primitives of the Proposition are implied by the
hardness of LWE (see the discussion in Section 3.1), we have,

Theorem 5 (Bootstrapping IO for constant degree circuits). Assume sub-exponential hardness
of LWE, and the existence of a sub-exponentially secure constant-degree PRG. There exist a family
of circuit classes of constant degree, such that, IO for that family with universal efficiency can be
bootstrapped into IO for P/poly.

As discussed in the introduction, the above proposition and theorem can also be generalized to
use arbitrary PRG not necessary computable in constant degree. See Remark 1 for more details.

4.1 Overview

The class {PT,nλ } consists of special purpose circuits of the form P [λ, T, n, ?1](?2), where T = T (λ)

and n = n(λ), where ?1 represents the rest of the constants (including mpk, i∗, K,m<, Π̂,m>)
and ?2 represents the input i. By viewing the rest of the constants as a description of the circuit,
U(?2, ?1) = P [λ, T, n, ?1](?2) can be viewed as the universal circuit of family PT,nλ . Hence, towards
the proposition, we only need to argue that P [λ, T, n, ?](?) can be implemented by an arithmetic
circuit of constant degree and size poly(λ, n, log T ).

The computation of P can be broken down into three parts: i) Evaluating the PPRF in Step
1, ii) performing comparison between i and i∗, and iii) depending on the outcome of comparison,
potentially compute a RE encoding in NC0. By definition of RE in NC0, part iii) has constant
degree. The challenges lie in implementing Part i) and ii) in constant degree. More specifically,
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Challenge 1: Let bi,<, bi,=, bi,> be decision bits indicating whether the input i is smaller than,
equal to, or greater than the hardwired threshold i∗. Since i ∈ [T ] and i∗ ∈ {0, · · · , T + 1},
their binary representation has logarithmic length l = dlog(T +2)e. Under binary representa-
tion, the straightforward way of computing these decision bits also requires logarithmic O(l) =
O(log T ) multiplications. E.g., equality testing can be done as bi,= =

∏
j∈[l](1 − (ij − i∗j )2)

(over any ring, where ij and i∗j are the jth bit of i and i∗).

Challenge 2: The state-of-the-art PPRF scheme [BV15b] has an evaluation algorithm in NC1

(assuming LWE), far from computable in constant degree. Even without the puncturing
functionality, standard PRFs cannot be computed in constant degree, or even AC0, since such
functions are learnable [LMN89].

Towards overcoming above challenges, we rely on the simple, but powerful, observation is that
in our special-purpose circuits, the input i and threshold i∗ both belong to a polynomial-sized set
{0, · · · , T + 1} (T by definition is polynomial in λ). This allows us to switch the representation of
i and i∗ from binary strings of length O(log T ) to strings of constant length over a polynomial-sized
alphabet, presented below.

New Input Representation Instead of using binary alphabet, we represent the input i ∈ [T ], as
well as the hardwired threshold i∗ ∈ {0, · · · , T + 1}, using an alphabet Σ consisting of a polynomial
number of vectors of length λ,

Σ = {e0, · · · , eλ} , (4)

where ej for j ∈ {0, · · · , λ} contains 1 at position j and 0 everywhere else (in particular, e0 is the
all 0 vector). Since T is polynomial in λ, there is a minimal constant, c such that, i (as well as i∗)
can be divided into c blocks of length blog(λ + 1)c, denoted as i = i1||i2|| · · · ||ic. Therefore, using
alphabet Σ,

i
Σ
= ei1 || · · · ||eic , with length |i|Σ = cλ ,

where a
Σ
= b denote that b is the representation of a using alphabet Σ, and |a|Σ denote the number

of bits needed in order to describe the representation over Σ.
We sketch how to resolve the two challenges, using the new representation.

Overcoming the first challenge: consider the simple task of testing equality of one block, ik and

i∗k—flag bki,= is set to 1 iff ik = i∗k. With the new representation, this equality can be tested by

simply computing bki,= = eik ·ei∗k in degree two. Moreover, after testing equality of all blocks, which

can be done in parallel, the equality between i and i∗ can be computed as bi,= =
∏
k∈[c] b

k
i,= in

constant degree c. Testing other relations, smaller than and greater than, between i and i∗ can be
performed similarly. See Section 4.2 for details.

Overcoming the second challenge: To circumvent the impossibility results, we leverage the fact that
we only need to construct a PPRF for a special polynomial-sized domain σc. Assume the existence
of a constant-degree PRG with super-linear stretch. The most natural idea is to construct a PPRF
using the GGM PRF tree [GGM86] as done in previous constructions of PPRF [BW13, BGI14,
KPTZ13]. Clearly, the degree of the PPRF evaluation grows exponentially with the depth of the
tree. Therefore, we can tolerate at most a constant depth. Fortunately, our domain is of polynomial
size, and if we use a high-degree GGM tree, where each node has λ children, the depth is constant
O(c). However, an issue arises when using high-degree tree. Recall that the evaluation of the GGM
PRF requires following the path leading to the leaf indexed by the input; at a particular node, the
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evaluator needs to choose the appropriate child in the next layer. When the tree has degree λ,
choosing a child corresponds to the indexing function called the multiplexer mux(~v, j) = ~vj , which
has at least depth Ω(log |~v|) when j is represented in binary. But, again thanks to our new input

presentation j
Σ
= ej , mux can be implemented as ~v · ej in degree 2. See Section 4.3 for details on

the PPRF.
Finally, we put all pieces together in Section 4.4. Our final implementation of special purpose

circuits had degree of order exp(logλ(Tn)).

4.2 Performing Comparisons in Constant-Degree

We show how to perform various comparison between i and i∗ represented using the new input
representation in constant degree. Towards this, we first show how to perform comparison over any
single block of i and i∗ in degree 2. For any k ∈ [c], let bki,<, bki,=, bki,> be flags indicating whether

the kth block of i, ik, is smaller than, or equal to, or greater than the corresponding block of i∗, i∗k;
they can be computed as follows:

• bki,= can be computed as the inner product bki,= = eik · ei∗k .

• bki,< can be computed as the inner product bki,< = eik · e<i∗k
, where e<i∗k

denote the vector that
contains 1s in the first i∗k − 1 positions, and 0s in the rest.

• bki,> can be similarly computed as the inner product bki,> = eik · e>i∗k
, where e>i∗k

denote the
vector that contains 0s in the first i∗k positions, and 1s in the rest.

Next, performing comparison over entire i and i∗ involves congregating the results of compar-
isons over individual blocks, which can be done using only a constant number O(c) of multiplications
as described in Figure 2.

4.3 PRF Evaluation in Constant-Degree

The special purpose circuits require a PPRF function with input domain {0, · · · , T}, key domain
{0, 1}λ, and range {0, 1}L(λ) for L(λ) long enough to supply the random coins for bFE and RE;
hence L(λ) = poly(λ, n, log T ). The following lemma provides such a PPRF in constant degree.

Lemma 4. Assume the existence of a degree-d PRG with λ1+ε-stretch for some constant d ∈ N
and ε > 0. For every polynomial D and L, there is a degree deg′ PPRF scheme with input domain
{0, · · · , D(λ)}, key domain {0, 1}λ, and range {0, 1}L(λ), where deg′ ∈ N is some constant depending
on d, ε, D and L. Furthermore, if the underlying PRG is subexponentially secure, then so is the
PPRF.

Proof. Let PRG be the PRG in the premise. We first make the observation that it implies a
constant-degree PRG scheme qPRG with quadratic stretch: If the stretch of PRG is already more
than quadratic, (i.e., 1 + ε ≥ 2) simply truncate the output to length λ2. Otherwise, iteratively
evaluate PRG for a sufficient number I = d1/ log(1 + ε)e of times to expand the output to length
λ2, that is, qPRG(s) = PRGI(s). The degree of qPRG increases to dI , still a constant, and the
security of qPRG follows from standard argument. Below, we will view the output of qPRG as a
vector v = v[1], · · · ,v[λ] of λ elements, each v[i] is a λ-bit binary string.

Furthermore, we observe that to get a PPRF with range {0, 1}L(λ), it suffices to construct one
with range {0, 1}λ, since one can always apply PRG iteratively to expand the output to L(λ) as
argued above.
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Performing Comparisons Compare(i)

Constants: a threshold i∗ ∈ {0, · · · , T + 1} represented as i∗
Σ
= (ei∗k

)k∈[c] together with vectors
(e<i∗k

, e>i∗k
)k∈[c].

Input: an input i ∈ [T ] represented as i
Σ
= (ei∗k

)k∈[c].

Procedure:

1. For every k ∈ [c], compute bki,= = eik · ei∗k
, bki,< = eik · e<i∗k

, and bki,> = eik · e>i∗k
.

2. Do the following in parallel:

Testing i = i∗ requires checking whether all blocks are equal. Therefore,

bi,= =
∏
k∈[c]

bki,= . (5)

Testing i < i∗ requires checking whether one of the following cases occur: For some

k ∈ [c], the first k − 1 blocks of i and i∗ are equal, and the kth block of i is smaller
than that of i∗. Therefore,

bi,< = 1−
∏
k∈[c]

(
1−

( ∏
j<k∈[c]

bji,=

)
× bki,<

)
. (6)

Testing i > i∗ requires checking whether one of the following cases occur: For some

k ∈ [c], the first k− 1 blocks of i and i∗ are equal, and the kth block of i is larger than
that of i∗. Therefore,

bi,> = 1−
∏
k∈[c]

(
1−

( ∏
j<k∈[c]

bji,=

)
× bki,>

)
. (7)

Figure 2: Performing comparisons between i and i∗ in constant degree. Vector ej ∈ {0, 1}λ has
a single 1 at position j and 0 elsewhere, and vector e<j ∈ {0, 1}λ has 1 at positions < j, and 0
elsewhere.

Using qPRG, we now construct a PPRF scheme PPRF = (PRF.Gen,PRF.Punc,F) with λ-bit
outputs. Since D is a polynomial, there is a minimal integer c such that for all λ ∈ N, D(λ) < λc.
Fix any security parameter λ, and D = D(λ). Our scheme PPRF with input domain {0, · · · , D}
represents inputs under alphabet Σ (in equation (4)), or alternatively, the input domain is Σc.

Key Generation PRF.Gen(1λ) samples a random λ-bit string K
$← {0, 1}λ.

Key Puncturing PRF.Punc(K, i∗) sets K0 = K and computes the following for every k ∈ [c]:

• vk = qPRG(Kk−1).

• Let vk[6= i∗k] be the vector identical to vk, but with the i∗k
th element replaced with 0.

Set the punctured key as

K(−i∗) =
(
ei∗k , vk[6= i∗k]

)
k∈[c]

Note that the size of K(−i∗) is bounded by O(λ2).
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PRF Evaluation F(K(−i∗), i) is presented in Figure 3. It is easy to verify that the algorithm
indeed has constant-degree.

PRF Evaluation F(K(−i∗), i)

Input: A punctured key K(−i∗) = (ei∗k
,vk[ 6= i∗k])k∈[c], and an input i ∈ {0, · · · , D} represented

as i
Σ
= (eik)k∈[c]. By definition i∗ 6= i.

Procedure:

1. For every k ∈ [c], compute bki,= = eik · ei∗k
, which indicates whether the kth blocks i∗k

and ik are equal.

2. For every k ∈ [c], compute dki indicating whether the following occurs: The first k− 1
blocks of i and i∗ are equal, but the kth block differs.

dki =
( ∏
j<k∈[c]

bji,=

)
×
(
1− bki,=

)
.

3. For every k ∈ [c], do:

• Select the ithk element in vk[ 6= i∗k],

Kk
k = vk[6= i∗k] · eik .

• For j = k + 1 to c, compute

wj = qPRG(Kk
j−1) , Kk

j = wj · eij .

4. Compute the final output
y = Σk∈[c](K

k
c × dki )

In the last two steps, multiplication between a string z and bit b yields 0|z| if b = 0 and z if b = 1,
and addition between two strings is bit-wise addition. Inner product between a vector of strings
and a vector of bits are defined accordingly.

Figure 3: Constant-degree PRF evaluation

Efficiency and security: The only difference between the above scheme and the original con-
structions of PPRF based on GGM tree [BW13, BGI14, KPTZ13] is (i) the tree has degree λ
instead of degree 2, and (ii) the inputs i and i∗ are represented under Σ. For efficiency, the second
difference has no impact, since under Σ, the representation of i and i∗ are still of fixed polynomial
size; the only effect the first difference has is that the punctured key consists of a λ-sized vector
per layer of the tree, as opposed to 1 element per layer, but the size of the punctured key is still
bounded by a fixed polynomial. For security, the same proof of [BW13, BGI14, KPTZ13] goes
through even when the tree has higher degree; we omit details here.

4.4 Putting Pieces Together

Given the sub-routine Compare and a constant-degree PPRF scheme PPRF with domain {0, · · · , T + 1}
and appropriate output length L(λ) = poly(λ, n, log T ), a constant-degree implementation the
special-purpose circuits is presented in Figure 4, where Step 1 and 2 evaluate the new functions
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Constant Degree Circuit P [λ, T, n,mpk, i∗,K,m<, Π̂,m>]

Constants: λ, T,mpk,m<, Π̂,m> are defined as in Figure 1; i∗ ∈ {0, · · · , T + 1} is represented

as i∗
Σ
= (ei∗k

)k∈[c], together with vectors (e<i∗k
, e>i∗k

)k∈[c]; K is a punctured key of a constant
degree PPRF PPRF.

Input: index i ∈ [T ] represented under Σ, that is, (eik)k∈[c].

Procedure:

1. (Ri||R′i) = F(K, (eik)k∈[c]). (See Figure 3.)

2. bi,<, bi,=, bi,> = Compare[i∗]((eik)k∈[c]). (See Figure 2.)

3. For ? ∈ {<,>}, compute
Π̂i,? = RE.Enc

(
1λ, bFE.Enc, (mpk, m?||(eik)k∈[c]); Ri); R

′
i

)
.

4. Output Π̂i = Π̂i,< × bi,< + Π̂× bi,= + Π̂i,> × bi,>.

Padding: The hardwired encoding Π̂ is padded to be of length η̄′(λ, n, log T ), and the circuit
is padded to be of size η̄(λ, n, log T ), for some polynomials η̄′ and η̄ set similarly as in
Section 3.3.2.

Figure 4: Special-Purpose Circuit P in Constant Degree

Compare and PPRF respectively. The choice of which randomized encoding to output, depending
on the outcome of comparisons, is made in Step 4 using simple addition and multiplication. More-
over, since the index i is now represented under Σ, each of its appearance in the special purpose
circuit (e.g. in Step 3), as well as in the bootstrapping transformation of Proposition 5 is replaced
with (ei1 , · · · , eic). Since this representation also has a fixed polynomial size (bounded by λ2 for
sufficiently large λ), all constructions and proofs remain intact.

It is easy to see that the implementation is correct, and furthermore the circuit size of this
implementation is still u(λ, n, log T ) for some universal polynomial u independent of T, n: In Step
1, the evaluation of the PPRF takes fixed (universal) polynomial time poly(λ), and so is the
evaluation of function Compare in Step 2. The run-time of Step 3 and 4 is determined by that of
RE and bFE as before, which again is bounded by a fixed (universal) polynomial poly(λ, n, log T ).
Therefore, the worst-case run-time and hence circuit size is bounded by u(λ, n, log T ), for some
universal polynomial u.

Remark 1 (Generalization to Any PRG). We generalize Proposition 6 to the case with a general
PRG. Since PRG is only used for constructing the PPRF in Figure 3, and all other steps can
be implemented in constant degree, the special purpose circuits have the form PPRG of constant
degree circuits with black-box access to PRG. This gives the more general bootstrapping theorem in
Proposition 4 discussed in the introduction. In addition, it is easy to see that since the PPRF is
constructed as a tree, where each node corresponds to a PRG evaluation, if PRG has degree d(λ),
then the PPRF has degree poly(d(λ)) = d(λ)c, where c is the depth of the tree, and is a constant.

5 Graded Encoding Schemes and Ideal Graded Encoding Oracle

We recall the definitions of Graded Encoding (GE) Schemes, ideal Graded Encoding (GE) Oracle,
and IO in oracle model. In this work, we consider GE scheme and GE oracle w.r.t. composite order
rings from a distribution, and treats the (multi-)sets that elements are encoded under as vectors,
as in the work of Applebaum and Brakerski [AB15].
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Composite-Order Rings: we work with composite-order rings ZP , where P =
∏σ
i=1 pi and p1, · · · , pσ

are distinct co-prime numbers. By the Chinese Remainder Theorem (CRT), ZP ∼= Zp1 × · · · ×Zpσ .
The CRT representation of elements a in ZP is a ∼= a1, · · · aσ; we also denote by a[[i]] the component
ai = a mod pi.

Sets and Levels: Elements in ZP are encoded under multi-sets over a universe [τ ], which are rep-
resented as a vector in Nτ . There is a natural partial ordering on vectors in Nτ : v ≤ w if for all
i ∈ [τ ], it holds that v[i] ≤ w[i]. If there is a coordinate i ∈ [τ ] in which v[i] > w[i], then we say
v[i] 6≤ w[i]. We also call these sets levels.

5.1 Graded Encoding Schemes

Our GE scheme for composite order groups follows the definition of [AB15], which in turn is based
on the definition of GE scheme in [GGH13a] and follow-up works. The exact formalization below
differs slightly from that in [AB15]: Following [GGH+13b, BGK+14] and the notion of multi-linear
jigsaw puzzles from [GGH+13b], our definition allows anyone with the secret parameters to encode
any elements at any level, whereas in [AB15], only random ring or sub-ring elements can be encoded.
Our construction of IO can also work with the more restricted interface of [AB15]. For simplicity,
we use the simpler interface.

Definition 12 (Graded Encoding Scheme). Let R be a ring, and let vzt ∈ Nτ be an inte-
ger vector of dimension τ ∈ N. A graded encoding scheme for R, vzt is a collection of sets
{[α]v ⊆ {0, 1}∗ : v ∈ Nτ ,v ≤ vzt, α ∈ R}, with the following properties:

1. For every index v ≤ vzt, the sets [α]v : α ∈ R are disjoint. We slightly abuse notation and
often denote a = [α]v instead of a ∈ [α]v.

2. There are associative binary operations + and − such that for all v ∈ {0, 1}τ , α1, α2 ∈ R and
all u1 = [α1]v and u2 = [α2]v: u1 + u2 = [α1 + α2]v and u1 − u2 = [α1 − α2]v, where α1 +α2

and α1 − α2 are addition and subtraction in R.

3. There is an associative binary operation × such that for all v1,v2 ∈ Nτ such that v1+v2 ≤ vzt,
for all α1, α2 ∈ R and for all u1 = [α1]v1, u2 = [α2]v2, it holds that u1 × u2 = [α1 · α2]v1+v2,
where α1 · α2 is multiplication in R.

As in [AB15], we consider GE scheme for composite order rings R, which is potentially sampled
from a distribution (as opposed to be fixed a priori). Below, define efficient procedures associated
with such a scheme.

Definition 13 (Efficient Procedures for Graded Encoding Schemes). A graded encoding schemes
GES is associated with a tuple of PPT algorithms (InstGen,Encode,Add, Sub,Mult, isZero) which
behaves as follows:

• Instance Generation: (pp, sp)
$← InstGen(1λ, 1σ, 1k, 1vzt) on input a security parameter λ, the

number σ of subrings, and multilinearity parameter k, and a zero-test set vzt, outputs a secret
parameter sp that describes a (R,vzt)-graded encoding scheme, where R = ZP ∼= Zp1 , · · ·Zpσ
with pairwise co-prime numbers pi, and a public parameter pp that is a subset of sp only
sufficient for performing addition, subtraction, and multiplication.

Hidden Ring: We remark that R is potentially sampled according to a distribution and kept
hidden, in particular, it is not included in pp.
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• Encoding: Encode on input sp, a ring element α ∈ R, and level v ∈ Nτ outputs an encoding
in [α]v.

• Addition: Add on input pp, encodings A1 = [α1]v1 and A2 = [α2]v2, outputs B = [α1 + α2]v
if v1 = v2 = v and ⊥ otherwise.

• Negation: Sub on input pp and an encoding A = [α]v, outputs B = [−α]v.

• Multiplication: Mult on input pp, encodings A1 = [α1]v1 and A2 = [α2]v2, outputs B =
[α1 · α2]v1+v2 if v1 + v2 ≤ vzt and ⊥ otherwise.

• Zero Testing: isZero on input pp, and encoding A = [α]v outputs 1 if and only if α = 0 and
v = vzt.

Noisy Encodings. In known candidate constructions, encodings are noisy and the noise level in-
creases with addition and multiplication operations, so one has to be careful not to go over a
specified noise bound. However, the parameters are set so as to support poly(λ) additions and
O(k) multiplications, where k is the multilinearity parameter received by InstGen. This will be
sufficient for our purposes and we therefore ignore noise management throughout.

We remark that in previous works, the multilinearity parameter is set to |vzt|1, because any
computation with degree higher than |vzt|1 produces encodings with level exceeding vzt, and hence
are not “supported”. In this work, we separate the multilinearity parameter from |vzt|1, since the
degree “supported” is much smaller than it.

5.2 The Level Function and Level-Respecting Arithmetic Circuits

Given that GE scheme associates computation with levels and imposes constraints on how lev-
els can be manipulated. It would be instrumental to define the following level function level
and level-respecting arithmetic circuits. The latter is termed set-respecting circuits in previous
work [PST14a]; in this work, we represent sets as vectors and call them levels, and hence the name
level-respecting circuits for consistency.

Definition 14 (The level function level). For every sequence ~v of levels and an arithmetic circuit
C, we define an assignment of levels to every wire w in C through the following recursively defined
function level(C, ~v, w):

• If w is the ith input wire, label it with level v[i].

• If w is the output wire of an addition (+) or subtraction (-) gate in C with input wires u1

and u2, and level(C, ~v, u1) = level(C, ~v, u2) = v 6= ⊥, label w with level v.

• If w is the output wire of a multiplication gate in C with input wires u1 and u2, and
level(C, ~v, u1) = v1 6= ⊥ and level(C, ~v, u2) = v2 6= ⊥, label w with level v1 + v2.

• In all other cases, label w with ⊥.

Definition 15 (Level-Respecting Arithmetic Circuits). We say that an arithmetic circuit C is
~v-respecting if for every output wire γ of C, level(C, ~v, γ) 6= ⊥. Moreover, let vzt be another level,
we say that C is (~v,vzt)-respecting if for every output wire γ of C, level(C, ~v, γ) = vzt.
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5.3 Ideal Graded Encoding Oracle

An ideal graded encoding oracle models the ideal interface of GE scheme; proving security of a
construction that uses an ideal graded encoding oracle shows that it is resilient to “generic” attacks
that treat encodings as if they were “physical envelopes” on which only legitimate operations can
be performed.

Following [AB15], to model GE scheme over rings from a distribution, we consider an ideal
graded encoding oracle O parameterized with a distribution R̃ over rings. The oracle samples a

ring R $← R̃(1λ) and enables players to 1) encode an element α ∈ R under a level v, and receive
a random “handle” h in return, and to 2) make “legal” zero-test queries on these encodings: a
zero-test query is a formal polynomial p on variables ~h, which evaluates to true iff p(~v) = 0, where
for every i, vi is the value encoded under handle hi.

In this work, we will consider ideal graded encoding oracles that are constant-degree, that is, all
legal polynomials that could be zero-tested have constant degree. This notion is recently formulated
in [Pas15, MMN15]. We here follow the formalization of [Pas15], where the legality of a query is
determined by a legality-predicate g: g(1λ, p,~l) outputs 1 if the query is deemed legal, where ~l are
the labels corresponding to the handles ~h.

Below, we provide the formal definition of ideal graded encoding oracle adapted from [Pas15].

Definition 16 (Ideal Graded Encoding Oracle). An ideal graded encoding oracle is an ensemble

of stateful oracles {Og,R̃λ } parameterized by a distribution R̃ over rings and a legality predicate g,
and indexed by a security parameter λ, each responds to queries in the following manner:

1. Upon initialization, a ring is sampled R $← R̃(1λ), and sent to the activator.

2. Then (and only then), the activator may adaptively make any number of queries of the form

OEnc(α,v), with α ∈ R and v ∈ Nτ ; for each such query, Og,R̃λ picks a uniformly random
“handle” h ∈ {0, 1}λ` where ` = `(λ) is an upper bounded on the length of elements in rings
sampled from R̃, stores the tuple (α,v, h) in a list LO and returns h.2 (This initialization

phase ends if any algorithm other than the activating algorithm makes any query to Og,R̃λ , or
if the activator makes a non OEnc query. Any subsequent OEnc(·, ·) queries will be answered
with ⊥.)

3. On input a query OEval(p) where p is a formal polynomial over variables h1, . . . , hm, each of

which is represented as a string of length λ` (corresponding to some handle), Og,R̃λ does the
following:

(a) For each i ∈ [m], retrieve a tuple (αi,vi, hi) from the state LO; if no such tuple exists,
it returns false.

(b) (Illegal query) If all tuples are retrieved, return false if g(1λ, p, ~v) 6= 1

(c) (Zero test) Finally, return true iff p(α1, . . . , αn) = 0 mod q, and false otherwise.

4. (All other queries are answered with ⊥).

2In particular, even if the same value v is encoded twice (under the same label), we get independently random
handles for the two encodings. This model thus considers randomized graded encodings. We mention, however, that
our results also work for deterministic graded encodings, where the oracle keeps state also during the encoding phase
and always returns the same handle for an encoding of the value v under the label l.
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Furthermore, we say that O is a degree-d(·) ideal graded encoding oracle if for all λ ∈ N,
g(1λ, p, ~v) returns 0 when deg(p) > d(λ).

Remark 2. We remark that following [PST14b, Pas15], for simplicity of notation, our definition
above do not directly allow players to create new encodings by adding and multiplying old ones (as in
the definitions of [BR14, BGK+14]). As argued in [PST14a, Pas15], this restriction is without loss
of generality for the purpose of constructing IO or VBB schemes. Roughly speaking, this is because
the output encodings for addition and multiplication over old encodings can be easily emulated by
giving “bogus” random handles. For this to work, it is important that a) the ideal graded encoding
oracle allows adaptive encoding queries in Step 2 and b) we consider a model of randomized graded
encodings (where multiple encodings of the same value are given fresh random handles). In such
a model, the only case where the same handle will be returned twice is when they correspond to
evaluating identical (formal) polynomials over the same set of handles; but, this behavior can be
efficiently emulated.

Moreover, Applebaum and Brakerski [AB15] show that even if the graded encodings are deter-
ministic, that is, there is a unique encoding for every ring element. The interface of creating new
encodings can still be emulated efficiently as long as the IO scheme satisfies a property called strong
algebraic security [AB15]. Our construction indeed satisfy this property (see Lemma 7), and hence
is also secure in unique encoding models.

5.4 IO in Oracle Model

We adapt the definition of IO in the plain model (Definition 17) to the oracle model, similar to the
definitions of VBB obfuscation in oracle models in [CKP15, Pas15, MMN15]. For convenience, we
will write an IO scheme as consisting of an obfuscator iO, and additionally an evaluator Eval which
specifies how to execute an obfuscated program produced by iO in the oracle model. Furthermore,
below we present an equivalent security definition which states the view of an adversary after
receiving an obfuscated program and interacting with the oracle, can be simulated by a potentially
unbounded simulator. It follows from standard argument that this definition is equivalent to the
indistinguishability based definition. In the analysis of our IO construction later, we will prove its
security by constructing an unbounded simulator.

Definition 17 (Indistinguishability Obfuscator (iO) in an Oracle Model). A pair of PPT oracle
machines (iO,Eval) is an indistinguishability obfuscator for a class of deterministic circuits {Cλ}λ∈N
in the O-oracle model, if the following conditions are satisfied:

Correctness: For all security parameters λ ∈ N, for all C ∈ Cλ, for all input x, we have that

Pr[Ĉ ← iOOλ(1λ, C) : C(x) = EvalOλ(Ĉ)] = 1

µ-Unbounded Simulation Security: For every polynomial-sized adversary A, there exists a
randomized (potentially unbounded) simulator Sim such that for every λ ∈ N and C ∈ Cλ,∣∣∣Pr[AOλ(iOOλ(1λ, C)) = 1]− Pr[SimC(1λ) = 1]

∣∣∣ ≤ µ(λ) .

6 IO for Special-Purpose Circuits in Ideal Model

In this section, we construct IO for our special-purpose circuits in ideal graded encoding model.
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6.1 Overview

Our goal is to construct IO for {{PT,nλ }} with universal efficiency in constant degree ideal graded
encoding model. Constructions of IO for NC1 in the literature follow two approaches: Either obfus-
cate the branching programs of circuits [BR14, BGK+14, PST14a, GLSW14] or directly obfuscate
circuits [AGIS14, Zim15, AB15]. The first approach seems to inherently require high-degree graded
encodings, since the evaluation of a branching program has degree proportional to its length. This
limitation does not hold for the second approach, but known constructions still require polynomial
degree. We base our construction on the construction of IO for NC1 by Applebaum and Braker-
ski [AB15] (shorthand AB-IO) in composite order ideal graded encoding model, and use new ideas
to reduce the degree of graded encodings.

Review of Applebaum-Brakerski IO Scheme: Let P be a program with universal arithmetic circuit
U(x, P ). Consider the following simple idea of encoding every bit of P and both values 0 and 1
for each input bit i ∈ [n], that is, P̂ = {[b]vi,b}i∈[n],b∈{0,1}, {[Pi]vi+n}i∈[m]. Then, given an input
x, an evaluator can simply pick the encodings {[xi]vi,xi}i∈[n], and homomorphically evaluate U on
encodings of (bits of) x and P to obtain an encoding of U(x, P ), which can then be learned by
zero-testing. This simple idea does not go far. We mention several key issues and their solutions.

1. To prevent an adversary from using inconsistent values for the same input bit at different
steps of the evaluation, AB-IO follows the standard solution of “straddling sets” [BGK+14],
and uses a set of special levels, so that, if both Zi,0 = [0]vi,0 and Zi,1 = [1]vi,1 for some
input bit i are used, the resulting encoding never reaches the zero testing level vzt. To see
this, consider a simplified example: Set vi,0 = (1, 0, 1) and vi,1 = (0, 1, 1), and provide two
additional encodings Ẑi,b of random values under levels v̂i,0 = (0, d, 0) and vi,1 = (d, 0, 0);
the only way to reach level (d, d, d) is to use Zi,b consistently, followed by multiplication with

Ẑi,b. Note that doing this for every input already requires degree n multiplication.

2. Graded encodings only support addition in the same levels. Since different input and pro-
gram bits are encoded under different levels, homomorphic evaluation of U cannot be done.
To resolve this, AB-IO uses El-Gamal encoding, under which a value w is represented as

(r, rw)
$← EG(w) with a random r. Encodings of El-Gamal encodings of w1 and w2, (R1 =

[r1]v1 , Z1 = [r1w1]v1) and (R2 = [r2]v2 , Z2 = [r2w2]v2) can be “added” using an addition
gadget ⊕ that does (R1R2 = [r1r2]v1+v2 , Z1R2 + Z2R1 = [r1r2(w1 + w2)]v1+v2), even if they
are under different levels. Note that the new gadget, however, turns every addition in U into
multiplications (and additions) in the homomorphic evaluation, which now has much higher
degree, up to 2depth, than U .

3. Point 1 ensures that an adversary must use an input x consistently, but, it can still deviate
from evaluating U . AB-IO uses an information theoretic authentication method to prevent
this. It samples a random value yi for each input wire, and computes ȳ = U(y1, · · · , yn+m).
The idea is to use the structure of the composite order ring to “bind” the program and
input bits with their corresponding y values, for example, instead of encoding EG(Pi), encode
EG(wn+i) where wn+i = (Pi, yn+i). Therefore, whichever computation the adversary performs
over x and P , the same is performed over y1, · · · , yn+m. An honest evaluation yields encodings
of EG((U(x, P ), ȳ)). By additionally releasing encodings of EG((1, ȳ)), the output U(x, P )
can be learned by first subtracting the encodings and zero-test. Moreover, deviating from
computing U leads to encodings of EG(Y (x, P ), Y (y1, · · · , yn+m)) with some Y 6= U , and
the value Y (y1, · · · , yn+m) cannot be eliminated to allow zero-testing Y (x, P ), which hence
remains hidden.
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Due to Point 1 and 2, AB-IO requires the graded encodings to support degree-(n2depth) com-
putations.

Towards Using Constant-Degree Graded Encodings, we modify AB-IO as follows:

1. We use the same method as AB-IO to prevent an adversary from using inconsistent input
values, but we cannot afford to do that for every input bit. Instead, recall that the domain
of our special purpose circuits is Σc, where Σ has size λ. We view each symbol x1, · · · , xc
(though described as a λ-bit string) as a “single input”, and apply the straddling sets of
AB-IO for each input symbol. (Ignore the El-Gamal encoding and the y-values temporarily.)
For the ith symbol, release for every possible value s ∈ Σ, encoding Zis = [s]vis , and Ẑis of

a random value under set v̂is. Consider a simplified example: Set vis = (0 · · · 0, 1, 0 · · · 0, 1)
with 1 at position s and λ + 1, and v̂is = (d · · · d, 0, d · · · d, 0) correspondingly. (As in Point
1 above,) the only way to reach (d, · · · , d) is using Zis for some s consistently followed by a
multiplication with Ẑis. The actual encoding is more complicated as s is described as a λ-bit
string s1, · · · , sλ, and each bit needs to be encoded separately ~Zis = {[sj ]vis}j .

2. Informally speaking, the addition gadget ⊕ of AB-IO turns addition over encodings under
different levels into multiplication; to reduce the degree of homomorphic evaluation, we want
to have as many additions under the same levels as possible. In particular, encodings of
form (R1 = [r]v, Z1 = [rw1]v) and (R2 = [r]v, Z2 = [rw2]v) can be directly “added” (R1 =
[r]v, Z1 + Z2 = [r(w1 + w2)]v)—we call this the constrained addition gadget ⊕̃. Fortunately,
thanks to the special domain Σc, encodings for different bits of an input symbol ~Zis have the
same level vis. To allow for using ⊕̃, we further let their El-Gamal encodings share the same
randomness ris, that is, Ris = [ris]vis and ~Zis = {[rissj ]vis}j . Now addition of different bits in
the same input symbol can be performed using only homomorphic addition.

More generally, we assign “types” to input wires—all wires describing P have one type, and
these describing xi for each i has another. Encodings for input wires of the same type share the
same level and El-Gamal randomness, and can be added using ⊕̃ for “free”, whereas addition
across different types is done using ⊕ as in AB-IO, involving homomorphic multiplication.
We further assign types to all wires in U recursively: When the incoming wires of an addition
gate in U have the same types, ⊕̃ can be applied and its outgoing wire keeps the same type;
in all other cases, homomorphic multiplication is required, and the types of the incoming
wires add up. Careful examination reveals that the degree of homomorphic evaluation is
proportional to the 1-norm of the output wire type, which we call the type-degree of U .

Combining the above ideas, we obtain a construction of IO for general circuit class in ideal model
where the degree of the graded encodings is O(td+ c), proportional to the type degree td and the
number of input type c of the circuit class; we say such a construction is type degree preserving.

For certain circuits, their type-degrees are much smaller than 2depth. For example, our special
purpose circuits, instantiated with a constant-degree PRG, have a constant type degree td, and
hence constant degree graded encodings suffice. More generally, when PRG has degree d(λ), the
type degree of the special purpose circuits is polynomial in d(λ).

Our actual IO scheme is more complicated than sketched above due to 1) it is based on the
robust obfuscator in [AB15] as opposed to the simple obfuscator described above; like the robust
obfuscator of [AB15], our IO scheme has the property that a generic attacker can only generate
encodings of 0 at the zero-testing level. Such a construction can work with graded encoding schemes
with unique encodings and seems to be more secure in face of zeroizing attacks on graded encodings.
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In particular, [CGH+15] showed that a simplified version of the simple obfuscator of [AB15] can
be attacked. 2) Our IO scheme directly obfuscates non-Boolean circuits. Previous constructions
of IO for NC1 considers only Boolean circuits; this is w.l.o.g. as a NC1 circuit C can be turned
into a Boolean one C̄(x, i) = C(x)i, still in NC1. But, when aiming at type-degree preserving
constructions of IO, we cannot use this trick, as C̄ may have much higher type degree than C.

6.2 Type-Degree of Arithmetic Circuits

Definition 18 (The Type Function and Type Degree). Let Σ be any alphabet where every symbol
in Σ is represented as a binary string of length ` ∈ N. Let U(?, ?) be an arithmetic circuit over
domain Σc × {0, 1}K with some K, c ∈ N. We say that U has c input-types and assign every wire
w in U with a type tw ∈ Nc+1 through the following recursively defined function tw = type(U,w).

Base Case: If w is the ith input wire,

• For every k ∈ [c], if i ∈ [(k − 1)` + 1, k`] (i.e., w describes the kth symbol in the first
input), assign type tw = ek+1.

• If i ∈ [c`+ 1, c`+K] (i.e., w describes the second input), assign type tw = e1.

Recursion: If w is the output wire of gate g with input wires u0, u1 of type tub = type(U, ub) for
b ∈ {0, 1},

• if g is an addition gate and tu0 = tu1, assign type tw = tu0;

• otherwise (i.e., g is a multiplication gate or tu0 6= tu1), assign type tw = tu0 + tu1.

Given the type function, we now define the quantity, type-degree, for arithmetic circuits, which
is basically the maximal 1-norm of types of all wires in the circuit. Furthermore, when considering
a class of circuits, we define its type-degree, by that of its universal arithmetic circuits.

Definition 19 (Type Degree). We define the type degree of the following objects:

• The type degree of a wire w in an arithmetic circuit U is tdeg(U,w) = |type(U,w)|1.

• The type degree of an arithmetic U is tdeg(U) = maxw∈U (tdeg(U,w)).

• We say that an ensemble of circuit families {Pλ} has c(?) types and type-degree tdeg(?) if it
has universal arithmetic circuits {Uλ}, where Uλ has c(λ) input-types and type degree tdeg(λ).

The following facts help understanding the notion of type degree. The first one establishes
that type degree is an intermediate quantity that always sits between the (normal) degree of an
arithmetic circuit and 2d where d is the depth of the circuit.

Fact 1. The type-degree of any arithmetic circuit U satisfies that deg(U) ≤ tdeg(U) ≤ 2d, where d
is the depth of U .

Proof. The above fact can be established via induction over the depth of circuits. In the base case
where d = 0, the input wires have type-degree 1, equal to both their degree and 20.

Suppose that the fact holds for all depth d circuits. Given a depth d+1 circuit U (for simplicity,
U is Boolean), consider two cases: 1) If the final gate g is a multiplication gate, then the type
degree of the output wire γ is the sum of that of the input wires u0, u1 of g, since (by the induction
hypothesis) deg(C, ub) ≤ tdeg(C, ub) ≤ 2d, we have that deg(C, γ) = Σb deg(C, ub) ≤ tdeg(C, γ) =
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Σbtdeg(C, ub) ≤ Σb2
d = 2d+1; induction statement holds. 2) If the final gate γ is an addition gate,

the type degree of γ is either the same as that of u0, u1 if they are of the same type, or is their
sum. Since the degree of γ always stays the same as the degree of the input wires, it is easy to see
that the induction statement holds again.

The above fact is concerned with arithmetic circuits consisting of only fan-in 2 multiplica-
tion/addition gates. In particular, it shows that such arithmetic circuits with constant depth also
has constant type degree. However, in general, arithmetic circuits with constant degree do not have
constant type degree. Below, we slightly extend the above fact to constant-degree circuits with
certain special structure. Later, we will show that our special-purpose circuits in fact have this
special structure and hence have constant type degree.

Fact 2. Let U(?, ?) be an arithmetic circuit consisting of fan-in 2 multiplication/addition gates
and additionally unbounded fan-in addition gate (all with unbounded fan-out). If U satisfies the
following property,

• for every unbounded fan-in addition gate, its input wires have the same type,

Then the type degree of U is bounded by tdeg(U) ≤ 2d, where d is the depth of U .

This fact essentially follows from the same proof as Fact 1. This is because every unbounded
fan-in addition have the same input types and hence its output has the same type; informally
speaking, the unbounded fan-in additions do not increase the type degree. Therefore, the type
degree of such a circuit follows Fact 1 as if the unbounded fan-in additions were not there.

Recall that Proposition 6 shows that our special-purpose circuits can be implemented in constant
degree. We now establish a stronger statement that they can in fact be implemented with constant
type-degree.

Lemma 5 (The Special-Purpose Circuits Have Constant Type-Degree). The class of special-
purpose circuits {PT,nλ } has universal arithmetic circuits {Uλ} of constant cT,n input-types, constant
type degree tdegT,n, and size u(1λ, n, log T ), for a universal polynomial u independent of T, n.

Proof. Fix any polynomials T (?) and n(?). The class {PT,nλ } in Figure 4 consists of special purpose
circuits of the form P [λ, T, n, ?1](?2) (with T = T (λ) and n = n(λ)), where ?1 is for the rest of
the constants (including mpk, i∗,K,m<, Π̂,m>, where i∗ is represented differently) and ?2 is for

the input i
Σ
= (ei1 , · · · eic) represented under alphabet Σ = {e0, · · · , eλ}. Therefore, U(?2, ?1) =

P [λ, T, n, ?1](?2) can be viewed as a universal circuit of PT,nλ , with domain Σc × {0, 1}K . Hence, it
has a constant number of input types. Moreover, it follows from the analysis of Proposition 6 that
P has constant degree and size u(λ, n, log T ) for some universal polynomial. Therefore, towards
the lemma, it remains to show that P also has constant type degree.

Examine P in Figure 4. It has the structure that Step 1 evaluating the PRF F and Step 2
performing comparison Compare can be executed in parallel; their respective outputs Ri||R′i and
bi,<, bi,=, bi,> are then fed into Step 3 and 4 to produce the final output. Observe that Step 3 and 4
can be implemented in NC0 since RE is in NC0. Thus, if the type degrees of (the wires corresponding
to) Ri||R′i and bi,<, bi,=, bi,> are bounded by a constant tmax, then the type degree of the entire
output is bounded by 2ctmax, where c is the constant depth of Step 3 and 4. Therefore, it suffices
to prove the following two claims.

Claim 3. All outputs of Compare in P have constant type degrees.
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We prove a stronger parameterized claim for the type degrees of the outputs of the PPRF F,
w.r.t. the degree of PRG (not the type degree of PRG).

Claim 4. If PRG had degree d(λ), then all outputs of F in P have type degrees poly(d(λ)).

When PRG has constant degree, it follows immediately from the claim that the outputs of F in
P all have constant type degrees. (We prove the above parameterized claim in order to reveal the
general relation between the degree of PRG and the type degree of P , as we discuss later.)

In summary, the type degree of P is bounded by 2ctmax, where both c and tmax are constants.
Therefore, P has constant type degree. Below we prove the above two claims.

Proof of 3. We use Fact 2 to show that outputs of Compare in P have constant type degrees. First
observe that Compare can be implemented by a constant-depth arithmetic circuit consisting of fan-
in 2 multiplication/addition gates and additionally unbounded fan-in addition gate. Examine the
subroutines Compare in Figures 2. The inner product opeartions in Step 1 can be implemented
using unbounded fan-in addition and fan-in 2 multiplication in depth 2; the rest Step 2-3 can be
implemented using only fan-in 2 multiplication/addition in constant depth.

Therefore, by Fact 2, it suffices to show that for every inner product operation, the (unbounded
fan-in) addition for computing it have the same input types. By definition of the type function, all
input wires describing the constants (including mpk,K,m<, Π̂,m> and all values related to i∗) is
assigned with type e1 ∈ Nc+1, and input wires for eik with k ∈ [c] is assigned with type ek+1 ∈ Nc+1.
Then,

• In Step 1 of Compare, inner products are used to perform block-wise comparisons. Recall that
for every k ∈ [c] and ? ∈ {=, <,>}, flag bki,? indicates whether ik is equal to, smaller than, or

bigger than i∗k, and is computed as bki,? = eik · e? i∗k
, where the first vector eik is a part of the

input and has type t1 = ek+1, and the second vector e? i∗k
is a part of the hardwired constants

related to i∗ and has type t2 = e1. Therefore, addition gates in this inner product operates
over input wires with the same type t1 + t2.

Proof of Claim 4. Examine the structure of F in Figure 3. Step 1-2 producing choice bits dki , and
Step 3 producing strings Kk

c (both for k ∈ [c]) can be executed in parallel, whose outputs are then
fed to Step 4 to produce the output. Since Step 4 is in NC0, as argued before, the type degree
of the circuit is bounded by 2ctmax, where c is the depth of Step 4 and tmax is the maximal type
degree of the outputs of Step 1-2 and Step 3.

Observe that Step 1-2 have similar structure as the function Compare – step 1 computes inner
products, followed by step 2 computing some constant opeartions. Thus it follows from similar
proof of Claim 3 that their output bits dki have constant type degree.

We now analyze the type degree of Kk
c for any k ∈ [c] produced by Step 3. We prove by

induction. The induction hypothesis is that after each iteration k ≤ j ≤ c, bits in the intermediate
value Kk

j have the same type tkj and the type degree |tkj |1 ≤ (2d)j , where d = d(λ) is the degree of
the PRG.

• Base case j = k: Kk
k = ~vk[6= i∗k] ·eik , where the first vector is a part of the hardwired constant

K(−i∗) and has type e1, while the second vector has type ek+1; hence, the addition in the
inner product operates over bits of the same type tkk = e1 + ek+1, and producing bits in Kk

k

with the same type. It follows immediately that |tkk|1 ≤ 2 < (2d)k.
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• Induction: Suppose that iteration j−1 produces Kk
j−1 of type tkj−1 whose `1 norm is bounded

by (2d)j−1. In the next iteration j, Kk
j is computed as

~wj = qPRG(Kk
j−1) , Kk

j = ~wj · eij .

Assume with loss of generality that qPRG is represented as an arithemtic circuit with alter-
nating (fan-in 2) addition and multplication layers, and all output bits have the same degree
d (otherwise, it is easy to raise the degree by multiplying with constant 1). Since all input
bits Kk

j−1 have the same type tkj−1, a simple induction proof shows that the bits in ~wj all have

the same type t = 2etkj−1, where e is the number of multiplication layers in qPRG. Note that
2e = d as every multiplication layer doubles the degree of qPRG. Therefore, the induction
hypothesis holds for j: All bits Kk

j have the same type tkj = dtkj−1 + ej+1, and its `1 norm is

bounded by d|tkj−1|+ 1 ≤ (2d)j .

This concludes the induction, and shows that Kk
c for any k ∈ [c] have type degree bounded by

(2d)c = poly(d). By the argument above, the type degree of F is bounded by poly(d).

Remark 3 (Generalization to Arbitrary PRG). When considering general PRG with arbitrary
degree d(λ), we can generalize Lemma 5 to the following lemma:

Lemma 6 (The Special-Purpose Circuits Have Constant Type-Degree). If the underlying PRG
PRG has degree d(λ), the class of special-purpose circuits {PT,nλ } has universal arithmetic circuits
{Uλ} of constant cT,n input-types, type degree tdegT,n(λ) = poly(d(λ)), and size u(1λ, n, log T ), for
a universal polynomial u independent of T, n.

The only difference from Lemma 5 is that the type-degree of the special-purpose circuits is now
poly(d(λ)), as opposed to a constant. This follows from the same argument as in the proof of
Lemma 5. In particular, the degrees of the special-purpose circuits P are bounded by 2ctmax, where
c is the constant depth of Step 3 and 4 in P , and tmax is the maximal type degrees of the outputs
of Compare and F. The former by Claim 3 is always a constant, whereas the latter by Claim 4 is
poly(d(λ)). Thus, the overall type degrees of the special-purpose circuits are poly(d(λ)).

6.3 Type-Degree Preserving Construction of IO

In this section, we show that if a class of circuits has c input-types and type-degree td, then there
is an IO scheme for it in the ideal graded encoding oracle model, where the oracle has degree
d = O(td + c). In other works, IO for classes of circuits with small (say constant) number of
input-types and type-degree can be constructed from low (correspondingly constant) degree ideal
graded encoding oracle. We say that such a construction is type-degree preserving.

Theorem 6 (Type-Degree Preserving Construction of IO). There is a uniform machine iO(?, ?, ?)
and a universal polynomial p, such that, the following holds:

For any class of circuits {Pλ} that has universal arithmetic circuits {Uλ} with c(λ) input-

types, type degree tdeg(λ), and size S(λ), there is an ideal graded encoding oracle O = {Og,R̃λ }
with degree d(λ) = O(tdeg(λ) + c(λ)), such that, iOP(?, ?) = iO(Uλ, ?, ?) is a (sub-exponentially
secure) indistinguishability obfuscator for {Pλ} in the O-oracle model, with run time p(1λ, S(λ))
(for sufficiently large λ).
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By the above theorem, we can obtain a family of IO schemes {iOT,n} for the family {{PT,nλ }}
with universal efficiency, relying only on constant-degree ideal graded encoding oracles.

Proposition 7. There is a family of (sub-exponentially secure) IO schemes {iOT,n} for the family
of special-purpose circuit classes {{PT,nλ }} in Figure 4 with universal efficiency, such that, for every
polynomials T , n, iOT,n uses an ideal graded encoding oracle with a constant degree dT,n.

Proof. Lemma 5 states that for any polynomials T and n, our special purpose circuit class {PT,nλ }
has universal arithmetic circuits {UT,nλ } with constant number of input types cT,n and type-degree
tdT,n, and polynomial size u(λ, n, log T ) for some universal polynomial u. By Theorem 6, there is
an ideal graded encoding oracle OT,n of constant degree dT,n, such that, iO(UT,nλ , 1λ, ?) is an IO

scheme for the circuit class {PT,nλ } in the OT,n-oracle model and runs in time p(λ, |UT,nλ |).
We now construct a family of IO schemes {iOT,n} for {{PT,nλ }}, by setting

iOT,n(1λ, ?) = iO(UT,nλ , 1λ, ?) .

Additionally, by the efficiency of iO, the run-time of iOT,n is

TimeiOT,n(1λ, P ) = TimeiO(UT,nλ , 1λ, P ) ≤ p(λ, |UT,nλ |) .

Since the size of the universal arithmetic circuit UT,nλ is bounded by u(λ, n(λ), log T (λ)), we have,

TimeiOT,n(1λ, P ) ≤ p(λ, |UT,nλ |) ≤ p(λ, u(λ, n(λ), log T (λ))) .

This shows that the family {iOT,n} has universal efficiency.

Remark 4 (Generalization to Arbitrary PRG:). We remark that it follows from Lemma 6 that
when the PRG PRG underlying {PT,nλ } have degree d(λ) (instead of a constant), the type degree
of their universal arithmetic circuits is poly(d(λ)). Therefore, by the type-degree preserving IO
construction of Theorem 6, IO for {PT,nλ } exists in a degree poly(d(λ)) ideal graded encoding model.
This concludes the second bullet of Proposition 4 discussed in the introduction.

Remark 5 (Discussion on Bootstrapping in the Oracle Model). It is natural to ask whether our
bootstrapping technique (Proposition 5) can be applied to transform the above IO for special-purpose
circuits in the oracle model to a full-fledged IO for P/poly also in the oracle model. However, the
short answer is that the bootstrapping technique only works with constructions in the plain model.
More specifically, recall that our bootstrapping proceeds in two steps—first obtaining a compact FE
and then invoke the more refined theorem of [AJ15, BV15a] to obtain IO for P/poly. For the first
step of constructing a compact FE FET,n for NC1 circuits of size T and n input bits (in Section 3.3),
if we plug in an IO scheme for {PT,nλ } in the ideal constant-degree GE model, we obtain a compact
FE FET,n also in the ideal constant-degree GE model; in particular, in this scheme, the encryption
algorithm activates and uses the encoding procedure OEnc of the oracle, and the decryption algorithm
uses the evaluation procedure OEval of the oracle. However, the second step of bootstrapping from
compact FE to IO for P/poly of [AJ15, BV15a] only works if the compact FE is in the plain model,
since their transformation requires using the FE scheme to generate secret keys for the encryption
algorithm of the scheme itself. In other words, it requires either the encryption algorithm of the FE
scheme to be in the plain model, or the scheme can generate secret key for functions using oracles.
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6.4 Type Degree Preserving Construction of IO

Consider an arbitrary circuit class {Pλ} with universal circuits {Uλ}. The universal circuit U = Uλ
has the following parameters:

• degree d = deg(U),

• domain {0, 1}m × Σc, meaning every circuit P ∈ P is described by a m-bit string, and every

input x
Σ
= x1, · · · , xc is represented under alphabet Σ, i.e., xk ∈ Σ for every k ∈ [c],

• alphabet Σ with q symbols that can be enumerated under a canonical order,

• a set Γ of γ output wires, and denote by Uo the induced Boolean circuit with output wire o,
by to = type(U, o) the type of that wire, and do the degree.

• Let M = maxo∈Γ(|to|∞).

Below, we first describe our IO scheme iOP(1λ, ?) = iO(U, 1λ, ?), and its evaluation procedure
Eval. For simplicity of notation, we suppress the subscript P and implicitly assume that iO knows
about the universal circuit U below.

Encoding Levels: We specify the levels used in the IO construction, as well as the final zero-
testing level vzt in Figure 5. All levels are represented as a (q + 1)× (c+ 2) matrix followed by a
γ × 1 vector over N, where q = |Σ| and γ = |Γ|. 3 Below we describe them column by column. Let
1i1,i2,··· ,ip denote a vector with ones at positions i1, i2, · · · , ip and zeros everywhere else, 1 6=i1,i2,··· ,ip
a vector with zeros at positions i1, i2, · · · , ip and ones everywhere else, and 0 the all 0 vector. a⊗ b
denote the tensor product between the two vectors.

For convenience, we overload notations to let s and o also denote their indexes in the alphabet
Σ and the set of output wires Γ (with range [Σ] or [Γ]), which allows us to write for example 1s,
1o. We also do not explicitly mention the length of the columns in the matrices, which is implicitly
assumed to be q + 1, and the length of the vectors (following the matrices) are assumed to be γ.

The Obfuscator iO: on input 1λ and P ∈ P, proceeds as follows:
Activation: Activate the GE Oracle O and receive a ring R ∼= R1 ×R2, · · · × Rc+3.
Encoding: Invoke the encoding procedure OEnc of O to encode the following elements, under levels
defined below.

1. Obtain encoding Z∗ = [w∗]v∗ , for w∗ = (1, 1, ρ∗1, · · · , ρ∗c+1) that is random on all but the first
two subgroup, in which the elements are 1.

2. For k ∈ [c], encode for the k − 1th input symbol:

• For every symbol s ∈ Σ, obtain encoding Rks = [rks ]vks for random element rks
$← R.

• For every symbol s ∈ Σ, and every jth bit sj , obtain encoding Zks,j = [rks · wks,j ]vks+v∗

for element wks,j
∼= (ykj , sj , ρ

k
s,j,1, · · · , ρks,j,c+1) with ykj

$← R1 and (ρks,j,1, · · · , ρks,j,c+1)
$←

R3 × · · ·Rc+3.

3. For k = c+ 1, encode the program description:

3Equivalently, they are (|Σ| + 1) × (c + 2) + |Γ| long vectors; we choose the “matrix plus vector” representation
for ease of exposition.
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v∗ = (0, · · · ,0,1q+1) ,0 vks = (0, · · · ,1s, · · · ,0) ,0

v∗ =



0 · · · 0 · · · 0 0
...

...
...

...
0 · · · 0 · · · 0 0
...

...
...

...
0 · · · 0 · · · 0 0
0 · · · 0 · · · 0 1


,



0
...
0
0
0
...
0


vks =



0 · · · 0 · · · 0 0
...

...
...

...
0 · · · 0 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 0 · · · 0 0
...

...
...

...
0 · · · 0 · · · 0 0
0 · · · 0 · · · 0 0


,



0
...
0
0
0
...
0


vc+1 = (0, · · ·0,16=q+1,0) ,0

v̂ks,o = (16=q+1 ⊗ (0 · ·0, to[k], 0 · ·0) + 1q+1 ⊗ (0 · ·0, 1, 0 · ·0)) ,1o

vc+1 =



0 · · · 0 · · · 1 0
...

...
...

...
0 · · · 0 · · · 1 0
...

...
...

...
0 · · · 0 · · · 1 0
0 · · · 0 · · · 0 0


,



0
...
0
0
0
...
0


v̂ks,o =



0 · · · to[k] · · · 0 0
...

...
...

...
0 · · · to[k] · · · 0 0
0 · · · 0 · · · 0 0
0 · · · to[k] · · · 0 0
...

...
...

...
0 · · · to[k] · · · 0 0
0 · · · 1 · · · 0 0


,



0
...
0
1
0
...
0



v̂o = (16=q+1 ⊗ (M − to[1] · · · ,M − to[c+ 1], 0) + 1q+1 ⊗ (0, · · · , 0, 1, 0)) , c · 1 6=o

v̂o =



M − to[1] · · · M − to[k] · · · M − to[c+ 1] 0
...

...
...

...
M − to[1] · · · M − to[k] · · · M − to[c+ 1] 0

...
...

...
...

M − to[1] · · · M − to[k] · · · M − to[c+ 1] 0
0 · · · 0 · · · 1 0


,



c
...
c
0
c
...
c


v̄o = (0, · · · ,0,16=q+1) ,0

vzt = (1 6=q+1 ⊗ (M, · · · ,M, 1) + 1q+1 ⊗ (1, · · · , 1, D)) , c · 1

v̄o =



0 · · · 0 · · · 0 1
...

...
...

...
0 · · · 0 · · · 0 1
...

...
...

...
0 · · · 0 · · · 0 1
0 · · · 0 · · · 0 0


,



0
...
0
0
0
...
0


vzt =



M · · · M · · · M 1
...

...
...

...
M · · · M · · · M 1
...

...
...

...
M · · · M · · · M 1
1 · · · 1 · · · 1 D


,



c
...
c
c
c
...
c



Figure 5: Levels used in obfuscation. Matrices have dimension (q+1)× (c+2) and vectors have dimension
γ. In the matrices of vks and v̂ks,o, the kth column is non-zero, the row corresponding to the index of s in vks
and v̂ks,o is non-zero and zero respectively. In the vectors of v̂ks,o and v̂o, the position corresponding to the
index of o is non-zero and zero respectively.
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• Obtain encoding Rk = [rk]vk for random element rk
$← R.

• For every j ∈ [m], obtain encoding Zkj = [rk · wkj ]vk+v∗ for element wkj
∼= (ykj , Pj , ρ

k
j,1, · · · , ρkj,c+1)

with ykj
$← R1, and (ρkj,1, · · · , ρkj,c+1)

$← R3 × · · ·Rc+3.

4. For every output wire o ∈ Γ, encode elements for straddling purposes.

• “Input consistency”: For every k ∈ [c] and every symbol s ∈ Σ, obtain encoding R̂ks,o =

[r̂ks,o]v̂ks,o and Ẑks,o = [r̂ks,o · ŵk]v̂ks,o+v∗ for random elements r̂ks,o
$← R and element ŵk =

(ŷk, β̂k, ρ̂k1, · · · , ρ̂kc+1) that is random in all subrings except the k + 2th, in which ρ̂kk = 0.

• “Output consistency”: Obtain encoding R̂o = [r̂o]v̂o and Ẑo = [r̂o · ŵ]v̂o+v∗ for random

elements r̂o
$← R and element ŵ = (ŷ, β̂, ρ̂1, · · · , ρ̂c+1) that is random in all subrings

except the c+ 3rd, in which ρ̂c+1 = 0.

5. For every output wire o ∈ Γ, encode an element for authentication purpose.

• Obtain encoding R̄o = [r̄o]v̄ and Z̄o = [r̄o · w̄o]v̄+Dv∗ for random element r̄o
$← R, and

w̄o =
(
ŵ ·

∏
k∈[c]

ŵk
)

(ȳo, 1, 0, · · · , 0) , where

ȳo = Uo

(
{y1
x1,j}, · · · , {y

c+1
xc+1,j

}, {yc+1
j }

)
.

where D = d+ c+ 1, and d = deg(U) is the degree of U .

Output: The obfuscated program consists of

P̂ =
(
Z∗,

{(
Rks , Z

k
s,j

)}
k∈[c],s∈Σ,j∈[`]

,
{(
Rc+1, Zc+1

j

)}
j∈[m]

,{(
R̂ks,o, Ẑ

k
s,o

)}
k∈[c],s∈Σ,o∈Γ

,
{(
R̂o, Ẑo

)}
o∈Γ

,
{(
R̄o, Z̄o

)}
o∈Γ

)
.

The Evaluator Eval: on input an obfuscated program P̂ and input x = x1, · · · , xc ∈ Σc, compute
yo = Uo(x, P ) for every output wire o ∈ Γ using the zero testing procedure OEval of O as follows.

We in-line the analysis of correctness in the description below.

1. Consider the following two arrays Ax and Bx,o of encodings, chosen from P̂ according to
x1, · · · , xc, and output wire o:

Ax =
({(

Rkxk , Z
k
xk,j

)}
k∈[c],j∈[`]

,
{(
Rc+1, Zc+1

j

)}
j∈[m]

)
Bx,o =

({(
R̂kxk,o, Ẑ

k
xk,o

)}
k∈[c]

,
(
R̂o, Ẑo

)
,
(
R̄o, Z̄o

) )
.

2. Perform the following mental evaluation over encodings (Z∗,Ax), with the goal of emulating
the computation of Uo. More specifically, we recursively associate every wire α in Uo with
a pair of encodings (Rα, Zα) of elements in El-Gamal form, that is, Rα = [rα]vα , Zα =
[rα · wα]vα+dαv∗ as follows:
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Input: Encoding Z∗ and two pairs of encoding (Rα = [rα]vα , Zα = [rα · wα]vα+dαv∗) and (Rβ =
[rβ ]vβ , Zβ = [rβ · wβ ]vβ+dβv∗). Permute the operands to ensure that δ = dβ − dα ≥ 0.
Output: A pair of encoding (Rσ = [rσ]vσ , Zσ = [rσ · wσ]vσ+dσv∗).

Gadget Multiplication ⊗

• Rσ = Rα ×Rβ and Zσ = Zα × Zβ .

It satisfies that rσ = rα · rβ, wσ = wα · wβ, vσ = vα + vβ, and dσ = dα + dβ.

Gadget Addition ⊕ / Subtraction 	

• Rσ = Rα ×Rβ and Zσ = Zα ×Rβ × (Z∗)δ +/− Zβ ×Rβ .

It satisfies that rσ = rα · rβ, wσ = wα · (w∗)δ +/− wβ, vσ = vα + vβ, and dσ = dβ.

Constrained Gadget Addition ⊕̃ / Subtraction 	̃

• Constraint: r = rα = rβ and v = vα = vβ .

• Rσ = Rα and Zσ = Zα × (Z∗)δ +/− Zβ .

It satisfies that rσ = r, wσ = wα · (w∗)δ +/− wβ, vσ = v, and dσ = dβ.

Remark: Since w∗[[b]] = 1 for b ∈ {1, 2}, in ⊗/ ⊕, ⊕̃ / 	, 	̃, wσ[[b]] = wα[[b]] ×/+/− wβ [[b]]. Fur-
thermore, dσ grows exactly as how the degree of a polynomial grows: It adds up in multiplication
dσ = dα + dβ and takes the larger value in addition/subtraction dσ = dβ .

Figure 6: Gadgets used to replace simple addition and multiplication for computing over El-Gamal
encoding

In the base case, the input wires correspond exactly to pairs of encodings in Ax, that is,
the jth input wire of xk is associated with pair (Rk

xk
, Zk

xk,j
) and that of P is associated with

(Rc+1, Zc+1
j ).

In the induction case, for every gate g in U with input wires α, β and output wire σ of types
tα, tβ, tσ respectively, apply the appropriate gadget as described in Figure 6, over encodings
Z∗ and (Rα, Zα), (Rβ, Zβ). (For simplicity of notation, we ignore Z∗ from the inputs to the
gadgets below.)

• If g is a × gate, compute (Rσ, Zσ) = (Rα, Zα)⊗(Rβ, Zβ).

• If g is an +/− gate and tα 6= tβ, compute (Rσ, Zσ) = (Rα, Zα) ⊕/	 (Rβ, Zβ).

• If g is an +/− gate and tα = tβ, compute (Rσ, Zσ) = (Rα, Zα) ⊕̃/	̃ (Rβ, Zβ).

Let U ′o(Z
∗,Ax) be the arithmetic circuit evaluated, and (Ro, Zo) the pair of encodings asso-

ciated with the output wire o.

Correctness Analysis:

The encodings (Ro, Zo) has form Ro = [ro]vo, Zo = [ro · wo]vo+dov∗ and

where wo =
(
Uo

(
{y1
j }j∈[`], · · · {ycj}j∈[`], {yc+1

j }j∈[m]

)
, Uo(x

1, · · · , xc, P ), ?, · · · , ?
)
,

and vo = (to[c] · 1x1 , · · · , to[c] · 1xc , to[c+ 1] · 1 6=q+1, 0) , 0 ,

and do = deg(Uo).

In the above, the values denoted by ? do not matter for correctness, and hence are not men-
tioned explicitly.
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3. Perform the following mental evaluation over encodings (Z∗, (Ro, Zo),Bx,o)

• For “input consistency” purposes:

R′o =
(∏

k

R̂kxk,o

)
Ro , Z ′o =

(∏
k

Ẑkxk,o

)
Zo .

• For “output consistency” purposes: R′′o = R̂oR
′
o, Z

′′
o = ẐoZ

′
o.

• For “authentication” purpose: (R̃o, Z̃o) = (R′o, Z
′
o)	(R̄o, Z̄o).

Let Z̃o = Co((Ro, Zo),Bx,o)) be the arithmetic circuit evaluated, which outputs only Z̃o.

Correctness Analysis:

• The encodings (R′o, Z
′
o) satisfy R′o = [r′o]v′o, Z

′
o = [r′o · w′o]v′o+(do+c)v∗ and,

w′o =
(∏

ŵk
) (
Uo

(
{y1
j }, · · · {ycj}, {yc+1

j }
)
, Uo(x

1, · · · , xc, P ), 0 · · · 0, ?
)

v′o = (1 6=q+1 ⊗ (to[1], · · · , to[c+ 1], 0) + 1q+1(1, · · · , 1, 0, 0)) , c · 1o

• The encodings (R′′o , Z
′′
o ) satisfy R′′o = [r′′o ]v′′o , Z ′′o = [r′′o · w′′o ]v′′o+(do+c+1)v∗,

w′′o = ŵ
(∏

ŵk
) (
Uo

(
{y1
j }, · · · {ycj}, {yc+1

j }
)
, Uo(x

1, · · · , xc, P ), 0 · · · 0, 0
)

v′′o = (1 6=q+1 ⊗ (M, · · · , M, 0) + 1q+1 ⊗ (1, · · · , 1, 1, 0)) , c · 1

• The encodings (R̃o, Z̃o) satisfy R̃o = [r̃o]ṽ, Z̃o = [r̃o · w̃o]ṽ+Dv∗ and,

w̃o = (w∗)d−dow′′o − w̄o = ŵ
(∏

ŵk
) (

0, Uo(x
1, · · · , xc, P )− 1, 0 · · · 0, 0

)
ṽ = (16=q+1 ⊗ (M, · · · ,M, 1) + 1q+1 ⊗ (1, · · · , 1, 0)) , c · 1

Iff Uo(x
1, · · · , xc, P ) = 1, w̃o = 0 and Z̃o is an encoding of 0 under vzt = ṽ +Dv∗.

4. Call the zero-testing procedure OEval of O with the polynomial

Z̃o = U ′′o (Z∗,Ax,Bx,o) = Co(Z
∗, U ′o(Z

∗,Ax),Bx,o) .

Output yo = 1 iff the zero-test returns 1.

As analyzed in the box above, in an honest evaluation, Z̃o is an encoding of 0 under level vzt iff
yo = 1; hence, the correctness of the evaluation procedure follows.
Remark: We observe that in the above construction, the ring elements iO encodes are chosen
according to a distribution depending only on the ring R and the obfuscated program P ; we
denoted it as Dλ(R, P ). Moreover, the these elements are encoded under a fixed sequence of levels
~v independent of R and P . This fact will be instrumental in the security proof later.
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The Ideal Graded Encoding Oracle O: The oracle is fully specified by its ring distribution
R̃ and legality predicate g.

Legality Predicate. We consider a predicate gλ = gλ[vzt, V ] with the zero-testing level vzt and the

set of levels V (= {v∗,vks ,vc+1, v̂ks,o, v̂o, v̄}) that the obfuscator iO uses for encoding elements
hardwired in; on input a polynomial and a sequence of levels (p, ~v), it checks i) whether every level
in ~v is in V , and ii) whether p is (~v,vzt)-respecting and outputs 1 iff both conditions hold.

We now show that this oracle is has degree O(td(λ) + c(λ))). Below, by total degree of a subset
of variables a1, · · · , al in a polynomial, we mean the degree of a, when replacing all ai = a in the
polynomial.

Claim 5. O = Og,R̃λ is a degree-O(td(λ) + c(λ)) ideal graded encoding oracle.

Proof. Towards this, fix a λ ∈ N, td = td(λ), c = c(λ) and predicate g = gλ with levels vzt and V
hardwired in. Consider an arbitrary pair (p, ~v). We show that if g(p, ~v) = 1, then the degree of p
is bounded by O(td(λ) + c(λ)).

By definition of g, if g(p, ~v) = 1, p must be (~vv,vzt)-respecting, that is, level(p, ~v, γ) = vzt
(where p is viewed as an arithmetic circuit with output wire γ). By definition of level, every
monomial m in p also reaches the same level vzt. We now show that in order to reach level vzt, the
degree of different variables in m must satisfy the following conditions:

1. Variables associated with levels v̄, v̄ + Dv∗ has total degree 1, so that the final level would
have exactly 1 in position (1, c+ 2) in the matrix.

2. For every o ∈ Γ, variables associated with levels {v̂o, v̂o + v∗}o 6=o∗ has total degree 1, so that
the final level would have exactly 1 at position (q + 1, c + 1). Let o∗ be the index such that
level v̂o∗ or v̂o∗ + v∗ appears in m.

3. For every k ∈ [c], variables associated with levels {v̂ks,o, v̂ks,o + v∗}s,o 6=o∗ do not appear. As

otherwise, v̂ks,o + v̂o∗ ≥ vzt (because of the vector in the level).

4. For every k ∈ [c], variables associated with levels {v̂ks,o∗ , v̂ks,o∗ + v∗}s have total degree 1 so

that the final level would have exactly 1 at position (q + 1, k). Let sk be the index such that
level v̂k

sk,o∗
or v̂k

sk,o∗
+ v∗ appears in m.

5. For every k ∈ [c], variables associated with levels {vks ,vks + v∗}s 6=sk do not appear, as other-

wise, vks + v̂k
sk,o∗

+ v̂o∗ ≥ vzt for s 6= sk.

6. For every k ∈ [c], variables associated with levels vk
sk
,vk

sk
+v∗ has total degree to∗ [k], so that,

when added with v̂o∗ and v̂k
sk,o∗

, the final level will reach value M at position (sk, k).

7. Variables associated with levels vc+1,vc+1 + v∗ has total degree to∗ [c + 1], so that, when
added with v̂o∗ , the final level would reach value M at position (1, c+ 1)

8. Variables associated with level v∗ has total degree ≤ D, as otherwise Dv∗ ≥ vzt.

Therefore the total degree of m is bounded by 2 + c + Σk∈[c+1]t[k] + D ≤ 5(td + c) as desired.
(Recall that D = d+ c+ 1, and by Fact 1, type degree td is no smaller than the degree d.)

Ring Distribution. We use the same ring distribution as [AB15], recalled below.
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Definition 20 (Admissible Distributions on Composites and Rings [AB15]). An ensemble of prob-
ability distributions {Nτ} is τ -admissible if Nτ samples a poly(τ)-bit integer N with the property
that the min-entropy of every prime factor of N is at least Ω(τ). An ensemble of probability distri-
butions over rings {R̃τ} is τ -admissible if a ring R sampled from the distribution satisfy R ∼= ZN
and the random variable N is τ -admissible.

The reason we use this distribution of rings is the same as [AB15]: Every small fixed integer x

is likely to be co-prime to a randomly sampled composite number y
$← Nk (Lemma 5.6 in [AB15]),

and hence for an admissible ring distribution, any fixed (short) list of (small) integers is unlikely to
hit non-invertible, or non-unit ring element. We cite the corollary of Lemma 5.6 in [AB15], which
will be important for the analysis of our IO construction.

Corollary 3 ( [AB15]). Let x be an integer such that |x| ≤ 2poly(λ). Let R ∼= ZN be a ring where
N is sampled from some (logL+ω(log λ)+ t(λ))-admissible distribution. Then, the probability that
x is a non-unit in R is negl(λ)/L2t(λ).

Claim 6. Let R ∼= ZN be a ring where N is sampled from some (logL+ω(log λ)+ t(λ))-admissible
distribution. For every subgroup ZP of R, and every multivariate polynomial q of total degree
d = poly(λ), it holds that,

Pr[q(UR, · · · ,UR) = 0 over ZP ] ≤ negl(λ)/L2t(λ)

Proof. Consider any subgroup ZP of R; ZP ∼= Zp1×· · ·×Zpσ where p1, · · · , pσ are the prime factors
of P . If a polynomial q evaluates to 0 over ZP , it must evaluate to 0 over all subgroups of ZP .
Thus,

Pr[q(UR, · · · ,UR) = 0 over ZP ] ≤ Pr[q(UR, · · · ,UR) = 0 over Zp1 ]

Since N is from a (logL+ω(log λ)+ t(λ))-admissible distribution, p1 has min entropy Ω(logL+
ω(log λ) + t(λ)). By Schwartz-Zippel,

Pr[q(UR, · · · ,UR) = 0 over Zp1 ] ≤ d

p1
≤ negl(λ)

L2t(λ)
.

We set the ring distribution R̃ of O to an Ω(logL(λ) +ω(log λ) + t(λ))-admissible distribution,
where L(λ) = 2poly(S(λ)). (Recall that S(λ) is the size of the universal arithmetic circuit U of family
Pλ.) The polynomial t is set according to the security requirement, in particular, when t(λ) = 0,
our IO scheme satisfies polynomial indistinguishability security, whereas when t(λ) = λε, the IO
scheme satisfies sub-exponential security.

6.5 Efficiency of Our IO Scheme

It is easy to see that the number of encodings in the obfuscated program P̂ is bounded by poly(S(λ)).
The size of each encoding (i.e., the random handlers chosen by the oracle) is bounded by λ`(λ),
where `(λ) is an upper bounded on the length of elements in rings sampled from R̃, which is
bounded again by poly(logL+ ω(log λ) + t(λ)) = poly(λ, S(λ)). Moreover, the `1-norm of vzt (as
well as all levels ≤ vzt) is also bounded by poly(λ, S(λ)) for sufficiently large λ. It is easy to check
that all poly above are fixed universal polynomials. Therefore, the size of obfuscation is bounded
by p(λ, S(λ)) for a universal polynomial, which satisfies the requirement in Theorem 6.
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6.6 Unbounded Simulation Security

To show the security of (iO,Eval), we need to show that for every polynomial-sized adversary A,
there exists a randomized unbounded-time simulator S, such that for every λ ∈ N and P ∈ Pλ,

SP (1λ) can simulate the view of AO(P̂ ) where P̂
$← iOO(1λ, P ), with only oracle access to P , and

the distinguishing gap between the real and simulated view is at most µ′(λ). We will consider two
cases, µ′ is negligible or sub-exponentially small.

Recall that in an honest execution, iOO(1λ, P ) upon receiving the ring R $← R̃ from O, obtains
from O the encoding of a sequence of ring element ~a under a sequence of levels ~v, which constitutes
the obfuscated program P̂ ; the sequence of levels ~v is fixed a priori, while the ring elements ~a are
sampled from a distribution Dλ(R, P ) depending only on R and P .

Our simulator SP (1λ) internally runs A and proceeds as follows:

• Simulating P̂ : S does not know P , hence it cannot sample from Dλ(R, P ). But, since encod-
ings from O are simply random handles (of appropriate length), S emulates them by sampling
a sequence of random handles ~h on its own and records for each handle hi a tuple (?,vi, hi),
where vi is the ith level in ~v. It then feeds P̃ = ~h to A.

• Simulating the Zero-Testing Procedure of O: Upon receiving from A an oracle-query q which
is a polynomial, S simulates the answer of OEval(q) as follows.

– If q is not a polynomial over variables ~h, return 0. 4

– If the legality test fails, that is, gλ[vzt, V ](q, ~v) = 0, return 0. Otherwise, continue to
next step; since every level in ~v is in V by definition, q passes the legality test iff it is
(~v,vzt)-respecting.

– S invokes another deterministic simulation procedure b
$← SimP (1λ, q), called the alge-

braic simulator (described shortly below), which simulates the output of q evaluated on

elements ~a
$← Dλ(R, P ) using only oracle access to P (?). S then feeds the output b of

Sim to A.

It is easy to see that S emulates the view of A perfectly up to the last step, and the indistin-
guishability of the simulated view by S depends on the “correctness” of the algebraic simulator
Sim, namely, let µ = negl(λ)/2t(λ) for some polynomial t.

µ(λ)-Algebraic security [AB15]: For every ensemble of polynomial-sized polynomials {q}λ where
q is (~v,vzt)-respecting,∣∣∣Pr[~a

$← Dλ(R, P ) : Pzero(q(~a)) = 1]− Pr[SimP (1λ, q) = 1]
∣∣∣ ≤ µ(λ) . (8)

where Pzero is a predicate that tests whether the input is zero.

The algebraic security shows that for a single query q, Sim emulates whether the output of q is
zero or not correctly with overwhelming probability (over the randomness for choosing the encoded
elements). Then by a union bound, for all (polynomial number of) queries from A, S emulates the
answers from O correctly with µ′(λ) = poly(λ)µ(λ) probability, and hence the simulated view is
µ′(λ)-statistically close to the real view.

Next, we turn to constructing the algebraic simulator Sim. In fact, we will construct a simulation
procedure Sim that satisfies a even stronger correctness property, that is, Sim not only emulates

4For convenience, if a variable does not appear in q, we still consider it an input variable, just with degree 0.
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outputs of polynomials that reach the zero-testing level vzt (as the legality test requires), but also
these that reach any level v′ ≤ vzt. Formally, we prove the following:

Lemma 7. There is a deterministic unbounded algebraic simulator Sim satisfying

µ(λ)-Strong algebraic security: For every ensemble of polynomial-sized polynomials {q}λ satis-
fying that q is (~v,v′)-respecting for some v′ ≤ vzt, Sim satisfies equation (8).

Remark: We remark that the benefit of proving the strong algebraic security is twofold: 1)
By [AB15], canonical IO schemes satisfying strong algebraic security is secure even if the ideal
graded encoding model gives unique encoding for every ring element (See Remark 2 and Lemma
3.7 in [AB15]); 2) From the analysis below showing strong algebraic security it is easy to observe
that our IO scheme (inherited from [AB15]) satisfies that generic attackers can only produce en-
codings of zero at the zero testing level; see Lemma 9. Though this property does not completely
thwart zeroizing attacks on graded encoding schemes; it does make it more difficult as discussed
in [CGH+15] and seems to be the best achievable if the evaluation of IO scheme relies on zero-
testing.

Construction of Sim: Fix λ, P ∈ Pλ, R̃ = R̃λ, D = Dλ, and a poly(λ)-sized polynomial q that
is (~v,vzt)-respecting.

On input 1λ and q, Sim needs to emulate the output of q evaluated over variables ~a sampled

from the distribution ~a
$← D(R, P ), R $← R̃. Recall that by the construction of iOO(λ, P ); these

variables ~a are in turn described by variables ~r and ~w. Thus, it is equivalent to think of q as
a polynomial over ~r and ~w, and D(R, P ) a distribution sampling ~r, ~w. The algebraic simulator
SimP (1λ, q) proceeds as follows:

1. Decomposition: Sim “decomposes” P as a sum of terms of the form M(~r) · Q(~w) where M
is a monomial, and Q is a polynomial, namely, P = ΣiMi(~r) · Qi(~w). There are at most
L = 2poly(S(λ)) terms in the summation, since

Claim 7. There are at most L = 2poly(S(λ)) distinct M(~r) monomials.

Proof. Since q is (~v,v′)-respecting for v′ ≤ vzt, it is easy to see that the degree of q is bounded
by |vzt|1, and so is the degree of any monomial M(~r) in q. Therefore, the number of distinct
monomials M is bounded by L = |~r||vzt|1 . By construction of iO, the number of r variables,
as well as |vzt|1, is bounded by poly(S(λ)); hence, we have that L = 2poly(S(λ)).

2. Zero-Testing each Q polynomial: For each term M(~r)·Q(~w), Sim emulates whether the output
of Q(~w) is zero or non-zero. First, we show that Q has the following structure.

Lemma 8. There is an o∗ ∈ Γ, a constant a, and a polynomial Q′(~w), such that,

Q(~w) = a · w̄o∗ −Q′(~w) .

Moreover, Q′ is free of variables {w̄o}o∈Γ, and the degree of each of variables ŵ and {ŵk}k is
at most 1

Given the above structure, Sim considers three cases:

• Case 1:
(
ŵ
∏
k∈[c] ŵ

k
)
- Q′(~w).
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If Case 1 do not hold, that is, (ŵ
∏
k∈[c] ŵ

k)|Q′(~w). By Lemma 8, there is another polynomial

Q′′(~w) that is free of all {w̄o}o, ŵ, and {ŵk}k variables, such that,

Q(~w) = aw̄o∗ −

ŵ ∏
k∈[c]

ŵk

 ·Q′′(~w)

=

ŵ · ∏
k∈[c]

ŵk

 · (a (ȳo∗ , 1, 0, · · · , 0))−

ŵ ∏
k∈[c]

ŵk

 ·Q′′(~w) (‡)

• Case 2: Q has the structure of (‡), but for every possible input x ∈ Σc,

Q′′(~w) 6= a · Uo∗({w1
x1,j}, · · · , {w

c+1
xc+1,j

}, {wc+1
j })

• Case 3: Q has the structure of (‡), and there is an input x ∈ Σc,

Q′′(~w) = a · Uo∗({w1
x1,j}, · · · , {w

c+1
xc+1,j

}, {wc+1
j })

In Case 1 and 2, Sim determines that the output of Q is non-zero. We show in Claim 8
and 10 below that this emulation is correct with high probability 1 − err(λ) where err =
negl(λ)/L(λ)2t(λ).

In Case 3, Sim queries its oracle P (?) on input x, obtaining output y; it determines that the
output of Q is zero iff yo = 0. We show in Claim 11 below that this emulation is correct with
high probability 1− err(λ).

3. Summarizing: If for every term M(~r)Q(~w) in q, the output of Q(~w) is determined to be zero
in the previous step, Sim returns 1 (meaning that the output of q is zero). Otherwise, if for
any term M(~r)Q(~w) in q, the output of Q(~w) is determined to be non-zero, Sim returns 0
(meaning that the output of q is non-zero).

Strong Algebraic Security of Sim: By Claim 8 to 11, for each term M(~r)Q(~w), Sim determines
correctly whether Q evaluates to zero or non-zero with probability 1 − err(λ). By a union bound,
Sim determines correctly for all Q whether they are zero or non-zero, with probability 1−L×err(λ).
Conditioned on this happening, if all Q evaluates to zero, then Sim correctly replies that the output
of q is zero. In the other case, q can be viewed as a polynomial over ~r with coefficients Q(~w)’s, and
if some polynomial Q evaluates to non-zero, this polynomial over ~r is not identically zero. Then
by Claim 6, when the values of ~r are randomly chosen, the probability that q evaluates to zero is
bounded by err(λ). Overall, by union bound, the error probability of Sim is negl(λ)/2t(λ).

Next, we prove Lemma 8 and the Claims.

Proof of Lemma 8. Towards the lemma, we prove the following sequence of structural facts of Q,
one building upon another.

• The total degree of variables {w̄o}o∈Γ is ≤ 1.

Suppose not and for some o 6= o′, both w̄o and w̄o′ appear in Q. By construction of iO, every
w variable appear in El-Gamal form, and hence, both r̄o and r̄o′ are in M(~r). But, they all
correspond to level v̄, and 2v̄ ≥ vzt (because of column c+ 1 in the matrix of the level).

Let o∗ be the index such that w̄o∗ appears in Q.
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• It holds that Q(~w) = a · w̄o∗ −Q′(~w) and Q′ is free of variables {w̄o}.
Suppose not. Then in Q′(~w), w̄o∗ appears and is multiplied with another w variable. However,
since the level of w̄o∗ satisfies v̄ ≥ Dv∗, and the level of any w variable is ≥ v∗, they cannot
be multiplied together, or else the level would exceed vzt (because of position (q + 1, c + 2)
in the matrix of the level).

• The degree of ŵ is at most 1 in Q′.

Suppose not and the quadratic term ŵ2 appears in Q′. Recall that ŵ appears under levels
{v̂o}o∈Γ. However, for any o and o′, v̂o + v̂o′ ≥ vzt (because of position (q + 1, c+ 1) in the
matrix of the level).

• For every k ∈ [c], the degree of variables ŵk is at most 1 in Q′.

Suppose not and the quadratic term (ŵk)2 appears in Q′. Recall that ŵk appears under levels
{v̂ks,o}s∈Σ,o∈Γ. However, for any s, o and s′, o′, v̂ks,o+ v̂ks′,o′ ≥ vzt (because of position (q+1, k)
in the matrix of the level).

Summing up the above structural observations, we conclude the lemma.

Claim 8. The following holds in Case 1,

Pr[R $← R̃, (~r, ~w)
$← D(R, P ) : Q(~w) = 0] =

negl(λ)

L(λ)2t(λ)

Proof. Case 1 states that (ŵ
∏
k∈[c] ŵ

k) - Q′(~w). Below we prove that if there is a k ∈ [c] such

that ŵk does not divide Q′, then Q outputs zero with very small probability. The same proof also
applies to the case when ŵ does not divide Q′.

Recall that Q(~w) = aw̄o∗ − Q′(~w). Consider the evaluation of Q over the k + 2th sub-ring,
Q(~w)[[k + 2]]. Since w̄o∗ [[k + 2]] = 0 for all k ∈ [c + 1], we have that Q(~w)[[k + 2]] = Q′(~w)[[k + 2]].
Since Q′(~w)[[k + 2]] = Q′[[k + 2]](~w[[k + 2]]) (i.e., the evaluation of Q′[[k + 2]] over the ~w[[k + 2]]).
Recall that all w variables, except ŵk, contain random ρ element (= {ρc+1

j,k }, {ρ
k′
s,j,k}, {ρ̂k

′
k }k 6=k′ , ρ̂k)

in the k + 2th sub-ring.
Since Q′ is not identically zero (or else Case 1 does not hold), it must contain one non-zero

coefficient α. By Corollary 3, except with probability negl(λ)/L2t(λ) over the sampling of the ring

R $← R̃, α is a unit and α[[k + 2]] is non-zero. Therefore Q′[[k + 2]] is also not identically zero.
Therefore, by Claim 6, the probability that Q′[[k + 2]] evaluates to zero over randomly chosen ρ

variables in the k + 2th sub-ring Rk+2 is negl(λ)/L2t(λ).

Next, before analyzing Case 2 and 3, we first prove that when Case 1 does not hold, that is,
(ŵ
∏
k∈[c] ŵ

k)|Q′(~w), Q′ must be consistent with some input x = x1, · · · , xc, meaning that Q′ is free

of other variables {wks,j}s 6=xk,j∈[`] corresponding to other input values.

Claim 9. If (ŵ
∏
k∈[c] ŵ

k)|Q′(~w), there exists some input x = x1, · · · , xc, such that, Q′ is free of

variables {wks,j}s 6=xk,j∈[`].

Proof. Suppose not. Then Q′ is non-zero and there is a k ∈ [c], s 6= s′, and j, j′ such that both wks,j
and wks′,j′ appear in Q′. Recall that these two variables appear under levels vks,j ,v

k
s′,j′ .

Since the variables ŵ and ŵk divide Q′ and appear under levels {v̂o} and {v̂ks,o} respectively,
there exist some indexes s′′, o′′ and ō such that the level of Q′ is at least ≥ v̂s′′,o′′ + v̂ō. Since
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v̂s′′,o′′ + v̂ō ≥ vzt for any o′′ 6= ō (because of the vector in the levels), we conclude that ō = o′′. But,
this leads to a contradiction: When adding additionally the levels vks,j ,v

k
s′,j′ , s 6= s′, the final level

exceeds vzt, v̂s′′,o′′ + v̂o′′ + vks,j ,v
k
s′,j′ ≥ vzt.

Claim 10. The following holds in Case 2,

Pr[R $← R̃, (~r, ~w)
$← D(R, P ) : Q(~w) = 0] =

negl(λ)

L(λ)2t(λ)

Proof. In Case 2, Q has the structure of (‡),

Q(~w) =

ŵ · ∏
k∈[c]

ŵk

 · (a (ȳo∗ , 1, 0, · · · , 0))−

ŵ ∏
k∈[c]

ŵk

 ·Q′′(~w)

By Claim 9, Q′′ must be consistent with some input x, but,

Q′′(~w) 6= a · Uo∗({w1
x1,j}, · · · , {w

c+1
xc+1,j

}, {wc+1
j }) . (*)

Consider the evaluation of Q in the first sub-ring:

Q(~w)[[1]] =

ŵ · ∏
k∈[c]

ŵk

 [[1]] ·
(
a · ȳo∗ −Q′′(~w)[[1]]

)

=

ŵ · ∏
k∈[c]

ŵk

 [[1]] ·
(
a[[1]] · Uo∗({y1

x1,j}, · · · , {y
c+1
xc+1,j

}, {yc+1
j })−Q′′(~w)[[1]]

)
By equation (∗), Q′′(· · ·) − aUo∗(· · · ) is not identically zero and has a non-zero coefficient α

(where · · · represents the same variables in (∗) and is omitted for convenience). By Corollary 3,
except with probability negl(λ)/L2t(λ), α is a unit, and α[[1]] is non-zero. Therefore, the polynomial
in the first sub-ring, (Q′′(· · · ) − aUo∗(· · · ))[[1]], is not identically zero. Since all variables {wks,j},
{wc+1

j } contain random elements {yks,j}, {y
c+1
j } in the first sub-ring (and Q′′ is free of any w̄, ŵ

variables), by Claim 6, the probability that (Q′′(· · · )−aUo∗(· · · ))[[1]] evaluates to zero over randomly
chosen {yks,j}, {y

c+1
j } in the first sub-ring R1 is negl(λ)/L2t(λ). Hence, the probability that Q

evaluates to zero is ≤ negl(λ)/L2t(λ).

Claim 11. The following holds in Case 3:

If Uo(x, P ) = 1 , Pr[R $← R̃, (~r, ~w)
$← D(R, P ) : Q(~w) = 0] =

negl(λ)

L(λ)2t(λ)

If Uo(x, P ) = 0 , Pr[R $← R̃, (~r, ~w)
$← D(R, P ) : Q(~w) = 0] = 1

Proof. In Case 3, Q has the structure of (‡), and there is an input x ∈ Σc,

Q′′(~w) = a · Uo∗({w1
x1,j}, · · · , {w

c+1
xc+1,j

}, {wc+1
j })

First notice that a must be non-zero, or else Q is identically zero. Then by Claim 3, a is a unit
except with probability negl(λ)/L2t(λ).
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By definition Q(~w) evaluates to zero on all sub-rings except the second. Therefore, it suffices
to test whether the Q(~w)[[2]] is zero or non-zero. On the second sub-ring,

Q(~w)[[2]] = a[[2]] ·

ŵ · ∏
k∈[c]

ŵk

 [[2]] ·
(
1− Uo∗(x1, · · · , xc+1, P )

)
Therefore, if Uo∗(x, P ) = 1, Q(~w)[[2]] equals to zero with probability 1 and so does Q(~w). Otherwise,
in the case Uo∗(x, P ) = 0, Q(~w)[[2]] is a non-zero polynomial (with a non-zero coefficient a[[2]]) over
random ŵ[[2]] and {ŵk[[2]]}, which by Claim 6 is non-zero except with probability negl(λ)/L2t(λ),
and so is Q(~w).

No Low Level Encodings of Zeros We show that it follows from the above analysis that any
generic attacker given an obfuscated program output by our IO scheme cannot generate encodings
of zero at any level below vzt.

Lemma 9. For every ensemble of {P}λ where P ∈ Pλ, and every PPT oracle adversary A, the
probability that

Pr[P̂
$← iOO(1λ, P ), q

$← AO(P̂ ) :

q is (v,v′)-respecting for v′ ≤ vzt and Pzero(q(P̂ )) = 1] ≤ negl(λ)/2t(λ)

Proof. The proof of Lemma 7 above shows that for a polynomial q, if any of the terms M(~r)Q(~w)
in q belongs to Case 1 or 2, the probability that q evaluates to zero is bounded by negl(λ)/2t(λ).
The only case where q evaluates to zero with noticeable probability is if all its terms M(~r)Q(~w)
fall into Case 3. However, we show that in this case, q is (~v, ~vzt)-respecting, which implies that a
generic attacker cannot produce any encodings of zero at levels below vzt except with probability
negl(λ)/2t(λ).

We show every term M(~r)Q(~w) in Case 3 reach level vzt. This is because

Q(~w) = a · ŵ(
∏

ŵk)(w̄o∗ − Uo∗({w1
x1,j}, · · · , {w

c+1
xc+1,j

}, {wc+1
j }))

Therefore, for every w variable in Q with degree d, M(~r) contains the corresponding r variable
with the same degree. Hence, the level of M(~r)Q(~w) is at least ≥ vzt −Dv∗. On the other hand,
since w̄o∗ appears, the level of M(~r)Q(~w) is also at least ≥ Dv∗. These two constraints shows that
q reaches vzt.

7 IO from Constant-Degree Semantically Secure Graded Encod-
ings

We formalize the notion of distributional semantic security for composite order GE schemes where
the rings are sampled from a distribution; our definition is adapted directly from the notion of
semantic security of GE schemes proposed by Pass, Seth and Telang [PST14a], which however
focuses on fixed prime order rings. We then show that our IO scheme in ideal GE model in
Section 6 can be instantiated in the plain model using distributional semantically secure graded
encoding schemes.
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7.1 Distributional Semantic Security of GE schemes

Roughly speaking, the semantic security of [PST14a] states the following: Consider two sequences
of levels (~v, ~w), a zero testing level vzt, and a distribution E over elements, i.e., elements in a
ring R, (~m0, ~m1, ~z) satisfying a nice “zero-knowledge” property to generic attackers — for every
((~v, ~w),vzt)-respecting arithmetic circuits C, the output of C on (~mb, ~z) for b ∈ {0, 1} is constant
with extremely high probability over the choice of elements; then, the encoding of (~mb, ~z) under
levels (~v, ~w) is indistinguishable when b = 0 or 1 to any computationally efficient attackers.

Our distributional-semantic security require the same security property as the semantic security
in [PST14a], but with three difference: 1) The ring R has composite order rather than prime order.
2) R is sampled from an admissible distribution R̃ and the distribution of elements E only needs
to satisfy the “zero-knowledge” property over a randomly chosen ring from the distribution, as
opposed to over every ring in the support of the distribution. The second difference is needed
since our IO construction in Section 6 crucially relies on the fact that the ring R is hidden from
the adversary, whereas the semantic security of [PST14a] allows the adversary to depend on R.
Finally, 3) we allow a bigger error probability (still sub-exponentially small) in the zero-knowledge
property than [PST14a].

We remark that though stronger than the plain semantic security, our distributional-semantic
security is weaker than another assumption, namely the statistical uber security assumption, pro-
posed in [PST14a]. In particular, statistical uber assumption also considers security for randomly
chosen rings, but puts a much weaker constraints on the distribution E of elements—instead of
requiring the zero-knowledge property on E, it only require that (mb, z) for b = 0 or 1 to be indis-
tinguishable to (computationally unbounded) generic attackers who makes a polynomial number
of zero-testing queries.

We now formalize distributional-semantic security.

Definition 21 (Valid Level-Respecting Element Sampler). Let R̃ be a distribution over rings of
size 2`(λ) and let {(~v, ~w,vzt)}λ∈N be an ensemble of levels where every ~v[i], ~w[j] ≤ vzt. We say

that a non-uniform PPT machine E is a {(~v, ~w,vzt)}-respecting element sampler w.r.t. R̃ if

Syntax: E on input 1λ and a ring R ∈ R̃(1λ) (i.e., in the support of R̃(1λ)) outputs a pair of
sequence of elements (~m0, ~m1) each of length |~v| and a sequence of elements ~z of length |~w|.

Validity: There exists a constant ε, such that, for every ensemble of (~v, ~w,vzt)-respecting arith-
metic circuits {Cλ}λ∈N, it holds that for every λ ∈ N, C = Cλ, there is a constant c, such
that, for every b ∈ {0, 1},

Pr[R $← R̃(1λ), (~m0, ~m1, ~z)
$← E(1λ,R) : Pzero(C(~mb, ~z)) = c] ≥ 1− 1

2`(λ)ε
,

where C(~mb, ~z) is computed over ring R.

Given the notion of valid level-respecting element samplers, the rest of the definition is identical
to semantic security in [PST14a].

Definition 22 (µ-Semantic Security). Let q, c be polynomials. We say that a graded encoding
scheme GES supporting ring distribution R̃ is (c, q)-semantically secure if for every constant σ ∈ N,
every polynomial k, every ensemble {(~v, ~w,vzt)}λ∈N of levels, where ~v and ~w have length c(λ) and
q(λ) respectively, and every ~v[i], ~w[j] ≤ vzt, every {(~v, ~w,vzt)}-respecting element sampler E w.r.t.
R̃, and every non-uniform PPT adversary A, the following holds for every λ ∈ N,

|Pr[Output0(1λ)]− Pr[Output1(1λ)]| ≤ µ(λ) ,
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where Outputb(1
λ) is A’s output in the following game:

• (pp, sp)
$← InstGen(1λ, 1σ, 1k, 1vzt); sp describes a (R,vzt)-graded encoding scheme.

• (~m0, ~m1, ~z)
$← E(1λ,R).

• ~Ab
$← {Encode(sp, ~mb[i], ~v[i])}i∈[c(λ)] , {Encode(sp, ~z[j], ~w[j])}j∈[q(λ)].

• Output A(1λ, pp, ~Ab).

Below, for convenience, we do not explicitly specify the parameters (c, q), which is clear in the
context. We say a graded encoding scheme is semantically secure, if it is µ-semantically secure
for every µ that is an inverse polynomial, and is sub-exponentially semantically secure if it is
µ-semantically secure for a sub-exponentially small µ.

7.2 Instantiating Our IO Scheme in the Plain Model

We now instantiate our IO scheme in Section 6 using distributional-semantically secure graded
encoding schemes.

Theorem 7. Let {Pλ} be a circuit class with universal arithmetic circuits {Uλ} of c(λ) input-types,
type degree tdeg(λ), and size S(λ), where c, tdeg, S are polynomials. Let R̃ be a Ω(logL(λ) +
ω(log λ) + t(λ))-admissible ring distribution, where L(λ) = 2poly(S(λ)) and t(λ) >> logL(λ) +
ω(log λ).

Assume the existence of a (sub-exponentially secure) distributional-semantically secure graded
encoding scheme GES supporting R̃ and degree d(λ) = O(tdeg(λ) + c(λ)). There is a (sub-
exponentially secure) IO for {Pλ} in the plain model with run time u(1λ, S(λ)) for a universal
polynomial u.

Proof. Given such a GES = (InstGen,Encode,Add,Sub,Mult, isZero). The construction of IO for
{Pλ} in the ideal model in Section 6.4 can be easily modified to use GES:

• The obfuscator iO(1λ, P ) calls the setup algorithm InstGen(1λ, 1c+3, 1d(λ), 1vzt) to obtain
(sp, pp) (note the level of multilinearity is set to d(λ)), where sp specifies a (R,vzt)-graded
encoding scheme and the R follows distribution R̃. The obfuscator then samples from the

element distribution ~a
$← Dλ(R, P ) as before, and then encodes the sequence of elements ~a un-

der the a-priori fixed sequence of levels ~v, ~α
$← {Encode(sp,~a[i], ~v[i])}. It outputs obfuscated

program P̂ = (pp, ~α).

• The Evaluator Eval(pp, P̂ ), on the other hand, performs the same evaluation over the en-
codings in P̂ as before, but using pp and algorithms Add, Sub, and Mult, and obtain a final
encoding Z̃o for every output wire o. It then sets yo = isZero(pp, Z̃o) as the value of that
output wire.

The correctness and efficiency analysis remains the same as before. We only need to argue security.
We show that for every sequence of pairs of {(P0, P1)}λ, where P0, P1 ∈ Pλ have the same

functionality, P̂0 = iO(1λ, P0) and P̂1 = iO(1λ, P1) are (sub-exponentially) indistinguishable. We
reduce this indistinguishability to the distributional-semantic security of GES. Consider the element

distribution E(1λ,R) that samples ~a0
$← Dλ(R, P0) and ~a1

$← Dλ(R, P1) and sets ~z = null; we first
show that E is a (~v, null,vzt)-respecting element sampler w.r.t. R̃.
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Towards this, we need to show that, there exists a constant ε, such that, for every ensemble of
((~v, null),vzt)-respecting arithmetic circuits {qλ}, it holds that for every λ ∈ N, q = qλ, there is a
constant c, such that, for every b ∈ {0, 1},

Pr[R $← R̃(1λ), (~a0,~a1, null)
$← E(1λ,R) : Pzero(q(~ab)) = c] ≥ 1− 1

2`(λ)ε
, (9)

where `(λ) = poly(logL(λ) + ω(log λ) + t(λ)).
Lemma 7 shows that our scheme (iO,Eval) satisfies algebraic security, meaning there is a sim-

ulators Sim, such that, the following holds w.r.t. {q}λ, and every b ∈ {0, 1},∣∣∣Pr[~ab
$← Dλ(R, Pb) : Pzero(q(~ab)) = 1]− Pr[SimPb(1λ, q) = 1]

∣∣∣ ≤ negl(λ)/2t(λ) .

Furthermore since Sim is deterministic, it implies that

Pr[~ab
$← Dλ(R, Pb) : Pzero(q(~ab)) = SimPb(1λ, q)] ≥ 1− negl(λ)/2t(λ) .

By the fact that P0, P1 are functionally equivalent, it holds that there is c = SimPb(1λ, q) for both
b ∈ {0, 1}.

Pr[~ab
$← Dλ(R, Pb) : Pzero(q(~ab)) = c] ≥ 1− negl(λ)/2t(λ) .

Finally, since t(λ) >> logL(λ) + ω(log λ), t(λ) = `(λ)ε for some constant ε. By construction of E,
equation (9) holds and E is a (~v, null,vzt)-respecting element sampler w.r.t. R̃. Then, it follow from
the (sub-exponential) distributional semantic security of GES that encodings of ~a0 and ~a1 under
the levels ~v are (sub-exponential) indistinguishable, which concludes the security of our IO scheme.
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8 Proof Sketch of Theorem 4

We briefly sketch why the transformation from compact FE to IO for P/poly of [AJ15, BV15a]
works with compact FE scheme for bounded size T and bounded input length n, as long as T and n
are sufficiently large and encryption remains significantly faster than T .

We show that when T and n are sufficiently large, in particular, T > λα/ε for some universal
constant α set in the analysis below, the proof follows in two steps.

Step 1: We first follow [BV15a] (BV) and show that IO for P/poly is implied any compact FE scheme

for T ′(λ)-time n′(λ)-input bit circuits in P/poly, with encryption time bounded by T ′(λ)1−ε′ , for
some sufficiently large n′ and T ′; in particular, time bound satisfies T ′(λ) > λα

′/ε′ w.r.t. a universal
constant α′ specified below. Let FE′ denote such a scheme.

Recall that an indistinguishability obfuscator iO for P/poly on input security parameter λ
obfuscates circuit C of size bounded by λ (see Definition 4); without loss of generality, we assume
that input length of C is nC = λ. The BV obfuscator iO(λ,C) proceeds as follows: It generates

a fresh instance of FE′ for each i ∈ λ, (mpki,mski)
$← FE.Setup′(1λ̃, T ′), using a larger security

parameter λ̃ = poly(nC , λ) = poly(λ)5 and time-bound T ′ = T ′(λ̃), and releases a single secret
function key fski for each instance. Additionally, it generates two ciphertexts ct0, ct1 under the first
mpk1. The functionality of different secret keys are roughly as follows:

• The last secret key fskλ is related with a function fλ(x) that evaluates C(x).

• Previous secret keys fski are related with a fi that on input an i-bit prefix x≤i generates
FE encryptions of two possible continuations x≤i||0 and x≤i||1, using pseudo-random coins
generated via a PPRF with key Ki.

To compute C(x), the evaluator chooses ct1 = ctx1 as the encryption of the first bit of x; then
it iteratively performs FE evaluation to obtain encryption of all prefixes: In iteration i < λ,
it evaluates ciphertext cti of prefix x≤i with fski to obtain ciphertexts cti+1

0 , cti+1
1 of extensions

5The security parameter is scaled up for complexity leveraging.
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x≤i||0, x≤i||1, and chooses the xth
i+1 ciphertext for the next iteration. In iteration λ, the output

C(x) is obtained by evaluating the final ciphertext ctλ of x with the last secret key fskλ.
For security analysis, the actual functions associated with fski’s involves much more than just

evaluating C and FE.Enc′. (We refer the reader to [BV15a] for details.) Here, we are concerned
with the input length ni and size |fi| of the function fi being computed by FE′. By the analysis
of [BV15a],

ni ≤ nC + λ̃+ 1 ≤ 2λ̃.

If the input length bound n′ of FE′ is sufficiently large, that is, n′(λ̃) ≥ 2λ̃, FE′ supports encrypting
all inputs used in [BV15a]. As a result, we can also assume without loss of generality that all inputs
are padded to exactly length n′ when encrypted.

Furthermore, by the analysis of [BV15a], the sizes of function fi’s are bounded by

|fi| ≤ λ̃α1 max(|C|, TFE.Enc′) ,

where λ̃α1 is a fixed multiplicative polynomial overhead, and TFE.Enc′ is the worst-case time for
encrypting a message of length n′ under mpki produced using λ̃ and T ′. By the fact that encryption

time of FE′ satisfies TFE.Enc′ ≤ T ′(λ̃)
1−ε′

. For the construction to be well-defined, it must hold that
the sizes of the functions computed do not exceed the time bound, i.e., |fi| ≤ T ′(λ̃). Since T ′

satisfies T ′(λ̃) ≥ λ̃α′/ε′ and |C| ≤ λ, we have

|fi| ≤ λ̃α1 max(|C|, TFE.Enc′) ≤ λ̃α1T ′
1−ε′ ≤ λ̃α′T ′1−ε

′
≤ T ′ .

The second last inequality holds if the universal constant α′ associated with FE′ is no smaller than
α1. Therefore, though FE′ does not support arbitrary polynomial computation, the IO construction
is still well-defined, and the analysis in [BV15a] applies identically.

Step 2: Following [ABSV15] (ABSV), we show that a FE scheme FE′ for P/poly as required in Step

1, can be constructed from any compact FE scheme FE for T (λ)-time n(λ)-input bit circuits in NC1

with encryption time bounded by T (λ)1−ε, for sufficiently large n and T ; in particular, the time
bound satisfies T (λ) ≥ λα/ε for some universal constant α specified below, assuming a weak PRF
scheme wPRF in NC1.

We sketch the ABSV construction: The secret key sk′C′ of FE′ for a circuit C ′ ∈ P/poly is a secret

key skC of FE for a related circuit C ∈ NC1. C has a hardwired tag τ
$← {0, 1}λ and ciphertext ct

encrypted under a symmetric encryption scheme with secret key sk; on input (x,K, sk, b), C either
outputs a randomized encoding RE(1λ, C ′, x) using pseudo-random coins wPRF(K, τ) if b = 0, or
simply decrypts the ciphertext Dec(sk, ct) if b = 1. Ciphertexts of FE′ correspondingly encrypt
tuple of form (x,K, sk, b).

By the analysis of [ABSV15], the relations between the input lengths nC and nC′ of C and
C ′, and that between their sizes are: nC = nC′ + 2λ + 1 and |C| ≤ λα2 |C ′|, where λα2 is a fixed
multiplicative polynomial overhead. Therefore, the resulting FE′ can compute circuits of bounded
input length and bounded size

n′(λ) = n(λ)− 2λ− 1 , T ′(λ) = T (λ)/λα2 .

By the (1− ε)-compactness of FE, time for encryption TFE.Enc′ is bounded by T 1−ε. Hence,

TFE.Enc′ ≤ T 1−ε =
T 1−ε/2

T ε/2
≤
(

T

T ε/2

)1−ε/2

≤
(
T

λα2

)1−ε/2
= T ′

1−ε/2
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Since T ≥ λα/ε for a universal constant α, the last inequality holds if α > 2α2. Therefore FE′ is
(1− ε′)-compact for ε′ = ε/2.

Finally, we show that T ′ is sufficiently large T ′ > λα
′/ε′ , this is because

T ′ =
T

λα2
> λα/ε−α2 > λ(α−α2)/2ε′ ≥ λα′/ε′

where the last inequality holds when the universal constant α > 2α′ + α2.
Combining the above analysis, when α = 2(α′+α2), the resulting FE′ satisfies all requirements

from Step 1, which concludes the proof.
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