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Abstract. For decades, the Network Time Protocol (NTP) has been
used to synchronize computer clocks over untrusted network paths. This
work takes a new look at the security of NTP’s datagram protocol. We
argue that NTP’s datagram protocol in RFC5905 is both underspecified
and flawed. The NTP specifications do not sufficiently respect (1) the
conflicting security requirements of different NTP modes, and (2) the
mechanism NTP uses to prevent off-path attacks. A further problem
is that (3) NTP’s control-query interface reveals sensitive information
that can be exploited in off-path attacks. We exploit these problems
in several attacks that remote attackers can use to maliciously alter a
target’s time. We use network scans to find millions of IPs that are
vulnerable to our attacks. Finally, we move beyond identifying attacks
by developing a cryptographic model and using it to prove the security
of a new backwards-compatible client/server protocol for NTP.

1 Introduction

Millions of hosts [12,22,24,30,34] use the Network Time Protocol (NTP) [28] to
synchronize their computer clocks to public Internet timeservers (using NTP’s
client/server mode), or to neighboring peers (using NTP’s symmetric mode).
Over the last few years, the security of NTP has come under new scrutiny.
Along with significant attention paid to NTP’s role in UDP amplification at-
tacks [12,21], there is also a new focus on attacks on the NTP protocol itself, both
in order to maliciously alter a target’s time (timeshifting attacks) or to prevent
a target from synchronizing its clock (denial of service (DoS) attacks) [22, 42].
These attacks matter because the correctness of time underpins many other basic
protocols and services. For instance, cryptographic protocols use timestamps to
prevent replay attacks and limit the use of stale or compromised cryptographic
material (e.g., TLS [20, 37], HSTS [36], DNSSEC, RPKI [22], bitcoin [11], au-
thentication protocols [20, 22]), while accurate time synchronization is a basic
requirement for various distributed protocols.

1.1 Problems with the NTP specification.

We start by identifying three fundamental problems with the NTP specification
in RFC5905, and then exploit these problems in four different off-path attacks
on ntpd, the “reference implementation” of NTP.



Problem 1: Lack of respect for basic protection measures. The first issue stems
from a lack of respect for TEST2, the mechanism that NTP uses to prevent off-
path attacks. Off-path attacks are essentially the weakest (and therefore the
most scary) threat model that one could consider for a networking protocol. An
off-path attacker cannot eavesdrop on the NTP traffic of their targets, but can
spoof IP packets i.e., send packets with a bogus source IP. This threat model
captures ‘remote attacks’ launched by arbitrary IPs that do not occupy a privi-
leged position on the communication path between the parties. (See Figure ??.)

NTP attempts to prevent off-path attacks much in the same way that TCP
and UDP do: every client query includes a nonce, and this nonce is reflected
back to the client in the server’s response. The client then checks for matching
nonces in the query and response, i.e., “TEST2”. Because an off-path attacker
cannot see the nonce (because it cannot eavesdrop on traffic), it cannot spoof
a valid server response. Despite the apparent simplicity of this mechanism, its
specification in RFC5905 is flawed and leads to several off-path attacks.

Problem 2: Same code for different modes. NTP operates in several different
modes. Apart from the popular client/server mode (where the client synchronizes
to a time server), NTP also has a symmetric mode (where neighboring peers take
time from each other), and several other modes. RFC5905 recommends that
all of NTP’s different modes be processed by the same codepath. However, we
find that the security requirements of client/server mode and symmetric mode
conflict with each other, and result in some of our off-path attacks.

Problem 3: Leaky control queries. NTP’s control-query interface is not specified
in RFC5905, but its specification does appear in the obsoleted RFC1305 [26]
from 1992 and a new IETF Internet draft [27]. We find that it can be ex-
ploited remotely to leak information about NTPs internal timing state variables.
While the DDoS amplification potential of NTP’s control query interface is well
known [12,21], here we show that it is also a risk to the correctness of time.
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Fig. 1. Paper overview.

We exploit these three
problems to find working off-
path attacks on ntpd (Sec-
tion 3-4, Appendix A), and
use IPv4 Internet scans to
identify millions of IPs that
are vulnerable to our at-
tacks (Section 5). The first
three attacks maliciously shift
time on a client using NTP’s
client/server mode, and the
fourth prevents time synchronization in symmetric mode.

Attack 1: Leaky Origin Timestamp Attack (Section 4). Our network scans find
a staggering 3.8 million IPs that leak the nonce used in TEST2 in response to
control queries made from arbitrary IPs (CVE-2015-8139). An off-path attacker
can maliciously shift time on a client by continuously querying for this nonce,
and using it to spoof packets that pass TEST2.



Attack 2: Zero-0rigin Timestamp Attack (Section 3.3 and Appendix A.1). This
attack (CVE-2015-8138) follows from RFC5905, and is among the strongest
timeshifting attacks on NTP that has been identified thus far. The attacker
bypasses TEST2 by spoofing server response packets with their nonce set to zero.
We use leaky NTP control queries as a side-channel to measure the prevalence
of this attack. We find 1.3 million affected IPs. However, we expect that the true
attack surface is even larger, since this attack itself does not require the control-
query interface, works on clients operating in default mode, and has been part
of ntpd for seven years (since ntpd v4.2.6, December 2009).

Attack 3: Interleaved-Pivot Attack (Section 4). Our third off-path timeshifting
attack (CVE-2016-1548) exploits the fact that NTP’s client/server mode shares
the same codepath as NTP’s interleaved mode. First, the attacker spoofs a single
packet that tricks the target into thinking that he is in interleaved mode. The
target then rejects all subsequent legitimate client/server mode packets. This is a
DoS attack (Section 4, Appendix A.2). We further leverage NTP’s leaky control
queries to convert this DoS attack to an off-path timeshifting attack. NTP’s
control-query interface also leaks the nonce used in the special version of TEST2
used in interleaved mode. The attacker spoofs a sequence of interleaved-mode
packets, with nonce value revealed by these queries, that maliciously shifts time
on the client. Our scans find 1.3 million affected IPs.

Attack 4: Attacks on symmetric mode (Appendix C). We then present security
analysis of NTP’s symmetric mode, as specified in RFC5905, and present off-
path attacks that prevent time synchronization. We discuss why the security
requirements of symmetric mode are at odds with that of client/server mode,
and may have been the root cause of the zero-0rigin timestamp attack.

Disclosure. Our disclosure timeline is in Appendix F. Our research was done
against ntpd v4.2.8p6, the latest version as of April 25, 2016. Since then, three
versions have been released: ntpd v4.2.8p7 (April 26, 2016), ntpd v4.2.8p8 (June
2, 2016), ntpd v4.2.8p9 (November 21, 2016). Most of our attacks have been
patched in these releases. We provide recommendations for securing the client/server
mode in Section 7 and symmetric mode in Appendix C.4.

1.2 Provably secure protocol design.

Our final contribution is to go beyond attacks and patches, and identify a more
robust security solution (Section B) We propose a new backwards-compatible
protocol for client/server mode that preserves the semantics of the timestamps
in NTP packets (Figures 5, 6). We then leverage ideas from the universal com-
posability framework [9] to develop a cryptographic model for attacks on NTP’s
datagram protocol. We use this model to prove (Section B.3,B.4) that our pro-
tocol correctly synchronizes time in the face of both (1) off-path attackers when
NTP is unauthenticated and (2) on-path attackers when NTP packets are au-
thenticated with a MAC. We also use our model to prove similar results about
a different protocol that is used by chronyd [2] and openntpd [5] (two alternate



implementations of NTP). The chronyd/openntpd protocol is secure, but unlike
our protocol, does not preserve the semantics of packet timestamps.
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Fig. 2. Threat models.

Our cryptographic model models both on-
path attackers and off-path attackers. An on-
path attacker can eavesdrop, inject, spoof,
and replay packets, but cannot drop, delay,
or tamper with legitimate traffic. An on-path
attacker eavesdrops on a copy of the target’s
traffic, so it need not disrupt live network traf-
fic, or even operate at line rate. For this rea-
son, on-path attacks are commonly seen in the
wild, disrupting TCP [44], DNS [14], BitTor-
rent [44], or censoring web content [10]. Mean-
while, we cannot prove that NTP provides
correct time synchronization in the face of the
traditional Man-in-The-Middle (MiTM) attacks (aka. ‘in-path attacks’) because
an MiTM can always prevent time synchronization by dropping packets. More-
over, an MiTM can also bias time synchronization by delaying packets [31,32].1

Taking a step back, our work can be seen as a case study of the security
risks that arise when network protocols are underspecified. It also highlights the
importance of handling diverse protocol requirements in separate and rigourously
tested codepaths. Finally, our network protocol analysis introduces new ways of
reasoning about network attacks on time synchronization protocols.

1.3 Related work

Secure protocols. Our design and analysis of secure client/server protocols com-
plement recent efforts to cryptographically secure NTP and its “cousin” PTP
(Precision Time Protocol) [32]. Our interest is in securing the core datagram
protocol used by NTP, which was last described in David Mill’s book [29]. To
the best of our knowledge, the security of the core NTP datagram protocol has
never previously been analyzed. Meanwhile, our analysis assumes that parties
correctly distribute cryptographic keys and use a secure MAC. A complemen-
tary stream of works propose protocols for distributing keys and performing the
MAC, beginning with the Autokey protocol in RFC5906 [17], which was bro-
ken by Rottger [35], which was followed by NTS [39], ANTP [13], other works
including [18,33], and on-going activity in the IETF [1].

1 This follows because time-synchronization protocols use information about the delay
on the network path in order to accurately synchronize clocks (Section 2). A client
cannot distinguish the delay on the forward path (from client to server) from the
delay on the reverse path (from server to client). As such, the client simply takes the
total round trip time δ (forward path + reverse path), and assumes that delays on
each path are symmetric. The MiTM can exploit this by making delays asymmetric
(e.g., causing the delay on the forward path to be much longer than delay on the
reverse path), thus biasing time synchronization.



Attacks. Our analysis of the NTP specification is motivated, in part, by discovery
of over 30 ntpd CVEs between June 2015 to July 2016 [42]. These implementa-
tion flaws allow remote code execution, DoS attacks, and timeshifting attacks.
Earlier, Selvi [36, 37] demonstrated MiTM timeshifting attacks on ‘simple NTP
(SNTP)’ (rather than full-fledged NTP). Even earlier, work [11,20,29] considered
the impact of timeshifting on the correctness of other protocols. The recent aca-
demic work [22] also attacks NTP, but our attacks are stronger. [22] presented
attacks that are on-path (weaker than our off-path attacks), or off-path DoS
attacks (weaker than our timeshifting attacks), or off-path time-shifting attacks
that needed special client/server configurations (our Zero-0rigin Timestamp at-
tack works in default mode). Also, our measurements find millions of vulnerable
clients, while [22] finds thousands. Finally, NTP’s broadcast mode is outside our
scope; see [23,32,40] instead.

Measurement. Our work is also related to studies measuring the NTP ecosystem
(in past decades) [30, 34], the use of NTP for DDoS amplification attacks [12],
the performance of NIST’s timeservers [38], and network latency [15]. Our attack
surface measurements are in the same spirit as those in [22, 23], but we use a
new set of NTP control queries. We also provide updated measurements on the
presence of cryptographically-authenticated NTP associations.

2 NTP Background

NTP’s default mode of operation is a hierarchical client/server mode. In this
mode, timing queries are solicited by clients from a set of servers; this set of
servers is typically static and configured manually. Stratum i systems act as
servers that provide time to stratum i + 1 systems, for i = 1, ...15. Stratum 1
servers are at the root of the NTP hierarchy. Stratum 0 and stratum 16 indicate
failure to synchronize. Client/server packets are not authenticated by default,
but a Message Authentication Code (MAC) can optionally be appended to the
packet. NTP operates in several additional modes. In broadcast mode, a set of
clients listen to a server that broadcasts timing information. In symmetric mode,
peers exchange timing information (Appendix C). There is also an interleaved
mode for more accurate timestamping (Appendix A.2).

Fig. 3. Timestamps induced by the server response packet (mode 4).
T1: Origin timestamp. Client’s local time when sending query.
T2: Receive timestamp. Server’s local time when receiving query.
T3: Transmit timestamp. Server’s local time when sending response.
T4: Destination timestamp. Client’s local time when receiving response.

NTP’s client/server protocol consists of a periodic two-message exchange.
The client sends the server a query (mode 3 ), and the server sends back a re-
sponse (mode 4 ). Each exchange provides a timing sample, which uses the four
timestamps in Figure 2. All four timestamps are 64 bits long, where the first 32
bits are seconds elapsed since January 1, 1970, and the last 32 bits are fractional
seconds. T1, T2, and T3 are fields in the server response packet (mode 4) shown
in Figure 3. The delay δ is an important NTP parameter [28] that measures the



round trip time between the client and the server:

δ = (T4 − T1)− (T3 − T2) (1)

If there are symmetric delays on the forward and reverse network paths, then
the difference between the server and client clock is T2 − (T1 + δ

2 ) for the client

query, and T3 − (T4 − δ
2 ) for the server response. Averaging, we get offset θ:

θ = 1
2 ((T2 − T1) + (T3 − T4)) (2)

A client does not immediately update its clock with the offset θ upon receipt
of a server response packet. Instead, the client collects several timing samples
from each server by completing exchanges at infrequent polling intervals (on the
order of seconds or minutes). The length of the polling interval is determined
by an adaptive randomized poll process [28, Sec. 13]. The poll p is a field on the
NTP packet, where [28] allows p ∈ {4, 5, .., 17}, which corresponds to a polling
interval of about 2p (i.e., 16 seconds to 36 hours).
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Fig. 4. NTP server response packet
(mode 4). (Client queries have the
same format, but with mode field
set to 3. Symmetric mode uses
mode 1 or 2. Broadcast mode uses
mode 5).

Once the client has enough timing sam-
ples from a server, it computes the jitter ψ.
First, it finds the offset value θ∗ correspond-
ing to the sample of lowest delay δ∗ from the
eight most recent samples, and then takes jit-
ter ψ as

ψ2 = 1
k−1

k∑
i=1

(θi − θ∗)2 (3)

Typically, 4 ≤ k ≤ 8. A client considers up-
dating its clock only if it gets a stream of k
timing samples with low delay δ and jitter ψ.
This is called TEST11.2

TEST11: Check that the root distance Λ does
not exceed MAXDIST = 1.5 seconds. Λ is
proportional3to:

Λ ∝ ψ + (δ∗ +∆)/2 + E + 2ρ (4)

The root delay ∆, root dispersion E and pre-
cision ρ are from fields in the server’s mode 4
response packet (Figure 3). Precision ρ is the
quality of the system’s local clock; ρ = 12 implies 2−12 = 244µs precision.

After each exchange, the client chooses a single server to which it synchro-
nizes its local clock. This decision is made adaptively by a set of selection, cluster,

2 A single server response packet is sufficient to set time on a SNTP (“simple NTP”)
client, but a stream of self-consistent packets is required for full NTP.

3 The exact definition of Λ differs slightly between RFC5905 [28, Appendix A.5.5.2]
and the latest version of ntpd.



combine and clock discipline algorithms [28, Sec. 10-12]. Importantly, these al-
gorithms can also decide not to update the client’s clock; in this case, the clock
runs without input from NTP.

Implementation vs. Specification. RFC5905 [28] specifies NTP version 4, and
its “reference implementation” is ntpd [41]. David Mills, the inventor of NTP,
explains [29] the “relationship between the published standard and the reference
implementation” as follows: “It is tempting to construct a standard from first
principles, submit it for formal verification, then tell somebody to build it. Of
the four generations of NTP, it did not work that way. Both the standard and the
reference implementation were evolved from an earlier version... Along the way,
many minor tweaks were needed in both the specification and implementation...”
For this reason, we consider both ntpd and the specification in RFC5905.

3 The Client/Server Protocol in RFC5905

We now argue that the client/server datagram protocol in RFC5905 is under-
specified and flawed. RFC5905 mentions the protocol in two places: in its main
body (Section 8) and in a pseudo-code listing (Appendix A). Because the two
mentions are somewhat contradictory, we begin with an overview of the compo-
nents of NTP’s datagram protocol, and then present its specification in Appendix
A of RFC5905, and in the prose of Section 8 of RFC5905.

3.1 Components of NTP’s datagram protocol.

1 receive()

2 if (pkt.T3 == 0 or # fail test3

3 pkt.T3 == org): # fail test1

4 return

5

6 synch = True

7 if !broadcast:

8 if pkt.T1 == 0: # fail test3

9 synch = False

10 elif pkt.T1 != xmt: # fail test2

11 synch = False

12

13 org = pkt.T3

14 rec = pkt.time_received

15 if (synch):

16 process(pkt)

Fig. 5. Pseudocode for the receive func-
tion, RFC5905 Appendix A.5.1.

NTP uses the origin timestamp field of
the NTP packet to prevent off- and on-
path attacks. (Recall from Figure ??
that an off-path attacker can spoof
IP packets but cannot eavesdrop on
its target’s NTP traffic, while an on-
path attacker can eavesdrop, inject,
spoof, and replay packets, but cannot
drop, delay, or tamper with legitimate
traffic.) Whenever a client queries its
server, the client records the query’s
sending time T1 in a local state vari-
able [28] named “xmt”. The client
then sends T1 in the transmit times-
tamp of its client query (Figure 3).
Upon receipt of the query, the server
learns T1 and copies it into the origin
timestamp field of its server response
(Figure 3). When the client receives the server response, it performs TEST2:

TEST2: The client checks that the origin timestamp T1 on the server response
matches the client’s time upon sending the query, as recorded in the client’s local
state variable xmt.



The origin timestamp is therefore a nonce that the client must check (with TEST2)
before it accepts a response.4 An off-path attacker cannot see the origin times-
tamp (because it cannot observe the exchange between client and server), and
thus has difficulty spoofing a server response containing a valid origin timestamp.
Indeed, the origin timestamp looks somewhat random to the off-path attacker.
Specifically, its first 32 bits are seconds, and the last 32 bits are subseconds (or
fractional seconds). The first 32 bits appear slightly random because the off-path
attacker does not know the exact moment that the client sent its query; indeed,
Appendix A of RFC5905 has a comment that says “While not shown here, the
reference implementation randomizes the poll interval by a small factor” and
the current ntpd implementation randomizes the polling interval by 2p−4 sec-
onds when poll p > 4. Moreover, the last 32 bits also appear somewhat random
because RFC5905 requires a client with a clock of precision ρ randomize the
(32− ρ)- lowest-order bits of the origin timestamp.

The origin timestamp thus is analogous to source port randomization in
TCP/UDP, sequence number randomization in TCP, etc. When NTP packets
are cryptographically authenticated with a MAC, this nonce also provides some
replay protection: even an on-path attacker cannot replay a packet from an
earlier polling interval because its origin timestamp is now stale.

NTP also has mechanisms to prevent replays within the same polling interval.
These are needed because an NTP client continuously listens to network traffic,
even when it has no outstanding (i.e., unanswered) queries to its servers. When-
ever a client receives a server response packet, it records the transmit timestamp
field from the packet in its org state variable. The client uses the following test
to reject duplicate server response packets:

TEST1: The client checks that the transmit timestamp field T3 of the server
response is different from the value in the client’s org state variable.
The client deals with the duplicates of the client’s query as follows:

Clear xmt: If a server response passes TEST2, the client sets its local xmt state
variable to zero.

Suppose the server receives two identical client queries. The server would send
responses to both (because NTP servers are stateless [28]). If the client cleared
xmt upon receipt of the first server response, the second server response packet
will be rejected (by TEST2) because its origin timestamp is non-zero. At this
point, one might worry that an off-path attacker could inject a packet with
origin timestamp set to zero. But, TEST3 should catch this:

TEST3: Reject any response packet with origin, receive, or transmit timestamp
T1, T2, T3 set to zero.

3.2 Query replay vulnerability in Appendix A of RFC5905.

Pseudocode from Appendix A of RFC5905 (see Figure 4) handles the process-
ing of received packets of any mode, including server mode packets (mode 4),

4 Note that ntpd does not randomize the UDP source port to create an additional
nonce; instead, all NTP packets have UDP source port 123.



broadcast mode packets (mode 5), and symmetric mode packets (mode 1 or
2). Importantly, this pseudocode requires a host to always listen to and process
incoming packets. This is because some NTP modes (e.g., broadcast) process un-
solicited packets, and RFC5905 suggest that all modes use the same codepath.
We shall see that this single codepath creates various security problems.

On-path query replay vulnerability. The pseudocode in Figure 4 is vulnerable
to replays of the client’s query. Suppose a client query is replayed to the server.
Then, the server will send two responses, each with a valid origin timestamp
field (passing TEST2) and each with a different transmit timestamp field (passing
TEST1). The client will accept both responses. Our experiments show that replays
of the client query harm time synchronization; see Appendix E.

3.3 Zero-0rigin timestamp vulnerability in RFC5905 prose.

Meanwhile, we find the following in Section 8 of RFC5905:

Before the xmt and org state variables are updated, two sanity checks are
performed in order to protect against duplicate, bogus, or replayed packets. In
the exchange above, a packet is duplicate or replay if the transmit timestamp
t3 in the packet matches the org state variable T3. A packet is bogus if the
origin timestamp t1 in the packet does not match the xmt state variable T1.
In either of these cases, the state variables are updated, then the packet is
discarded. To protect against replay of the last transmitted packet, the xmt
state variable is set to zero immediately after a successful bogus check.

This text describes TEST1 and TEST2, but what does it mean to update the
state variables? Comparing this to the pseudocode in Appendix A of RFC5905
(Figure 4 lines 13-14) suggests that this means updating org and rec upon
receipt of any packet (including a bogus one failing TEST2), but not the xmt

state variable.5 Next, notice that the quoted text does not mention TEST3, which
rejects packets with a zero-0rigin timestamp. Thus, we could realize the quoted
text as pseudocode by deleting lines 8-9 of Figure 4. Finally, notice that the
quote suggests clearing xmt if a received packet passes TEST2. Thus, we could
add the following after line 11 of Figure 4 (with lines 8-9 deleted):

else: xmt = 0

However, if xmt is cleared but TEST3 is not applied, we have:

Zero-0rigin Timestamp Attack. The zero-0rigin timestamp vulnerability allows
an off-path attacker to hijack an unauthenticated client/server association and
shift time on the client.

5 Indeed, suppose we did update the xmt variable even after receipt of a bogus packet
that fails TEST2, with the bogus origin timestamp in the received packet. In this
case, we would be vulnerable to a chosen-origin-timestamp attack, where an attacker
injects a first packet with an origin timestamp of the their choosing. The injected
packet fails TEST2 and is dropped, but its origin timestamp gets written to the
target’s local xmt variable. Then, the attacker injects another packet with this same
origin timestamp, which passes TEST2 and is accepted by the target.



The attacker sends its target client a spoofed server response packet, spoofed
with the source IP address of the target’s server.6 The spoofed server response
packet has its origin timestamp T1 set to zero, and its other timestamps T2, T3
set to bogus values designed to convince the client to shift its time. The target
will accept the spoofed packet as long is it does not have an outstanding query
to its server. Why? If a client has already received a valid server response, the
valid response would have cleared the client’s xmt variable to zero. The spoofed
zero-0rigin packet is then subjected to TEST2, and its origin timestamp (which
is set to zero) will be compared to the xmt variable (which is also zero). TEST3
is never applied, and so the spoofed zero-0rigin packet will be accepted.

Suppose that the attacker wants to convince the client to change its clock
by x years. How should the attacker set the timestamps on its spoofed packet?
The origin timestamp is set to T1 = 0 and the transmit timestamp T3 is set to
the bogus time now + x. The destination timestamp T4 (not in the packet) is
now + d, where d is the latency between the moment when the attacker sent its
spoofed packet and the moment the client received it. Now, the attacker needs
to choose the receive timestamp T2 so that the delay δ is small. (Otherwise, the
spoofed packet will be rejected because it fails TEST11 (Section 2).) Per equation
(1), if the attacker wants delay δ = d, then T2 should be:

T2 = δ + T3 − (T4 − T1) = d+ now + x− (now + d+ 0) = x

The offset is therefore θ = x − d
2 . If the attacker sends the client a stream of

spoofed packets with timestamps set as described above, their jitter φ is given
by the small variance in d (since x is a constant value). Thus, if the attacker
sets root delay ∆, root dispersion E and precision ρ on its spoofed packets to
be tiny values, the packet will pass TEST11 and be accepted. This vulnerability
is actually present in the current version of ntpd. We discuss how we executed
it (CVE-2015-8138) against ntpd in Appendix A.1.

4 Leaky Control Queries

Thus far, we have implicitly assumed that the timestamps stored in a target’s
state variables are difficult for an attacker to obtain from off-path. However,
we now show how they can be learned from off-path via NTP control queries.
Interestingly, the control queries we use are not mentioned at all in the latest
NTP specification in RFC5905 [28]. However, they are specified in detail in

6 As observed by [22], hosts respond to unauthenticated mode 3 queries from arbitrary
IP addresses by default. The mode 4 response (Figure 3) has a reference ID field
that reveals the IPv4 address of the responding host’s time server. Thus, our off-
path attacker sends its target a (legitimate) mode 3 query, and receives in response
a mode 4 packet, and learns the target’s server from its reference ID. Moreover, if
the attacker’s shenanigans cause the target to synchronize to a different server, the
attacker can just learn the IP of the new server by sending the target a new mode
3 query. The attacker can then spoof packets from the new server as well.



Appendix B of the obsolete RFC1305 [26] from 1992, and are also specified in
a new IETF Internet draft [27]. They have been part of ntpd since at least
1999.7 NTP’s UDP-based control queries are notorious as a vector for DDoS
amplification attacks [12, 21]. These DoS attacks exploit the length of the UDP
packets sent in response to NTP’s mode 7 monlist control query, and sometimes
also NTP’s mode 6 rv control query. Here, however, we will exploit their contents.

The leaky control queries. We found control queries that reveal the values
stored in the xmt (which stores T1 per Figure 2) and rec (which stores T4) state
variables. First, launch the as control query to learn the association ID that
a target uses for its server(s). (Association ID is a randomly assigned number
that the client uses internally to identify each server [26].) Then, the query rv

assocID org reveals the value stored in xmt (i.e., expected origin timestamp T1
for that server). Moreover, rv assocID rec reveals the value in rec (i.e., the
destination timestamp T4 for the target’s last exchange with its server).

Off-path timeshifting via leaky origin timestamp. If an attacker could contin-
uously query its target for its expected origin timestamp (i.e., the xmt state
variable), then all bets are off. The off-path attacker could spoof bogus packets
that pass TEST2 and shift time on the target. This is CVE-2015-8139.

Off-path timeshifting attack via interleaved pivot. NTP’s interleaved mode is
designed to provide more accurate time synchronization. Other NTP modes use
the 3-bit mode field in the NTP packet (Figure 3) to identify themselves (e.g.,
client queries use mode 3 and server responses use mode 4). The interleaved
mode, however, does not. Instead, a host will automatically enter interleaved
mode if it receives a packet that passes Interleaved TEST2. Interleaved TEST2
checks that the packet’s origin timestamp field T1 matches rec state variable,
which stores T4 from the previous exchange. Importantly, there is no codepath
that allows the host to exit interleaved mode. Appendix A.2 shows that this
leads to an extremely low-rate DoS attack that works even in the absence of
leaky control queries. This is CVE-2016-1548.

Now consider an off-path attacker that uses NTP control queries to continu-
ously query for rec. This attacker can shift time on the client by using its knowl-
edge of rec to (1) spoof a single packet passing ‘interleaved TEST2’ that pivots
the client into interleaved mode, and then (2) spoof a stream of self-consistent
packets that pass ‘interleaved TEST2’ and contain bogus timing information. We
have confirmed that this attack works on ntpd v4.2.8p6.

Recommendation: Block control queries! By default, ntpd allows the client to
answer control queries sent by any IP in the Internet. However, in response
to monlist-based NTP DDoS amplification attacks, best practices recommend
configuring ntpd with the noquery parameter [41]. While noquery should block
all control queries, we suspect that monlist packets are filtered by middleboxes,
rather than by the noquery option, and thus many “patched” systems remain
vulnerable to our attacks. Indeed, the openNTPproject’s IPv4 scan during the
week of July 23, 2016 found 705,183 unique IPs responding to monlist. Mean-

7 https://github.com/ntpsec/ntpsec/blob/PRE_NT_991015/ntpq/ntpq.c

https://github.com/ntpsec/ntpsec/blob/PRE_NT_991015/ntpq/ntpq.c


while, during the same week we found a staggering 3,964,718 IPs responding
to the as query.8 The control queries we exploit likely remain out of firewall
blacklists because (1) they are undocumented in RFC5905 and (2) are thus far
unexploited. As such, we suggest that either (1) noquery be used, or (2) firewalls
block all mode 6 and mode 7 NTP packets from unwanted IPs.

5 Measuring the Attack Surface

We use network measurements to determine the number of IPs in the wild that
are vulnerable to our off-path attacks. We start with zmap [16] to scan the entire
IPv4 address space (from July 27 - July 29, 2016) using NTP’s as control query
and obtain responses from 3,964,718 unique IPs. The scan was broken up into
254 shards, each completing in 2-3 minutes and containing 14,575,000 IPs. At
the completion of each shard, we run a script that sends each responding IP the
sequence of queries shown below.

rv ‘associd’

rv ‘associd’ org

rv ‘associd’ rec

rv

mode 3 NTPv4 query

These queries check for leaky origin and destination times-
tamps, per Section 4, and also solicit a regular NTP server
response packet (mode 4). Our scan did not modify the
internal state of any of the queried systems. We solicit
server responses packets using RFC5905-compliant NTP
client queries (mode 3), and RFC1305-compliant mode 6
control packets identical to those produced by the standard
NTP control query program ntpq. We obtained a response

to at least one of the control queries from 3,822,681 (96.4%) of the IPs respond-
ing to our as scan of IPv4 address space. We obtained server response packets
(mode 4) from 3,274,501 (82.6%) of the responding IPs. Once the entire scan
completed on July 29, 2016, we identified all the stratum 1 servers (from the rv

and mode 4 response packets), and send each the NTP control query peers using
ntpq; we obtained responses from 3,586 (76.6%) IPs out of a total of 4,683 IPs
queried. (We do this to check if any stratum 1 servers have symmetric peering
associations, since those that do could be vulnerable to our attacks.)

5.1 State of crypto.

The general wisdom suggests that NTP client/server communications are typ-
ically not cryptographically authenticated; this follows because (1) NTP uses
pre-shared symmetric keys for its MAC, which makes key distribution cumber-
some [6], and (2) NTP’s Autokey [17] protocol for public-key authentication is
widely considered to be broken [35]. We can use our scan to validate the gen-
eral wisdom, since as also reveals a host’s ‘authentication status’ with each of
its servers or peers. Of 3,964,718 IPs that responded to the as command, we
find merely 78,828 (2.0%) IPs that have all associations authenticated. Mean-
while, 3,870,933 (97.6%) IPs have all their associations unauthenticated. We

8 To avoid being blacklisted, we refrained from sending monlist queries.



find 93,785 (2.4%) IPs have at least one association authenticated. For these
hosts, off-path attacks are more difficult but not infeasible (especially if most of
the client’s associations are unauthenticated, or if the authenticated associations
provide bad time, etc.).

5.2 Leaky origin timestamps.

Table 1. Hosts leaking origin timestamp.
Total unauthenticated Stratum 2-15 good timekeepers

3,759,832 3,681,790 2,974,574 2,484,775

Of 3,964,718 IPs responding
to the as query, a staggering
3,759,832 (94.8%) IPs leaked
their origin timestamp. (This
is a significantly larger number than the 705,183 IPs that responded to a monlist

scan of the IPv4 space by the openNTPproject during the same week, suggest-
ing that many systems that have been ‘patched’ against NTP DDoS amplifica-
tion [12,21] remain vulnerable to our leaky-origin timestamp attack.)

But how many of these leaky hosts are vulnerable to off-path timeshifting
attacks described in Section 4? Our results are summarized in Table 1. First, we
find that only 78,042 (2.1%) of the IPs that leak org to us have authenticated all
associations with their servers, leaving them out of the attackable pool. Next, we
note that stratum 1 hosts are not usually vulnerable to this attack, since they
sit a the root of the NTP hierarchy (see Section 2) and thus don’t take time
from any server. The only exception to this is the stratum 1 servers that have
symmetric peering associations. Combining data from rv and mode 3 responses,
we find the stratum of the remaining 3,681,790 (97.9%) leaky IPs. We combine
this information with the output of the peers command, which reveals the ‘type
of association’ each host uses with its servers and peers. Of the 4,608 (0.1%)
stratum 1 servers, none have symmetric peering associations. Thus, we do not
find any vulnerable stratum 1 servers.

On the other hand, there are 2,974,574 (80.8%) stratum 2-15 IPs that leak
their origin timestamp and synchronize to at least one unauthenticated server.
These are all vulnerable to our attack. We do not count 601,043 (16.3%) IPs that
have either (1) stratum 0 or 16 (unsynchronized), OR (2) conflicting stratums in
rv and server responses (mode 4). Finally, we check if these 3M vulnerable IPs
are ‘functional’ or are just misconfigured or broken systems by using data from
our mode 3 query scan to determine the quality of their timekeeping. We found
that 2,484,775 (83.5%) of these leaky IPs are good timekeepers—their absolute
offset values were less than 0.1 sec.9 Of these, we find 490,032 (19.7%) IPs with
stratum 2. These are good targets for attack, so that the impact of the attack
trickles down the NTP stratum hierarchy.

5.3 Zero-0rigin timestamp vulnerability.

9 We compute the offset θ using equation (2), with T1, T2, T3 from the packet times-
tamps and T4 from the frame arrival time of the mode 4 response packet .



Table 2. Hosts leaking zero-0rigin timestamp.
Total unauthenticated Stratum 2-15 good timekeepers

1,269,265 1,249,212 892,672 691,902The zero-0rigin timestamp
vulnerability was introduced
seven years ago in ntpd v4.2.6 (Dec 2009), when a line was added to clear
xmt after a packet passes TEST2.10 (This is Line 18 in Figure 7.)Thus, one way
to bound the attack surface for the zero-0rigin timestamp vulnerability is to
use control queries as measurement side-channel. We consider all our origin-
timestamp leaking hosts, and find the ones that leak a timestamp of zero. Of
3,759,832 (94.8%) origin-leaking IPs, we find 1,269,265 (33.8%) IPs that leaked
a zero-0rigin timestamp. We scrutinize these hosts in Table 2 and find ≈ 700K
interesting targets. Importantly, however, that this is likely an underestimate
of the attack surface, since the zero-0rigin vulnerability does not require the
exploitation of leaky control queries.

5.4 Interleaved pivot vulnerability.

Table 3. Hosts leaking rec and zero-0rigin times-
tamps. (Underestimates hosts vulnerable to the in-
terleaved pivot timeshifting attack.)

Total unauthenticated Stratum 2-15 good timekeepers
1,267,628 1,247,656 893,979 691,393

The interleaved pivot DoS
vulnerability (Appendix A.2)was
introduced in the same ver-
sion as the zero-0rigin times-
tamp vulnerability. Thus, the
IPs described in Section 5.3 are also vulnerable to this attack.

Next, we check which IPs are vulnerable to the interleaved pivot timeshifting
attacks (Section 4). These hosts must (1) leak the rec state variable and (2) use
a version of ntpd later than 4.2.6. Leaks of rec are also surprisingly prevalent:
3,724,465 IPs leaked rec (93.9% of the 4M that responded to as). These could
be vulnerable if they are using ntpd versions post v4.2.6. We cannot identify the
versions of all of these hosts, but we do know that hosts that also leak zero as
their expected origin timestamp are using versions post v4.2.6. We find 1,267,265
(34%) such IPs and scrutinize them in Table 3.

6 Securing the Client/Server Protocol.

We now move beyond identifying attacks and prove security for modified client/server
datagram protocols for NTP.

6.1 Protocol descriptions.

Our protocol. Figure 5,6 present our new client/server protocol that provides
32-bits of randomization for the origin timestamp used in TEST2.

Clients use the algorithm in Figure 5 to process received packets. While the
client continues to listen to server response packets (mode 4) even when it does
not have an outstanding query, this receive algorithm has several features that

10 See Line 1094 in ntp proto.c in https://github.com/ntp-project/ntp/commit/

fb8fa5f6330a7583ec74fba2dfb7b6bf62bdd246.

https://github.com/ntp-project/ntp/commit/fb8fa5f6330a7583ec74fba2dfb7b6bf62bdd246
https://github.com/ntp-project/ntp/commit/fb8fa5f6330a7583ec74fba2dfb7b6bf62bdd246


def client_receive_mode4( pkt ):

server = find_server(pkt.srcIP)

if (server.auth == True and
pkt.MAC is invalid):
return # bad MAC

if pkt.T1 != server.xmt:
return # fail test2

server.xmt = randbits(64) # clear xmt
server.org = pkt.T3 # update state variables
server.rec = pkt.receive_time()
process(pkt)

return

Fig. 6. Pseudocode for processing a re-
sponse. We also require that the xmt

variable be initialized as a randomly-
chosen 64-bit value, i.e., server.xmt =

randbits(64), when ntpd first boots.

def client_transmit_mode3_e32( precision ):

r = randbits(precision)
sleep for r*(2**(- precision)) seconds

# fuzz LSB of xmt
fuzz = randbits(32 - precision)
server.xmt = now ^ fuzz

# form the packet
pkt.T1 = server.org
pkt.T2 = server.rec
pkt.T3 = server.xmt
... # fill in other fields

if server.auth == True:
MAC(pkt) #append MAC

send(pkt)
return

Fig. 7. This function is run when the
polling algorithm signals that it is time
to query server. If server.auth is set,
then pkt is authenticated with a MAC.

differ from RFC5905 (Figure 4).First, when a packet passes TEST2, we clear xmt
by setting it to a random 64-bit value, rather than to zero. We also require that,
upon reboot, the client initializes its xmt values for each server to a random 64-bit
value. Second, TEST2 alone provides replay protection and we eliminate TEST1
and TEST3. (TEST3 is not needed because of how xmt is cleared. Eliminating
TEST3 is also consistent with the implementation in ntpd versions after v4.2.6.)

Clients use the algorithm in Figure 6 to send packets. Recall that the first
32 bits of the origin timestamp are seconds, and the last 32 bits are subseconds.
First, a client with a clock of precision ρ put a (32 − ρ)-bit random value in
the (32 − ρ) lowest order bits. Next, the client obtains the remaining ρ bits of
entropy by randomizing the packet’s sending time. When the polling algorithm
indicates that a query should be sent, the client sleeps for a random subsecond
period in [0, 2−ρ] seconds, and then constructs the mode 3 query packet. We
therefore obtain 32 bits of entropy in the expected origin timestamp, while still
preserving the semantics of NTP packets—the mode 4 packet’s origin timestamp
field (Figure 3) still contains T1 (where T1 is as defined in Figure 2).

Notice that this protocol only modifies the client, and is fully backwards-
compatible with today’s stateless NTP servers:

Stateless server algorithm. Today’s NTP servers are stateless, and so do not
keep org or xmt state variables for their clients. Instead, upon receipt of client’s
mode 3 query, a server immediately sends a mode 4 response packet with (1)
origin timestamp field equal to the transmit timestamp field on the query, (2)
receive timestamp field set to the time that the server received the query, and
(3) transmit timestamp field to the time the server sent its response.



def client_transmit_mode3_e64( precision ):

# store the origin timestamp locally
server.localxmt = now

# form the packet
server.xmt = randbits(64) #64-bit nonce
pkt.T1 = server.org
pkt.T2 = server.rec
pkt.T3 = server.xmt
... # fill in other fields

if server.auth == True:
MAC(pkt) #append MAC

send(pkt)
return

Fig. 8. Alternate client/server protocol
used by chronyd/openNTPd, that random-
izes all 64-bits of the origin timestamp. This
function is run when the polling algorithm
signals that it is time to query server.

Chronyd/openNTPd protocol. The
chronyd and openNTPd implemen-
tations also use a client/server pro-
tocol that differs from the one in
RFC5905. This protocol just sets
the expected origin timestamp to
be a random 64-bit nonce (see Fig-
ure 8). While this provides 64-bits
of randomness in the origin times-
tamp, it breaks the semantics of
the NTP packet timestamps, because
the server response packet no longer
contains T1 as defined in Figure 2.
(Instead, the client must addition-
ally retain T1 in local state variable
server.localxmt.) This means that
the chrony/openNTPd protocol can-
not be used for NTP’s symmetric
mode (mode 1/2), but our protocol (which preserves timestamp semantics) can
be used for symmetric mode. (See footnote 16.)

Security. Both our protocol (Figures 5,6) and the chronyd/openNTPd pro-
tocol (Figures 5,8) can be used to protect client/server mode from off-path at-
tacks (when NTP packets are unauthenticated) and on-path attacks (when NTP
packets are authenticated with a secure message authentication code (MAC)11.)
Security holds as long as (1) all randomization is done with a cryptographic
pseudorandom number generator (RNG), rather than the weak ntp random()

function currently used by ntpd [4], (2) the expected origin timestamp is not
leaked via control queries, and (3) NTP strictly imposes k = 4 or k = 8 as
the minimum number of consistent timing samples required before the client
considers updating its clock. The last requirement is needed because 32-bits of
randomness, alone, is not sufficient to thwart a determined attacker. However,
by requiring k consistent timing samples in a row, the attacker has to correctly
guess about 32k random bits (rather than just 32 random bits). Fortunately,
because of TEST11 (see Section 2), ntpd already requires k ≥ 4 most of the
time.

To obtain these results, we first develop a cryptographic model for secu-
rity against off- and on-path NTP attacks (Section B.1). We then use this
model prove security for off-path attacks (Section B.3) and on-path attacks (Sec-
tion B.4), both for our protocol, and for the chronyd/openNTPd protocol.

11 RFC5905 specifies MD5(key||message) for authenticating NTP packets, but this is
not a secure MAC [8]. We are currently in the processes of standardizing a new
secure MAC for NTP [?].



6.2 Security Model.

Our model, which is detailed in Appendix G, is inspired by prior cryptographic
work that designs synchronous protocols with guaranteed packet delivery [7,
19]. However, unlike these earlier models, we consciously omit modeling the
more powerful MiTM who can drop, modify, or delay packets (see Section 1 and
Figure ??). We assume instead that the network delivers all packets sent between
the ` honest parties P1,...,P`. We also assume that the network does not validate
the source IP in the packets it transits, so that the attacker can spoof packets.
Honest parties experience a delay % before their packets are delivered, but the
attacker can win every race condition.

The network orchestrates execution of several NTP exchanges (akin to the
‘environment’ in the universal composability framework [9]) through the use of a
transcript that stipulates (1) which parties engage in two-message client/server
exchanges with each other, (2) when they engage in each exchange, and (3) the
times tc and ts on the local clocks of the client and server respectively during
each exchange. We require security over all possible transcripts. This means, as
a corollary, that the attacker can choose the optimal transcript for her to attack,
including having control over the local clocks of all honest parties. An on-path
attacker can see every packet sent between honest parties, while an off-path
attacker can only see the packet’s IP header. (See Figure ??.) Clients update
their local state which includes (1) the set of servers they are willing to query,
(2) the state variables (e.g., xmtj , orgj , recj) for each server Pj , and (3) timing
samples from their k most recent exchanges with each server. Then:

Definition 61 (Soundness (Informal)). NTP is (k, ε)-sound on transcript ts if
for all resource-bounded attackers A and all parties Pi who do not query A as an
NTP server, Pi has k consecutive timing samples from one of its trusted servers
that have been modified by A with probability ε. The probability is over the
randomness of all parties.

We parameterize by k because NTP has mechanisms that prevent synchro-
nization until the host has a stream of consistent timing samples from a server
or peer most likely to represent accurate time. TEST11 enforces this, for example,
by requiring jitter ψ < 1.5 seconds. (See Section 2).

But how should we parameterize k? One idea is k = 8, because TEST11
depends on the jitter ψ which is computed over at most eight consecutive timing
samples (equation 3). k = 8 is also consistent with pseudocode in Appendix A.5.2
of RFC 5905; this pseudocode describes the algorithm used for clock updates and
includes the comment “select the best from the latest eight delay/offset samples”.
This may be too optimistic though, because we have observed that ntpd v4.2.6
requires only k = 4 before it updates its clock upon reboot. ntpd v4.2.8p6
requires only one sample upon reboot but this is a bug (CVE-2016-7433); see
Appendix D. Thus, we consider k ∈ {1, 4, 8}.
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Attack for 9450 polls (a "week")
Attack for 1350 polls (a "day")
Attack for  56 polls (an "hour")

k=4

k=1

k=8

k=8

k=4

k=1

Fig. 9. Success probability of off-path attacker per Theorem B1: (Top) for Figures 5,6
and (Bottom) for Figures 5,8. τ ∈ {56, 1350, 9540} is the number of polling intervals
attacked. We assume one server (s = 1) and latencies of at most % = 1 second.

6.3 Security analysis: Unauthenticated NTP & off-path attacks.

We now discuss the security guarantees for the protocols described in Appendix B.
We start by considering off-path attacks. At a high level, our protocol and the
chronyd/openNTPd protocols thwart off-path attackers due to the unpredictabil-
ity of the origin timestamp. Preventing off-path attacks is the best we can hope
for when NTP is unauthenticated, since on-path attackers (that can observe the
expected origin timestamp per Figure ??) can trivially spoof unauthenticated
server responses.

We assume that honest parties can send and receive packets at rate at most
R bits per second (bps). The network imposes latencies of ≤ % for packets sent by
any honest party. The polling interval is 2p, where RFC5905 constrains p ≤ 17.
Let offA denote the off-path attackers and let ts be any transcript that involves `
honest parties, τ the maximum number of exchanges involving any single client-
server pair, k is the minimum number of consistent timing samples needed for
a clock update and s the maximum number of trusted servers per client. Also
let Adv(RNG) denote the maximum advantage that any attacker with offA’s
resource constraints has of distinguishing a pseudorandom number generator
from a random oracle. Then both protocols satisfy the following:

Theorem 61. Suppose NTP is unauthenticated. Let offA, k, %, p, R, ts, `, s, τ
and Adv(RNG) be as described above. Then the protocol Figures 5 6 is (k, εoffA)-
sound on transcript ts with

εoffA = Adv(RNG) + (k + 1)sτ ·
[

2−32kR%

360

]k
(5)

12And the protocol in Figure 5 8 is (k, εoffA)-sound on transcript ts with

εoffA = Adv(RNG) + (k + 1)sτ ·
[

2p−64kR

720

]k
(6)



Figure 9 plots εoffA versus the bandwidth R at honest parties for k ∈ {1, 4, 8}
and different values of τ , where τ is the number of polling intervals for which
the attacker launches his attack. We do this both for our protocol in Figure 6
(Figure 9(top)) and the chronyd/openNTPd protocol in Figure 8 (Figure 9(bot-
tom)).Since hosts typically use a minimum poll value pmin = 6, the values
τ = (9450, 1350, 56) in Figure 10 correspond to attacking one (week, day, hour)
of 2pmin = 64 second polling intervals. We also assume one server s = 1, overes-
timate network latencies as % = 1 second, overestimate poll p in equation (6) as
p = 17. We assume a good RNG so Adv(RNG) is negligible.

k = 4 is sufficient with 32-bits of randomness. Recall that k is the minimum
number of consistent timing samples needed for a clock update. Figure 9(top)
indicates that k = 4 suffices for our protocol (that randomizes the 32-bit sub-
second granularity of the expected origin timestamp). Even if an off-path at-
tacker attacks for a week, his success probability remains less than 0.1% as long
as k = 4 and the target accepts packets at bandwidth R = 5 Gbps or less.
When the attacker attacks for an hour, the target’s bandwidth must be R ≈ 19
Gbps for a 0.1% success probability. To put this in context, endhosts typically
send < 10 NTP packets per minute, and even the large stratum 1 timeservers
operated by NIST process queries at an average rate of 21 Gbps [38]. Therefore,
it seems unlikely that an attacker could attack for hours or days without being
detected. If more security is needed, we could take k = 8, which requires a band-
width of R ≈ 40 Gbps for a one-hour attack with success probability of 0.1%.
Meanwhile, Figure 9(top) suggests that 32-bits of randomness do not suffice to
limit off-path attacks when k = 1. This should provide further motivation for
fixing the ntpd v4.2.8p6 bug that allows k = 1 upon reboot (see Appendix D).

k = 1 is sufficient with 64-bits of randomness. Meanwhile, Figure 10 (bottom)
indicates that k = 1 suffices for the chronyd/openNTPd protocol that random-
izes all 64 bits of the expected origin timestamp. Even if an off-path attacker
attacks for a week, his success rate remains less than 0.1% as long as the target’s
bandwidth is limited to R = 5 Gbps. Moreover, when k = 4, attacking for a
week at 100 Gbps only yields a success probability of 10−17.



10
6

10
7

10
8

10
9

10
10

10
11

10
−50

10
0

ε A
on

32−bit randomization

 

 

10
6

10
7

10
8

10
9

10
10

10
11

10
−50

10
0

Honest host bandwidth R (bps)

ε A
on

64−bit randomization

 

 

Attack for 9450 polls (a "week")
Attack for 1350 polls (a "day")
Attack for  56 polls (an "hour")

k=1

k=4
k=8

k=1

k=4
k=8

Fig. 10. Success probability of on-path attacker per Theorem B2: (Top) for Figures 5,6;
in this case we overestimate the number of legitimate client queries that have identical
32 high-order bits of origin timestamp as γ = 100. (Bottom) for Figures 5,8. τ ∈
{56, 1350, 9540} is the number of polling intervals attacked. We assume one server
(s = 1), latencies of at most % = 1 second, MAC of length 2n = 128 bits and maximum
poll value p = 17.

6.4 Security analysis: Authenticated NTP & on-path attacks.

Both our protocol (Figure 5,6) and the chronyd/openNTPd protocol (Figure 5,8)
thwart on-path attackers when NTP packets are authenticated with a MAC.

We let sending rate R, network latency %, poll p and Adv(RNG) be as before.
Let onA be an on-path attacker, and let ts be any transcript that involves `
honest parties, a maximum of s trusted servers per client and a maximum of τ
exchanges involving any single client-server pair that replicate any tc value (up
to the second) at most γ times. Let Adv(EU-CMA) be the maximum probability
that an attacker with onA’s resource constraints can forge a MAC of length 2n
under a chosen-message attack. Then both protocols satisfy the following:

Theorem 62. Suppose NTP is authenticated with a MAC of length 2n. Let
onA, k, %, p, R, ts, `, s, τ , γ, Adv(EU-CMA) and Adv(RNG) be as described
above. Then, both protocols are (k, εonA)-sound on transcript ts with

εonA ≤ Adv(RNG) + (k + 1)sτ(kQ)k, (7)

12 Our soundness definition (Appendix B.1) both allows the off-path attacker to choose
the transcript (and thus also the clients local time tc when it sends the packet) and
to see the IP header (only) of the sent packet. Thus, for our protocol (that provides
32-bits of randomness), the off-path attacker essentially knows T1 up to the second
(but not sub-second) granularity. This allows us to claim security even against an
off-path attacker that predicts the behavior of a target’s polling algorithm (but not
her cryptographic random number generators (RNGs)). Some off-path attackers may
realistically be able to do this. Consider an off-path attacker that sends a target a
‘packet-of-death’ that triggers a reboot of ntpd (e.g., CVE-2016-9311 or CVE-2016-
7434). Because the attacker knows when ntpd rebooted, it may be able to predict
the behavior of its polling algorithm.



where

Q = max

{
qE +

R% ·Adv(EU-CMA)

360 + n
,

2p−64R%

720 + 2n

}
. (8)

where qE = 2−32γ for the protocol in Figures 5 6 and qE = 2−64τ for the protocol
in Figures 5 8.

To argue about security, we assume a good MAC (like CMAC [?]) so that
Adv(EU-CMA) ≈ 2−128. We overestimate p = 17 in equation (8) and % = 1
second and plot εonA versus R for one server (s = 1) and different choices of τ
in Figure 10.

With 32-bits of randomness, k = 4 is sufficient. Suppose the 32-bits sub-second
granularity of the expected origin timestamp is randomized. When R is small,
Figure 10(top) indicates that the on-path attacker’s success rate is dominated
by the first term inside the maximum in equation (8). This corresponds to a
successful replay attack, because the client has sent multiple queries with the
same expected origin timestamp. Meanwhile, when R is large, second term in
the maximum in equation (8) dominates. This corresponds to a successful replay
attack, because the client ‘cleared’ xmt to a random 64-bit value that matches an
origin timestamp in an earlier query. Again, the attacker’s success probability
is disconcertingly high when k = 1. 13 On the other hand, excellent security
guarantees are obtained for k = 4, so it is safer to have k ≥ 4.

With 64-bits of randomness, k = 4 is sufficient. Suppose now that the entire
64-bits of the expected origin timestamp is randomized. Now the second term
in the maximum in equation (8) always dominates. This again corresponds to
a successful replay attack, because the client ‘cleared’ xmt to a random 64-bit
value that matches an origin timestamp in an earlier query.

7 Summary and Recommendations

We have identified several vulnerabilities in the NTP specifications both in
RFC5905 [28] and in its control query specification in (obsoleted) RFC1305 [26],
leading to several working off-path attacks on NTP’s most widely used client/server
mode (Section 3-4). Millions of IPs are vulnerable our these attacks (Section 5).
We present denial-of-service attacks on symmetric mode in Appendix C.

Many of our attacks are possible because RFC5905 recommends that same
codepath is used to handle packets from all of NTP’s different modes. Our
strongest attack, the zero-0rigin timestamp attack (CVE-2015-8139), follows be-
cause NTP’s client/server mode shares the same codepath as symmetric mode.
(In Section C.3, we explain why the initialization of symmetric mode requires

13 The poor results for k = 1 and 32-bits of randomization follow because our model
allows the 32 high-order bits of the expected origin timestamp to repeat in at most
γ different queries. It might be tempting to dismiss this by assuming γ = 0, but
basing security on this is not a good idea. For example, a system might always boot
up thinking that it is January 1, 1970.



that hosts accept NTP packets with origin timestamp set to zero; this leads to
the zero-0rigin timestamp attack on client/server mode, where the attacker con-
vinces a target client to accept a bogus packet because its origin timestamp is set
to zero.) Similarly, the fact that interleave mode and client/server mode shares
the same codepath gives rise to the interleave pivot attack (CVE-2016-1548).
Thus, we recommend that different codepaths be used for different modes. This
is feasible, since a packet’s mode is trivially determined by its mode field (Fig-
ure 3). The one exception is interleaved mode, so we suggest that interleaved
mode be assigned a distinguishing value in the NTP packet.

Our attacks also follow because the NTP specification does not properly re-
spect TEST2. We therefore propose a new backwards-compatible client/server
protocol that gives TEST2 the respect it deserves (Section B.2). We developed a
framework for evaluating the security of NTP’s client/server protocol and used
it to prove that our protocol prevents (1) off-path spoofing attacks on unau-
thenticated NTP and (2) on-path replay attacks when NTP is cryptographically
authenticated with a MAC. We have proved the similar results for a different
client/server protocol used by chronyd and openNTPD. (See Section B.3,B.4.)
We recommend that implementations adopt either protocol.

Our final recommendation is aimed at systems administrators. We suggest
that firewalls and ntpd clients block all incoming NTP control (mode 6,7) and
timing queries (mode 1,2 or 3) from unwanted IPs (Section 4), rather than just
the notorious monlist control query exploited in DDoS amplification attacks.
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A The Client/Server Protocol in ntpd

1 def receive( pkt ):

2 if pkt.T3 == 0:

3 flash |= test3 # fail test3

4 elif pkt.T3 == org

5 flash |= test1 # fail test1

6 return

7 elif broadcast == True:

8 ; # skip further tests

9 elif interleave == False:

10 if pkt.T1 == 0:

11 xmt = 0

12 elif (xmt == 0 or pkt.T1 != xmt):

13 flash |= test2 # fail test2

14 if (rec !=0 and pkt.T1 == rec):

15 interleave = True

16 return

17 else:

18 xmt = 0 # pass test2, clear xmt

19 elif (pkt.T1 == 0 or pkt.T2 == 0):

20 flash |= test3 # fail test3

21 elif (rec != 0 and rec != pkt.T1):

22 flash |= test2

23 return # fail interleave test2

24

25 if interleave == False:

26 rec = pk.receive_time()

27 org = pkt.T3

28

29 if flash == True:

30 return

31 else

32 process( pkt )

33 return

Fig. 11. Simplified implementation of the
datagram protocol from ntpd v4.2.8p6.
The packet will not be processed if the
flash variable is set. interleave variable
is set when the host is in interleaved mode.
Line 16 was introduced at ntpd v4.2.8p4
and 10-11 at ntpd v4.2.8p5.

We present several ntpd vulnerabil-
ities that stem from ambiguities in
RFC5905. Figure 7 is a (simplified) de-
scription14 of the code used for the
datagram protocol in ntpd v4.2.8p6
(the most recent release as of mid-
April 2016).

Our attacks assume that client/server
connections are unauthenticated, which
is the default in ntpd and is the most
common configuration in the wild
(Section 5.1). Appendix A.1 presents
our Zero-0rigin Timestamp vulnerabil-
ity (CVE-2015-8138) that allows an
off-path attacker to completely hi-
jack an unauthenticated association
between a client and its server, shift-
ing time on the client. Appendix A.2
presents our Interleaved Pivot vulnera-
bility (CVE-2016-1548), an extremely
low-rate off-path denial-of-service at-
tack. Importantly, both vulnerabilities
affect ntpd clients operating in de-
fault mode, are performed from off-
path, and require no special assump-
tions about the client’s configuration.
Both have been present in ntpd for
seven years, since the first release of
ntpd v4.2.6 in December 2009. In Sec-
tion 4 we combine the interleaved pivot
vulnerability with information-leaking
NTP control queries and obtain a new
off-path timeshifting attack.

A.1 Zero-0rigin timestamp
vulnerability.

The zero-0rigin timestamp vulnerabil-
ity allows an off-path attacker to com-
pletely hijack an unauthenticated client/server association and shift the client’s
time.

14 Note that the actual ntpd code swaps the names of the xmt and org state variables;
we have chosen the description that is consistent with the RFCs.



Injecting 0rigin packets from off-path. In this attack, the attacker sends a spoofed
mode 4 response packet to the target client. The spoofed packet has its origin
timestamp T1 set to zero, and its other timestamps T2, T3 set to bogus values
designed to convince the target to shift its time, and its source IP set to that of
the target’s server. (The off-path attacker learns the server’s IP via the reference
ID, per footnote 4.) Now, consider how the target processes the received spoofed
zero-0rigin timestamp packet:

(1) For ntpd v4.2.8p5 or v4.2.8p6, a spoofed zero-0rigin packet will always
be accepted, because it passes through lines 10-11, which skip TEST2 altogether.
While the addition of lines 10-11 may seem strange, we suspect that they were
added to handle the initialization of NTP’s symmetric mode, which shares the
same code path as client/server mode. Further discussion is in Appendix C.3.

(2) For ntpd v4.2.6 to v4.2.8p4, lines 10-11 of Figure 7 were absent. Thus,
the target will accept the spoofed packet when it does not have an outstanding
query to the server. Why? When the target does not have an outstanding query
to its server, its xmt variable is cleared to zero. Thus, when the spoofed zero-
0rigin packet is subjected to TEST2 (line 12), its origin timestamp (which is zero)
will be compared to the xmt variable (which is also zero) and be accepted. The
vulnerability arises because Figure 7 fails to apply TEST3, which rejects packets
with zero origin timestamp.15

Thus, an off-path attacker can send the target a quick burst of self-consistent
zero-0rigin packets with a bogus time, and cause the target to shift its time. The
spoofed zero-0rigin packets are always accepted in case (1), and usually accepted
in case (2) because the target is unlikely to have outstanding query to its server.
(In case (2), this follows because the server is queried so infrequently—NTP’s
polling intervals are at least 16 seconds long, but are often up to 15 minutes
long.) After accepting the burst of zero-0rigin packets, the target immediately
shifts its time; in fact, the target shifts its time more quickly than it would under
normal conditions, when legitimate responses arrive from the server at the (very
slow) NTP polling rate (Section 2).

Experiment. On April 29, 2016, we performed a zero-0rigin timestamp attack
on an ntpd v4.2.8p6 client. The target client uses the -g option on an operating
system that restarts ntpd when it quits.16 The target is configured to take time

15 TEST3 is applied in the fifth clause in Figure 7, but a client will not enter this clause
unless it is in interleaved mode.

16 NTP’s has a panic threshold that is 1000 seconds (16 mins). If the client gets a
time shift that exceeds the panic threshold, the client quits. Thus, at first glance,
it seems that that the worst an attacker can do is alter the client’s clock by 16
minutes. However, as noted in [22], this panic behavior can be exploited. ntpd has
a -g option that allows a client to ignore the panic threshold when it reboot; -g is
the default ntpd configuration on many OSes including CoreOS Alpha (1032.1.0),
Debian 8.2.0, Arch Linux 2016.05.01, etc. Moreover, many operating systems uses
process supervisors (e.g., systemd), which can be configured to automatically restart
any daemons that quit. (This behavior is the default in CoreOS and Arch Linux.
It is likely to become the default behavior in other systems as they migrate legacy
init scripts to systemd.) Thus, an an attacker can circumvent the protections of



from a single server. The target starts and completes 15 timing exchanges with
its server, averaging about one exchange per minute. We then attack, sending
the target a spoofed zero-0rigin timestamp packet every second for ten seconds;
these spoofed packets have T3 as October 22, 1985 and T2 as August 1, 2006.
(This choice of T2 sets δ ≈ ψ ≈ 0, so we pass TEST11; see Section 2.) The target
panics and restarts after the ninth spoofed packet. It then receives the tenth
spoofed packet before it queries its server, and per the reboot bug in Appendix D,
immediately shifts to 1985. (Our attack would still work even without this bug;
the target would shift to 1985 after we sent it a few more packets.)

Eventually, the attacker decides to check if the attack has been successful
by sending a mode 3 query to the target. By checking the transmit timestamp
of the mode 4 response, the attacker realizes that the target is in 1985. Then,
the attacker sets T2 = 0 on his spoofed packets to maintain the target client in
1985. (This is necessary because the target client’s T4 is now October 22, 1985,
so maintaining δ ≈ 0 so we pass TEST11 requires T2 = 0.) The attacker continues
pelting the target with spoofed packets at a higher rate (≈ 1 packet/second)
than that of the legitimate server response packets (≈ 1 packet/minute). The
legitimate packets look like outliers (due, in part, to TEST11, Section 2) and the
target sticks to the attacker’s bogus time.

A.2 Interleaved pivot vulnerability.

We next consider a vulnerability introduced by NTP’s interleaved mode, which
is designed to allow for more accurate time synchronization.

What is interleaved mode? Recall that NTP uses timestamps on the packets to
determine the offset θ between the client and the server. Because these times-
tamps must be written to the packet before the packet is sent out on the network,
there is a delay between the time when the packet is ‘formed’ and the time when
the packet is sent. This delay is supposed to introduce small errors in the offset.
Interleaved mode eliminates this delay by spreading the computation of the off-
set (equation (2)) over two exchanges, rather than just one. In interleaved mode,
hosts record timestamps for the moment that they actually transmit packet onto
the network, and send them in the packet transmitted in the subsequent polling
interval. Interleaved mode is not mentioned in RFC5905 [28], but is implemented
in ntpd. Mills [29] indicates that interleaved mode is intended for use on top of
the broadcast or symmetric modes only.

We will exploit the following issues: (1) Interleaved mode shares the same
code path as the client/server code (Figure 7). (2) Interleaved mode changes
the meanings of the values stored in the timestamp fields of an NTP packet.
Importantly, the origin timestamp field of the mode 4 server response now con-
tains T4 from the previous exchange (rather than T1 from the current exchange).

panic threshold by sending the client a timeshift that exceeds the panic threshold,
causing the NTP daemon to quit. The OS subsequently automatically reboots the
NTP daemon. Now, if the NTP daemon is running with the -g option, it will ignore
the panic threshold because it has just rebooted.



Thus, the usual TEST2 no longer works; instead, there is ‘interleaved TEST2’ com-
paring the packet’s origin timestamp to the rec variable, which stores T4 from
the previous exchange. (Line 21 in Figure 7.) (3) A host automatically switches
into interleaved mode when it detects that the host on the other side of the
association is in interleaved mode. (Line 15 in Figure 7.)

Interleaved mode as a low rate DoS vector. The implementation of interleaved
mode in ntpd introduces a low rate denial-of-service attack. The vulnerability
is introduced in line 14 of Figure 7. Namely, if a server response packet fails
the usual TEST2, the client subjects the packet to ‘interleaved TEST2’. If the
packet passes, the client sets the interleave variable and enters interleaved
mode. Importantly, a client cannot escape from interleaved mode—there is no
code path to clear the interleave variable.

Thus, an off-path attacker can inject a spoofed server response packet that
passes ‘interleaved TEST2’ because its origin timestamp equals T4 from the pre-
vious exchange. But how can the attacker learn T4? It turns out that whenever
an ntpd client updates its clock, it sets its reference time to be T4 from the
most recent exchange with the server to which it synchronized. This T4 is sent
out with every subsequent packet in the reference timestamp field.17 Thus, to
learn T4, the off-path attacker first sends the client a regular mode 3 query, and
learns the reference time from the client’s response. If the target updated its
clock in the previous exchange, the reference time will be T4 from the previous
exchange. The target will then react to the spoofed packet by switching into in-
terleaved mode (Line 14 of Figure 7). All subsequent legitimate server responses
are rejected because they fail ‘interleaved TEST2’.

The attack leads to a DoS for each one of the target’s servers. The attack
works by repeating the process of (1) sending a timing query to the target to
learn the IP of the server that the target synchronizes to, and its T4 timestamp,
and then (2) pivoting the target into interleaved mode for that server by sending
a spoofed interleaved pivot packet. Thus, whenever the target synchronizes to a
new server, the attacker will detect this (in step (1)) and DoS that new server as
well (in step (2)). (This process is similar to the DoS by Spoofed Kiss-o’-Death
attack from [22, Sec V.C].)

Timeshifting attacks. Section 4 shows how nptd’s control query interface can be
leveraged to turn the interleaved pivot vulnerability into a time-shifting attack
(rather than just a DoS attack). Section 5.4 finds 700K vulnerable IPs.

B Flaws in Symmetric Mode

Some of the vulnerabilities in NTP’s client/server mode (mode 3/4) follow be-
cause it shares the same code path as NTP’s symmetric mode (mode 1/2).
Therefore, we now consider the security of NTP’s symmetric mode. We identify
several flaws in its specification in RFC5905 (including several off-path denial-
of-service (DoS) attacks on unauthenticated symmetric mode, and several replay

17 Miroslav Lichvar noted that T4 leaks in the reference timestamp.



attacks (i.e., on-path DoS attacks) on authenticated symmetric mode), explain
how these flaws harm client/server mode, and conclude with recommendations.

B.1 Background: Symmetric mode.

In symmetric mode, two peers Alice and Bob can give (or take) time to (or
from) each other via either ephemeral symmetric passive (mode 2) or persistent
symmetric active (mode 1) packets. The symmetric active/passive association
is preconfigured and initiated at the ‘active’ peer (Alice), but not preconfigured
at the ‘passive’ peer (Bob). Upon arrival of a persistent mode 1 NTP packet
from Alice, Bob mobilizes a new ephemeral association if he does not have one
already. Because this is a potential security risk—an arbitrary attacker ask Bob
to become its symmetric peer and start offering time to Bob—ntpd requires
symmetric passive associations to be cryptographically authenticated by default.
Active/active symmetric associations are also possible, where both peers are
preconfigured with persistent associations. In this case, authentication is not
required by default.

Symmetric mode has two additional quirks. First, each peer uses its own
polling algorithm to decide when to respond to its peer. As such, Bob will not
immediately respond to Alice upon receipt of her packet. (This is in contrast to
the client/server mode, where servers immediately respond to queries.) Second,
both peers perform TEST2 (and other tests) on the same volley of packets, and
use the same packet timestamps to obtain timing samples.

B.2 Problems with bogus packets.

In both RFC5905 and ntpd, a host processes (mode 1 and 2) symmetric mode
packets it receives using the same code used to process (mode 4) server response
packets. Another look at this code in Appendix A of RFC5905 (Figure 4) shows
that the org state variable is updated even when a received packet fails TEST2.
ntpd prior to v4.2.8p4 does this as well (Lines 16 and 27 in Figure 7). But should
a bogus packet really be allowed to update the client’s state? We now explain
why there is no easy answer to this question.

What if bogus packets do not update org? We first suppose that the org state
variable is not updated upon receipt of a bogus packet (i.e., a packet that fails
TEST2). We show this leads to persistent failures in two cases:

1) Packet drop leads to persistent failure. In Figure 11 Alice’s second packet to
Bob is dropped. After Alice’s packet is dropped, Bob’s orgb state variable still
stores the (now stale) time T1. Bob uses T1 as the origin timestamp of the packet
he now sends to Alice. Alice drops this packet because its origin timestamp T1
does not match her xmta = T5 variable. Now this ‘bogus’ packet also does not
update Alice’s orga variable. Next, Alice sends a new packet to Bob at time T9,
using the (now stale) value orga = T3 as the new packet’s origin timestamp.
Now Bob drops the packet, because its origin timestamp T3 does not match
xmtb = T7. This continues indefinitely, so all future packets fail TEST2.



Fig. 12. Alice (left) exchanges symmetric mode packets with Bob (right). Each grey
packet depicts the following fields (per Figure 3) in order: origin timestamp, receive
timestamp, transmit timestamp. Alice’s state variables orga and xmta are shown on the
left. Bob’s state variables orgb and xmtb are shown on the right. (Alice initializes the
association by sending Bob an initialization packet, with origin and receive timestamps
set to zero, and transmit timestamp set to Alice’s sending time T1. Alice writes T1 to
xmta. Bob receives the packet and copies the transmit timestamp T1 from the packet
to his orgb. When Bob’s polling algorithm indicates he is ready to respond, he sends
Alice a packet with origin timestamp T1 copied from his orgb and transmit timestamp
T3 equal to his time when he sent the packet. Bob then writes T3 to his xmtb. Upon
receipt of Bob’s packet, Alice performs TEST2, updates her state variables, computes
offset, delay, etc., and decides whether to update her clock. When her polling algorithm
indicates that she is ready to respond, she constructs her next packet to Bob using her
state variables in the same way Bob did.) In this Figure, Alice’s second packet to Bob
is dropped. If bogus packets (failing TEST2) do not update org, as shown here, then
one dropped packet can cause persistent failure.



2) Unsynchronized poll leads to persistent failure. We saw a similar failure hap-
pen naturally during an authenticated active/active symmetric association be-
tween peers Alice and Bob both running ntpd v4.2.8p6. This version of ntdp does
not update org upon receipt of a bogus packet (because of the return added on
line 16 in Figure 7).

ALICE BOB 

orga = T0 

xmta = Ta Ta 

T0 
xmtb = T0 

Pass TEST2! 
(T0==xmtb) 

set orgb = Ta 
clear xmtb = 0 

Ta 

Fail TEST2! 
(Ta!=xmta) 

Fail TEST2! 
(T0!=xmtb) 

xmta = Tc 

T0 

Tc 

Fig. 13. Alice (left) exchanges symmetric
mode packets with Bob (right). Alice sends
two consecutive packets to Bob due to
unsynchronized polling intervals. The first
packet passes TEST2, but all subsequent
packets fail TEST2 on both peers, leading
to persistent failure.

In Figure 12 Alice was a symmet-
ric peer with Bob. Bob was a symmet-
ric peer with Alice, and also a client to
an external server. Alice had a clock
synchronization event that caused her
to set her polling interval to 64 sec-
onds. Meanwhile, Bob’s polling inter-
val was 128 seconds. Next, Alice sent
Bob a packet with the correct origin
timestamp T0 expected by Bob. Bob
accepted this packet and cleared xmtb
and updates his orgb = Ta. However,
Bob did not yet respond, since his
polling interval was longer than Al-
ice’s. In the meantime, Alice sent Bob
another packet with this same origin
timestamp T0. (Alice sends the same
T0 because she has not yet received a
new packet from Bob to cause her to
update her orga variable.) This time
Bob rejected the packet by TEST2 be-
cause he had cleared xmtb. When Bob
was ready to respond to Alice, he sent
a packet with origin timestamp Ta matching to that in the first packet sent by
Alice. (This is because Bob did not update his orgb variable from the second
rejected packet.) But Bob’s packet failed TEST2 at Alice, because she was ex-
pecting origin timestamp Tc corresponding to the second packet. We are back in
the persistent failure scenario of Figure 11.

What if bogus packets do update org? The reader might now conclude that
bogus packets should update org, as is required by Appendix A of RFC5905.
However, this leads to two denial-of-service attacks:

1) On-path denial-of-service for authenticated symmetric mode. Suppose that
org can be updated by bogus packets that pass cryptographic validation (of
the MAC) but fail TEST2. Consider an on-path attacker (who does not have the
ability to drop/modify/delay packets) who attacks an authenticated symmetric
association. (Note that symmetric active/passive associations are authenticated
by default.) We show that this on-path attacker can parlay his ability to replay
packets into the ability to (effectively) drop packets.

To do this, the on-path attacker replays any stale packet from Alice to Bob (1)
after Alice sends Bob a legitimate packet but (2) before Bob sends his response



ALICE BOB ATTACKER 

orga = T101 

set xmta = T103 

T101 

T102 

T103 

set orgb = T103 

T7 
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set orgb = T9 

set xmtb = T105 

T9 

T104 

T105 
Fail TEST2! 
 (T9!=xmta) 

Fig. 14. Alice (left) exchanges symmetric mode packets with Bob (center). Attacker
(right) is on-path for authenticated NTP and off-path for unauthenticated NTP. For
the on-path authenticated DoS attack, the attacker’s packet (timestamps T7, T8, T9)
is a replay of a stale packet sent from Alice to Bob. For the off-path unauthenticated
DoS attack, the attacker’s packet is spoofed.

as per Figure 13. If these polling intervals are not synchronized, the attacker has
plenty of time (i.e., seconds or minutes) to perform this replay. The stale replayed
packet overwrites Bob’s orgb variable to T9. Thus, Bob responds to Alice with
a packet whose origin timestamp is equal to the (stale) transmit timestamp T9
from the stale replayed packet. This stale origin timestamp T9 fails TEST2 at
Alice. The attacker can repeat this replay each time Alice sends Bob a packet,
thus preventing Alice from ever synchronizing to Bob.

Note also this attacker need not be ‘on-path’ forever. Indeed, once the at-
tacker gets his hands on a single stale packet sent from Alice to Bob, he can move
off-path, and keep launching this attack forever by replaying this stale packet.

2) Off-path denial-of-service for unauthenticated symmetric mode. Suppose
org can be updated by bogus packets that fail TEST2. We show how an off-
path attacker can launch an identical attack on unauthenticated symmetric
mode by spoofing (rather than replaying) a packet from Alice. This is a seri-
ous threat, since active/active symmetric associations are not cryptographically-
authenticated by default.

We performed this attack on two ntpd v4.2.8p2 hosts Alice and Bob. (We
use v4.2.8p2 because this implementation lets bogus packets update org.) Both
Alice and Bob are preconfigured to be each other’s symmetric active peer. Addi-
tionally, Bob is also preconfigured in client/server mode with four other servers.
Upon restarting ntpd on both hosts, Bob gets synchronized to one of his servers
in the very first exchange (per the reboot bug, see Appendix D). Alice sends
symmetric active mode packets to Bob and gets back symmetric active response
packets from Bob. After four exchanges with Bob, Alice synchronizes to Bob
and indicates this by putting Bob’s IP address in the reference ID of her fifth
packet. After two more exchanges, the off-path attack begins.

In symmetric mode, the time between a packet and its response is often up
to several seconds (62 seconds in this experiment), giving our off-path attacker
plenty of time to inject packets. So the attacker sends Bob a symmetric mode
packet spoofed to look like it came from Alice; this query is sent after Alice sends



her legitimate query to Bob, and before Bob sends his reply (per Figure 13). Bob
updates orgb = T9 from attacker’s bogus packet. Now Bob sends the response to
Alice with origin timestamp T9 corresponding to orgb. This packet fails TEST2
at Alice. The attacker continues to inject spoofed packets to Bob for the next
16 exchanges between Alice and Bob. Bob’s responses fail TEST2 at Alice and so
Alice never updates her clock.

Summary. Thus, we are between a rock and a hard place. Should bogus packets
update org or not? Our recommendations are in Appendix C.4.

B.3 Problems with initialization.

Consider what happens if Alice reboots and sends Bob a packet initializing their
association. Alice has no timing information, so this ‘initialization packet’ has
T1 = T2 = 0 (as in the first packet in Figure 11). If Bob did not reboot, he has
xmt != 0. Now, if Bob performed TEST2 on the initialization packet, it would be
dropped (because T1 != xmt). Also, it would be dropped if Bob performed TEST3
(because T1 = T2 = 0). Thus, if the protocol is to tolerate a reboot, initialization
packets cannot be subject to TEST2 or TEST3.

Denial-of-service via initialization packets. We use the fact that TEST2 cannot
be performed on initialization packets to perform DoS attacks identical to those
in Appendix C.2. We can perform on-path DoS attacks on authenticated sym-
metric associations by replaying initialization packets (instead of replaying stale
packets). Off-path DoS attacks on unauthenticated symmetric mode can also be
accomplished by spoofing initialization packets (rather than spoofing arbitrary
packets); notice that spoofing initialization packets is trivial because they do not
contain any unpredictable information. Importantly, both of these DoS attacks
exist regardless of whether bogus packets update org or not (Appendix C.2).

Impact on client/server mode. The initialization of symmetric mode requires
that TEST2 and TEST3 are not performed on a received packet with a zero-origin
timestamp. However, this is at odds with the security of client/server mode. Un-
fortunately, however, client/server and symmetric modes share the same code
path. ntpd deals with symmetric mode initialization using Lines 10-11 in Fig-
ure 7, which clears xmt and skips TEST2 if a received packet has a zero-origin
timestamp. These lines of code, however, create the zero-0rigin timestamp vul-
nerability in client/server mode (Appendix A.1). Meanwhile, RFC5905 Appendix
A deals with this by not performing TEST3 (Figure 4). However, because TEST3
is not performed, the xmt variable cannot be cleared, creating the query-replay
vulnerability (Section 3.2).

B.4 Symmetric Mode: Choose your poison!

Many problems in symmetric mode occur because both peers update their state
variables (org, xmt) and collect timing samples (θi, δi, ψi) from the same volley of
packets. Per the discussion in Appendix C.2, we cannot see how to fix this while
maintaining a single volley of packets between peers. One drastic suggestion is



to require two distinct volleys, where each peer is a server in one volley, and
is a client in the other (using one of the protocols described in Section B.2).
However, this is not backwards compatible, as both peers involved in association
must simultaneously make this change. Thus, an (unsatisfying) band-aid solution
could involve:

1. To prevent the persistent failure problem of Appendix C.2, allow packets
failing TEST2 to update org. However, this enables off-path DoS attacks.

2. To prevent off-path DoS attacks, we suggest mandatory cryptographic au-
thentication in symmetric mode (for both active/active and active/passive).

3. Even so, symmetric peers that use cryptographic authentication are still
vulnerable to DoS attacks, so we also suggest monitoring to detect excessive
number of bogus packets (Appendix C.2).

4. Monitoring should also be used to detect excessive number of initialization
packets, since these also lead to DoS (Appendix C.3).

5. Finally, symmetric peers should ensure that they run TEST2 against an origin
timestamp that contains 32 bits of randomness. This can be done with a
receive function as in Figure 5 and a sending function in Figure 6.18

C On-path query replay attack

Replays of the client’s query are a problem because they harm the accuracy of
time synchronization. We demonstrate this with an on-path query replay attack
on a target host in our lab. We were able to degrade the accuracy of the target’s
time synchronization from 4 × 10−5 seconds (on average) to 2.7 seconds (on
average). We show the client’s offset (i.e., the distance between the client’s clock
and the server’s clock per equation (2)) under normal and attack conditions in
Figure 16; the attacked client’s accuracy is 5 orders of magnitude worse.
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Fig. 15. Query replay attack on modified
version of ntpd v4.2.8p2. Time synchroniza-
tion on the attacked client degrades by 105.

Experiment. We modified the source
code for ntpd v4.2.8p2 to make it vul-
nerable to client query replays. Specif-
ically, we deleted the line of code that
cleared xmt when a response passed
TEST2. We then preconfigured our
modified ntpd client with one server.
Every time the client sent a query to
its server, our on-path attacker cap-
tured the query, and replayed it to the
server once per second, until the client
sent a new query. We repeated this for
every query sent by the client. The resulting offset in Figure 16 was computed per

18 Because both peers update their state variables and collect timing samples from the
same volley of packets, symmetric mode must preserve the semantics of the origin
timestamp. Thus, in symmetric mode we cannot replace the origin timestamp with
a random 64-bit nonce per Figure 8.



equation (2) with T1, T2, T3 taken from the NTP packet timestamps on server re-
sponses sent in response to real client queries (not replayed queries) and T4 taken
from the response packet’s arrival time at the client. We repeat this experiment
on the same client and server machine but without a replay attack.

Why does accuracy degrade? This follows because the replayed queries cause the
server to respond with a stale origin timestamp T1. Suppose that t seconds elapse
since the client’s most recent query. If the attacker now replays the client’s query,
the packet timestamps in the server’s response will be such that T2 − T1 ≈ t
seconds and T4 ≈ T3 seconds, resulting in a timing sample with offset θ ≈ t

2
seconds per equation (2). As t grows during the polling interval, the offset in the
timing sample grows as well. Thus, when the client uses these sampled offsets
to set its clock, it miscalculates the discrepancy between its local clock and that
of the server, resulting in the inaccuracies in Figure 16. Thus, this query replay
attack has similar effect to a delay attack [31].

D Reboot bug

Our experiments show that, upon reboot, an ntpd v4.2.8p6 client updates its
local clock from the very first response packet it receives from any of its precon-
figured servers. This is CVE-2016-7433. We now explain why this is a security
vulnerability.

What does the RFC say? When describing the algorithm used for clock up-
dates, the pseudocode in Appendix A.5.2 of RFC5905 has a comment that
states “select the best from the latest eight delay/offset samples”. Also, a client
configured with multiple servers is supposed to choose the ‘best’ server from
which it will take time. Section 5 says: “The selection algorithm uses Byzantine
fault detection principles to discard the presumably incorrect candidates called
“falsetickers” from the incident population, leaving only good candidates called
“truechimers”.” We argue that this bug disables Byzantine fault tolerance upon
reboot.

Experiment. We set up an ntpd v4.2.8p6 client preconfigured with five pool
servers. Upon reboot, the client sends server Alice a mode 3 query with reference
id ‘INITALIZATION’ (indicating that it is unsynchronized) and reference time
‘NONE’ (expected behavior upon reboot). Another such query is made to Bob.
Bob’s response arrives first, followed by the response from Alice. Next the client
sends a query to server Carol. The reference id field in this new query is Bob’s
IP, and the reference time is set to a time before the response was received from
Alice. We therefore see that the client updates his clock upon receipt of his first
response packet (from Bob), without considering the contributions of servers
Alice, Carol, Dave and Frank.

Implications. Thus, on reboot, Byzantine fault tolerance is disabled, and the
client is at risk of taking time from bad timekeepers. This issue becomes even
more serious when the panic threshold is disabled upon reboot when a client is
configured with -g option. (This is the default on many OSes, see footnote 10.)



Thus, if a bad timekeeper’s response arrives first, a -g client will immediately
accept huge, potentially bogus, update to its clock.

Worse yet, an off-path attacker can exploit this, along with other bugs, in
order to perform a low-rate time-shifting attack. The attacker first learns the
IP of one of the target’s preconfigured servers, using the trick per footnote 4.
Then, the off-path attacker sends some ‘packet-of-death’ that crashes ntpd.19 If
the OS reboots ntpd, then the target restarts with the panic threshold disabled.
The attacker now injects a single spoofed server response with (1) zero origin
timestamp (per Appendix A.1), (2) the legitimate server as the source IP, and (3)
some huge (incorrect) time offset. The client accepts the response even before it
queries its legitimate servers, and adjusts its clock to the attacker’s bogus time.
The low rate of this attack—it requires only three packets—also means it could
be sprayed across the Internet.

Recommendation. An NTP client should be compliant to the RFC specifications
even upon reboot, and adjust its clock only after multiple successful exchanges
with each of its timeservers.

Where is the bug introduced? The bug is introduced in ntpd v4.2.7p385 (released
August 18, 2013) and exists in all the following versions, upto and including
ntpd v4.2.8p7 (released April 26, 2016). The definition for Root distance (λ) in
the variable dtemp in file ntp proto.c was changed between ntpd v4.2.7p384
(Figure 15) and ntpd v4.2.7p385 (Figure 14). This change (Lines 2966-2967 in
Figure 14) introduced the bug. However, this change violates compliance with
the definition of Root distance in RFC5905 which defines it as in Figure 15.

Tested Versions. ntpd v4.2.7p384, ntpd v4.2.7p385, ntpd v4.2.8p6, ntpd v4.2.8p7,
ntpd v4.2.8p8. This part of code remains the same in all the versions beginning
ntpd v4.2.87p385.

Patch: Replacing code in Figure 14 with that in Figure 15 mitigates the bug.
We successfully patched ntpd v4.2.8p7 (lines 3447-3453). To confirm, we ran the
experiment with the patched version of ntpd v4.2.8p7 with the same setup as
above. The test client updates its local clock after obtaining four timing samples
from its servers.

2965 dtemp = (peer->delay + peer->rootdelay) / 2
2966 + LOGTOD(peer->precision)
2967 + LOGTOD(sys_precision)
2968 + clock_phi * (current_time - peer->update)
2969 + peer->rootdisp
2970 + peer->jitter;

Fig. 16. Lines 2965-2970 in ntpd v4.2.7p385

19 For instance, CVE-2016-7434 or CVE-2016-9311.



2933 dtemp = (peer->delay + peer->rootdelay) / 2 + peer->disp
2934 + peer->rootdisp + clock_phi * (current_time - peer->update)
2935 + peer->jitter;

Fig. 17. Lines 2933-2935 in ntpd v4.2.7p384

E Disclosure and Subsequent Developments

This research was done against ntpd v4.2.8p6, which was the latest version of
ntpd until April 25, 2016. Since that date, three new versions of ntpd have been
released: ntpd v4.2.8p7 (April 26, 2016), ntpd v4.2.8p8 (June 2, 2016), and ntpd
v4.1.8p9 (November 22, 2016). We summarize our disclosure timeline and the
impact of our research results on new releases of ntpd as follows:

Report. This report was first disclosed on June 7, 2016 and Section 5 was revised
on July 29, 2016. The report was last edited, for clarity and style, on February
20, 2017.

Zero-0rigin timestamp vulnerability (CVE-2015-8138, CVE-2016-7431, Appendix A.1).
This vulnerability was disclosed in October 2015 (prior to ntpd v4.2.8p4) but
unfortunately still existed in v4.2.8p8. (This is because Lines 10-11 of Figure 7
were still present in ntpd v4.2.8p8, likely in order to process initialization pack-
ets in symmetric mode, see Appendix C.3.) The vulnerability has been fixed in
ntpd v4.2.8p9.

Interleaved pivot vulnerability (CVE-2016-1548, Appendix A.2). Following dis-
closure of this vulnerability in November 201520, ntpd v4.2.8p7 was patched
so that clients do not automatically switch into interleaved mode by default.
Now, clients do this only if the option ‘xleave’ is set with a peer, server or
broadcast configuration command.

Leaky control queries (CVE-2015-8139, Section 4). This vulnerability was first
disclosed in October 2015, but ntpd v4.2.8p9 still accepts control queries from
arbitrary IPs by default. Users must configure the noquery option to change
this default. The leaky control queries we describe are also mentioned in a new
Internet draft [27]. We have worked with the authors of [27] to add a security
considerations to this document.

Origin timestamp randomization (Section B). Cryptographic randomization of
the origin timestamp has not yet been incorporated into ntpd.

Bogus packets in symmetric mode (Appendix C.2). ntpd v4.2.8p7, ntpd v4.2.8p8
and v4.2.8p9 allow bogus packets (that fail TEST2) to update the org state
variables.21 Thus, the ‘transient failure to persistent failure’ from Appendix C.2
is no longer present, but the two denial of service vulnerabilities in Appendix C.2
are present. This issue was disclosed on June 7, 2016.

20 Also the concurrent disclosure by Miroslav Lichvar.
21 This change was probably done in response to NTP Bug2952 reported by Michael

Tatarinov and made public on April 26, 2016 (concurrently with our work). The bug
report states only that “symmetric active/passive mode is broken” [43].



DoS via initialization packets in symmetric mode (Appendix C.3). This was
first disclosed on June 7, 2016. These flaws were still present in v4.2.8p9.

Reboot bug (CVE-2016-7433, Appendix D). We first disclosed this issue in Au-
gust 2015, and provided a full analysis on June 7, 2016. This bug was still present
in v4.2.8p8 and fixed in v4.2.8p9.

F Security analysis

In this appendix, we provide our formal security model and prove that the pro-
tocols in Appendix B.2 are secure against off-path attackers when NTP is unau-
thenticated and against on-path attackers when NTP is authenticated.

F.1 Model

Our model focuses on the description of an honest party called the network N
that delivers packets and orchestrates the execution of several NTP exchanges
akin to the environment in a UC protocol [9].

Parties. We suppose there are ` honest parties P1, . . . ,P`, where Pi denotes the
IP address of the ith party, who collectively perform many pairwise client/server
exchanges. A single party Pi may act in both the client and server roles in
different exchanges. There is also single attacker A = P0 who may also have
honest client/server exchanges, but has other goals and powers as well. Parties
send packets through a network N .

Packets. We model a packet as a tuple of the form (h,m, t), where h = (IP src, IP dst)
contains the source and destination IPs, t is a MAC tag optionally appended to
the packet, and m contains the remaining fields of the packet that are authenti-
cated by the MAC tag.

Packet delivery. The network N maintains a counter step to orchestrate the
flow of communication. Informally, one may think of step as the wall-clock time
from N ’s point of view. During each step of the step counter, each honest party
may receive, process, or transmit one packet.

We require that honest parties have sufficient time to process every packet
received; put another way, attacks that flood an honest party with packets in
order to deny service are out of scope. Formally, we model this property by (1)
restricting N to deliver at most one packet per step of the counter to each party,
and (2) incrementing the counter in integer multiples of L/R, where R denotes
an upper bound on the bandwidth (bps) of honest parties when ingesting NTP
packets of length L bits. Here, L = 720 bits for unauthenticated NTP packets
and L = 720 + 2n bits for NTP packets authenticated with a MAC of length 2n.

The network imposes a constant latency % on packet delivery. Specifically, if
N receives a packet from an honest party when the counter is step, N holds the
packet in a queue and assigns a value deliver = step + % to the packet. When
step == deliver, the packet is transmitted. We stress that the attacker A does
not have the power to modify, delay, or drop packets between honest parties.



Race conditions. Unlike the honest parties, attacker A may specify the deliver
value for all packets she sends. However, as per constraint (1) above, this value
must be distinct from the deliver values of all other packets in N ’s queue destined
for IP dst.

This power allows A to win all race conditions.22 As such, our model allows
attakcer A to send an honest party up to 2%RL packets in the duration of an
NTP exchange, since A can request the delivery of one packet for each step of
the counter, while the two messages in an NTP exchange are each subject to a
longer delay %.

Additionally, this power also encapsulates the real-world uncertainty in packet
delivery. So far, our model assumes that all packets encounter a constant delay.
In reality, we often have at most a rough upper-bound on network latency, and
we want for NTP’s security guarantee to hold for any distribution of packet
latency times that fit within this bound. Rather than formalizing a network la-
tency distribution within our model, we opt for the simpler approach of letting
attacker A “speed up” packet arrivals using its power to determine deliver for
its packets.

Transcripts. A transcript is a list of NTP client/server exchanges, formally
written as a set of tuples

(start, i, tc, j, ts)

each indicating that an exchange between client Pi with local time tc and server
Pj with local time ts starts at step start of the step counter. We stress that A =
P0 may legitimately engage in NTP exchanges in the transcript specification.

NetworkN enforces execution of the transcript by informing parties that they
should begin a client/server exchange. When N ’s counter is step == start for
tuple (start, i, tc, j, ts) in the transcript ts, N sends a ‘go message’ (client, i, tc)
to Pi, after which an honest party Pi immediately sets her local clock to tc,
runs the protocol in Figure 6 or Figure 8 resulting in a mode 3 query packet
((Pi,Pj),m, t) to Pj through N . After a delay of %, N sends a ‘go message’
(server, i, ts) to the Pj and also delivers the Pi’s query packet, and honest Pj
responds assuming that her local clock is set to time ts.

The transcript must be consistent with our “no flooding” rule that limits
each party to receiving 1 packet (plus perhaps a ‘go message’) per step. As a
consequence, two exchanges involving the same client cannot have the same start
counter. Additionally, a party cannot simultaneously be a server at counter start
and a client at counter start + %.

Interacting with the network. The network N starts by receiving ts and then
choosing and dispersing secret keys for each pair of parties {ski,j : i, j ∈ {0, 1, . . . , `}}.
The honest parties Pi receive these keys and initialize their xmtj state variables
for every other party j 6= i. The game then begins with N in control and the
counter step initialized to 0.

22 We remark that this capability is unrealistically powerful for an off-path attacker,
who cannot observe honest packet transmissions.



If N ’s counter step equals either (1) the start value of a tuple in the transcript
ts or (2) the deliver value of a packet in its queue, then N delivers the appropriate
packet or ‘go message’ and cedes control to the honest party. The honest party
starts computing when it receives the packet or ‘go message’.

Once an honest party finishes its computation and possibly transmits a new
packet ((IP src, IP dst),m, t) to N , the honest party cedes control back to N .
Next, the network N instantly reveals [(IP src, IP dst),L(m, t)] to the attacker,
where L is a leakage function. N then cedes control to A, who may perform
arbitrary computations and optionally transmit a packet of its own. When N
regains control, it increments step and repeats the process. This model implicitly
forbids A from dropping, modifying, or further delaying packets; instead, every
packet is delivered intact to IP dst after delay %.

Leakage. The leakage function L models the information available to an on-path
or off-path attacker. Specifically, L equals the identity function for an on-path
attacker (i.e., m and t are revealed perfectly) and the zero function for an off-
path attacker (i.e., m and t are perfectly hidden).

Spoofing. Network N never validates IP src in a transmitted packet. This allows
attacker A to send packets with a spoofed source IP IP src. Meanwhile, honest
parties always use their true IP src. Additionally, if A spoofs a query packet on
behalf of a client Pi, we observe that N lacks a timestamp t∗s to deliver to the
honest server Pj along with the query packet. We choose t∗s as follows: if A’s
spoofed packet occurs during an honest NTP transaction between parties i and
j, then N sends the same timestamp that the honest transaction uses; otherwise,
A may choose t∗s arbitrarily and inform N of its choice.

Soundness guarantee. Without an attacker, the results of honest parties’ NTP
exchanges are completely defined by the transcript. Formally, clients update their
local state which includes the set of servers they are willing to query, the state
variables (i.e., xmtj and orgj) used in exchanges with each server Pj , and the
resulting set of validated timing samples (including delay δ, offset θ, jitter ψ,
dispersion ε per the equations in Section 2). k-statei(ts, step) is the state of
party Pi during an execution of the transcript ts while N ’s counter is step, and
contains the results of the k most recent exchanges with each server.

A’s objective is to tamper with k consecutive timing samples that some
honest client Pi stores in its state corresponding to interactions with a single
server Pj .23 Hence, we let k-stateAi (ts, step) denote the state of party Pi during
a game where the attacker A is present. Of course, if Pi voluntarily chooses to
query A as its server, then A can significantly influence Pi’s state. The soundness
guarantee effectively states that A can do no more than this.

23 Note that the definition ‘NTP exchanges should not fail’ does not hold because
exchanges may fail even without an attacker. As one example, consider a client who
initiates two exchanges with the same server in rapid succession, i.e., the client’s
second query is sent before she receives a response to the first query. Then TEST2
will fail for the server’s first response.



However, there is one type of modification that we cannot hope to rule out.
Consider the effect of A “preplaying” honest packets: that is, submitting a packet
that is identical to one in N ’s queue but with an earlier arrival time. This action
is very likely to affect the state of honest parties, albeit in a bounded manner.
It may reduce delay measurements δ from their upper bound of 2%, but never
increase them. Similarly, each offset θ may increase or decrease by at most %.
Finally, jitter ψ may be altered slightly, likely by far less than the bound accepted
by TEST11. Due to their limited, unavoidable effects, we consciously opt to ignore
preplay attacks in the following soundness definition to simplify our discussion.

Definition F1 (Soundness). NTP is (k, ε)-sound on transcript ts if for all
resource-bounded attackers A who never preplay packets from honest parties,
and for all parties Pi who do not query A as an NTP server,

Pr[∃ step s.t. k-stateAi (ts, step) 6= k-statei(ts, step)] < ε.

This inequality must hold for all k components of the state. The probability is
taken over the randomness of all parties and N ’s choice of shared secret keys.

F.2 Soundness against off-path attackers.

We now prove Theorem B1 of Appendix B.3, which states that the protocols in
Appendix B.2 are sound against an off-path attacker offA. Theorem B1 follows
largely from the entropy E present in the origin timestamp. We do not require
NTP packets to be authenticated.

The theorem holds as long as randomness is produced from a cryptographically-
strong random number generator (RNG), and that, upon reboot, honest parties
initialize their xmtj variables for each server to a 64-bit number generated by
their RNG.

Let offA be any off-path attacker, and let ts be any transcript that involves
` honest parties, a maximum of τ exchanges involving any single client-server
pair, and a maximum of s trusted servers per client.

Let i∗ be any client who does not query offA as server. We say that the
protocol described in Figure 5, 6 randomizes the sub-second granularity of the
expected origin timestamp, while the protocol in Figure 5, 8 randomizes the
entire expected origin timestamp.

We use a sequence of games to prove that offA tampers the state of Pi∗ with
probability at most εoffA.

Game G0. This is the real interaction of offA with the honest parties P1, . . . ,Pl
and the network N . For ease of notation, we denote the probability that offA
breaks the soundness of game G0 by Pr0offA.

Game G1. This game is identical to G0, except that Pi∗ ’s pseudorandom number
generator is replaced with a truly random number generator. By definition, the
probability that anybody (in particular offA) notices this change is at most
Adv(RNG). Hence, Pr0offA − Pr1offA ≤ Adv(RNG).



Game G2. This game is identical to G1, except that we abort the execution if
offA sends a spoofed packet (i.e., one for which offA claims an IP src different
than her own) involving client Pi∗ and some server Pj such that the spoofed
packet’s origin timestamp matches Pi∗ ’s state variable xmtj . Importantly, offA
has no chance of winning game G2 (that is, Pr2offA = 0) because its spoofed
packets always fail TEST2. In order to demonstrate that any client Pi∗ distrusting
offA properly refuses all of the attacker’s spoofed packets while also accepting all
of the honest servers’ packets (i.e., computes the desired value k-statei(ts, step)
at all steps), it only remains to prove that the probabilities of winning G1 and
G2 are close.

There are two conditions that cause Game G2’s abort condition to trigger:

– Client Pi∗ is engaged in an NTP exchange with server Pj at the moment
the spoofed packet is received, and the spoofed packet’s origin timestamp
matches that of the transmit timestamp in honest client’s query.

– Client Pi∗ is not engaged in an NTP exchange with server Pj at the moment
the spoofed packet is received, and the spoofed packet’s origin timestamp
matches the client’s randomly-chosen xmtj value.24

In the first case, we know that the client’s choice of the origin timestamp expected
in the mode 4 response packet (i.e., pkt.T3 in Figure 6) ensures that xmtj has
E = 32 bits of entropy if the sub-second granularity of the timestamp comes from
Pi’s RNG or E = 64 bits of entropy if the entire origin timestamp is randomly
chosen (i.e., pkt.T3 in Figure 8). When targeting a particular server Pj , offA
can send R%

360 packets to each honest party during an NTP exchange between
the target client Pi∗ and the server Pj , each of which influences Pi∗ ’s state with
probability at most 2−E where E is the number of bits of entropy in the origin
timestamp. Hence, offA’s ability to impact Pi∗ ’s state during the NTP exchange
is at most Qd = 2−E R%

360 .

In the second case, offA can send T = 2pR/720 packets to each party in the
interval between two successive exchanges (where p corresponds to the polling
interval). Each packet succeeds in altering Pi∗ ’s state with probability Qb = 2−64

because xmtj has 64 bits of entropy.

Finally, Lemma G1 below states that offA can influence the state of k con-
secutive exchanges between client Pi∗ and server Pj with probability at most
(k + 1) · (kQ)k, where Q = max{Qd, TQb}. Additionally, there are τ possible
locations for this run of k successes to start, and s possible servers whose state
may be attacked. In total, we find that:

Pr1offA − Pr2offA ≤ (k + 1)sτ · (kQ)k

24 Recall that A may choose the server’s response time t∗s arbitrarily in this case, which
would have immense power if A could get the spoofed client to accept the response
packet.



In practice, we claim that Qd > TQb if entropy E = 32:

2−32 · R%
360

> 2−64 · 2p R

720

233% > 2p

With the maximum poll value p = 17 permitted by NTP [28], this reduces to
the claim that % > 2−16 ≈ 10−5 seconds, which is the time required for light
to travel about 3 miles. So, our inequality is reasonable unless the client and
server are physically co-located but still using a large polling value. Conversely,
we claim TQb > Qd if entropy E = 64: this claim reduces to the statement that
2p > 2%, which holds since RFC5905 constrains poll p ≥ 4 while network delays
δ do not exceed 16 seconds in practice.

All that remains is to prove the following combinatorial statement relating
the probabilities of success during and between exchanges.

Lemma F1. Let Qd denote the probability that an attacker A successfully im-
pacts the state of client Pi∗ during an NTP exchange, Qb denote the probability
that each packet by A in between NTP exchanges impacts Pi∗ ’s state, and let
T = 2p · R

720 denote the number of packets that A may send to each party in be-
tween NTP exchanges. Then, the probability that A impacts k state observations
in a row, beginning with a specified exchange, is at most (k + 1) · (kQ)k, where
Q = max{Qd, TQb}.

Proof. Amay compromise a total of k states either during or between exchanges.
Let c ∈ {0, 1, . . . , k} denote the number of consecutive NTP exchanges (with a
specified starting point) that A plans to compromise; clearly, she may do so
with probability Qcd. Additionally, A must also inject a total of k − c state
measurements over the course of c+ 1 intervals between these NTP exchanges.
Here, each packet is an independent Bernoulli random variable that successfully
impact’s the client’s state with success probability Qb. The total number of
between-exchange successes (i.e., the sum of the (c+1)T Bernoullis) is distributed
as a binomial random variable, hence the probability of k − c total successes is
at most

(
(c+1)T
k−c

)
·Qk−cb .

In total, A succeeds at compromising c NTP exchanges and successfully
injecting state k − c times in between these exchanges with probability at most(

(c+ 1)T

k − c

)
QcdQ

k−c
b ≤ (kQ)k,

where the inequality follows from the bound
(
x
y

)
≤ xy. The lemma then follows

by summing the probabilities of success for the k + 1 choices of c.

F.3 Soundness against on-path attackers.

We now prove Theorem B2 of Appendix B.4, which states the protocols in Sec-
tion B.2 are sound against an on-path attacker onA as long as NTP packets are



authenticated, randomness is produced from a cryptographically-strong RNG,
and honest parties initialize their xmtj variables for each server to a 64-bit num-
ber generated by their RNG upon reboot. For the protocol described in Fig-
ure 5, 6, which randomizes the 32-bit sub-second granularity of the expected
origin timestamp, we also require that the second-level granularity of the client’s
local time tc isn’t replicated too often within NTP queries.

We suppose NTP is authenticated with MAC of length 2n. Let onA be any
on-path attacker, and let ts be any transcript involving a maximum of s trusted
servers per client and a maximum of τ exchanges involving any single client-
server pair that replicate any tc value (up to the second) at most γ times. Let
i∗ be a client who does not query onA as server.

As before, we use a sequence of games to prove that onA tampers the state
of Pi∗ with probability at most εonA. We start by reusing games G0 and G1

from the proof of Theorem B1 above. It is straightforward to validate that the
reduction between those games continues to hold against an on-path attacker.
We now build a new sequence of games that (1) reflects onA’s ability to view
the contents of honest parties’ messages and (2) utilizes the MAC tag to limit
onA’s spoofing capacity.

Foreshadowing the end of the proof, we will use Lemma G1 to arrive at the
final bound. As such, our analysis simply describes the impact of each game
on the probability of success during an NTP exchange (Qd) and between NTP
exchanges (Qb).

Game G′2. This game is identical to G1, except that the network N is addition-
ally instructed to drop all the packets sent by onA that are simply ‘preplays’
of packets sent between honest parties; i.e., spoofed packets sent by onA that
are identical to existing packets in N ’s queue such that onA’s packet will be
delivered first.

Recall that our definition of soundness is agnostic to preplay attacks. Hence,
forbidding them has no effect on the adversary’s success probability, i.e., Pr1onA =

Pr2
′

onA.

Game G′3. This game is identical to G′2, except that we abort the execution if
the client Pi∗ sends two different queries to the same server with identical origin
timestamps. We stress that this constraint is independent of onA’s behavior.

Consider a single NTP exchange between client Pi∗ and server Pj where the
client’s clock begins at tc. Pi∗ ’s origin timestamp replicates a previous choice with
probability at most q32 = 2−32γ if only the sub-second granularity is randomized
or q64 = 2−64τ if the entire expected origin timestamp is randomized. If the
honest client repeats an origin timestamp, then onAmay trivially attack an NTP
exchange by replaying (an already-MAC’d) responses from previous exchanges.

Hence, the transformation from game G′2 to game G′3 affects Qd by at most
qE . We remark that onA only requires 1 packet to perform this attack, so the
resulting probability is independent of the bandwidth R.

Game G′4. This game is identical to G′3, except that the network N is instructed
to drop all of onA’s ‘replayed’ packets, i.e., packets sent by onA that are identical
to prior packets sent between honest parties and (1) have already been delivered



or (2) are in N ’s queue for delivery before onA’s packet. These replayed packets
will have valid MAC tags but stale origin timestamps.

Consider what happens when a response packet from server Pj is replayed to
target Pi∗ , or when a query packet from target Pi∗ is replayed to server Pj and
elicits Pj ’s legitimate response packet. If Pi∗ and Pj are currently engaged in an
NTP exchange, then Pi∗ ’s state variable xmtj is set to an origin timestamp that
is distinct from the one in the replay packet, so the replayed packet definitely
fails TEST2 by the constraint imposed by Game G′3. On the other hand, if Pi∗
and Pj are between exchanges, then xmtj is set to a randomized value with 64
bits of entropy. Hence, the transformation from game G′3 to game G′4 affects Qb
by at most 2−64.

Game G′5. This game is identical to G′4, except that the network N consciously
corrupts all MAC tags in offA’s spoofed packets that aren’t replays or preplays,
so they never verify. We note that onA has no chance of winning game G′5 (that

is, Pr5
′

onA = 0, and thus Qd = Qb = 0 for game G′5) because all of the packets she
sends are rejected by their recipients for having invalid tags. Hence, onA cannot
get any honest party to read its spoofed packets, much less change their state as
a result of them. Additionally, we claim that the Game G′4 → G′5 transformation
affects Qd by R%

360+n ·Adv(EU-CMA) and Qb by 2−64 ·Adv(EU-CMA).
To prove the claim, we replace the tags of all onA’s packets toward server Pj

or client Pi∗ that aren’t replays or preplays with an invalid tag ⊥. We do this
one packet at a time, starting with the final packet and working our way back
up to the first one. By a simple hybrid argument, we see that each change has
an impact with probability at most Adv(EU-CMA).

During an exchange, a single forged MAC permits the attacker to respond to
a query with timing data of her own choosing, and a simple union bound gives
the bound on Qd stated above. In between exchanges, a forged message must
also include the origin timestamp matching Pi∗ ’s randomly-chosen xmtj or else
the packet will fail TEST2, yielding the bound on Qb.

Putting it all together. Game G1 additively impacts εonA, and Game G′2 has no
effect. Games G′3, G′4, and G′5 all depend on k, and they detail the combined
vulnerability of NTP to an on-path attacker during and between exchanges:

Qd ≤ qE +
R%

360 + n
·Adv(EU-CMA)

Qb ≤ 2−64 · [1 + Adv(EU-CMA)] ≈ 2−64,

where the final approximation follows from the fact that 1+Adv(EU-CMA) ≈ 1
for any reasonable MAC. Lemma G1 then bounds the probability that onA
affects a particular client-server state k times in a row beginning from a specified
starting point, and (as before) multiplying this value by the sτ possible starting
points yields the bound in Theorem B2.
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