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Abstract

In a constrained pseudorandom function (PRF), the master secret key can be used to derive
constrained keys, where each constrained key k is constrained with respect to some Boolean
circuit C. A constrained key k can be used to evaluate the PRF on all inputs x for which
C(x) = 1. In almost all existing constrained PRF constructions, the constrained key k reveals
its constraint C.

In this paper we introduce the concept of private constrained PRFs, which are constrained
PRFs with the additional property that a constrained key does not reveal its constraint. Our
main notion of privacy captures the intuition that an adversary, given a constrained key k
for one of two circuits C0 and C1, is unable to tell which circuit is associated with the key k.
We show that constrained PRFs have natural applications to searchable symmetric encryption,
cryptographic watermarking, and much more.

To construct private constrained PRFs we first demonstrate that our strongest notions
of privacy and functionality can be achieved using indistinguishability obfuscation. Then, for
our main constructions, we build private constrained PRFs for bit-fixing constraints and for
puncturing constraints from concrete algebraic assumptions.

1 Introduction

A pseudorandom function (PRF) [GGM86] is a (keyed) function F : K ×X → Y with the property
that, for a randomly chosen key msk ∈ K, the outputs of F (msk, ·) look indistinguishable from the
outputs of a truly random function from X to Y. Constrained PRFs1, proposed independently
by Boneh and Waters [BW13], Boyle, Goldwasser, and Ivan [BGI14], and Kiayias, Papadopoulos,
Triandopoulos and Zacharias [KPTZ13], behave just like standard PRFs, except that the holder of
the (master) secret key msk ∈ K for the PRF is also able to produce a constrained key skC for a
Boolean circuit C. This constrained key skC can be used to evaluate the PRF F (msk, ·) on all inputs
x ∈ X where C(x) = 1, but skC reveals nothing about F (msk, x) when C(x) = 0. Constrained PRFs
have found many applications, for example, in broadcast encryption [BW13] and in the “punctured
programming” techniques of Sahai and Waters [SW14].

The Goldreich-Goldwasser-Micali (GGM) PRF [GGM86] is a puncturable PRF, that is, a
constrained PRF for the special class of puncturing constraints. In a puncturable PRF, each
constrained key k is associated with an input x0 ∈ X , and the constrained key enables the evaluation

1They have also been called functional PRFs [BGI14] and delegatable PRFs [KPTZ13]
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at all points x 6= x0 while revealing no information about F (msk, x0). It is not difficult to see that
the constrained key k completely reveals the point x0.

Boneh and Waters [BW13] show how to use multilinear maps [GGH13a, CLT13, GGH15, CLT15]
to construct constrained PRFs for more expressive classes of constraints, including bit-fixing
constraints as well as general circuit constraints (of a priori bounded depth). Subsequent works in
this area have focused on achieving adaptive notions of security [HKKW14, HKW15], developing
schemes with additional properties such as verifiability [CRV14], and constructing (single-key)
circuit-constrained PRFs from standard lattice-based assumptions [BV15].

Constraining privately. In this work, we initiate the study of private constrained PRFs, which
are a natural extension of constrained PRFs with the additional property that the constrained keys
should not reveal their constraints.

Our definition of privacy requires that an adversary, given a single constrained key sk for one
of two possible circuits C0 and C1, cannot tell which circuit was used as the constraint for sk. We
also generalize this definition to the setting where the adversary obtains multiple constrained keys.
Since the adversary can compare the outputs from multiple constrained keys, some information is
necessarily leaked about the underlying constraints. In this setting, our privacy property ensures
that the adversary learns the minimum possible. We formally define our privacy notion in Section 2.

For the special case of a puncturable PRF (where the adversary only has access to a single
constrained key), the privacy requirement is that for any two adversarially-chosen points x0, x1 ∈ X ,
the adversary cannot distinguish a secret key punctured at x0 from one punctured at x1. In
particular, this means that using a secret key punctured at the input x to evaluate the PRF on
x must return a value that is unpredictable to the adversary, as opposed to a fixed constant value
or ⊥ as is done in existing (non-private) constrained PRF constructions.

While privacy is a very simple requirement to impose on constrained PRFs, it is not clear how
to adapt existing schemes to satisfy this property, even just for puncturing. As a first attempt to
constructing private puncturable PRFs, let the PRF input space X be {0, 1}n, and consider the
GGM tree-based PRF [GGM86], where the outputs are computed as the leaf nodes of a binary tree
with the PRF secret key occupying the root node. To puncture the GGM PRF at an input x, the
puncturing algorithm reveals the secret keys of all internal nodes that are adjacent2 to the path
from the root to the leaf node corresponding with x. Certainly then, the GGM construction is not
private—given the punctured key, an adversary can easily reconstruct the path from the root to the
punctured leaf node, and hence, recover the input x.

However, the GGM PRF is a private constrained PRF for the class of length-` prefix constraints,
for an integer ` ≤ n. This class refers to the family of constraints described by a prefix s ∈ {0, 1}`,
where an input satisfies the constraint if its first ` bits match s. To constrain the GGM PRF on a
prefix s, the constrain algorithm reveals the secret key for the internal node associated with s in the
GGM tree. Then, to evaluate an input x using the constrained key, the evaluator discards the first
` bits of x and, beginning with the node associated with the constrained key, uses the remaining
bits of x to traverse down the GGM tree, outputting the value associated with the resulting leaf
node. Privacy follows from the fact that, without the original root of the GGM tree, the secret key
for the internal node for s appears to be distributed uniformly and independently of s.

While the GGM PRF provides an efficient solution to privately constraining PRFs under fixed-
length prefix constraints, this is insufficient for the applications we have in mind. Instead, we

2Here, an internal node is “adjacent” to a path if it does not lie on the path but its parent does.
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construct private constrained PRFs for more general classes of constraints: puncturing and general
circuit constraints.

1.1 Applications of Private Constrained PRFs

To illustrate the power of private constrained PRFs we first describe a few natural applications,
including private constrained MACs, watermarkable PRFs, and searchable encryption. In Section 6.2,
we also describe an application to symmetric deniable encryption.

Private constrained MACs. Constrained MACs are the secret-key variant of constrained
signatures, which were first introduced by Boyle et al. [BGI14]. In a constrained MAC, the holder of
the master secret key can issue constrained secret keys to users. Given a constrained key, a user can
only generate MACs for messages that conform to some pre-specified constraint. Here, we consider
private constrained MACs, where the constraint is also hidden from the user. Just as a secure PRF
implies a secure MAC, a private constrained PRF yields a private constrained MAC.

As a concrete example, suppose a company would like to enforce spending limits on its employees.
For business reasons, they do not want employees to be able to learn their precise spending limit,
which might reveal confidential information about their position and rank within the company. For
example, an employee Alice might only be allowed to create spending requests for at most $500. In
this case, Alice’s company could issue a constrained key to Alice that restricts her to only being
able to compute MACs for messages which contain her name and whose spending requests do not
exceed $500. If Alice attempts to create a MAC for a spending request that either exceeds $500 or
is not bound to her name, then the computed MAC will not pass verification. Moreover, privacy
of the constrained key ensures that Alice cannot tell if the MAC she constructed is valid or not
with respect to the master verification key. Hence, without interacting with the verifier, Alice learns
nothing about her exact spending limit. A key advantage in this scenario is that the verifier, who is
issued a constrained key3 from the offline key distributor, is able to verify Alice’s requests without
knowing or learning anything about her spending limits.

Watermarking PRFs. A watermarking scheme for programs [HMW07, BGI+12, CHV15, NW15,
CHN+16] consists of a marking algorithm, which takes as input a program and embeds a “mark”
in it, and a verification algorithm that takes an arbitrary program and determines whether it has
been marked. The requirement is that a marked program should preserve the functionality of the
original program on almost all inputs, but still be difficult for an adversary to remove the watermark
without destroying the functionality. As discussed in [HMW07, BGI+12, CHN+16], the marking
algorithm can be extended to embed a string into the program; correspondingly, the verification
algorithm would extract the embedded string when run on a watermarked program. We say such
schemes are message-embedding [CHN+16].

Hopper, Molnar, and Wagner [HMW07] first introduced the formal notion of a secretly-verifiable
watermarking scheme, which was then discussed and adapted to the setting of watermarking
cryptographic programs in Barak et al. [BGI+12]. In a secretly-verifiable scheme, only the holder of
a secret key can test if a program is watermarked. More recently, Cohen et al. [CHN+16] showed
how to construct publicly-verifiable watermarking for puncturable PRFs from indistinguishability

3The verifier’s constrained key is chosen so that the constraint is always satisfied. Note that this is not the same as
giving out the master verification key, which may allow the verifier to learn Alice’s spending limits.
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obfuscation. In the publicly-verifiable setting, anyone with the public parameters is able to test
whether a program is watermarked or not. Moreover, Cohen et al. noted that watermarkable PRFs
have applications in challenge-response authentication and traitor tracing. We survey more related
work in Section 6.1.

In our work, we show that starting with a private programmable PRF, we obtain a watermarkable
family of PRFs, where the associated watermarking scheme is secretly-verifiable and supports
message embedding. Intuitively, a programmable PRF is a puncturable PRF, except with the
property that the holder of the master secret key can additionally specify the value the constrained
key evaluates to at the punctured point. The privacy requirement stipulates that a programmed key
hides the point which was “reprogrammed.” We give the formal definitions of this concept and a
concrete construction based on indistinguishability obfuscation in Appendices C and E, respectively.

We now give an overview of our construction of a watermarkable PRF. For simplicity, we describe
our construction without message embedding. To mark a key msk for a private programmable
PRF F , the marking algorithm first evaluates F (msk, ·) at several (secret) points z1, . . . , zd ∈ X
to obtain values t1, . . . , td. The marking algorithm then derives a pseudorandom pair (x, y) from
the values t1, . . . , td, and outputs a programmed key for msk with the value at x replaced by y. To
test whether a circuit C is marked or not, the verification algorithm applies the same procedure as
the marking algorithm to obtain a test point (x′, y′). The test algorithm then outputs “marked” if
C(x′) = y′ and “unmarked” otherwise. Privacy is crucial here because if the adversary knew the
“reprogrammed” point x, it can trivially remove the watermark by producing a circuit that simply
changes the value at x. We show in Section 6.1 that this simple construction not only satisfies our
notion of secretly-verifiable watermarking, but can also be easily extended to support embedding
arbitrary messages as the watermark.

Although our current constructions of private programmable PRFs rely on indistinguishability
obfuscation, we stress that advances in constructing private programmable PRFs from weaker
assumptions or with improved efficiency would have implications in constructing watermarkable
PRFs as well.

Searchable encryption. In searchable symmetric encryption (SSE) [SWP00, Goh03, CGKO06,
CK10, BCLO09], a server holds a set of encrypted documents and a client wants to retrieve all
documents that match its query. For simplicity, suppose each document is tagged, and the client
wants to retrieve all documents with a particular tag. One of the simplest SSE approaches is to
compute and store an encrypted index on the server. Specifically, fix a PRF F and a key msk. For
each tag t, the encrypted index maps the token F (msk, t) onto an encrypted list of document indices
that match the tag. To search for a tag t, a user who holds the PRF key msk can issue a query
F (msk, t). The server returns the encrypted list of matching documents.

We consider a new notion called restrictable SSE, where multiple parties can search the database,
and the database owner wants to prevent some users from searching for certain tags. For example,
suppose a company hosts all of its documents in a central database and tags each document with the
name of its associated project. Moreover, suppose the company is developing a top-secret project
and wants to restrict access so that only employees working on the project are able to search for
documents related to the project. Using restrictable SSE, the company can issue restricted search
keys to all employees not working on the project. Security of the constrained PRF ensures that an
employee is unable to search for documents pertaining to the secret project. If we moreover assume
that the tags are drawn from a small (polynomially-sized) domain (e.g., the English dictionary),
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privacy ensures that an employee cannot tell if a search came back empty because she was not
allowed to search for a particular tag, or if there are actually no documents that match the tag.
Privacy also ensures that unauthorized employees cannot infer the name of the secret project from
their search keys.

By instantiating F with a private constrained PRF, we easily obtain a restrictable SSE system.
The construction is collusion resistant: if several employees who individually cannot search for the
tag t combine their search keys, they still cannot search for t. However, it does become possible for
them to test whether a certain tag is in the intersection of their restricted sets.

Online/offline 2-server private keyword search. In private keyword search [CGN98, FIPR05,
OI05], a server holds a database D = {w1, . . . , wn} of keywords, and a client wants to determine
whether a specific keyword is in the database without revealing the keyword to the server. This
setting differs from searchable encryption in that the server learns nothing about the client’s query,
whereas in the searchable encryption framework, information about the client’s query (such as
whether or not there are any matching results) could be leaked.

In the 2-server variant of this problem [GI14, BGI15], the database is shared among two servers.
The client can send queries to each server independently, and then combine the results of the queries
to obtain the answer. We assume moreover that the two servers are non-colluding. Recently, Boyle,
Gilboa and Ishai [GI14, BGI15] gave a secure solution for the the 2-server variant of the problem
that is more efficient than the solutions for 1-server private keyword search, and relies on weaker
cryptographic assumptions.

Using a private puncturable PRF, we can construct an online/offline version of the 2-server
keyword-search protocol. In an online/offline 2-server private keyword search protocol, there is an
“offline” server and an “online” server. The offline server can process the search query before the
client has decided its query (for instance, the offline computation can be preformed in a separate
setup phase). When the client issues a search query, it only communicates with the online server.
The client then combines the response from both servers to learn the result of the query. Our
protocol can be seen as a hybrid between the 1-server and 2-server protocols. In the 1-server setting,
there is no offline setup component in the protocol, while in the 2-server setting, we require both
servers to be online during the query phase.

To implement online/offline 2-server private keyword search using private puncturable PRFs,
during the offline (setup) phase, the client generates a master secret key msk for the private
puncturable PRF, and sends msk to the offline server. Let {0, 1}m be the range of the PRF. For
each word wi ∈ D, the offline server computes si = F (msk, wi), and returns s =

⊕n
i=1 si to the

client. Note that all computation in the offline phase is independent of the client’s search query. In
the online phase, after the client has determined its search query w∗, she sends a key skw∗ punctured
at w∗ to the online server. For each word wi ∈ D, the online server evaluates skw∗ on wi to obtain a
value ti. Finally, the online server returns the value t =

⊕n
i=1 ti. To learn the result of the keyword

search, the client tests whether z = s⊕ t is the all-zeros string 0m or not. If z = 0m, then the client
concludes w∗ /∈ D; otherwise, the client concludes that w∗ ∈ D. To see why, consider the case where
w∗ /∈ D, so w∗ 6= wi for all i. By correctness of the punctured PRF, si = ti for all i, in which case
z = 0m. Conversely, if w∗ = wi∗ for some i∗, then for all i 6= i∗, si = ti. Moreover, security of the
PRF implies that si∗ 6= ti∗ with high probability, and so z 6= 0m.

For the security parameter λ and a dictionary of n keywords, the size of the search tokens sent
to the online and offline servers is O(λ logN). The size of the responses from each server is O(λ)
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bits. For single-server private keyword search, Ostrovsky and Skeith [OI05] show how to construct a
private keyword search protocol, using homomorphic encryption and a private information retrieval
(PIR) protocol. Instantiating the PIR protocol with the scheme of Gentry and Ramzan [GR05]
results in a 1-server private keyword search with O(λ+ logN) communication, which is optimal.
We remark that although our current constructions do not result in a more efficient private keyword
search protocol, improved constructions of private puncturable PRFs would have direct implications
for the online/offline 2-server variant of private keyword search.

1.2 Constructing Private Constrained PRFs

We formally define our notion of privacy in Section 2. In this section, we briefly outline our
constructions of private constrained PRFs. As a warmup, we begin with a construction from
indistinguishability obfuscation, and then we give an overview of our two constructions from
concrete assumptions on multilinear maps for bit-fixing constraints and puncturing constraints.

A construction from indistinguishability obfuscation. Indistinguishability obfuscation (iO)
[BGI+12, GGH+13b, BGK+14, SW14, GLSW15, Zim15, AB15] is a powerful primitive that has
enabled a number of new constructions in cryptography [SW14, BZ14, GGH+13b]. Informally, an
indistinguishability obfuscator is a machine that takes as input a program and outputs a second
program with the identical functionality, but at the same time, hides some details on how the
original program works.

We first show how indistinguishability obfuscation can be used to construct a private constrained
PRF for general circuit constraints. Suppose F : K × X → Y is a PRF with master secret key
msk ∈ K. We use F in conjunction with iO to construct a private circuit-constrained PRF. We
describe the constrain algorithm. On input a circuit C, the constrain algorithm samples another
secret key sk ∈ K and outputs the obfuscation of the following program P :

“On input x, if C(x) = 1, output F (msk, x). Otherwise, output F (sk, x).”

In the above program, note that C, msk, and sk are all hard-coded into the program. Let P̂ be the
obfuscated program. Evaluation of the PRF using the constrained key corresponds to evaluating
the program P̂ (x). We see that on all inputs x where C(x) = 1, P̂ (x) = F (msk, x), so correctness is
immediate.

At a high level, the constrain algorithm generates a “fake” PRF key sk, and the constrained
key is just a program that either evaluates the “real” PRF or the fake PRF, depending on the
value of C(x). Since the adversary cannot distinguish between the outputs under the real PRF key
from those under the fake PRF key, the adversary cannot simply use the input-output behavior of
the obfuscated program to learn anything about C. Moreover, in Section 3, we show that if the
underlying PRF F is puncturable (not necessarily privately), the indistinguishability obfuscation of
the program does in fact hide the constraining circuit C. We note though that for general circuits,
our security reduction requires subexponential hardness of iO (and one-way functions). For restricted
classes of circuits, such as puncturing, however, we can obtain security from polynomially-hard iO
(and one-way functions).

Two constructions from multilinear maps. Although our construction from indistinguisha-
bility obfuscation is clean and simple, we treat it primarily as a proof-of-feasibility for private
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constrained PRFs. For our two main constructions, we build private constrained PRFs for more
restrictive classes of constraints based on concrete assumptions over multilinear maps.

Multilinear maps [BS03, GGH13a, CLT13, GGH15, CLT15] have been successfully applied
to many problems in cryptography, most notably in constructing indistinguishability obfusca-
tion [GGH+13b, BGK+14, AGIS14, GLSW15, Zim15, AB15]. Unfortunately, a number of recent
attacks [CHL+15, BWZ14, CGH+15, CLLT15, HJ16, CFL+16] have invalidated many of the basic
assumptions on multilinear maps. However, indistinguishability obfuscation is an example of a
setting where the adversary often does not have the necessary information to carry out these attacks,
and so some of the existing constructions are not known to be broken [GMM+16, FRS16]. In
our first construction from multilinear maps, we rely on the Multilinear Diffie-Hellman (MDH)
assumption [BS03, GGH13a] over prime-order multilinear maps. In our second construction, we
rely on the Subgroup Decision assumption [BGN05, GGH13a] as well as a generalization which we
call the Multilinear Diffie-Hellman Subgroup Decision (MDHSD) assumption over composite-order
multilinear maps.4 Our assumptions plausibly hold in existing multilinear map candidates, notably
the Garg et al. construction in the prime-order setting [GGH13a], and the Coron et al. construction
for the composite-order setting [CLT13]. We also note that starting from iO, it is also possible to
construct multilinear maps where the MDH assumption holds [AFH+16].

Using multilinear maps, we give two constructions of private constrained PRFs: one for the
class of bit-fixing constraints, and the other for puncturing. A bit-fixing constraint is described by a
pattern s ∈ {0, 1, ?}n. An input x ∈ {0, 1}n satisfies the constraint if it matches the pattern—that
is, for each coordinate i, either si = ? or si = xi. Our private bit-fixing PRF builds off of the
Boneh-Waters bit-fixing PRF [BW13] based on prime-order multilinear maps [BS03, GGH13a]. We
give the full construction in Section 4. In Section 5, we give the full construction of our privately
puncturable PRF from composite-order multilinear maps. Here, security and privacy are based on
the n-MDHSD and Subgroup Decision assumptions.

1.3 Related Work

Kiayias et al. [KPTZ13] introduced a notion of policy privacy for delegatable PRFs. In a delegatable
PRF, a proxy can evaluate the PRF on a subset of its domain by using a trapdoor derived from the
master secret key, where the trapdoor (constrained key) is constructed based on a policy predicate
(circuit constraint) which determines which values in the domain the proxy is able to compute the
PRF on. Here, policy privacy refers to the security property that the trapdoor does not reveal
the underlying policy predicate. The notion of policy privacy is conceptually similar to our notion
of privacy for constrained PRFs, except that the delegatable PRFs which they construct are for
policy predicates that describe a consecutive range of PRF inputs. Moreover, this restriction is
reflected in their definition of policy privacy, and hence, their notion of privacy is incomparable to
ours. However, we note that their delegatable PRF constructions are GGM-based and, thus, more
efficient than our PRF constructions.

As discussed earlier, Boyle et al. [BGI14] introduced the notion of constrained signatures (which
they call functional signatures). Here, in addition to the master signing key, there are secondary
signing keys for functions f which restrict the signer to only being able to construct valid signatures
for a range of messages determined by f . They also proposed the notion of function privacy, which
intuitively states that a signature constructed from a secondary signing key should not reveal the

4In Appendix B, we show this assumption holds in a generic multilinear map model.
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function associated with the signing key, nor the message that the function was applied to. However,
critically, this notion of privacy does not prevent the secondary signing key itself from revealing the
function it corresponds to; in this respect, their notion of function privacy is incomparable to our
notion of privacy for constrained PRFs.

In Section 6.1, we also survey the related work on cryptographic watermarking.

Private puncturing and distributed point functions. Recently, Boyle, Gilboa and Ishai
introduced the notion of a distributed point function (DPF) [GI14, BGI15], which are closely related
to private puncturable PRFs. In a DPF, there are two functions Gen and Eval. The function Gen
takes as input a pair x, y ∈ {0, 1}∗ and outputs two keys k0 and k1, and Eval is defined such that
Eval(k0, x

′)⊕Eval(k1, x
′) = 0|y| if x′ 6= x, and Eval(k0, x)⊕Eval(k1, x) = y. The security of the DPF

stipulates that each of the keys individually appear to be distributed independently of x and y. A
DPF is similar to a private puncturable PRF in that we can view k0 as the master secret key for a
PRF and k1 as a constrained key punctured at x. However, there are two significant differences:
first, the keys k0 and k1 need not be PRF keys (in the sense that Eval(k0, ·) and Eval(k1, ·) need not
be pseudorandom),5 and second, the keys k0 and k1 are generated together depending on x, whereas
in a puncturable PRF, the master secret key is generated independently of x. We note though that
a private puncturable PRF can be used directly to construct a DPF: we simply let k0 be the master
secret key of the PRF and k1 be a key punctured at x.

Subsequent work. Subsequent to this work, Boneh, Kim, and Montgomery [BKM17] showed
how to construct private puncturable PRFs from standard lattice assumptions. Concurrent with
their work, Canetti and Chen [CC17] showed how to construct a (single-key) private constrained
PRF for NC1 constraints, also from lattice assumptions. It remains an open problem to construct
private constrained PRFs for all circuits from a standard complexity assumption.

2 Private Constrained PRFs

In this section, we first review some notational conventions that we use throughout the work, along
with the definition of a pseudorandom function (PRF). Then, we define constrained PRFs and the
notion of privacy.

2.1 Conventions

For an integer n, we write [n] to denote the set {1, . . . , n}. For a finite set S, we write x
r←− S

to denote that x is drawn uniformly at random from S. For two finite sets S and T , we write
Funs(S, T ) to denote the set of all (well-defined) functions f : S → T . Hence, if f

r←− Funs(S, T ),
then for every distinct input a ∈ S, the value f(a) is distributed uniformly and independently in T .
We say a function f(λ) is negligible in the parameter λ, denoted as negl(λ), if f(λ) = o(1/λc) for
all c ∈ N. We say an algorithm is efficient if it runs in probabilistic polynomial time in the length of
its input. For two families of distributions D1 and D2, we write D1 ≡ D2 if the two distributions

are identical. We write D1
c
≈ D2 if the two distributions are computationally indistinguishable, that

is, no efficient algorithm can distinguish D1 from D2, except perhaps with negligible probability.

5Though this property is not explicitly required by a DPF, in existing constructions [GI14, BGI15], the functions
Eval(k0, ·) and Eval(k1, ·) are individually pseudorandom.
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2.2 Pseudorandom Functions

We first review the definition of a pseudorandom function (PRF) [GGM86]. Unless otherwise noted,
we will specialize the domain of our PRFs to {0, 1}n and the range to {0, 1}m.

Definition 2.1 (Pseudorandom Function [GGM86]). Fix the security parameter λ. A PRF
F : K × {0, 1}n → {0, 1}m with key space K, domain {0, 1}n, and range {0, 1}m is secure if for all
efficient algorithms A,∣∣∣Pr

[
k

r←− K : AF (k,·)(1λ) = 1
]
− Pr

[
f

r←− Funs({0, 1}n, {0, 1}m) : Af(·)(1λ) = 1
]∣∣∣ = negl(λ).

We also review the definition of a constrained PRF [BW13, KPTZ13, BGI14]. Consider a PRF
F : K × {0, 1}n → {0, 1}m, and let msk be the master secret key for F . In a constrained PRF,
the holder of msk can derive keys sk for some circuit C : {0, 1}n → {0, 1}, such that given sk, the
evaluator can compute the PRF on all inputs x ∈ {0, 1}n where C(x) = 1. More precisely, we have
the following definition.

Definition 2.2 (Constrained PRF [BW13, KPTZ13, BGI14]). A constrained PRF for a circuit
class C is a tuple of algorithms Π = (cPRF.Setup, cPRF.Constrain, cPRF.ConstrainEval, cPRF.Eval)
over the input space {0, 1}n and output space {0, 1}m, with the following properties:

• cPRF.Setup(1λ)→ msk. On input the security parameter λ, the setup algorithm cPRF.Setup
outputs the master secret key msk.

• cPRF.Constrain(msk, C)→ sk. On input the master secret key msk and a circuit C ∈ C, the
constrain algorithm cPRF.Constrain outputs a secret key sk for the circuit C.

• cPRF.ConstrainEval(sk, x) → y. On input a secret key sk, and an input x ∈ {0, 1}n, the
constrained evaluation algorithm cPRF.ConstrainEval outputs an element y ∈ {0, 1}m.

• cPRF.Eval(msk, x) → y. On input the master secret key msk and an input x ∈ {0, 1}n, the
evaluation algorithm cPRF.Eval outputs an element y ∈ {0, 1}m.

Correctness. A constrained PRF is correct for a circuit class C if msk ← cPRF.Setup(1λ), for
every circuit C ∈ C and input x ∈ {0, 1}n such that C(x) = 1, it is the case that

cPRF.ConstrainEval(cPRF.Constrain(msk, C), x) = cPRF.Eval(msk, x).

Security. We now describe two security properties for a constrained PRF. The first property
is the basic security notion for a constrained PRF and is adapted from the definitions of Boneh
and Waters [BW13]. This notion captures the property that given several constrained keys as well
as PRF evaluations at points of the adversary’s choosing, the output of the PRF on points the
adversary cannot compute itself looks random. The second property, which we call privacy, captures
the notion that a constrained key does not reveal the associated constraining function. Each security
definition is accompanied by an experiment between a challenger and an adversary, along with
admissibility restrictions on the power of the adversary.

9



Definition 2.3 (Experiment ExptcPRFb ). For the security parameter λ ∈ N, a family of circuits C,
and a bit b ∈ {0, 1}, we define the experiment ExptcPRFb between a challenger and an adversary A,
which can make oracle queries of the following types: constrain, evaluation, and challenge. First, the
challenger sets msk← cPRF.Setup(1λ) and samples a function f

r←− Funs({0, 1}n, {0, 1}m) uniformly
at random. For b ∈ {0, 1}, the challenger responds to each oracle query made by A in the following
manner.

• Constrain oracle. On input a circuit C ∈ C, the challenger returns a constrained key
sk← cPRF.Constrain(msk, C) to A.

• Evaluation oracle. On input x ∈ {0, 1}n, the challenger returns y ← cPRF.Eval(msk, x).

• Challenge oracle. On input x ∈ {0, 1}n, the challenger returns y ← cPRF.Eval(msk, x) to A
if b = 0, and y ← f(x) if b = 1.

Eventually, A outputs a bit b′ ∈ {0, 1}, which is also output by ExptcPRFb . Let Pr[ExptcPRFb (A) = 1]
denote the probability that ExptcPRFb outputs 1 with A.

At a high level, we say that a constrained PRF is secure if no efficient adversaries can distinguish
ExptcPRF0 from ExptcPRF1 . However, we must first restrict the set of allowable adversaries. For
example, an adversary that makes a constrain query for a circuit C ∈ C and a challenge query for
a point x ∈ {0, 1}n where C(x) = 1 can trivially distinguish the two experiments. Hence, we first
define an admissibility criterion that precludes such adversaries.

Definition 2.4 (Admissible Constraining). We say an adversary is admissible if the following
conditions hold:

• For each constrain query C ∈ C and each challenge query y ∈ {0, 1}n, C(y) = 0.

• For each evaluation query x ∈ {0, 1}n and each challenge query y ∈ {0, 1}n, x 6= y.

Definition 2.5 (Constrained Security). A constrained PRF Π is secure if for all efficient and
admissible adversaries A, the following quantity is negligible:

AdvcPRF[Π,A]
def
=
∣∣∣Pr[ExptcPRF0 (A) = 1]− Pr[ExptcPRF1 (A) = 1]

∣∣∣ .
Remark 2.6 (Multiple Challenge Queries). In our constructions of constrained PRFs, it will be
convenient to restrict the adversary’s power and assume that the adversary makes at most one
challenge query. As was noted by Boneh and Waters [BW13], a standard hybrid argument shows
that any constrained PRF secure against adversaries that make a single challenge oracle query is
also secure against adversaries that make Q challenge oracle queries while only incurring a 1/Q loss
in advantage. Thus, this restricted definition is equivalent to Definition 2.5.

Remark 2.7 (Adaptive Security). We say that a constrained PRF Π is selectively secure if for all
efficient adversaries A, the same quantity AdvcPRF[Π,A] is negligible, but in the security game, the
adversary first commits to its challenge query x ∈ {0, 1}n at the start of the experiment. If we do
not require the adversary to first commit to its challenge query, then we say that the scheme is
adaptively (or fully) secure. A selectively-secure scheme can be shown to be fully secure using a
standard technique called complexity leveraging [BB04] (at the expense of a super-polynomial loss
in the security reduction).

10



Privacy. Next, we give an indistinguishability-based definition for privacy. In the privacy game,
the adversary is allowed to submit two circuits C0, C1 to the challenger. On each such query, it
receives a PRF key constrained to Cb for some fixed b ∈ {0, 1}. The adversary can also query the
PRF at points of its choosing, and its goal is to guess the bit b. We now give the formal definitions.

Definition 2.8 (Experiment Exptcprivb ). For the security parameter λ ∈ N, a family of circuits C, and

a bit b ∈ {0, 1}, we define the experiment Exptcprivb between a challenger and an adversary A, which
can make evaluation and challenge queries. First, the challenger obtains msk ← cPRF.Setup(1λ).
For b ∈ {0, 1}, the challenger responds to each oracle query type made by A in the following manner.

• Evaluation oracle. On input x ∈ {0, 1}n, the challenger returns y ← cPRF.Eval(msk, x).

• Challenge oracle. On input a pair of circuits C0, C1 ∈ C, the challenger returns sk ←
cPRF.Constrain(msk, Cb).

Eventually, A outputs a bit b′ ∈ {0, 1}, which is also output by ExptcPRFb . Let Pr[Exptcprivb (A) = 1]

denote the probability that Exptcprivb outputs 1.

Roughly speaking, we say that a constrained PRF is private if no efficient adversary can
distinguish Exptcpriv0 from Exptcpriv1 . As was the case with constraining security, when formulating
the exact definition, we must preclude adversaries that can trivially distinguish the two experiments.

Definition 2.9 (Admissible Privacy). Let C
(i)
0 , C

(i)
1 ∈ C be the pair of circuits submitted by the

adversary on the ith challenge oracle query, and let d be the total number of challenge oracle queries
made by the adversary. For a circuit C ∈ C, define S(C) ⊆ {0, 1}n where S(C) = {x ∈ {0, 1}n :
C(x) = 1}. Then, an adversary is admissible if:

1. For each evaluation oracle query with input x, and for each i ∈ [d], it is the case that

C
(i)
0 (x) = C

(i)
1 (x).

2. For every pair of distinct indices i, j ∈ [d],

S
(
C

(i)
0

)
∩ S
(
C

(j)
0

)
= S

(
C

(i)
1

)
∩ S
(
C

(j)
1

)
. (2.1)

Definition 2.10 (d-Key Privacy). A constrained PRF Π is (adaptively) d-key private if for all
efficient and admissible adversaries A that make d challenge oracle queries, the following quantity is
negligible:

Advcpriv[Π,A]
def
=
∣∣∣Pr[Exptcpriv0 (A) = 1]− Pr[Exptcpriv1 (A) = 1]

∣∣∣ .
Furthermore, we say a constrained PRF is multi-key private if it is d-key private for all d ∈ N.

Remark 2.11 (Admissibility Requirement). The admissibility requirements in Definition 2.9 are
necessary to prevent an adversary from trivially distinguishing the privacy experiments against a
secure constrained PRF. To see why, suppose an adversary A makes two challenge queries (C0, C1)
and (C ′0, C

′
1) that violate (2.1). Let sk and sk′ be the keys A receives from the challenger in Exptcprivb .

Then there are two ways in which (2.1) can be violated:
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• First, suppose that for some x, C0(x) = 1 = C ′0(x), but C1(x) = 1 and C ′1(x) = 0. The
adversary computes z = cPRF.ConstrainEval(sk, x) and z′ = cPRF.ConstrainEval(sk′, x). When
b = 0, correctness implies that z = z′. When b = 1, security of the constrained PRF implies
that z 6= z′ with overwhelming probability, which lets the adversary distinguish the two privacy
experiments.

• Second, suppose that for some x, C0(x) = 1 = C ′0(x) and C1(x) = 0 = C ′1(x). The adversary
again uses sk and sk′ to evaluate the PRF at x, and obtain z and z′ as above. When b = 0,
correctness implies that z = z′. When b = 1, if z 6= z′ then the adversary can distinguish the
two privacy experiments. However, if z = z′ holds with high probability, then the adversary
can issue a third challenge query for (C1, C1) and obtain sk′′ in response. Let z′′ be the
value of the PRF at x using key sk′′. When b = 1, by assumption we know that with high
probability z′ = z′′. However, by security, when b = 0 we know that z′ 6= z′′, with overwhelming
probability, which lets the adversary distinguish the two privacy experiments.

The second case above suggests that we can modify the admissibility requirement in Eq. (2.1) to
instead require that for every pair of distinct indices i, j ∈ [d] and all x ∈ {0, 1}n we have

C
(i)
0 (x) = C

(j)
0 (x) if and only if C

(i)
1 (x) = C

(j)
1 (x). (2.2)

This criterion prevents the adversary from issuing the third query needed in the second case attack
above. Constructions that provide privacy under this admissibility requirement must ensure that if
C,C ′ ∈ C satisfy C(x) = C ′(x) = 0 then cPRF.ConstrainEval(skC , x) = cPRF.ConstrainEval(skC′ , x).
For this reason, we call this privacy property consistent privacy. None of our applications require it,
and we will not use the resulting privacy notion in this paper.

Remark 2.12 (Weaker Notions of Privacy). In some cases, we also consider a weaker notion of
privacy where the adversary is not given access to an evaluation oracle in experiment Exptcprivb .
While this can be a weaker notion of privacy (for instance, in the case of d-key privacy for bounded
d), in all of our candidate applications, a scheme that satisfies this weaker notion suffices.

Remark 2.13 (Difficulty with Deterministic Constraining Algorithm). In many existing construc-
tions of constrained PRFs [BW13], the constraining algorithm is deterministic. However, when the
constraining algorithm is deterministic, d-key privacy for d > 1 (as in Definition 2.10) is impossible
for any circuit family that contains circuits C1, C2 where S(C1) ( S(C2)—i.e., the set of points that
C1 accepts is a strict subset of the set of points that C2 accepts. To see this, consider the following
2-query adversary. The adversary issues two queries to the challenge oracle: first for (C1, C1) and
then for (C1, C2). This trivially satisfies the admissibility requirement for the privacy game (since
S(C1) ∩ S(C2) = S(C1)). When b = 0, the adversary obtains the same response from the challenge
oracle (since the constraining algorithm is deterministic). If b = 1, the two constrained keys the
adversary receives are different with overwhelming probability (since S(C2) 6= S(C1), there exists a
point x∗ where C2(x) = 1 while C1(x) = 0; constrained security then ensures that with overwhelming
probability, the evaluation at x∗ will be different, forcing the received keys to be different). Thus, for
any circuit class C that contains circuits C1, C2 where S(C1) ( S(C2), d-key for d > 1 and multi-key
privacy are only possible if the constraining algorithm is randomized. Indeed, the constraining
algorithm in our multi-key private circuit-constrained PRF (Section 3) is randomized.
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Puncturable PRFs. A puncturable PRF [SW14, KPTZ13, BW13, BGI14] is a special case of a
constrained PRF, where the constraining circuit describes a point function, that is, each constraining
circuit Cx∗ is associated with a point x∗ ∈ {0, 1}n, and Cx∗(x) = 1 if and only if x 6= x∗. More
concretely, a puncturable PRF is specified by a tuple of algorithms Π = (cPRF.Setup, cPRF.Puncture,
cPRF.ConstrainEval, cPRF.Eval), which is identical to the syntax of a constrained PRF with the
exception that the algorithm cPRF.Constrain is replaced with the algorithm cPRF.Puncture.

• cPRF.Puncture(msk, x)→ sk. On input the master secret key msk and an input x ∈ {0, 1}n,
the puncture algorithm cPRF.Puncture outputs a secret key sk.

The correctness and security definitions (for constrained security and privacy) are analogous to
those for private constrained PRFs.

Remark 2.14 (Deterministic Puncturing). The family of puncturing constraints does not satisfy
the condition in Remark 2.13, so it is possible to construct d-key or multi-key private puncturable
PRFs where the puncturing algorithm is deterministic. In the case of a deterministic puncturing
algorithm, it suffices to only consider adversaries that make at most one puncture query in the
security game (Definition 2.3). After all, any adversary that makes more than one puncture query
at distinct points cannot make any admissible challenge queries, and thus, has an advantage of
0. Moreover, since the puncturing algorithm is deterministic, the adversary does not gain any
information by querying the puncture oracle on the same punctured point multiple times. This
restriction does not apply when the puncturing algorithm is randomized since the adversary can
request multiple keys punctured at the same point.

A similar relaxation can be considered for the privacy game (Definition 2.8) in the case of
deterministic puncturing. In this case, it suffices to just consider adversaries that make at most 2
challenge queries. First, if the adversary makes a puncturing challenge query of the form (x, x) for
any point x ∈ {0, 1}n, then all of the (admissible) queries the adversary can make to the challenge
oracle must be of this form (i.e., the same point is punctured in both the b = 0 case as well as the
b = 1 case). Then, the view of the adversary in this case is distributed independently of b, and thus,
the adversary cannot obtain a non-zero advantage. Instead, suppose an adversary issues a challenge
query (x, y) for some x 6= y. Then, the only other admissible query the adversary can issue in the
puncturing game is (y, x). Thus, when the puncturing algorithm is deterministic, it suffices to only
reason about 2-key adversaries for the privacy game.

3 Private Circuit Constrained PRFs from Obfuscation

In this section, we show how multi-key private circuit-constrained PRFs follow straightforwardly
from indistinguishability obfuscation and puncturable PRFs (implied by one-way functions [GGM86,
BW13, KPTZ13, BGI14]). First, we review the notion of indistinguishability obfuscation introduced
by Barak et al. [BGI+12].

Definition 3.1 (Indistinguishability Obfuscation (iO) [BGI+12, GGH+13b]). An indistinguishabil-
ity obfuscator iO for a circuit class {Cλ} is a uniform and efficient algorithm satisfying the following
requirements:

• Correctness. For all security parameters λ ∈ N, all circuits C ∈ Cλ, and all inputs x, we
have that

Pr[C ′ ← iO(C) : C ′(x) = C(x)] = 1.
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• Indistinguishability. For all security parameters λ, and any two circuits C0, C1 ∈ Cλ,
if C0(x) = C1(x) for all inputs x, then for all efficient adversaries A, we have that the
distinguishing advantage AdviO,A(λ) is negligible:

AdviO,A(λ) = |Pr[A(iO(C0)) = 1]− Pr[A(iO(C1)) = 1]| = negl(λ).

For general circuit constraints, our construction will require the stronger assumption that
the indistinguishability obfuscator and puncturable PRF be secure against subexponential-time
adversaries. However, for more restrictive circuit families, such as puncturing, our construction can
be shown to be secure assuming the more standard polynomial hardness of iO and the puncturable
PRF (Remark D.11). In addition, in Appendix E, we show how to adapt our private circuit-
constrained PRF to also obtain a private programmable PRF (formally defined in Appendix C)
from (polynomially-hard) iO and one-way functions.

Construction overview. Our starting point is the circuit-constrained PRF by Boneh and
Zhandry [BZ14, Construction 9.1]. In the Boneh-Zhandry construction, the master secret key msk
is a key for a puncturable PRF, and a constrained key for a circuit C : {0, 1}n → {0, 1} is an
obfuscation of the program that outputs cPRF.Eval(msk, x) if C(x) = 1 and ⊥ otherwise. Because
the program outputs ⊥ on inputs x where C(x) = 0, simply evaluating the PRF at different points x
reveals information about the underlying constraint. In our construction, we structure the program
so that on an input x where C(x) = 0, the program’s output is the output of a different PRF.
Intuitively, just by looking at the outputs of the program, it is difficult to distinguish between the
output of the real PRF and the output of the other PRF. In Theorem 3.3, we formalize this intuition
by showing that our construction provides multi-key privacy.

Construction. We now describe our construction of a multi-key private circuit-constrained PRF.
Let iO be an indistinguishability obfuscator, and let ΠF = (F.Setup,F.Puncture,F.ConstrainEval,
F.Eval) be any puncturable (but not necessarily private) PRF. Our multi-key private circuit-
constrained PRF ΠioPRF = (cPRF.Setup, cPRF.Constrain, cPRF.ConstrainEval, cPRF.Eval) is given as
follows:

• cPRF.Setup(1λ). The setup algorithm outputs msk← F.Setup(1λ).

• cPRF.Constrain(msk, C). First, the constrain algorithm computes msk′ ← F.Setup(1λ). Then, it
outputs an obfuscated program iO

(
P1

[
C,msk′,msk

])
, where P1

[
C,msk′,msk

]
is the following

program:6

6We pad the program P1 [C,msk′,msk] to the maximum size of any program that appears in the hybrid experiments
in the proofs of Theorem 3.2 and 3.3.
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Constants: a circuit C : {0, 1}n → {0, 1}, and master secret keys msk0, msk1 for the
puncturable PRF ΠF = (F.Setup,F.Puncture,F.ConstrainEval,F.Eval).

On input x ∈ {0, 1}n:

1. Let b = C(x). Output F.Eval(mskb, x).

Figure 1: The program P1 [C,msk0,msk1]

• cPRF.ConstrainEval(sk, x). The constrained evaluation algorithm outputs the evaluation of
the obfuscated program sk on x.

• cPRF.Eval(msk, x). The evaluation algorithm outputs F.Eval(msk, x).

Correctness. By definition, the program P1[C,msk′,msk] outputs F.Eval(msk, x) on all x ∈ {0, 1}n
where C(x) = 1. Correctness of ΠioPRF immediately follows from correctness of the indistinguisha-
bility obfuscator.

Security. We now state our security and privacy theorems, and give a proof overview of the latter.
We defer the formal proofs of both statements to Appendix D.

Theorem 3.2. Suppose iO is an indistinguishability obfuscator and ΠF is a selectively-secure
puncturable PRF. Then, ΠioPRF is selectively secure (Definition 2.5).

Theorem 3.3. Suppose iO is a indistinguishability obfuscator, and ΠF is a selectively-secure
puncturable PRF, both secure against subexponential adversaries. Then, ΠioPRF is multi-key private
(Definition 2.10).

Proof overview. In the (multi-key) privacy game, the adversary makes challenge queries of the
form (C0, C1), and the challenger replies with a constrained key for circuit Cb where b ∈ {0, 1} is
fixed in the experiment. The constrained key Cb is an obfuscated program that evaluates Cb on
the input x, and depending on Cb(x), outputs either the real PRF value at x, or that of a different
PRF at x. To show privacy, we show that the obfuscated program with C0 embedded inside is
computationally indistinguishable from that with C1 embedded inside. Our argument consists of a
sequence of hybrid arguments H0, . . . ,H2n+1, where in hybrid Hi, the obfuscated program uses C1(x)
to determine which PRF output to use for the first i inputs in the domain (that is, all x < i), and
C0(x) for the remaining inputs. The first and last hybrids are identical to the real experiment where
the challenger constrains to C0, and that where the challenger constrains to C1. The programs
given out in each adjacent pair of hybrids differ on a single point, so using puncturing security, we
can show that each adjacent pair of hybrids are also computationally indistinguishable. We give the
full proof in Appendix D.2.

We note that Theorem 3.3 only requires subexponentially-secure7 iO if the set of challenge

circuits {C(j)
0 }j∈[d] and {C(j)

1 }j∈[d] the adversary submits differs on a super-polynomial number

7Specifically, we require that for all efficient adversaries A, the distinguishing advantage AdviO,A(λ) defined in
Definition 3.1 satisfies 2n · AdviO,A(λ) = negl(λ).
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of points. In particular, this implies that ΠioPRF is a private puncturable PRF assuming only
polynomial hardness of iO and selective security of ΠF. For more details, see Remark D.11.

4 A Private Bit-Fixing PRF

In this section, we construct a constrained PRF for the class of bit-fixing circuits, a notion first
introduced in [BW13]. First, a bit-fixing string s is an element of {0, 1, ?}n. We say a bit-fixing
string s matches x ∈ {0, 1}n if for all i ∈ [n], either si = xi or si = ?. We now define the class of
bit-fixing circuits.

Definition 4.1 (Bit-Fixing Circuits [BW13]). For a circuit C : {0, 1}n → {0, 1}, a string s ∈
{0, 1, ?}n is bit-fixing for C if C(x) = 1 on precisely the inputs x ∈ {0, 1}n that s matches. The
class of bit-fixing circuits Cbf is the class of all circuits C : {0, 1}n → {0, 1} for which there exists a
bit-fixing string for C.

Our bit-fixing construction uses multilinear maps [BS03], which are a generalization of bilinear
maps [MOV93, Mil04, BF01]. While constructing ideal multilinear maps remains an open problem,
there have been several recent candidates of graded encodings schemes [GGH13a, CLT13, GGH15,
CLT15], which are often a suitable substitute for ideal multilinear maps. For ease of presentation,
we describe our constructions using the simpler abstraction of ideal multilinear maps. However, we
note that we can easily map our constructions to the language of graded encodings using the same
techniques as in [BW13, Appendix B]. We begin by defining multilinear maps over prime-order
groups. In Appendix A, we also recall the `-Multilinear Diffie-Hellman assumption [BS03, GGH13a]
over prime-order multilinear maps.

Definition 4.2 (Prime-Order Multilinear Map [BS03, GGH13a, CLT13, GGH15, CLT15]). We
define a prime-order multilinear map to consist of a setup algorithm MMGen along with a map
function e, defined as follows.

• MMGen(1λ, 1`). The setup algorithm MMGen takes as input the security parameter λ and a
positive integer `, and outputs a sequence of groups ~G = (G1, . . . ,G`) each of prime order p
(for a λ-bit prime p). The algorithm also outputs canonical generators gi ∈ Gi for each i ∈ [`],
and the group order p.

• e(ga11 , . . . , g
a`
1 ). The map function e : (G1)

` → G` takes as input ` elements from G1 and
outputs an element in G` such that, for all a1, . . . , a` ∈ Zp,

e(ga11 , . . . , g
a`
1 ) = ga1a2···a`` .

Construction overview. Our starting point is the bit-fixing PRF by Boneh and Waters [BW13].
The Boneh-Waters bit-fixing PRF uses a symmetric multilinear map. To provide context, we give a
brief description of the Boneh-Waters construction. Let {0, 1}n be the domain of the PRF, and
let ~G = (G1, . . . ,Gn+1) be a sequence of leveled multilinear groups of prime order p. For each
i ∈ [n + 1], let gi be a canonical generator of Gi; for notational convenience, we will often write
g = g1. In the Boneh-Waters construction, they define the multilinear map in terms of a collection
of bilinear maps ei,j : Gi ×Gj → Gi+j for each i, j ∈ [n] where i+ j ≤ n+ 1. The master secret key
in the Boneh-Waters PRF consists of exponents α, {di,0, di,1}i∈[n] ∈ Zp. For an input x ∈ {0, 1}n,
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the value of the PRF at x is g
α
∏

i∈[n] di,xi
n+1 . A constrained key for a pattern s ∈ {0, 1, ?}n consists of

a “pre-multiplied” element g
α
∏

i∈S di,si
1+|S| , where S ⊆ [n] is the subset of indices where si 6= ?, along

with components g
di,b
1 for i /∈ S and b ∈ {0, 1}. While this construction is selectively secure [BW13],

it does not satisfy our notion of privacy. By simply inspecting the constrained key and seeing which

elements g
di,b
1 are given out, an adversary can determine the indices si in the pattern s where si = ?.

A first attempt to make the Boneh-Waters construction private is to publish gα along with a
complete set of group elements {gd

∗
i,0 , gd

∗
i,1}i∈[n] where d∗i,b = di,b if si = ? or si = b, and otherwise,

set d∗i,b
r←− Zp. By construction, this only permits evaluation of the PRF at the points x that match

s. However, this does not yield a secure constrained PRF, since an adversary that sees more than
one constrained key can mix and match components from different keys, and learn the value of the
PRF at points it could not directly evaluate given any of the individual keys. To prevent mixing
and matching attacks in our construction, we rerandomize the elements in the constrained key. We
give our construction below.

Construction. For simplicity, we describe the algorithm cPRF.Constrain as taking as input the
master secret key msk and a bit-fixing string s ∈ {0, 1, ?}n rather than a circuit C ∈ C. We define
ΠbfPRF = (cPRF.Setup, cPRF.Constrain, cPRF.ConstrainEval, cPRF.Eval) as follows.

• cPRF.Setup(1λ). The setup algorithm runs MMGen(1λ, 1n+1) and outputs a sequence of groups
~G = (G1, . . . ,Gn+1) each of prime order p, along with generators gi ∈ Gi for all i ∈ [n+ 1].

As usual, we set g = g1. Next, for i ∈ [n], it samples (di,0, di,1)
r←− Z2

p, along with a random

α
r←− Zp. It outputs

msk =
(
g, gn+1, α, {di,0, di,1}i∈[n]

)
. (4.1)

• cPRF.Constrain(msk, s). Let msk be defined as in Equation (4.1) and s = s1s2 · · · sn. For i ∈ [n]

and b ∈ {0, 1}, the constrain algorithm samples n random elements β1 . . . , βn
r←− Zp uniformly

and independently, along with n random elements r1, . . . , rn
r←− Zp. Define β0 = (β1β2 · · ·βn)−1.

For each i ∈ [n], define

(Di,0, Di,1) =


(
gdi,0 , gri

)
, if si = 0(

gri , gdi,1
)
, if si = 1(

gdi,0 , gdi,1
)
, if si = ?

.

It outputs

sk =

(
(gα)β0 ,

{
(Di,0)

βi , (Di,1)
βi
}
i∈[n]

)
. (4.2)

• cPRF.ConstrainEval(sk, x). Write sk =
(
gσ, {gµi,0 , gµi,1}i∈[n]

)
, and let x = x1x2 · · ·xn. The

constrained evaluation algorithm computes and outputs y = e(gσ, gµ1,x1 , . . . , gµn,xn ).

• cPRF.Eval(msk, x). Let msk be defined as in Equation (4.1), and let x = x1x2 · · ·xn. The

evaluation algorithm outputs y = g
α

∏
i∈[n] di,xi

n+1 .
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Correctness and security. We now state the correctness and security theorems for ΠbfPRF, but
defer the formal proofs to Appendix F.

Theorem 4.3. The bit-fixing PRF ΠbfPRF is correct.

Theorem 4.4. Under the (n+ 1)-MDH assumption (Definition A.1), the bit-fixing PRF ΠbfPRF is
selectively secure.

Theorem 4.5. The bit-fixing PRF ΠbfPRF is (unconditionally) 1-key private in the model where the
adversary does not have access to an evaluation oracle.

5 A Private Puncturable PRF

Recall from Section 2 that a puncturable PRF is a special class of constrained PRFs where the
constraint can be described by a point function that is 1 everywhere except at a single point
s ∈ {0, 1}n. In this section, we give a construction of a private puncturable PRF using multilinear
maps over a composite-order ring. We give an adaptation of Definition 4.2 to the composite-order
setting. In Appendix A, we review the standard Subgroup Decision assumption [BGN05, GGH13a]
over composite-order groups, and a new assumption which we call the `-Multilinear Diffie-Hellman
Subgroup Decision (MDHSD) assumption. Then, in Appendix B, we show that the `-MDHSD
assumption holds in a generic model of composite-order multilinear maps, provided that factoring is
hard.

Definition 5.1 (Composite-Order Multilinear Map [BS03, CLT13, CLT15]). We define a composite-
order multilinear map to consist of a setup algorithm CMMGen along with a map function e, defined
as follows:

• CMMGen(1λ, 1`). The setup algorithm CMMGen takes as input the security parameter λ and
a positive integer `, and outputs a sequence of groups ~G = (G1, . . . ,G`) each of composite
order N = pq (where p, q are λ-bit primes). For each Gi, let Gp,i and Gq,i denote the order-p
and order-q subgroups of Gi, respectively. Let gp,i be a canonical generator of Gp,i, gq,i be

a canonical generator of Gq,i, and gi = gp,igq,i. In addition to ~G, the algorithm outputs the
generators gp,1, . . . , gp,`, gq,1, . . . , gq,`, and the primes p, q.

• e(ga11 , . . . , g
a`
1 ). The map function e : (G1)

` → G` takes as input ` elements from G1 and
outputs an element in G` such that, for all a1, . . . , a` ∈ ZN ,

e(ga11 , . . . , g
a`
1 ) = ga1a2···a`` .

Construction overview. Our construction builds on the Naor-Reingold PRF [NR04], and uses
composite-order multilinear maps of order N = pq (Definition 5.1). In our description, we use the
same notation for group generators as in Definition 5.1. The master secret key in our construction
is a collection of exponents {di,0, di,1}i∈[n] where each di,b for all i ∈ [n] and b ∈ {0, 1} is random

over ZN . The value of the PRF at a point x ∈ {0, 1}n is the element g

∏
i∈[n] di,xi

p,n ∈ Gp,n.
Suppose we want to puncture at a point s = s1 · · · sn ∈ {0, 1}n. Our constrained key consists

of a collection of points {Di,0, Di,1}i∈[n]. For b 6= si, we set Di,b = g
di,b
p,1 ∈ Gp,1 to be an element in

the order-p subgroup, and for b = si, we set the element Di,b = g
di,b
p,1 g

di,b
q,1 ∈ G1 to be an element in
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the full group. To evaluate the PRF at a point x ∈ {0, 1}n using the constrained key, one applies
the multilinear map to the components Di,xi in the constrained key. By multilinearity and the fact
that the order-p and order-q subgroups are orthogonal, if any of the inputs to the multilinear map
lie in the Gp,1 subgroup, then the output will be an element of the Gp,n subgroup. Thus, as long
as there exists some index i ∈ [n] such that xi 6= si, the constrained key will evaluate to the real
PRF output. If however x = s, then the constrained key on x will evaluate to an element of the full
group Gn. We show in Theorem 5.3 that under the n-MDHSD assumption, this element hides the
true value of the PRF at x, which gives puncturing security. Moreover, since the constrained key is
just a collection of random elements in either Gp,1 or in G1, the scheme is 1-key private under the
Subgroup Decision assumption (Theorem 5.4).

Construction. For simplicity in our description, we describe the cPRF.Constrain algorithm as
taking as input the master secret key msk and a point s ∈ {0, 1} to puncture rather than a circuit
C. We define ΠpuncPRF = (cPRF.Setup, cPRF.Puncture, cPRF.ConstrainEval, cPRF.Eval) as follows.

• cPRF.Setup(1λ). The setup algorithm runs CMMGen(1λ, 1n) and outputs a sequence of groups
~G = (G1, . . . ,Gn), each of composite order N = pq, along with the factorization of N , and the
generators gp,i, gq,i ∈ Gi of the order-p and order-q subgroups of Gi, respectively for all i ∈ [n].
Let g1 = gp,1gq,1 be the canonical generator of G1. Finally, the setup algorithm samples 2n

random elements (d1,0, d1,1), . . . , (dn,0, dn,1)
r←− Z2

N , and outputs the following master secret
key msk:

msk =
(
p, q, g1, gp,1, gp,n, {di,0, di,1}i∈[n]

)
(5.1)

• cPRF.Puncture(msk, s ∈ {0, 1}n). Write s = s1s2 · · · sn. Let g1 = gp,1gq,1. For each i ∈ [n],
define

(Di,0, Di,1) =

{
(g
di,0
1 , g

di,1
p,1 ), if si = 0

(g
di,0
p,1 , g

di,1
1 ), if si = 1

.

The algorithm then outputs the constrained key sk = {Di,0, Di,1}i∈[n].

• cPRF.ConstrainEval(sk, x). Write sk as {Di,0, Di,1}i∈[n], and x = x1x2 · · ·xn. The constrained

evaluation algorithm outputs y = e(D1,x1 , . . . , Dn,xn).

• cPRF.Eval(msk, x). Let msk be defined as in Equation (5.1), and x = x1x2 · · ·xn. The

evaluation algorithm outputs y = g

∏
i∈[n] di,xi

p,n .

Correctness and security. We now state the correctness and security theorems, but defer the
formal analysis to Appendix G.

Theorem 5.2. The puncturable PRF ΠpuncPRF is correct.

Theorem 5.3. Under the n-MDHSD assumption (Definition A.3), the puncturable PRF ΠpuncPRF

is selectively secure.

Theorem 5.4. Under the Subgroup Decision assumption (Definition A.2), the puncturable PRF
ΠpuncPRF is 1-key private in the model where the adversary does not have access to an evaluation
oracle.
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6 Applications

In Section 1.1, we outlined several applications of private constrained PRFs. Several of our
applications (private constrained MACs, restrictable SSE, and online/offline 2-server private keyword
search) follow readily from our definitions of private constrained PRFs, and so we do not elaborate
further on them. In this section, we give a more formal treatment of using private constrained
PRFs to build secretly-verifiable message-embedding watermarking of PRFs and symmetric deniable
encryption.

6.1 Watermarking PRFs

In this section, we show how to construct watermarkable PRFs from private programmable PRFs.8

The watermarking scheme we give is secretly-verifiable and supports message embedding [CHN+16],
where the marking algorithm can embed a string into the program that can later be extracted by
the verification algorithm. We first introduce some definitions for unremovability and unforgeability.
The unremovability definitions are adapted from the corresponding definition in [CHN+16] while
the unforgeability definitions are adapted from that in [CHV15]. We then show how to construct a
watermarkable PRF from any private programmable PRF. Finally, we conclude with a survey of
related work.

Definition 6.1 (Watermarkable Family of PRFs [CHN+16, adapted]). For the security parameter
λ and a message space {0, 1}t, a secretly-verifiable message-embedding watermarking scheme for
a PRF with key-space K is a tuple of algorithms Π = (WM.Setup,WM.Mark,WM.Verify) with the
following properties.

• WM.Setup(1λ)→ msk. On input the security parameter λ, the setup algorithm outputs the
watermarking secret key msk.

• WM.Mark(msk,m) → (k,C). On input the watermarking secret key msk and a message
m ∈ {0, 1}t, the mark algorithm outputs a PRF key k ∈ K and a marked circuit C.

• WM.Verify(msk, C ′) → m. On input the master secret key msk and an arbitrary circuit C ′,
the verification algorithm outputs a string m ∈ {0, 1}t ∪ {⊥}.

Definition 6.2 (Circuit Similarity). Fix a circuit class C on n-bit inputs. For two circuits C,C ′ ∈ C
and for a non-decreasing function f : N → N, we write C ∼f C ′ to denote that the two circuits
agree on all but an 1/f(n) fraction of inputs. More formally, we define

C ∼f C ′ ⇐⇒ Pr
x

r←−{0,1}n
[C(x) 6= C ′(x)] ≤ 1/f(n).

We also write C 6∼f C ′ to denote that C and C ′ differ on at least a 1/f(n) fraction of inputs.

Definition 6.3 (Correctness ([CHN+16, adapted])). Fix the security parameter λ. A watermarking
scheme for a PRF with key-space K and domain {0, 1}n is correct if for all messages m ∈ {0, 1}t,
msk←WM.Setup(1λ), (k,C)←WM.Mark(msk,m), we have that

8Intuitively, a programmable PRF is the same as a puncturable PRF except that the holder of the master secret
key can also program the value at the punctured point. We give a formal definition of programmable PRFs in
Appendix C.

20



• The key k is uniformly distributed over the key-space K of the PRF.

• C(·) ∼f F (k, ·), where 1/f(n) = negl(λ).

• Pr[WM.Verify(msk, C) = m] with overwhelming probability.

Watermarking security. We define watermarking security in the context of an experiment
Exptwm between a challenger and an adversary A, which can make marking oracle and challenge
oracle queries.

Definition 6.4 (Experiment Exptwm). First, the challenger samples msk←WM.Setup(1λ), and the
challenger then responds to each oracle query made by A in the following manner.

• Marking oracle. On input a message m ∈ {0, 1}t, the challenger returns the pair (k,C)←
WM.Mark(msk,m) to A.

• Challenge oracle. On input a message m ∈ {0, 1}t, the challenger computes (k,C) ←
WM.Mark(msk,m) but only returns C to A.

Eventually, A outputs a circuit C ′, and the challenger computes and outputs WM.Verify(msk, C ′),
which is also the output of the experiment, denoted as Exptwm(A).

Definition 6.5 (Unremoving Admissibility). An adversary A is unremoving admissible if A only
queries the challenge oracle once, and C(·) ∼f C ′(·), where C is the output of the challenge oracle
query, C ′ is the output of A, and 1/f(n) = negl(λ).

Definition 6.6 (Unremovability). A watermarking scheme Π is unremovable if for all efficient and
unremoving admissible adversaries A, if m ∈ {0, 1}t is the message submitted by A to the challenge
oracle in Exptwm, the probability Pr[Exptwm(A) 6= m] is negligible.

Definition 6.7 (δ-Unforging Admissibility). We say an adversary A is δ-unforging admissible if A
does not make any challenge oracle queries, and for all i ∈ [Q], Ci(·) 6∼f C ′(·), where Q is the total
number of marking queries the adversary makes, Ci is the output of the marking oracle on the ith

query, C ′ is the circuit output by the adversary, and 1/f(n) ≥ δ for all n ∈ N.

Definition 6.8 (δ-Unforgeability). We say a watermarking scheme Π is δ-unforgeable if for all
efficient and δ-unforging admissible adversaries A, the probability Pr[Exptwm(A) 6= ⊥] is negligible.

Construction. Fix the security parameter λ, positive integers n, `, t ≥ λ, and a positive real
value δ < 1, such that d = λ/δ = poly(λ). Let F : K × ({0, 1}` × {0, 1}t)d → {0, 1}n × {0, 1}` ×
{0, 1}t be a PRF, and let Πpprf = (pPRF.Setup, pPRF.Program, pPRF.ProgramEval, pPRF.Eval) be a
programmable PRF with input space {0, 1}n and output space {0, 1}` × {0, 1}t. We construct a
watermarking scheme Πwm = (WM.Setup,WM.Mark,WM.Verify) for the PRF Πpprf as follows:

• WM.Setup(1λ). The setup algorithm chooses k
r←− K and (z1, . . . , zd)

r←− ({0, 1}n)d uniformly
at random and outputs msk = (k, z1, . . . , zd).

• WM.Mark(msk,m). The mark algorithm first parses msk = (k, z1, . . . , zd). It generates k′ ←
pPRF.Setup(1λ), and then computes the point (x, y, τ) = F (k, (pPRF.Eval(k′, z1), . . . , pPRF.Eval(k′, zd)))
and v = m ⊕ τ . Then, it computes skk ← pPRF.Program(k′, x, (y, v)) and outputs (k′, C),
where C(·) = pPRF.ProgramEval(skk, ·).

21



• WM.Verify(msk, C). The verification algorithm first parses msk = (k, z1, . . . , zd) and then
computes (x, y, τ) = F (k, (C(z1), . . . , C(zd))). It then sets (y′, v) = C(x) and outputs v ⊕ τ if
y = y′, and ⊥ otherwise.

We state our correctness and security theorems here, but defer their proofs to Appendices H.1 and
H.2.

Theorem 6.9. If F is a secure PRF and Πpprf is a programmable PRF, then the watermarking
scheme Πwm is correct.

Theorem 6.10. If F is a secure PRF and Πpprf is a private programmable PRF, then the water-
marking scheme Πwm is unremovable.

Theorem 6.11. If F is a secure PRF and Πpprf is a programmable PRF, then for δ = 1/poly(λ),
the watermarking scheme Πwm is δ-unforgeable.

Related work. Recently, Cohen et al. [CHN+16] showed how to construct publicly-verifiable
watermarking for puncturable PRFs from indistinguishability obfuscation. They pursue the notion
of approximate functionality-preserving for watermarking, where the watermarked program agrees
with the original program on most inputs. Previously, Barak et al. [BGI+12] showed that assuming
iO, perfectly functionality-preserving watermarking is impossible.

Cohen et al. [CHV15] gave a construction from iO which achieves publicly-verifiable watermarking
for relaxed notions of unremovability and unforgeability, namely where the adversary can only query
the marking oracle before receiving the challenge program in the unremovability game and moreover,
is only allowed to query the challenge oracle once (lunchtime unremovability). In addition, the
adversary must submit a forged program which differs on the same set of inputs with respect to all
programs submitted to the mark oracle in the unforgeability game.

In a concurrent work to [CHV15], Nishimaki and Wichs [NW15] considered a relaxed notion of
watermarking security for message-embedding schemes by considering “selective-message” security,
where the adversary must commit to the message to be embedded into the challenge program before
interacting with the mark oracle. This limitation is removed in their subsequent work [CHN+16].

Comparison to previous works. In previous constructions of watermarkable PRFs [NW15,
CHV15, CHN+16], the authors show how to watermark any family of puncturable PRFs. In
contrast, our construction gives a family of watermarkable PRFs from private programmable PRFs.
In our construction, we also consider a slightly weaker version of the mark oracle which takes
as input a message and outputs a random program that embeds the message. This is a weaker
notion of security than providing the adversary access to a marking oracle that take as input
an (adversarially-chosen) program and a message and outputs a watermarked program with the
embedded message.9 In addition, we consider secretly-verifiable watermarking constructions while
Cohen et al. and Nishimaki and Wichs focus on publically-verifiable constructions. However, despite
these limitations, we note that the family of watermarkable PRFs we construct are still sufficient to
instantiate the motivating applications for watermarkable PRFs by Cohen et al. [CHN+16]. In our
model, we are able to achieve full security for unremovability as well as strong unforgeability.

9The reason for this stems from the fact that we require PRF security in our security reductions, which cannot be
guaranteed when the PRF key is chosen adversarially (as opposed to randomly).
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6.2 Symmetric Deniable Encryption

The notion of deniable encryption was first introduced by Canetti, Dwork, Naor, and Ostro-
vsky [CDNO97]. Informally speaking, a deniable encryption scheme allows a sender and receiver,
after exchanging encrypted messages, to later on produce either fake randomness (in the public-key
setting), or a fake decryption key (in the symmetric-key setting) that opens a ciphertext to another
message of their choosing. Of course, the fake randomness or decryption key that is constructed by
this “deny” algorithm should look like legitimately-sampled randomness or an honestly-generated
decryption key.

Recently, Sahai and Waters [SW14] used indistinguishability obfuscation [BGI+12, GGH+13b,
BGK+14, SW14, GLSW15, Zim15] to give the first construction of public-key deniable encryption
that achieves the security notions put forth by Canetti et al.10 In all prior constructions of deniable
encryption, the adversary is able to distinguish real randomness from fake randomness with advantage
1/n, where n roughly corresponds to the length of a ciphertext in the scheme [CDNO97].

Surprisingly, the machinery of private puncturable PRFs provides a direct solution to a variant
of symmetric deniable encryption. In the symmetric setting, we assume that an adversary has
intercepted a collection of ciphertexts c1, . . . , cn and asks the sender to produce the secret key to
decrypt this collection of messages. The deniable encryption scheme that we construct enables
the sender to produce a fake secret key sk that looks indistinguishable from an honestly generated
encryption key, and yet, will only correctly decrypt all but one of the intercepted ciphertexts.11

In our particular construction, the sender (or receiver) has a trapdoor that can be used to deny
messages. Our framework is similar to the flexibly deniable framework where there are separate
key-generation and encryption algorithms [CDNO97, OPW11] for so-called “honest” encryption
and “dishonest” encryption. A second difference in our setting is that we only support denying to a
random message rather than an arbitrary message of the sender’s choosing. Thus, our scheme is
better-suited for scenarios where the messages being encrypted have high entropy (e.g., cryptographic
keys).

In this section, we give a formal definition of symmetric deniable encryption adapted from those
of Canetti et al. [CDNO97]. We then give a construction of our variant of symmetric deniable
encryption from private puncturable PRFs. Finally, we conclude with a brief survey of related work
in this area.

Definition 6.12 (Symmetric Deniable Encryption [CDNO97, adapted]). A symmetric deniable
encryption scheme is a tuple of algorithms ΠDE = (DE.Setup,DE.Encrypt,DE.Decrypt,DE.Deny)
defined over a key space K, a message space M and a ciphertext space C with the following
properties:

• DE.Setup(1λ)→ (dk, sk). On input the security parameter λ, the setup algorithm outputs a
secret key sk ∈ K and a denying key dk.

• DE.Encrypt(sk,m)→ ct. On input the secret key sk ∈ K and a message m ∈M, the encryption
algorithm outputs a ciphertext ct ∈ C.

10In fact, their construction achieves the stronger notion of publicly deniable encryption where the sender does not
have to remember the randomness it used to construct a particular ciphertext when producing fake randomness.

11It is important to define our notions with respect to multiple intercepted messages. Otherwise, the one-time-pad is
a trivial (one-time) symmetric deniable encryption scheme.
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• DE.Decrypt(sk, ct)→ m. On input a secret key sk ∈ K and a ciphertext ct ∈ C, the decryption
algorithm outputs a message m ∈M.

• DE.Deny(dk, ct) → sk′. On input a denying key dk and a ciphertext ct, the deny algorithm
outputs a key sk′ ∈ K.

The first property we require is that the tuple of algorithms (DE.Setup,DE.Encrypt,DE.Decrypt,
DE.Deny) should satisfy the usual correctness and semantic security requirements for symmetric
encryption schemes [GM82].

Definition 6.13 (Correctness). A symmetric deniable encryption scheme ΠDE = (DE.Setup,
DE.Encrypt,DE.Decrypt,DE.Deny) is correct if for all messagesm ∈M, with (sk, dk)← DE.Setup(1λ),
we have that

Pr [DE.Decrypt(sk,DE.Encrypt(sk,m)) 6= m] = negl(λ),

where the probability is taken oven the randomness of DE.Setup and DE.Encrypt.

Definition 6.14 (Semantic Security [GM82, adapted]). A symmetric deniable encryption scheme
ΠDE = (DE.Setup,DE.Encrypt,DE.Decrypt,DE.Deny) is semantically secure if for all efficient adver-
saries A and (sk, dk)← DE.Setup(1λ),∣∣∣Pr

[
AO0(sk,·,·)(1λ) = 1

]
− Pr

[
AO1(sk,·,·)(1λ)

]∣∣∣ = negl(λ),

where for b ∈ {0, 1}, Ob(sk, ·, ·) is an encryption oracle that takes as input two messages m0,m1 ∈M
and outputs the ciphertext DE.Encrypt(sk,mb).

Finally, we define the notion of deniability for a symmetric deniable encryption scheme. Our
notion is similar to that defined in Canetti et al. [CDNO97, Definition 4]. Let m1, . . . ,mn be a
collection of messages, and let ct1, . . . , ctn be encryptions of these messages under a symmetric key
sk. Suppose without loss of generality that the sender wants to deny to message mn. Then, the fake
secret key sk′ output by DE.Deny should be such that the joint distribution (sk′, ct1, . . . , ctn) of the
fake secret key and the real ciphertexts should look indistinguishable from the joint distribution
(sk, ct1, . . . , ctn−1, ct

∗) of the real secret key and the real ciphertexts with ctn substituted for an
encryption ct∗ of a random message. Our definition captures both the property that the fake secret
key looks indistinguishable from a legitimately-generated secret key and that the fake secret key
does not reveal any additional information about the denied message mn beyond what the adversary
could already infer. We now proceed with the formal security definition.

Definition 6.15 (Experiment ExptDE
b ). For the security parameter λ ∈ N, we define the experiment

ExptDE
b between a challenger and an adversary A as follows:

1. The challenger begins by running (sk, dk)← DE.Setup(1λ).

2. The adversary A chooses a tuple of messages (m1, . . . ,mq) ∈ Mq and an index i∗ ∈ [q]. It
gives (m1, . . . ,mq) and i∗ to the challenger.

3. For each i ∈ [q], the challenger computes cti ← DE.Encrypt(sk,mi). Then, depending on the
bit b, the challenger does the following:
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• If b = 0, the challenger first runs sk′ ← DE.Deny(dk, cti∗), and then sends
(
sk′, {cti}i∈[q]

)
to the adversary.

• If b = 1, the challenger chooses a random message m∗
r←− M, and computes ct∗ ←

DE.Encrypt(sk,m∗). It sends
(
sk, {cti}i 6=i∗ ∪ {ct∗}

)
to the adversary.

4. At the end of the experiment, the adversary outputs a bit b′ ∈ {0, 1}, which is the output of
the experiment. Let Pr[ExptDE

b (A) = 1] denote the probability that adversary A outputs 1 in
experiment ExptDE

b .

Definition 6.16. A symmetric deniable encryption scheme ΠDE = (DE.Setup,DE.Encrypt,DE.Decrypt,
DE.Deny) is deniable if for all efficient adversaries A,∣∣∣Pr[ExptDE

0 (A) = 1]− Pr[ExptDE
1 (A) = 1]

∣∣∣ = negl(λ).

Construction. We now describe our construction of a symmetric deniable encryption scheme
from a private puncturable PRF (such as the one from Section 5). Let Πcprf = (cPRF.Setup,
cPRF.Puncture, cPRF.ConstrainEval, cPRF.Eval) be a private puncturable PRF with key space K,
domain {0, 1}n and range {0, 1}`. We use Πcprf to build a symmetric deniable encryption scheme
ΠDE = (DE.Setup,DE.Encrypt,DE.Decrypt,DE.Deny) with key space K and message space {0, 1}` as
follows:

• DE.Setup(1λ). On input the security parameter λ, run msk← cPRF.Setup(1λ) to obtain the

master secret key for the puncturable PRF. Choose a random point x
r←− {0, 1}n and run

skx ← cPRF.Puncture(msk, x) to obtain a punctured key. Set the symmetric key to sk = skx
and the denying key dk = msk. Output (sk, dk).

• DE.Encrypt(sk,m). On input the symmetric key sk and a message m ∈ {0, 1}`, choose a

random value r
r←− {0, 1}n and output the pair

(r, cPRF.ConstrainEval(sk, r)⊕m).

• DE.Decrypt(sk, ct). On input the symmetric key sk and a ciphertext ct = (ct0, ct1), output
cPRF.ConstrainEval(sk, ct0)⊕ ct1.

• DE.Deny(dk, ct). On input the denying key dk = msk and a ciphertext ct = (ct0, ct1), output
cPRF.Puncture(msk, ct0).

Correctness and security. We state our correctness and security theorems here, but defer their
proofs to Appendix I.

Theorem 6.17. The deniable encryption scheme ΠDE is correct.

Theorem 6.18. If Πcprf is a secure PRF, then ΠDE is semantically secure.

Theorem 6.19. If Πcprf is a 1-key private, selectively-secure PRF, then ΠDE is deniable (Defini-
tion 6.16).
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Related work. In their original paper, Canetti et al. also propose a relaxed definition of deniable
encryption called flexibly deniable encryption. In a flexibly deniable encryption scheme, there
are two separate versions of the setup and encryption algorithms: the “honest” version and the
“dishonest” version. The guarantee is that if a user encrypts a message m using the dishonest
encryption algorithm to obtain a ciphertext ct, it is later able to produce randomness r that makes
it look as if ct is an honest encryption of some arbitrary message m′ under randomness r. Using
standard assumptions, Canetti et al. give a construction of a sender-deniable flexibly deniable
encryption scheme trapdoor permutations: that is, a scheme that gives the sender the ability to
later fake the randomness for a particular ciphertext. O’Neill, Peikert, and Waters [OPW11] later
extend these ideas to construct a secure flexibly bideniable encryption scheme from lattices. A
bideniable encryption scheme is one that allows both the sender and the receiver to fake randomness
for a particular message. We note that in a flexibly deniable encryption scheme, only ciphertexts
generated via the “dishonest” algorithms can later be opened as honestly-generated ciphertexts of a
different message.

Canetti et al. also introduce the notion of deniable encryption with pre-planning. In this setting,
the sender can commit (“pre-plan”) to deny a message at a later time. The authors show that in
the pre-planning model, there are trivial constructions of symmetric deniable encryption schemes
if the ciphertext length is allowed to grow with the number of possible openings of a particular
message. We note that our construction does not require pre-planning.

There are several differences between our definitions and those of Canetti et al. that we note
here. Let ci be the ciphertext that the sender chooses to deny. First, unlike the definitions proposed
in Canetti et al., the sender cannot program the key sk so that ci decrypts to an arbitrary message
of its choosing. Rather, ci will decrypt to a uniformly random message under the fake key sk′. Thus,
our deniable encryption scheme is best suited for scenarios where the messages being encrypted are
drawn uniformly from a message space, for instance, when encrypting cryptographic keys. Next, our
key generation algorithm outputs a “trapdoor” that the sender (or receiver) uses to generate fake
keys. This is similar to the flexibly deniable encryption setting when we have two sets of algorithms
for key generation and encryption. However, in our construction, there is only one encryption
algorithm, and all ciphertexts output by the encryption algorithm can be denied (provided that the
sender or receiver has the denying key).

We note also that the Sahai-Waters construction provides strictly stronger guarantees than
those achieved by our construction. However, our primary motivation here is to show how private
puncturable PRFs can be directly applied to provide a form of symmetric deniable encryption
without relying on obfuscation.

7 Conclusions

In this work, we introduce the notion of privacy for constrained PRFs, and give a number of
interesting applications including watermarkable PRFs and searchable encryption. We also give
three constructions of private constrained PRFs: one from indistinguishability obfuscation, and two
from concrete assumptions on multilinear maps. Our indistinguishability obfuscation result achieves
the strongest notion of privacy for general circuit constraints. Our multilinear map constructions
yield private bit-fixing PRFs and private puncturable PRFs.

We leave open the question of constructing private constrained PRFs from simpler and more
standard assumptions (such as from lattices or pairing-based cryptography). In particular, is it
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possible to construct a private puncturable PRF from one-way functions? Currently, our best
constructions for private puncturable PRFs require multilinear maps.

Subsequent to the publication of this work, both Boneh et al. [BKM17] as well as Canetti
and Chen [CC17] showed how to construct private puncturable and private constrained PRFs for
NC1, respectively, from standard lattice assumptions. It remains an interesting open problem to
construct private puncturable PRFs from even weaker assumptions, as well as construct private
circuit-constrained PRFs from standard assumptions.
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A Hardness Assumptions

We first recall the `-Multilinear Diffie-Hellman assumption, used in proving constrained security of
the construction in Section 4.

Definition A.1 (`-Multilinear Diffie-Hellman [BS03, GGH13a]). Let ~G along with generators
g = g1, . . . , g` and prime p be the output of MMGen(1λ, 1`), and let pp = (~G, p, g, g`). Let
a1, . . . , a`+1, r ∈ Zp be drawn uniformly and independently at random, and let z = a1a2 · · · a`+1.
The `-Multilinear Diffie-Hellman assumption states that the following two distributions are compu-
tationally indistinguishable:

{pp, ga1 , . . . , ga`+1 , gz` } and {pp, ga1 , . . . , ga`+1 , gr`}.

We also review the Subgroup Decision assumption over composite-order groups, which we use to
prove privacy of the construction in Section 5.

Definition A.2 (Subgroup Decision [BGN05, GGH13a]). Let ~G, primes p, q, and generators
gp,1, . . . , gp,`, gq,1, . . . , gq,` be the output of CMMGen(1λ, 1`). Set N = pq and let g1 = gp,1gq,1

be the canonical generator of G1. Choose γ
r←− Zp, and let pp = (~G, N, g1, gγp,1). Let r

r←− ZN .
The Subgroup Decision assumption states that the following two distributions are computationally
indistinguishable:

{pp, gr1} and {pp, grp,1}.

In addition to the subgroup decision assumption, we require an additional assumption, which
we call the `-Multilinear Diffie-Hellman Subgroup Decision (MDHSD) assumption to hold in our
composite-order multilinear map. This assumption is used to prove constrained security of our
construction in Section 5. In Appendix B, we show that in a generic model of composite-order
multilinear maps, the `-MDHSD assumption holds, provided that factoring is hard.

Definition A.3 (`-Multilinear Diffie-Hellman Subgroup Decision). Let ~G, primes p, q, and generators
gp,1, . . . , gp,`, gq,1, . . . , gq,` be the output of running CMMGen(1λ, 1`). For notational convenience,
let g1 = gp,1gq,1, and g` = gp,`gq,` be canonical generators of G1 and G`, respectively. Set N = pq

and choose γ
r←− Zp. Define pp = (~G, N, g1, gγp,1). Choose random exponents a1, . . . , a`

r←− ZN and

r
r←− ZN . Let z =

∏
i∈[`] ai. The `-Multilinear Diffie-Hellman Subgroup Decision assumption states

that the following two distributions are computationally indistinguishable:(
pp, ga1 , . . . , ga` , gzp,`

)
and (pp, ga1 , . . . , ga` , gr` ) .
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B Generic Security of `-MDHSD Assumption

In this section, we show that the `-Multilinear Diffie-Hellman Subgroup Decision assumption holds
in a generic model of composite-order multilinear maps. We adapt the formulation of the generic
model of composite-order multilinear maps from [Zim15, BWZ14] to the more restrictive setting of
a symmetric multilinear map. This is a natural adaption of the generic multilinear map model for
prime-order groups [GGH+13b, BGK+14, BR14, BLR+15], and can be viewed as a generalization
of the generic group model [Sho97]. We begin by defining the notion of a generic multilinear map.

B.1 Generic Multilinear Maps

We begin by introducing a generic multilinear map over the composite order ring ZN where N = pq
is a product of two primes. Roughly speaking, a multilinear map lets us take a scalar x ∈ ZN and
produce an encoded version, x̂ = [x]i at some level i ∈ N. Moreover, the multilinear map supports
basic arithmetic (addition and multiplication) on the encodings. We define the notion more precisely
below.

Definition B.1 (Multilinear Map ([BS03, GGH13a, CLT13, GGH15, CLT15])). A multilinear map
over a ring of composite order N = pq, where p and q are prime, supports the following operations.
Each operation (GMM.Setup, GMM.Add, GMM.Mult, GMM.ZeroTest, GMM.Encode) is implemented
by an efficient randomized algorithm.

• The setup procedure takes as input the degree of multilinearity `, and the security parameter
λ (in unary). It first samples two O(λ)-bit primes p, q and sets N = pq. It produces as output
the public parameters pp (which include the modulus N) and secret evaluation parameters sk:

GMM.Setup(1λ, 1`) → (pp, sk).

• For each level i ≤ `, and each scalar x ∈ ZN , there is a set of strings [x]i ⊆ {0, 1}∗, i.e., the
set of all valid encodings of x at level i.12 From here on, we will abuse notation to write [x]i
to stand for any element of [x]i (i.e., any valid encoding of x at level i).

• Elements at the same level i ≤ ` can be added, with the result also encoded at i:

GMM.Add(pp, [x]i, [y]i) → [x+ y]i.

• Elements at two levels i1, i2 ≤ ` can be multiplied, with the result encoded at the sum of the
two levels, provided that their sum does not exceed `:

GMM.Mult(pp, [x]i1 , [y]i2) →

{
[xy]i1+i2 if i1 + i2 ≤ `
⊥ otherwise.

• Elements at the top level ` can be zero-tested:

GMM.ZeroTest(pp, [x]i) →

{
“zero” if i = ` and x = 0 ∈ ZN
“nonzero” otherwise.

12To be more precise, we define [x]i = {χ ∈ {0, 1}∗ : GMM.IsEncoding(pp, χ, x, i)}, where the predicate GMM.IsEncoding
is specified by the concrete instantiation of the multilinear map. In general, the predicate GMM.IsEncoding is not
necessarily efficiently decidable—and indeed, for the security of the multilinear map, it should not be.
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• Using the secret parameters, one can generate a representation of a given scalar x ∈ ZN at
any level i ≤ `:

GMM.Encode(sp, x, i) → [x]i.

We briefly describe how the composite-order multilinear maps from Definition 5.1 satisfy this
abstract schema. In Definition 5.1, the algorithm CMMGen corresponds to the GMM.Setup algorithm.
The algorithm CMMGen(1λ, 1`) outputs a sequence of groups ~G = (G1, . . . ,G`), each of composite
order N . For each i ∈ [`], it also outputs a canonical generators gi for each group Gi, as well as
canonical generators of each subgroup Gp,i and Gq,i. The public parameters then consist of the
descriptions of the groups G1, . . . ,Gn, the modulus N , and the description of the multilinear map e.
The secret parameters include the canonical generators gi for each group Gi, the generators for each
of the subgroups Gp,i and Gq,i, as well as the factors p, q of N .

An encoding of a ring element x ∈ ZN at level i ∈ [`] is just the group element gxi . Addition of
encodings corresponds to evaluating the group operation. Zero testing corresponds to checking that
the group element encodes the identity element. In Definition 5.1, the multilinear map only takes `
level-1 encodings and produces a level-` encoding of their product. However, this limitation is just
for simplicity of presentation, and we can easily formulate a more general definition where CMMGen
outputs a collection of bilinear maps ei,j : Gi ×Gj → Gi+j for all i, j ∈ [`] where i+ j ≤ `. Under
this definition, multiplication in the generic multilinear map model corresponds to applying the
appropriate bilinear map.

B.2 The Generic Multilinear Map Model

To define security for multilinear maps, we now define a generic model, represented by a stateful
oracle M, that captures the multilinear map functionality. We say a scheme that uses multilinear
maps is “secure in the generic multilinear map model” if, for any concrete adversary breaking
the real scheme, there is an ideal adversary breaking a modified scheme in which every access to
the multilinear map operations (both by the construction and by the adversary) is replaced by
access to a stateful oracle M which performs the corresponding arithmetic operations internally.
Our definition of the oracle M is essentially the same as in other works which use the generic
composite-order multilinear map model [Zim15, BWZ14]. We define the oracle formally as follows.

Definition B.2 (Ideal Multilinear Map Oracle ([GGH+13b, BGK+14, BLR+15, Zim15])). A generic
multilinear map oracle is a stateful oracle M that responds to queries as follows.

• On a query GMM.Setup(1λ, 1`), the oracle will generate two primes p, q and set N = pq as in
the real setup procedure. Then, it will generate a value sp as a fresh nonce (i.e., distinct from
any previous choices) uniformly at random from {0, 1}λ, set pp = N , and return (pp, sp, p, q).
It will also store the values generated, initialize an internal table T ← {} (to store “handles”,
as described below), and set the internal state so that subsequent GMM.Setup queries fail.

• On a query GMM.Encode(k, x, i), where k ∈ {0, 1}λ, x ∈ ZN , and i ∈ N, the oracle will check
that k = sp and i ≤ ` (returning ⊥ if the check fails). If the check passes, the oracle will
generate a fresh nonce (“handle”) h uniformly at random from {0, 1}λ, add the entry h 7→ (x, i)
to the table T , and return h.

• On a query GMM.Add(k, h1, h2), where k, h1, h2 ∈ {0, 1}λ, the oracle will check that k = pp,
and that the handles h1, h2 are present in its internal table T , and are mapped to values,
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resp., (x1, i1) and (x2, i2) such that i1 = i2 = i ≤ ` (returning ⊥ if the check fails). If the
check passes, the oracle will generate a fresh handle h uniformly at random from {0, 1}λ, set
x← x1 + x2 ∈ ZN , add the entry h 7→ (x, i) to the table T , and return h.

• On a query GMM.Mult(k, h1, h2), where k, h1, h2 ∈ {0, 1}λ, the oracle will check that k = pp,
and that the handles h1, h2 are present in its internal table T , and are mapped to values, resp.,
(x1, i1) and (x2, i2) such that i1 + i2 ≤ ` (returning ⊥ if the check fails). If the check passes,
the oracle will set x ← x1 · x2 ∈ ZN , generate a fresh handle h uniformly at random from
{0, 1}λ, add the entry h 7→ (x, i1 + i2) to the table T , and return h.

• On a query GMM.ZeroTest(k, h), where k, h ∈ {0, 1}λ, the oracle will check that k = pp, and
that the table T contains an entry h 7→ (x, `) (immediately returning ⊥ if the check fails). If
the check passes, the oracle will return “zero” if x = 0 ∈ ZN , and “nonzero” otherwise.

Remark B.3 (Oracle Queries Referring to Formal Polynomials). Although the generic multilinear
map oracle is defined formally in terms of “handles” (Definition B.2), it is usually more intuitive
to regard each oracle query as referring to a formal query polynomial. The formal variables are
specified by the expressions initially supplied to the GMM.Encode procedure (as determined by the
details of the construction), and the adversary can construct terms that refer to new polynomials
by making oracle queries for the generic-model ring operations GMM.Add, GMM.Mult. Rather than
operating on a “handle”, each valid GMM.ZeroTest query refers to a formal query polynomial13

encoded at the top level `. The result of the query is “zero” precisely if the polynomial evaluates
to zero, when its variables are instantiated with the joint distribution over their values in ZN ,
generated as in the real security game. For the full formal description, we refer the reader to [Zim15,
Appendix B].

B.3 Generic Security of the `-MDHSD Assumption

In this section, we show that assuming the hardness of factoring, the `-Multilinear Diffie-Hellman
Subgroup Decision assumption holds in the generic multilinear map model (Definition B.2). We
begin by stating the hardness of factoring assumption.

Definition B.4 (Factoring Assumption). For a, b ∈ N, let Primes[a, b] be the set of prime numbers
in the interval [a, b]. Fix the security parameter λ ∈ N. The factoring assumption states that for all
efficient adversaries A,

Pr
[
p, q

r←− Primes[2λ, 2λ+1] : A(pq) ∈ {p, q}
]

= negl(λ).

In our analysis, we will also make use of the Schwartz-Zippel algorithm [Sch80, Zip79] for
polynomial identity testing. In particular, we will require the following simple corollary to the
Schwartz-Zippel lemma:

Fact B.5. Let N = pq be a product of two distinct primes p, q. Then a multivariate polynomial of
total degree d has at most d2 roots over ZN .

13To represent a query polynomial concretely, we can use an arithmetic circuit—and thus, for instance, we can still
perform efficient manipulations on query polynomials that have been subjected to repeated squaring.
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Proof. Fix a multivariate polynomial p of degree d over ZN . By the Chinese Remainder Theorem,
each root of p must be a root modulo p and modulo q. By the Schwartz-Zippel lemma, p has at
most d roots over Zp and at most d roots over Zq. Thus, there are at most d2 tuples that are roots
over both Zp and Zq.

Next, we formulate the `-Multilinear Diffie-Hellman Subgroup Decision assumption in the generic
model of multilinear maps. For b ∈ {0, 1}, we define the experiment ExptMSD

b as follows.

Definition B.6 (Experiment ExptMSD
b ). Fix the security parameter λ. For b ∈ {0, 1}, we define an

experiment ExptMSD
b between a challenger and an adversary A. For notational convenience, we write

[x]k to denote a level-k encoding of an element x ∈ ZN . Then, the challenger proceeds as follows:

1. Initialize the generic multilinear map oracle by invoking GMM.Setup(1λ, 1`) to obtain the
public parameters pp = N , the secret parameters sp, and the factors p, q of N .

2. Choose random values a1, . . . , a`, r
r←− ZN , and γ

r←− Zp. Let z ∈ ZN be such that z =
∏`
i=1 ai

(mod p) and z = 0 (mod q). Set g = 1 and let gp ∈ ZN be the unique value where gp = γ
(mod p) and gp = 0 (mod q). For each i ∈ [`], invoke GMM.Encode(sp, ai, 1) to obtain a level-1
encoding âi = [ai]1. Similarly, construct level-1 encodings ĝ = [g]1 and ĝp = [gp]1. Finally,
invoke GMM.Encode(sp, z, `) and GMM.Encode(sp, r, `) to obtain top-level encodings ẑ = [z]`
and r̂ = [r]`.

3. If b = 0, set T̂ = ẑ. Otherwise, set T̂ = r̂. Send (pp, ĝ, ĝp, â1, . . . , â`, T̂ ) to A.

The adversaryA is then given oracle access to the algorithms GMM.Add, GMM.Mult, and GMM.ZeroTest.
At the end of the experiment, A outputs a bit b′ ∈ {0, 1}. Let ExptMSD

b (A) be the random variable
corresponding to the output of A.

Theorem B.7. If factoring is hard (Definition B.4), then for all efficient adversaries A,∣∣∣Pr[ExptMSD
0 (A) = 1]− Pr[ExptMSD

1 (A) = 1]
∣∣∣ = negl(λ).

Proof. We begin by characterizing the formal polynomials A is able to submit to the zero-test oracle
in each experiment ExptMSD

b for b ∈ {0, 1}.

Lemma B.8. Fix b ∈ {0, 1} and let A be an efficient adversary in the generic model of multi-
linear maps (Definition B.2). Consider a formal polynomial z (Remark B.3) produced by A in
ExptMSD

b (A) at the top-level `, over the formal variables â1, . . . , â`, ĝp, ĝ, T̂ in ExptMSD
b (A). Then,

z ≡ f`(â1, . . . , â`, ĝp, ĝ) + αT̂ , where f` is a formal polynomial of degree exactly ` and α ∈ Z is a
scalar.

Proof. In ExptMSD
b , the only encodings available to the adversary are level-1 encodings â1, . . . , â`, ĝp, ĝ,

and a single level-` encoding T̂ . Consider a monomial v encoded at the top level. By construction,
v is either a scalar multiple of T̂ , or it is a product of exactly ` level-1 encodings. The lemma
follows.

We now proceed via a hybrid argument. For each b ∈ {0, 1}, we define the following three hybrid
experiments:

• H
(b)
0 : This is the real experiment ExptMSD

b .
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• H
(b)
1 : Same as H

(b)
0 , except when A makes a zero-test query GMM.ZeroTest(k, h) to the

generic multilinear map oracle M, if k = pp, and h refers to a formal polynomial z ∈
Z[â1, . . . , â`, ĝp, ĝ, T̂ ] at the top level `, the challenger first writes z as f`(â1, . . . , â`, ĝp, ĝ) +αT̂ ,
where f` is a formal polynomial of degree ` (Lemma B.8). Then, the challenger checks if any
of the following conditions are satisfied:

1. If gcd(N,α) ∈ {p, q}.
2. If gcd(N, z′(a1, . . . , a`, gp, T )) ∈ {p, q} where z′ ∈ Z[â1, . . . , â`, ĝp, T̂ ] is the polynomial z

with the substitution ĝ 7→ 1, and a1, . . . , a`, gp, T
r←− ZN .

3. If gcd(N, f ′`(a1, . . . , a`, gp)) ∈ {p, q}, where f ′` ∈ Z[â1, . . . , â`, ĝp] is the polynomial f` with

the substitution ĝ 7→ 1, and a1, . . . , a`, gp
r←− ZN .

4. If gcd(N, f ′′` (a1, . . . , a`)) ∈ {p, q}, where f ′′` ∈ Z[â1, . . . , â`] is the polynomial f ′` with the

substitution ĝp 7→ 0, and a1, . . . , a`
r←− ZN .

If any of these conditions are satisfied, then the challenger responds with GMM.ZeroTest(k, h).
Otherwise, it uses the following decision procedure:

1. Let z′ ∈ Z[â1, . . . , â`, ĝp, T̂ ] be the query polynomial z with the substitution ĝ 7→ 1. Run
a Schwartz-Zippel test to determine if z′ ≡ 0 (mod N). If so, the challenger responds
with “zero.” Otherwise, continue.

2. Respond with “not-zero.”

• H
(b)
2 : Same as H

(b)
1 , except if any of the conditions are satisfied, the challenger aborts the

experiments and outputs Bad.

As usual, we write H
(b)
i (A) to denote the output of A when interacting in experiment H

(b)
i .

Lemma B.9. For all adversaries A,
∣∣∣Pr[H

(0)
0 (A) = 1]− Pr[H

(0)
1 (A) = 1]

∣∣∣ is negligible.

Proof. By construction, the setup procedure, as well as the responses to oracle queries GMM.Add,

GMM.Mult are handled identically in H
(0)
0 and H

(0)
1 . Thus, it suffices to argue that the distribution

of zero-test responses are statistically indistinguishable between hybrids H
(0)
0 and H

(0)
1 . Consider

a valid zero-test query for a polynomial z ∈ Z[â1, . . . , â`, ĝp, ĝ, T̂ ] at the top-level. If any of the

conditions enumerated in the description of hybrid H
(0)
1 are met, then the challenger’s response to

the zero-test query is identical in hybrids H
(0)
0 and H

(0)
1 . We consider three cases. In the following

analysis, define the polynomials z′, f ′, and f ′′ as in the description of hybrid H
(b)
1 . We show that

in each case, either one of the conditions in H
(0)
1 holds, or the distribution of the response to the

zero-test query is statistically indistinguishable between hybrids H
(0)
0 and H

(0)
1 .

• Suppose z′ ≡ 0 (mod N). Since z′ is identically zero over ZN , when its formal variables are

instantiated with the real values in H
(0)
0 , z′ will evaluate to 0. In hybrid H

(0)
1 , on input the

polynomial z′, the Schwartz-Zippel test will also output “zero,” so the distribution of responses

in H
(0)
0 and H

(0)
1 are identically distributed in this case.
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• Suppose z′ 6≡ 0 (mod p). Consider the distribution of values in H
(0)
0 . In hybrid H

(0)
0 , T̂ =∏`

i=1 âi (mod p) and T̂ = 0 (mod q). Let z′′ ∈ Z[â1, . . . , â`, ĝp] be the polynomial z with T̂

substituted in terms of its definition in H
(0)
0 . Consider the distribution of responses in the

simulation. We consider three possibilities:

– Suppose z′′ 6≡ 0 (mod p). Since the variables â1, . . . , â`, ĝp in the real distribution are
uniform over Zp, we conclude by the Schwartz-Zippel lemma that the polynomial z′′

evaluates to non-zero when instantiated with the values in H
(0)
0 with overwhelming

probability. Thu the zero-test oracle in H
(0)
0 responds with “non-zero” with overwhelming

probability. In H
(0)
1 , the challenger always responds “non-zero,” so the distribution of

responses between hybrids H
(0)
0 and H

(0)
1 are statistically indistinguishable in this case.

– Suppose z′′ ≡ 0 (mod p) and f ′` ≡ 0 (mod p). We consider two possibilities:

∗ Suppose f ′` ≡ 0 (mod q). In hybrid H
(0)
0 and H

(0)
1 , z′′ = f ′` + α

∏`
i=1 âi (mod p), and

by assumption, z′′ ≡ 0 (mod p) and f ′` ≡ 0 (mod p). Thus, α = 0 (mod p). If α 6= 0
(mod N), then gcd(N,α) = p, and condition 1 holds. Otherwise, if α = 0 (mod N)
and f ′` ≡ 0 (mod q), then f ′` ≡ 0 (mod N). In this case, z′ ≡ f ′` +αT̂ ≡ 0 (mod N),
which is covered by the first case above.

∗ Suppose f ′` 6≡ 0 (mod q). By the Schwartz-Zippel lemma, with overwhelming proba-
bility, f ′`(a1, . . . , a`, gp) 6= 0 (mod q) for a random choice of a1, . . . , a`, gp in ZN . Since
f ′` ≡ 0 (mod p), we conclude that gcd(N, f ′`(a1, . . . , a`, gp)) = p with overwhelming
probability. Thus, condition 3 holds.

– Suppose z′′ ≡ 0 (mod p) and f ′` 6≡ 0 (mod p). In hybrid H
(0)
0 and H

(0)
1 , this means that

f ′` ≡ −α
∏`
i=1 âi (mod p). Let f ′′` ∈ Z[â1, . . . , â`] be f ′` with the substitution ĝp 7→ 0.

Since f ′` (mod p) is independent of ĝp, it must be the case that f ′′` ≡ f ′` (mod p). We
now consider two possibilities:

∗ Suppose f ′′` ≡ 0 (mod q). Consider the value of f ′′` (a1, . . . , a`) where a1, . . . , a` are
uniform in ZN . Since f ′′` 6≡ 0 (mod p), by the Schwartz-Zippel lemma, with over-
whelming probability, f ′′` (a1, . . . , a`) 6= 0 (mod p). Then, gcd(N, f ′′` (a1, . . . , a`)) = q,
and condition 4 holds.

∗ Suppose f ′′` 6≡ 0 (mod q). In the real distribution, â1, . . . , â` are sampled uni-
formly from ZN . By the Schwartz-Zippel lemma, with overwhelming probability

f ′′` (â1, . . . , â`) 6= 0 (mod q). In hybrid H
(0)
1 , the challenger always replies with

“non-zero,” so the two distributions are statistically indistinguishable.

• Suppose z′ ≡ 0 (mod p) and z′ 6≡ 0 (mod q). Consider z′(a1, . . . , a`, gp, T ) where a1, . . . , a`, gp, T
r←−

ZN . Let y = z′(a1, . . . , a`, gp, T ). Since z′ 6≡ 0 (mod q), by the Schwartz-Zippel lemma over
Zq, y 6= 0 (mod q) with overwhelming probability. However, since z′ ≡ 0 (mod p), y = 0
(mod p). In this case, gcd(N, y) = p, and condition 2 holds.

Lemma B.10. If factoring is hard (Definition B.4), then for all efficient adversaries A and all

b ∈ {0, 1},
∣∣∣Pr[H

(b)
1 (A) = 1]− Pr[H

(b)
2 (A) = 1]

∣∣∣ is negligible.

Proof. Suppose A is able to distinguish hybrids H
(b)
1 from H

(b)
2 with advantage ε. The only difference

between H
(b)
1 and H

(b)
2 is that in H

(b)
2 , the challenger aborts the experiments if one of the conditions
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are satisfied when the adversary makes a zero-test query. Thus, if A is able to distinguish H
(b)
1 from

H
(b)
2 , it must be able to produce a zero-test query that causes the challenger to output Bad in hybrid

H
(b)
2 with probability ε. We use A to construct a factoring adversary B that achieves the same

advantage ε. Algorithm B is given a factoring challenge N , where N is a product of two primes p, q,
and its goal is to output p or q. In the reduction, algorithm B will invoke A and simulate for it the
generic multilinear map oracle. Algorithm B operates as follows:

1. At the beginning of the game B sets pp = N . It also initializes an empty table T = {} to store
handles to formal variables. Then, for each formal variable â1, . . . , â`, ĝp, ĝ, T̂ , it generates a

random nonce ha1 , . . . , ha` , hgp , hg, hT
r←− {0, 1}λ, and adds the associated mappings to T . It

gives the public parameters pp and the encodings (ha1 , . . . , ha` , hgp , hg, hT ) to A.

2. Algorithm B responds to oracle queries as follows:

• GMM.Add(k, h1, h2). Algorithm B first checks that k = pp and that h1, h2 map to valid
formal polynomials z1 and z2 at levels i1, i2 ∈ N, respectively. If k 6= pp or h1 and h2 do
not both map to valid formal polynomials, or i1 6= i2, B responds with ⊥. Otherwise, B
chooses a fresh handle h

r←− {0, 1}λ, and adds the entry h 7→ (z1 + z2, i1) to T . It replies
to A with h.

• GMM.Mult(k, h1, h2). Algorithm B first checks that k = pp and that h1, h2 map to valid
formal polynomials z1 and z2 at levels i1, i2 ∈ N, respectively. If k 6= pp or h1 and h2 do
not both map to valid formal polynomials, or i1 + i2 > `, B responds with ⊥. Otherwise,
B chooses a fresh handle h

r←− {0, 1}λ, and adds the entry h 7→ (z1z2, i1 + i2) to T . It
replies to A with h.

• GMM.ZeroTest(k, h). Algorithm B first checks that k = pp and that h maps to a formal
polynomial z encoded at level ` in T . If these checks do not pass, then B responds with
⊥. Otherwise, B does the following:

(a) By Lemma B.8, z can be expressed as f`(â1, . . . , â`, ĝ, ĝp) + αT̂ , where f` is a
polynomial of degree ` and α ∈ Z is a scalar. Then, compute each of the following
quantities:

– Set y1 = gcd(N,α).

– Set y2 = gcd(N, z′(a1, . . . , a`, gp, T )) where z′ ∈ Z[â1, . . . , â`, ĝp, T̂ ] is the poly-
nomial z with the substitution ĝ 7→ 1 and the values a1, . . . , a`, gp, T are drawn
uniformly from ZN .

– Set y3 = gcd(N, f ′`(a1, . . . , a`, gp)), where f ′` ∈ Z[â1, . . . , â`, ĝp] is the polynomial

f` with the substitution ĝ 7→ 1 and a1, . . . , a`, gp
r←− ZN .

– Set y4 = gcd(N, f ′′` (a1, . . . , a`)), where f ′′` ∈ Z[â1, . . . , â`] is the polynomial f ′`
with the substitution ĝp 7→ 0, and a1, . . . , a`

r←− ZN .

If for any i ∈ {1, 2, 3, 4}, yi is a non-trivial factor of N (1 < yi < N), then abort the
experiment, and output yi. Otherwise, continue.

(b) Let z′ ∈ Z[â1, . . . , â`, ĝp, T̂ ] be the polynomial z with the substitution ĝ 7→ 1. Perform
a Schwartz-Zippel test to determine if z′ ≡ 0 (mod N). If so, then respond with
“zero.” Otherwise continue.

(c) Output “non-zero.”

38



3. If the experiment has not aborted yet, output ⊥.

We argue that B correctly simulates the view of A in H
(b)
1 and H

(b)
2 . Since B samples the nonces

for the challenge from the same distribution as GMM.Encode in the real scheme, we conclude that
the challenge terms are identically distributed. Moreover, B answers the GMM.Add and GMM.Mult
oracles in exactly the same manner as the generic multilinear map oracle. Finally, B responds to

the zero-test queries exactly as prescribed in hybrid H
(b)
1 . By assumption then, with probability at

least ε, algorithm A will produce a query polynomial z ∈ Z[â1, . . . , â`, ĝp, ĝ, T̂ ] such that one of the

conditions outlined in H
(b)
1 will hold. But in this case, B is able to compute a non-trivial factor of

N . The lemma follows.

Lemma B.11. For all adversaries A,
∣∣∣Pr[H

(1)
0 (A) = 1]− Pr[H

(1)
1 (A) = 1]

∣∣∣ is negligible.

Proof. This proof is very similar to that of Lemma B.9. Again, it suffices to argue that the

distribution of zero-test responses are statistically indistinguishable between hybrids H
(1)
0 and H

(1)
1 .

Consider a valid zero-test query for a polynomial z ∈ Z[â1, . . . , â`, ĝp, ĝ, T̂ ] at the top-level. If any of

the conditions enumerated in the description of hybrid H
(1)
1 are met, then the challenger’s response

to the zero-test query is identical in hybrids H
(1)
0 and H

(1)
1 . We consider three cases. In the following

analysis, define the polynomials z′, f ′, and f ′′ as in the description of hybrid H
(1)
1 . We show that

in each case, either one of the conditions in H
(1)
1 holds, or the distribution of the response to the

zero-test query is statistically indistinguishable between hybrids H
(1)
0 and H

(1)
1 .

• Suppose z′ ≡ 0 (mod N). The analysis of this case is identical to that in Lemma B.9.

• Suppose z′ 6≡ 0 (mod p). In hybrid H2, the value of each formal variable â1, . . . , â`, ĝp, T̂ is
uniform and independent over ZN . By the Schwartz-Zippel lemma, z′(â1, . . . , â`, ĝp, T̂ ) 6= 0

(mod p) with overwhelming probability. Thus, in hybrid H
(1)
0 , the zero-test oracle will output

“non-zero” on query z. In hybrid H
(1)
1 , the challenger always replies “non-zero,” so the two

distributions are statistically indistinguishable.

• Suppose that z′ ≡ 0 (mod p) and z′ 6≡ 0 (mod q). The analysis of this case is also identical
to that in Lemma B.9.

We conclude that hybrids H
(1)
0 and H

(1)
1 are statistically indistinguishable.

To complete the proof of Theorem B.7, it suffices to observe that hybrids H
(0)
2 and H

(1)
2 are

identical distributions. In particular, the challenge values, and outputs of the GMM.Add and
GMM.Mult oracles are identically distributed in the two distributions. Moreover, the decision
procedure the challenger uses to implement GMM.ZeroTest is independent of the actual values of

the formal variables. Thus, for all adversaries A, H
(0)
2 (A) ≡ H

(1)
2 (A).

Combining Lemmas B.9 through B.11 together with the fact that H
(0)
2 and H

(1)
2 are identical

experiments, we conclude that assuming hardness of factoring, hybrids H
(0)
0 is computationally

indistinguishable from H
(1)
0 , or equivalently, that the `-Multilinear Diffie-Hellman Subgroup Decision

assumption holds in the generic model of composite-order multilinear maps.
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C Programmable PRFs

In this section, we introduce the notion of a private programmable PRF, which can be viewed as an
extension of a private puncturable PRF where the holder of the master secret key can additionally
specify the value of the PRF at the punctured point. We show how private programmable PRFs
can be used to construct a watermarkable family of PRFs in Section 6.1. We now describe the
syntax of a programmable PRF, and give the security notions. We define a programmable PRF as
a tuple of algorithms Π = (pPRF.Setup, pPRF.Program, pPRF.ProgramEval, pPRF.Eval), over a key
space K, input space {0, 1}n, and output space {0, 1}m. The syntax for a programmable PRF is
essentially identical to the syntax of a constrained PRF, except that the algorithms cPRF.Constrain
and cPRF.ConstrainEval are replaced by pPRF.Program and pPRF.ProgramEval.

• pPRF.Setup(1λ)→ msk. On input the security parameter λ, the setup algorithm pPRF.Setup
outputs the master secret key msk.

• pPRF.Program(msk, x, y)→ sk. On input the master secret key msk, an input x ∈ {0, 1}n and
an output y ∈ {0, 1}m, the program algorithm pPRF.Program outputs a secret key sk.

• pPRF.ProgramEval(sk, x) → y. On input a secret key sk, and an input x ∈ {0, 1}n, the
programmed evaluation algorithm pPRF.ProgramEval outputs an element y ∈ {0, 1}m.

• pPRF.Eval(msk, x) → y. On input the master secret key msk and an input x ∈ {0, 1}n, the
evaluation algorithm pPRF.Eval outputs an element y ∈ {0, 1}m.

Correctness. A programmable PRF is correct if for msk← pPRF.Setup(1λ), all inputs x ∈ {0, 1}n,
setting sk = pPRF.Program(msk, x∗, y∗), it is the case that

pPRF.ProgramEval(sk, x) =

{
y∗, if x = x∗

pPRF.Eval(msk, x), otherwise
.

Security. The security definition for the privacy of a programmable PRF is mostly identical to
that of a private constrained PRF, except for a few syntactical differences which we explain below.

Definition C.1 (Experiment ExptpPRFb ). For the security parameter λ ∈ N, integers n,m > 0, and a

bit b ∈ {0, 1}, we define the experiment ExptpPRFb between a challenger and an adversary A, which can
make oracle queries of the following types: program, evaluation, and challenge. First, the challenger
obtains msk ← pPRF.Setup(1λ). The challenger also draws a function f

r←− Funs({0, 1}n, {0, 1}m)
uniformly at random. For b ∈ {0, 1}, the challenger responds to each oracle query type made by A
in the following manner.

• Program oracle. On input an x ∈ {0, 1}n and y ∈ {0, 1}m, the challenger returns sk ←
pPRF.Program(msk, x, y) to A.

• Evaluation oracle. On input x ∈ {0, 1}n, the challenger returns y ← pPRF.Eval(msk, x).

• Challenge oracle. On input x ∈ {0, 1}n, the challenger returns y ← pPRF.Eval(msk, x) to
A if b = 0, and y ← f(x) if b = 1.
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Eventually, A outputs a bit b′ ∈ {0, 1}, which is also output by ExptpPRFb . Let Pr[ExptpPRFb (A) = 1]

denote the probability that ExptpPRFb outputs 1 with A.

Definition C.2 (Admissible Programming). An adversary is admissible if it makes at most one
query x ∈ {0, 1}n to the challenge oracle, and moreover, for all points x′i ∈ {0, 1}n it submits to the
program oracle, x′i = x.

Definition C.3 (Programming Security). A programmable PRF Π is secure if for all efficient and
admissible adversaries A, the following quantity is negligible:

AdvpPRF[Π,A]
def
=
∣∣∣Pr[ExptpPRF0 (A) = 1]− Pr[ExptpPRF1 (A) = 1]

∣∣∣ .
Definition C.4 (Experiment Exptpprivb ). For the security parameter λ ∈ N, integers n, d ∈ N and a

bit b ∈ {0, 1}, we define the experiment Exptpprivb between a challenger and an adversary A, which
can make evaluation and challenge queries. First, the challenger obtains msk ← pPRF.Setup(1λ),
and samples y∗ ← {0, 1}m uniformly at random. For b ∈ {0, 1}, the challenger responds to each
oracle query type made by A in the following manner.

• Evaluation oracle. On input x ∈ {0, 1}n, the challenger returns y ← pPRF.Eval(msk, x).

• Challenge oracle. For a pair of inputs x0, x1 ∈ {0, 1}n, the challenger returns sk ←
pPRF.Program(msk, xb, y

∗).

Eventually, A outputs a bit b′ ∈ {0, 1}, which is also output by ExptpPRFb . Let Pr[Exptpprivb (A) = 1]

denote the probability that Exptpprivb outputs 1.

Definition C.5 (Admissible Privacy). An adversary is admissible if it makes at most one challenge
oracle query, and it does not query the evaluation oracle on any point that also appears in a challenge
oracle query.

Definition C.6 (Privacy). A programmable PRF Π is private if for all efficient and admissible
adversaries A the following quantity is negligible:

Advppriv[Π,A]
def
=
∣∣∣Pr[Exptppriv0 (A) = 1]− Pr[Exptppriv1 (A) = 1]

∣∣∣ .
Note that in our game-based definition of privacy for programmable PRFs (Definition C.4), the

adversary does not specify the value at the punctured point. Instead, the challenger samples the
value uniformly at random from the range of the PRF. This restriction is essential for ensuring an
achievable notion of privacy. Indeed, if the adversary was able to specify (or guess) the value at the
programmed point, then it can trivially distinguish Exptppriv0 from Exptppriv1 by simply evaluating the
programmed key at the two points x0, x1 it submitted to the challenge oracle. Thus, hiding the
reprogrammed point is only possible if the the reprogrammed value is unknown to the adversary.
While this seems like a very limiting restriction, we show in Section 6.1 that a private programmable
PRF satisfying Definitions C.3 and C.6 is sufficient for constructing a watermarkable family of
PRFs.
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D Proofs from Section 3

D.1 Proof of Theorem 3.2

We use a hybrid argument:

• Hybrid H0. This is the real experiment ExptcPRF0 .

• Hybrid H1. In this experiment, the challenger uses punctured keys when constructing
the obfuscated programs in response to constrain queries. At the beginning of the game,
the adversary first submits a point x ∈ {0, 1}n on which it would like to be challenged.
Next, as in the real experiment, the challenger computes msk ← F.Setup(1λ). It runs
sk← F.Puncture(msk, x). Finally, it responds to oracle queries as follows:

– Constrain oracle. On input a circuit C : {0, 1}n → {0, 1}, the challenger first
obtains msk′ ← F.Setup(1λ). The challenger then outputs the obfuscated program

iO
(
P

(cPRF)
2 [C,msk′, sk]

)
, where P

(cPRF)
2 [C,msk′, sk] is the program below:

Constants: a circuit C : {0, 1}n → {0, 1}, a master secret key msk0, and a punctured
key sk1 for the puncturable PRF ΠF = (F.Setup,F.Puncture,F.ConstrainEval,F.Eval).

On input x ∈ {0, 1}n:

1. Let b = C(x). If b = 0, output F.Eval(msk0, x). Otherwise, output
F.ConstrainEval(sk1, x).

Figure 2: The program P
(cPRF)
2 [C,msk0, sk1, ]

– Evaluation oracle. On input x ∈ {0, 1}n, output cPRF.Eval(msk, x).

– Challenge oracle. On input x ∈ {0, 1}n, output cPRF.Eval(msk, x).

• Hybrid H2. Identical to hybrid H1, except when responding to the challenge query, the
challenger responds with a uniformly random value y

r←− {0, 1}m.

• Hybrid H3. This is the real experiment ExptcPRF1 .

At a high level, the first two hybrids as well as the last two hybrids are computationally indistin-
guishable by security of iO. The two intermediate hybrids are computationally indistinguishable by
puncturing security of ΠF. In the following, we will write Hi(A) to denote the output of A when
interacting according to the specifications of Hi.

Lemma D.1. If iO is secure, then for all efficient adversaries A, |Pr[H0(A) = 1]− Pr[H1(A) = 1]|
is negligible.

Proof. First, we note that the challenger performs the setup procedure and responds to the evaluation
and challenge oracles identically in H0 and H1. Thus, we just consider the constrain queries. In
hybrid H0, on an input C, the challenger gives out an obfuscation of the program P1[C,msk′,msk]

whereas in hybrid H1, the challenger gives out an obfuscation of the program P
(cPRF)
2 [C,msk′, sk].
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By correctness of the puncturable PRF, F.ConstrainEval(sk, ·) and F.Eval(msk, ·) agree everywhere
except perhaps on input x. By admissibility, all queries C the adversary submits to the constrain
oracle must satisfy C(x) = 0. In H0, on any input x where C(x) = 0, the program P1[C,msk′,msk]

outputs F.Eval(msk′, x), which is precisely the behavior of P
(cPRF)
2 [C,msk′, sk] at x. We conclude that

P1[C,msk′,msk] and P
(cPRF)
2 [C,msk′, sk] compute identical functions, so by security of iO, hybrids

H0 and H1 are computationally indistinguishable. The lemma follows.

Lemma D.2. If ΠF is a selectively-secure puncturable PRF, then for all efficient adversaries A,
|Pr[H1(A) = 1]− Pr[H2(A) = 1]| is negligible.

Proof. Suppose A is able to distinguish H1 from H2. We use A to build an adversary that can win
the puncturing security game for ΠF. Algorithm B begins by running algorithm A, which outputs
a point x∗ ∈ {0, 1}n as its challenge. Algorithm B then submits x∗ to the puncturing security
challenger as its challenge. It receives a value T . In addition, B issues a puncturing query to obtain
a key sk punctured at x∗. Algorithm B then responds to oracle queries as follows:

• Constrain oracle. On input a circuit C : {0, 1}n → {0, 1}, set msk′ ← F.Setup(1λ), and

output the obfuscated program iO
(
P

(cPRF)
2 [C,msk′, sk]

)
.

• Evaluation oracle. On input x ∈ {0, 1}n, output F.ConstrainEval(sk, x).

• Challenge oracle. Adversary A can only query the oracle at x∗. Algorithm B responds with
T .

At the end of the experiment, algorithm B outputs whatever A outputs. In the simulation, the
master secret key chosen by the puncturing security challenger plays the role of msk. Thus, the
constrain queries are correctly simulated. By the admissibility requirement, algorithm A can never
make an evaluation query at x∗, so by correctness of the puncturing scheme, B correctly simulates
the evaluation queries. For the challenge query, if T = F.Eval(msk, x), then B correctly simulates
hybrid H1. If T is uniform over {0, 1}m, then B simulates hybrid H2. Thus, if A can distinguish H1

from H2, then B wins the puncturing security game for ΠF with the same advantage. The lemma
follows.

Lemma D.3. If iO is secure, then for all efficient adversaries A, |Pr[H2(A) = 1]− Pr[H3(A) = 1]|
is negligible.

Proof. Same as the proof of Lemma D.1.

Combining Lemmas D.1 through D.3, we conclude that experiment ExptcPRF0 is computationally
indistinguishable from experiment ExptcPRF1 . We conclude that ΠioPRF is selectively secure.

D.2 Proof of Theorem 3.3

Fix a constant d ∈ N. In the d-time privacy game (Definition 2.10), the adversary is given access
to an evaluation oracle and a challenge oracle. The adversary is allowed to adaptively make up to

d challenge queries. On the ith challenge query, the adversary submits two circuits C
(i)
0 and C

(i)
1 ,

and receives back a PRF key constrained to circuit C
(i)
b where b ∈ {0, 1} is fixed at the start of the

experiment. Moreover, the adversary is constrained to making challenge queries that satisfy the
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admissibility requirement from Definition 2.9: for all i, j ∈ [d], S(C
(i)
0 )∩S(C

(j)
0 ) = S(C

(i)
1 )∩S(C

(j)
1 ),

where for a circuit C on n-bit inputs, S(C) = {x ∈ {0, 1}n : C(x) = 1}. We now proceed with a
hybrid argument. For 0 ≤ i ≤ 2n + 1, define the hybrid experiment Hi as follows.

Hybrid Hi. At the beginning of the experiment, the challenger runs F.Setup(1λ) to obtain the
master secret key msk. Then, the challenger responds to the oracle queries as follows:

• Evaluation oracle. On input x ∈ {0, 1}n, the challenger responds with F.Eval(msk, x).

• Challenge oracle. On the jth challenge query, the challenger receives as input a pair of

circuits C
(j)
0 and C

(j)
1 , and does the following:

1. Set mskj ← F.Setup(1λ).

2. Output the indistinguishability obfuscation iO
(
P

(cpriv)
2 [C

(j)
0 , C

(j)
1 ,mskj ,msk, i]

)
, where

the program P
(cpriv)
2 [C

(j)
0 , C

(j)
1 ,mskj ,msk, i] is defined as follows:

Constants: two circuits C0, C1 where C0, C1 : {0, 1}n → {0, 1}, mas-
ter secret keys msk0,msk1 for the puncturable PRF ΠF = (F.Setup,
F.Puncture,F.ConstrainEval,F.Eval), and a threshold 0 ≤ i ≤ 2n + 1.

On input x ∈ {0, 1}n:

(a) If x < i, then set b = C1(x). Otherwise, set b = C0(x).

(b) Output F.Eval(mskb, x).

Figure 3: The program P
(cpriv)
2 [C0, C1,msk0,msk1, i]

In hybrid H0, the challenger respond to all evaluation queries exactly as in Exptppriv0 . Moreover, the

programs P1[C
(j)
0 ,mskj ,msk] and P

(cpriv)
2 [C

(j)
0 , C

(j)
1 ,mskj ,msk, 0] compute identical functions for all

j ∈ [d]. Thus, for each j ∈ [d], we have that

iO
(
P1

[
C

(j)
0 ,mskj ,msk

])
c
≈ iO

(
P

(cpriv)
2

[
C

(j)
0 , C

(j)
1 ,mskj ,msk, 0

])
.

A standard hybrid argument then shows that experiments Exptcpriv0 and H0 are computationally

indistinguishable. Similarly, we have that hybrids H2n+1 and Exptppriv1 are computationally in-
distinguishable. To conclude the proof, we show that for all 0 ≤ i ≤ 2n + 1, Hi and Hi+1 are
computationally indistinguishable. Intuitively, claim follows from the fact that the obfuscated
programs given out in hybrids Hi and Hi+1 only differ on a single point (when x = i). By appealing
to the puncturing security of ΠF, we can show that the two experiments are in fact indistinguishable.
We now state and prove the claim. As usual, for an adversary A, we write Hi(A) to denote the
output of A when interacting in experiment Hi.

Lemma D.4. If iO is an indistinguishability obfuscator and ΠF is a selectively-secure puncturable
PRF, then for all 0 ≤ i ≤ 2n, and all efficient adversaries A, |Pr[Hi(A) = 1]− Pr[Hi+1(A) = 1]| is
negligible.
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Proof. We again use a hybrid argument. First, we describe our sequence of hybrid experiments. At
a high level, in the first hybrid, we replace the real PRF keys in each program with punctured PRF
keys. In each of the subsequent hybrids, we slowly transition the programs to compute the output at

i based on the value of C
(j)
1 (i) rather than C

(j)
0 (i). Each step in these intermediate hybrids follows

by puncturing security of ΠF. We describe our hybrids below:

• Hybrid Hi,1: The challenger begins by computing msk ← F.Setup(1λ). Next, it sets sk ←
F.Puncture(msk, i). The challenger responds to oracle queries as follows:

– Evaluation oracle. On input x ∈ {0, 1}n, the challenger replies with F.Eval(msk, x).

– Challenge oracle. On the jth challenge query, the challenger receives as input a pair

of circuits C
(j)
0 and C

(j)
1 , and does the following:

1. Set mskj
r←− F.Setup(1λ) and construct the punctured key skj = F.Puncture(mskj , i).

2. If C
(j)
0 (i) = 0, then set rj = F.Eval(mskj , i). Otherwise, set rj = F.Eval(msk, i).

3. Output the indistinguishability obfuscation iO
(
P

(cpriv)
3 [C

(j)
0 , C

(j)
1 , skj , sk, rj , i]

)
, where

the program P
(cpriv)
3 [C

(j)
0 , C

(j)
1 , skj , sk, rj , i] is defined as follows:

Constants: two circuits C0, C1 where C0, C1 : {0, 1}n →
{0, 1}, punctured keys sk0, sk1 for the puncturable PRF ΠF =
(F.Setup,F.Puncture,F.ConstrainEval,F.Eval), a string r ∈ {0, 1}m, and a
threshold 0 ≤ i ≤ 2n + 1.

On input x ∈ {0, 1}n:

(a) If x = i, output r. Otherwise continue.

(b) If x < i, then set b = C1(x). Otherwise, set b = C0(x).

(c) Output F.ConstrainEval(skb, x).

Figure 4: The program P
(cpriv)
3 [C0, C1, sk0, sk1, r, i]

• Hybrid Hi,2. Same as Hi,1, except when responding to a challenge query, if C
(j)
0 (i) = 1 and

C
(j)
1 (i) = 0, the challenger sets rj

r←− {0, 1}m.

• Hybrid Hi,3. Same as Hi,2, except when responding to a challenge query, if C
(j)
0 (i) = 1 and

C
(j)
1 (i) = 0, the challenger sets rj = F.Eval(mskj , i).

• Hybrid Hi,4. Same as Hi,3, except when responding to a challenge query, if C
(j)
0 (i) = 0 and

C
(j)
1 (i) = 1, the challenger sets rj

r←− {0, 1}m.

• Hybrid Hi,5. Same as Hi,4, except when responding to a challenge query, if C
(j)
0 (i) = 0 and

C
(j)
1 (i) = 1, the challenger sets rj = F.Eval(msk, i)
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Now, we demonstrate that hybrid Hi is computationally indistinguishable from hybrid Hi,1. Then,
we demonstrate that each successive pair of hybrids Hi,j , Hi,j+1 for j ∈ {1, 2, 3, 4} are computationally
indistinguishable. Finally, we show that Hi,5 and Hi+1 are computationally indistinguishable.

Lemma D.5. If iO is an indistinguishability obfuscator, then for all 0 ≤ i ≤ 2n, and all efficient
adversaries A, |Pr[Hi(A) = 1]− Pr[Hi,1(A) = 1]| is negligible.

Proof. The challenger samples msk and responds to evaluation queries in exactly the same manner

in hybrids Hi and Hi,1. Moreover, by correctness of ΠF, programs P
(cpriv)
2 [C

(j)
0 , C

(j)
1 ,mskj ,msk, i]

and P
(cpriv)
3 [C

(j)
0 , C

(j)
1 , skj , sk, rj , i] compute identical programs. The lemma follows from security of

iO.

Lemma D.6. If ΠF is selectively secure, then for all 0 ≤ i ≤ 2n, and all efficient adversaries A,
|Pr[Hi,1(A) = 1]− Pr[Hi,2(A) = 1]| is negligible.

Proof. We consider two possibilities. Suppose that for all j ∈ [d], either C
(j)
0 (i) = C

(j)
1 (i) or

C
(j)
0 (i) = 0 and C

(j)
1 (i) = 1. In this case, hybrids Hi,1 and Hi,2 are identical experiments, and the

lemma holds.
Suppose instead that there exists some j∗ ∈ [d] such that C

(j∗)
0 (i) = 1 and C

(j∗)
1 (i) = 0.

By the admissibility requirement (Definition 2.9), for all j 6= j∗, C
(j)
0 (i) = 0. Otherwise, i ∈

S(C
(j∗)
0 ) ∩ S(C

(j)
0 ), but i /∈ S(C

(j∗)
1 ) ∩ S(C

(j)
1 ). We show that if there exists a distinguisher A that

can distinguish Hi,1 from Hi,2 with advantage ε, there exists an adversary B that can break the
puncturing security of ΠF with the same advantage. Algorithm B works as follows. At the beginning
of the puncturing security game, B first commits to the point i. Then, B makes a puncturing query
at i to obtain a punctured key sk′, and a challenger query at i to obtain a value T . Algorithm B
responds to oracle queries as follows:

• Evaluation oracle. On input a point x ∈ {0, 1}n, algorithm B responds with the value
F.ConstrainEval(sk′, x).

• Challenge oracle. When A issues its jth challenge query on circuits C
(j)
0 , C

(j)
1 , algorithm B

responds as follows:

1. Set mskj ← F.Setup(1λ), and set skj = F.Puncture(mskj , i).

2. If C
(j)
0 (i) = 1 and C

(j)
1 (i) = 0, then set rj = T . Otherwise, set rj = F.Eval(mskj , i).

3. Output the obfuscated program iO
(
P

(cpriv)
3 [C

(j)
0 , C

(j)
1 , skj , sk

′, rj , i]
)

.

Finally, B outputs whatever A outputs. We now show that if T = F.Eval(msk, i), then B has perfectly
simulated hybrid Hi,1 for B. Otherwise, if T is uniformly random, then B has perfectly simulated
hybrid Hi,2 for B. In the reduction, the master secret key msk is the key chosen by the challenger

in the puncturing security game. By assumption, there is some j∗ ∈ [d] where C
(j∗)
0 (i) = 1 and

C
(j∗)
1 (i) = 0. By admissibility, A is not allowed to make an evaluation query at i. By correctness

of ΠF, F.ConstrainEval(sk′, ·) agrees with F.Eval(msk, ·) on all points x 6= i, so B correctly simulates

the evaluation queries. As noted above, if C
(j∗)
0 (i) = 1 and C

(j∗)
1 (i) = 0 for some j∗, then for all

other j 6= j∗, it must be the case that C
(j)
0 (i) = 0. Algorithm B chooses the values rj for j 6= j∗

exactly as in Hi,1 and Hi,2. When j = j∗ and T = F.Eval(msk, i), then B correctly simulates Hi,1.
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Conversely, if T is uniformly random, then B correctly simulates Hi,2. We conclude that if A can
distinguish Hi,1 from H2 with advantage ε, then AdvcPRF[ΠF,B] = ε. The lemma follows.

Lemma D.7. If ΠF is selectively secure, then for all 0 ≤ i ≤ 2n, and all efficient adversaries A,
|Pr[Hi,2(A) = 1]− Pr[Hi,3(A) = 1]| is negligible.

Proof. This proof is similar to the proof of Lemma D.6. We again consider two cases. If for all

j ∈ [d], either C
(j)
0 (i) = C

(j)
1 (i) or C

(j)
0 (i) = 0 and C

(j)
1 (i) = 1. Then, hybrids Hi,1 and hybrids Hi,2

are identical experiments, and the lemma holds.

Suppose instead that there exists some j∗ ∈ [d] such that C
(j∗)
0 = 1 and C

(j∗)
1 = 0. We show

then that if there exists a distinguisher A that can distinguish Hi,2 from Hi,3 with advantage ε, then
there exists an adversary B that can break the puncturing security of ΠF. Algorithm B works as
follows. At the beginning of the puncturing security game, B commits to the point i. It then makes
a puncturing query at i to obtain a punctured key sk′, and a challenge query to obtain a value T . It
also constructs msk← F.Setup(1λ) and sets sk = F.Puncture(msk, i). Then, algorithm B responds
to oracle queries as follows:

• Evaluation oracle. On input a point x ∈ {0, 1}n, algorithm B responds with the value
F.Eval(msk, x).

• Challenge oracle. When A issues its jth challenge query on circuits C
(j)
0 and C

(j)
1 , algorithm

B responds as follows:

1. If C
(j)
0 (i) = 1 and C

(j)
1 (i) = 0, then it sets skj = sk′ and rj = T . Otherwise, compute

mskj ← F.Setup(1λ), and set skj ← F.Puncture(mskj , i), rj = F.Eval(mskj , i).

2. Output the obfuscated program iO
(
P

(cpriv)
3 [C

(j)
0 , C

(j)
1 , skj , sk, rj , i]

)
.

Finally, B outputs whatever A outputs. In the simulation, the master secret key msk′ chosen by
the puncturing challenger plays the role of mskj∗ . We see that if T is uniform over {0, 1}m, then
rj∗ is uniform over {0, 1}m, which is precisely the distribution in Hi,2. Conversely, if rj∗ = T =
F.Eval(msk′, i), then we are in Hi,3. By the admissibility requirement, for all j 6= j∗, we have that

C
(j)
0 (i) = 0. Thus, everything else is constructed as in hybrids Hi,2 and Hi,3. We conclude that if A

can distinguish Hi,2 from Hi,3 with advantage ε, then AdvcPRF[ΠF,B] = ε. The lemma follows.

Lemma D.8. If ΠF is selectively secure, then for all 0 ≤ i ≤ 2n, and all efficient adversaries A,
|Pr[Hi,3(A) = 1]− Pr[Hi,4(A) = 1]| is negligible.

Proof. As usual, we consider two possibilities. If for all j ∈ [d], either C
(j)
0 (i) = C

(j)
1 (i) or C

(j)
0 (i) = 1

and C
(j)
1 (i) = 0. In this case, hybrids Hi,3 and Hi,4 are identical experiments, and the lemma holds.

Alternatively, suppose that there exists j∗ ∈ [d] such that C
(j∗)
0 (i) = 0 and C

(j∗)
1 (i) = 1. By

the admissibility criterion, this means that for all j 6= j∗, C
(j)
1 (i) = 0. This means that for all

j 6= j∗, in hybrids Hi,3 and Hi,4, the challenger sets rj = F.Eval(mskj , i). The claim now follows by a
puncturing security argument similar to that used in the proof of Lemma D.7. In particular, given
a distinguisher A for Hi,3 and Hi,4, we can build an adversary B for the puncturing security game
for ΠF. In the reduction, the master secret key msk′ chosen by the puncturing security challenger
plays the role of mskj∗ . Then, B sets rj∗ to the challenge value T . If T = F.Eval(msk′, i), then B
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has perfectly simulated Hi,3, and if T is uniform over {0, 1}m, then B has perfectly simulated Hi,4.
The lemma follows by puncturing security of ΠF.

Lemma D.9. If ΠF is selectively secure, then for all 0 ≤ i ≤ 2n, and all efficient adversaries A,
|Pr[Hi,4(A) = 1]− Pr[Hi,5(A) = 1]| is negligible.

Proof. We consider two cases. If for all j ∈ [d], either C
(j)
0 (i) = C

(j)
1 (i) or C

(j)
0 (i) = 1 and C

(j)
1 (i) = 0.

In this case, hybrids Hi,3 and Hi,4 are identical experiments, and the lemma holds.

Alternatively, suppose that there exists j∗ ∈ [d] such that C
(j∗)
0 (i) = 0 and C

(j∗)
1 (i) = 1. By

the admissibility criterion, this means that for all j 6= j∗, C
(j)
1 (i) = 0. The claim now follows by a

puncturing security argument similar to that used in the proof of Lemma D.6. In particular, given a
distinguisher A for Hi,4 and Hi,5, we can build an adversary B for the puncturing security game for
ΠF. In the reduction, the key chosen by the puncturing security challenger plays the role of msk. As
in the proof of Lemma D.6, evaluation queries can be answered using only the punctured key since
the adversary is not allowed to query for the value at the punctured point i. In the reduction, B sets

rj∗ to the challenge value T . Since for all other j 6= j∗, we have C
(j)
1 (i) = 0, so rj = F.Eval(mskj , i)

in hybrids Hi,4 and Hi,5. Algorithm B can simply choose the mskj for itself, exactly as in the real
scheme. Finally, we note that if the challenge T is a uniformly random value, then B has perfectly
simulated Hi,4. Otherwise, if T = F.Eval(msk, i), then B has perfectly simulated Hi,5. The lemma
follows.

Lemma D.10. If iO is an indistinguishability obfuscator, then for all 0 ≤ i ≤ 2n, and all efficient
adversaries A, |Pr[Hi,5(A) = 1]− Pr[Hi+1(A) = 1]| is negligible.

Proof. By construction, in hybrid Hi,5, the challenger sets rj = F.Eval(msk, i) if C
(j)
1 (i) = 1 and

rj = F.Eval(mskj , i) if C
(j)
1 (i) = 0. Together with correctness of ΠF, we have for all j ∈ [d]

that the program P
(cpriv)
3 [C

(j)
0 , C

(j)
1 , skj , sk, rj , i] in Hi,5 computes the exact same functionality as

P
(cpriv)
2 [C

(j)
0 , C

(j)
1 ,mskj ,msk, i+ 1]. Indistinguishability then follows by security of iO.

Combining Lemmas D.5 through D.10, we conclude that hybrid experiments Hi and Hi+1 are
computationally indistinguishable for all 1 ≤ i ≤ 2n. This proves Lemma D.4.

By Lemma D.4, we have that hybrids Hi and Hi+1 are computationally indistinguishable for all
1 ≤ i ≤ 2n. Thus, as long as the underlying indistinguishability obfuscator and puncturable PRF is
secure against subexponential time adversaries, Theorem 3.3 holds.

Remark D.11 (Security from Polynomial Hardness). We note that Theorem 3.3 only requires

subexponentially-secure iO (and one-way functions) if the set of challenge circuits {C(j)
0 }j∈[d] and

{C(j)
1 }j∈[d] the adversary submits differ on a super-polynomial number of points. In particular, let

S be the set of points on which each pair of circuits differ:

S =
{
x ∈ {0, 1}n | ∃j ∈ [d] : C

(j)
0 (x) 6= C

(j)
1 (x)

}
.

In the proof of Theorem 3.3, hybrid experiments Hi and Hi+1 are identical experiments if i /∈ S.
Thus, we only need to introduce a hybrid for each x ∈ S. If we restrict the class of circuits on which
the adversary can query such that |S| = poly(n), Theorem 3.3 would hold assuming polynomial
hardness of iO and one-way functions. This implies, for example, that ΠioPRF is a private puncturable
PRF assuming only polynomial hardness of iO and selective-security of ΠF.
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E A Private Programmable PRF from Obfuscation

We note that the construction of a private circuit-constrained PRF from Section 3 can be easily
adapted to obtain a private programmable PRF (defined in Appendix C). In this section, we describe
our iO-based construction of a private programmable PRF. As before, we require a puncturable
PRF ΠF = (F.Setup,F.Puncture,F.ConstrainEval,F.Eval). We define our private programmable PRF
ΠiopPRF = (cPRF.Setup, cPRF.Program, cPRF.ConstrainEval, cPRF.Eval) as follows:

• cPRF.Setup(1λ). The setup algorithm computes msk← F.Setup(1λ).

• cPRF.Program(msk, x, y). The constrain algorithm outputs an obfuscation iO (P [msk, x, y]),
where P [msk, x, y] is the following program14:

Constants: a master secret key msk for the puncturable PRF scheme
ΠF = (F.Setup,F.Puncture,F.ConstrainEval,F.Eval), a point x∗ ∈ {0, 1}n, and a
value y ∈ {0, 1}m.

On input x ∈ {0, 1}n:

1. If x = x∗, output y. Otherwise, output F.Eval(msk, x).

Figure 5: The program P̄1 [msk, x∗, y]

• cPRF.ConstrainEval(sk, x). The constrained evaluation algorithm outputs the evaluation of
the obfuscated program sk on x.

• cPRF.Eval(msk, x). The evaluation algorithm outputs F.Eval(msk, x).

Correctness. By construction, the program P̄1[msk, x, y] outputs y on input x and F.Eval(msk, ·)
on all other inputs. Correctness of the scheme then follows from correctness of iO.

Security. We now state the security and privacy theorems for ΠiopPRF. The security and privacy
proofs are similar to those of Theorems 3.2 and 3.3.

Theorem E.1. If iO is an indistinguishability obfuscator and ΠF is a selectively-secure puncturable
PRF, then ΠiopPRF is selectively-secure.

Proof. We describe the hybrids below.

• Hybrid H0. This is the real experiment ExptcPRF0 (Definition C.1).

• Hybrid H1. This is identical to H0, except the challenger substitutes sk← F.Puncture(msk, x)
for msk in the program P̄1[msk, x, y]. Everything else remains unchanged.

14Note that we pad the program P̄1 [msk, x∗, y] to the maximum size of any program that appears in the hybrid
experiments in the proofs of Theorem E.1 and E.2.

49



• Hybrid H2. This is identical to H1, except when responding to the challenge query, the
challenger returns a uniform random value r

r←− {0, 1}m.

• Hybrid H3. This is the real experiment ExptcPRF1 (Definition C.1).

As in the proof of Theorem 3.2, hybrids H0 and H1 are computationally indistinguishable by correct-
ness of the puncturable PRF ΠF and iO security. The same argument shows that hybrids H2 and
H3 are computationally indistinguishable. Hybrids H1 and H2 are computationally indistinguishable
by selective security of ΠF (analogous to the argument in the proof of Lemma D.2). The theorem
follows.

Theorem E.2. If iO is an indistinguishability obfuscator and ΠF is a selectively-secure puncturable
PRF, then ΠiopPRF is private.

Proof. In the privacy with programmability experiment Exptpprivb , recall that the challenger first
computes msk← cPRF.Setup(1λ). The adversary can then make evaluation queries; at some point,
it makes a challenge query by sending two points x0, x1 ∈ {0, 1}n. The challenger responds with
cPRF.Program(msk, xb, y), where y is chosen uniformly at random. In the first hybrid, we will have
the challenger choose y to be the output of a puncturable PRF. In doing so, we arrive at the
construction of ΠioPRF, which we know to be private (Theorem 3.3). This suffices to prove the claim.
We now describe the hybrids more concretely.

• Hybrid H0. This is the real experiment Exptppriv0 .

• Hybrid H1. Same as H0, except the challenger implements the challenge oracle as follows:

– Challenge oracle. On input x0, x1 ∈ {0, 1}n, the challenger computes msk′ ←
F.Setup(1λ) and sets y = F.Eval(msk′, x0). It then outputs cPRF.Program(msk, x0, y).

• Hybrid H2. Same as H1, except on a challenge query x0, x1 ∈ {0, 1}n, the challenger outputs
cPRF.Program(msk, x1, y).

• Hybrid H3. This is the real experiment Exptppriv1 .

Lemma E.3. If ΠF is a selectively-secure puncturable PRF, then for all efficient adversaries A,
|Pr[H0(A) = 1]− Pr[H1(A) = 1]| is negligible.

Proof. Hybrids H0 and H1 only differ in how y is chosen. In H0, y is truly random, and in H1, y is
pseudorandom. Thus, indistinguishability follows directly from security of ΠF. Concretely, if A is a
distinguisher for hybrids H0 and H1, then we can construct an adversary B that breaks the PRF
security of ΠF. In particular B performs the setup procedure and answers the evaluation queries
exactly as in hybrids H0 and H1. When A issues a challenge query, B queries the PRF challenger at
x0 to determine the value y. If y is truly random, B perfectly simulates H0 and if y is pseudorandom,
B perfectly simulates H1.

Lemma E.4. If iO is a secure indistinguishability obfuscator and ΠF is selectively-secure, then for
all efficient adversaries A, |Pr[H1(A) = 1]− Pr[H2(A) = 1]| is negligible.
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Proof. In hybrid H1, on input x0, x1, the challenger outputs an obfuscation of the program
P̄1[msk, x0,F.Eval(msk′, x0)]. Let C0 : {0, 1}n → {0, 1} be the circuit that is 1 everywhere ex-
cept at x0. By construction, the program P̄1[msk, x0,F.Eval(msk′, x0)] is functionally equivalent to
the program P1[C0,msk′,msk] from Figure 1. In hybrid H2, on input x0, x1, the challenger outputs
an obfuscation of the program P̄1[msk, x1,F.Eval(msk′, x1)], which is functionally equivalent to the
program P1[C1,msk′,msk], where C1 : {0, 1}n → {0, 1} is the circuit that is 1 everywhere except at
x1. By appealing to the security of iO and the argument in the proof of Theorem 3.3, we have that

iO
(
P̄1[msk, x0,F.Eval(msk′, x0)]

) c
≈ iO

(
P1[C0,msk′,msk]

)
c
≈ iO

(
P1[C1,msk′,msk]

)
c
≈ iO

(
P̄1[msk, x1,F.Eval(msk′, x1)]

)
.

Note that because circuits C0 and C1 differ only on a constant number of points (more precisely,
two points), we do not require an exponential number of hybrids when applying the argument from
the proof of Theorem 3.3 (see Remark D.11). Thus, the claim follows from security of iO and ΠF

against polynomial-time adversaries.

Lemma E.5. If ΠF is a secure puncturable PRF, then for all efficient adversaries A, the quantity
|Pr[H2(A) = 1]− Pr[H3(A) = 1]| is negligible.

Proof. Same argument as in the proof of Lemma E.3.

Combining Lemmas E.3 through E.5, we conclude that ΠiopPRF is a private programmable PRF.

F Proofs from Section 4

F.1 Proof of Theorem 4.3

Let msk ← cPRF.Setup(1λ) and let C ∈ Cbf be a circuit. Let s = s1s2 · · · sn be the bit-fixing
string for C. Let x ∈ {0, 1}n be an arbitrary input for which C(x) = 1. Write msk as defined in
Equation (4.1), and write the constrained key sk ← cPRF.Constrain(msk, s) as in Equation (4.2).
By construction,

cPRF.ConstrainEval(sk, x) = e
(

(gα)β0 , (D1,x1)β1 , . . . , (Dn,xn)βn
)

= e
(

(gα)β0 , (gd1,x1 )β1 , . . . , (gdn,xn )βn
)

= g
α (

∏
i∈[n] di,xi)(

∏n
i=0 βi)

n+1

= g
α
∏

i∈[n] di,xi
n+1 = cPRF.Eval(msk, x).

The second equality follows from the fact that C(x) = 1, and so Di,xi = gdi,xi for all i ∈ [n].
The third equality follows by multilinearity of e. For the fourth inequality, we use the fact that
β0β1 · · ·βn = 1, which yields the claim.
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F.2 Proof of Theorem 4.4

Let A be an efficient and admissible adversary that participates in experiment ExptcPRFb (Defini-
tion 2.3). We construct an efficient algorithm B which breaks the (n+ 1)-MDH assumption with
advantage AdvcPRF(ΠbfPRF,A). The algorithm B is given a (n+ 1)-MDH challenge of the form

(~G, p, g, gn+1, g
a1 , . . . , gan+2 , gun+1),

and must decide whether u = a1a2 · · · an+2 or if u was sampled uniformly from Zp.

At the beginning of the experiment, the adversary A commits to its challenge query x∗ =
x∗1x

∗
2 · · ·x∗n ∈ {0, 1}n and sends x∗ to B. Then, algorithm B independently samples n random

elements d1, . . . , dn
r←− Zp. For each i ∈ [n], define

(d∗i,0, d
∗
i,1) =

{
(ai, di), if x∗i = 0

(di, ai), if x∗i = 1
.

Algorithm B then simulates the response to each oracle query type made by A in the following
manner.

Constrain oracle. On input a bit-fixing string s = s1s2 · · · sn ∈ {0, 1, ?}n, algorithm B does the
following. First, note that s cannot match x∗ because A must be admissible (Definition 2.4). Let j be
the first index for which x∗j 6= sj and sj 6= ?. Algorithm B independently samples uniformly random

elements r1, . . . , rn ∈ Zp and β1, . . . , βn ∈ Zp. Define β0 = (β1β2 · · ·βn)−1. For each i ∈ [n] \ {j},
define

(Di,0, Di,1) =


(gd
∗
i,0 , gri), if si = 0

(gri , gd
∗
i,1), if si = 1

(gd
∗
i,0 , gd

∗
i,1), if si = ?

,

and define

(Dj,0, Dj,1) =


(

(gan+2)di , gri
)
, if si = 0(

gri , (gan+2)di
)
, if si = 1

.

Finally, B responds with sk =
(

(gan+1)β0 ,
{

(Di,0)
βi , (Di,1)

βi
}
i∈[n]

)
.

Evaluation oracle. On input x ∈ {0, 1}n, algorithm B treats x as a bit-fixing pattern, and applies
the logic used to respond to constrain queries on x. Let sk be the resulting key. Algorithm B replies
with cPRF.ConstrainEval(sk, x).

Challenge oracle. The adversary A can only query the challenge oracle on input x∗, to which B
returns y = gun+1 (obtained directly from the (n+ 1)-MDH challenge) to the adversary.

Eventually, A outputs a bit b′ ∈ {0, 1}, which is also output by B. We show that if the (n+ 1)-
MDH challenger sampled u uniformly from Zp, then B has simulated ExptcPRF1 for ΠbfPRF, and if
the (n+ 1)-MDH challenger set u =

∏
i∈[n+2] ai, then B has simulated ExptcPRF0 for ΠbfPRF.
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Set α = an+1an+2. Algorithm B simulates the distribution of msk from the setup phase as the
tuple

msk ≡
(
gn+1, α, {d∗i,0, d∗i,1}i∈[n]

)
,

which is identically distributed to msk obtained from cPRF.Setup(1λ) since the scalars a1, . . . , an+2

and d1, . . . , dn are all distributed uniformly and independently in Zp.
For each constrain oracle query, on input a bit-fixing string s, let j ∈ [n] be the first index for

which x∗j 6= sj and sj 6= ?. Define

(D̂j,0, D̂j,1) =


(
gd
∗
j,0 , grj

)
, if sj = 0(

grj , gd
∗
j,1

)
, if sj = 1

.

For scalars γ1, . . . , γn
r←− Zp drawn independently and uniformly and γ0 = (γ1γ2 · · · γn)−1, the

secret key sk that B returns is distributed identically as

sk ≡
(

(gan+1 an+2)(an+2)−1γ0 , {(Di,0)
γi , (Di,1)

γi}i 6=j ∪
{
D̂
an+2γj
j,0 , D̂

an+2γj
j,1

})
≡
(

(gα)γ0 , {(Di,0)
γi , (Di,1)

γi}i 6=j ∪
{
D̂
γj
j,0, D̂

γj
j,1

})
.

The first equivalence comes from the construction of sk and the distribution of the random variables
βi. The second equivalence is derived from modeling α = an+1an+2 and from the fact that the
following two distributions are identical:

{γ0, . . . , γn} and {(an+2)
−1γ0, γ1, · · · , γj−1, (an+2) γj , γj+1, · · · , γn}.

We conclude that B’s response to a constrain query matches the distribution of cPRF.Constrain(msk, ·).
Next, since B correctly simulates the constrain queries, it also correctly simulates the evaluation
queries. This follows from the fact that a pattern of the form x ∈ {0, 1}n always matches the string
x and the correctness of the scheme.

For the challenge query, if u is distributed uniformly in Zp, then the challenge oracle responds
with a uniformly and independently distributed element of Gn+1, which means that B has perfectly

simulated ExptcPRF1 . On the other hand, if u =
∏
i∈[n+2] ai, then y = gun+1 = g

α
∏

i∈[n] ai
n+1 . Since

α = an+1 an+2, algorithm B has perfectly simulated ExptcPRF0 for ΠbfPRF. We conclude that under
the (n+ 1)-MDH assumption that AdvcPRF[ΠbfPRF,A] is negligible.

F.3 Proof of Theorem 4.5

Let A be an efficient adversary which participates in the experiment Exptcprivb (without access to
an evaluation oracle). For any two bit-fixing strings s1, s2 ∈ {0, 1, ?}n, consider the secret key
skb = cPRF.Constrain(msk, sb). The adversary’s view in Exptcprivb consists solely of the key skb. Since
skb contains 2n+ 1 group elements which are distributed identically as 2n+ 1 group elements drawn
uniformly and independently from G1. In particular, skb is independent of s1 and s2, and so we
conclude that Advcpriv[ΠbfPRF,A] = 1/2, which yields the claim.
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G Proofs from Section 5

G.1 Proof of Theorem 5.2

Let msk ← cPRF.Setup(1λ) and take any point s ∈ {0, 1}n. Let x ∈ {0, 1}n be such that x 6= s.
Using msk as defined in Equation 5.1, write the punctured key sk ← cPRF.Puncture(msk, s) as a
collection of group elements {Di,0, Di,1}i∈[n]. By construction, for all i ∈ [n] and b ∈ {0, 1}, each

Di,b can be described as the product g
di,b
p,1 g

zi,b
q,1 , where either zi,b = di,b or zi,b = 0. To conclude the

proof, we note that

cPRF.ConstrainEval(sk, x) = e(D1,x1 , . . . , Dn,xn)

= e(g
d1,x1
p,1 g

z1,x1
q,1 , . . . , g

dn,xn
p,1 g

zn,xn
q,1 )

= e(g
d1,x1
p,1 , . . . , g

dn,xn
p,1 ) · e(gz1,x1q,1 , . . . , g

zn,xn
q,1 )

= e(g
d1,x1
p,1 , . . . , g

dn,xn
p,1 ) · 1

= g

∏
i∈[n] di,xi

p,n = cPRF.Eval(msk, x).

The first two equalities follow by definition of cPRF.ConstrainEval and cPRF.Puncture. The third and
fifth equalities follow by the multilinearity of e. For the fourth equality, we use the fact that x 6= s,
which means that there exists an index i ∈ [n] where xi 6= si. By construction of cPRF.Puncture,
zi,xi = 0 and so the second evaluation of the multilinear map is raised to the 0th power.

G.2 Proof of Theorem 5.3

Let A be an efficient adversary which participates in the experiment ExptcPRFb . We construct an
efficient adversary B that breaks the n-MDHSD assumption with advantage AdvpPRF[ΠpuncPRF,A].
Algorithm B is given a n-MDHSD challenge of the form(

~G, N, g1, h = gγp,1, A1 = ga11 , . . . , An = gan1 , T
)
,

and must decide if T = gzp,n or T = grn, where z =
∏
i∈[n] ai, r is uniform in ZN , γ is uniform in

Zp, g1 = gp,1gq,1 is the canonical generator of G1, and gn = gp,ngq,n is the canonical generator of
Gn. Algorithm B starts by running A to receive a challenge point x∗ ∈ {0, 1}n. Then, algorithm B
samples n random elements d1, . . . , dn

r←− ZN . We describe how B simulates the constrain, evaluation,
and challenge oracle queries.

Constrain oracle. Let s ∈ {0, 1}n be the point from the adversary. For each i ∈ [n] and b ∈ {0, 1},
algorithm B constructs the elements Di,b as follows:

(Di,0, Di,1) =

{
(Ai, h

di), if si = 0

(hdi , Ai), if si = 1
. (G.1)

Algorithm B then outputs the punctured key sk = {Di,0, Di,1}i∈[n].

Evaluation oracle. On input x ∈ {0, 1}n, algorithm B invokes the constrain oracle on x∗ to
obtain the punctured key sk. It then returns cPRF.ConstrainEval(sk, x). Note that since A is
admissible, x 6= x∗.
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Challenge oracle. Algorithm A can only query the challenge oracle on input x∗, to which
algorithm B responds with the value T .

Eventually, algorithm A outputs a bit b′ ∈ {0, 1}, which is also output by B. We show
that if T = gzp,`, then B perfectly simulates experiment ExptcPRF0 for A and if T = gs` , then B
perfectly simulates experiment ExptcPRF1 for A. Then, the advantage of B in breaking the n-MDHSD
assumption is precisely AdvpPRF[ΠpuncPRF,A], which proves the claim.

For each i ∈ [n], let d′i ∈ ZN be the unique element that satisfies d′i = γ di (mod p) and d′i = di
(mod q). Now, for i ∈ [n], define

(d∗i,0, d
∗
i,1) =

{
(ai, d

′
i), if x∗i = 0

(d′i, ai), if x∗i = 1
, (G.2)

where the values ai are implicit from the n-MDHSD challenge. We now show that B’s responses to
the constrain, evaluation, and challenge queries are consistent with the responses in the real game
where the msk sampled by the challenger is given by the following:

msk∗ =
(
p, q, g1, gp,1, gp,n,

{
d∗i,0, d

∗
i,1

}
i∈[n]

)
. (G.3)

Since the groups ~G, generators {gp,i, gq,i}i∈[n], and exponents {ai, di}i∈[n] are drawn from the same

distribution as in the cPRF.Setup algorithm, we have that msk∗ is distributed identically as the
master secret key generated in the real scheme.

Now, we show that algorithm B correctly simulates the constrain oracle—that is, the real
distribution of sk is identical to the output of cPRF.Puncture(msk∗, s). To do this, let sk =
{Di,0, Di,1}i∈[n] be the punctured key output by honestly invoking cPRF.Puncture(msk∗, s), and let

s̃k =
{
D̃i,0, D̃i,1

}
i∈[n]

be the punctured key simulated by B. For each i ∈ [n] and b ∈ {0, 1}, we

write
Di,b = g

ui,b
p,1 g

vi,b
q,1 and D̃i,b = g

ũi,b
p,1 g

ṽi,b
q,1 .

Note that in both the real and simulated distributions, the components in Gp,1 and Gq,1 are
independent (by the Chinese Remainder Theorem). Hence, proving correctness of the simulation for
the constrain oracle is equivalent to showing that both

{ui,0, ui,1}i∈[n] ≡ {ũi,0, ũi,1}i∈[n] and {vi,0, vi,1}i∈[n] ≡ {ṽi,0, ṽi,1}i∈[n].

Consider the components in Gp,1. We note that since the adversary is admissible (Definition 2.4),
s = x∗. Then, by the definition of d∗i,b from Equation G.2, and the fact that d′i = γ di (mod p), we
have that

(ui,0, ui,1) =

{
(ai, γ di) if si = 0

(γ di, ai), if si = 1
,

But since h = gγp,1, this is precisely the distribution of ũi,b constructed by B from Equation (G.1).
Thus, {ui,0, ui,1}i∈[n] and {ũi,0, ũi,1}i∈[n] are identically distributed.

Now, we consider the components in the Gq subgroup independently and show that {vi,0, vi,1}i∈[n] ≡
{ṽi,0, ṽi,1}i∈[n]. In the real scheme,

(vi,0, vi,1) =

{
(ai, 0), if si = 0

(0, ai), if si = 1
,
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Once again, this precisely coincides with the distribution chosen by B. We conclude that {vi,0, vi,1}i∈[n]
and {ṽi,0, ṽi,1}i∈[n] are distributed identically. This completes the proof that algorithm B has per-
fectly simulated the responses to the constrain oracle queries. Given that B correctly simulates the
responses to the constrain oracle queries, the fact that B also correctly simulates the responses to
evaluation oracle queries follows from trivially by correctness of ΠpuncPRF (Theorem 5.2).

For the last step, we claim that the simulator correctly simulates the challenge oracle. To see
this, note that if T = gzp,n, then the output of cPRF.Eval(msk∗, x) is given by

y = g

∏
i∈[n] d

∗
i,xi

p,n = g

∏
i∈[n] ai

p,n = gzp,n,

and if T = gsn, since s is uniform over ZN , the challenge T is also uniform in Gn. Hence, we have
shown that algorithm B perfectly simulates ExptcPRF0 for A when T = gzp,n and that algorithm B
perfectly simulates ExptcPRF1 for A when T is distributed uniformly. This allows us to conclude
that we conclude that the advantage of B in breaking the n-MDHSD assumption is precisely
AdvcPRF[ΠpuncPRF,A].

G.3 Proof of Theorem 5.4

For b ∈ {0, 1}, we present a series of hybrid experiments H
(b)
0 , . . . ,H

(b)
n between a challenge and an

adversary A which makes a single challenge query and no evaluation queries. We will define H
(b)
0 to

behave identically to Exptcprivb for ΠpuncPRF and H
(b)
n to behave independently of b.

Hybrid H
(b)
0 . First, the challenger computes msk← cPRF.Setup(1λ), where msk is as described in

Equation (5.1). The adversary then queries the challenge oracle on two points s(0), s(1) ∈ {0, 1}n, to
which the challenger replies with sk← cPRF.Puncture(msk, s(b)). In particular, the challenger first
constructs, for all i ∈ [n],

(Di,0, Di,1) =

{
(g
di,0
1 , g

di,1
p,1 ), if s

(b)
i = 0

(g
di,0
p,1 , g

di,1
1 ), if s

(b)
i = 1

,

where di,0 and di,1 are components of msk. The challenger gives the punctured key sk = {(Di,0), (Di,1)}i∈[n]
to A. Afterwards, the adversary A outputs a bit b′ ∈ {0, 1}.

Hybrid H
(b)
j for j ∈ [n]. In hybrid H

(b)
j , the challenger behaves exactly as in hybrid H

(b)
j−1, except

that the challenger sets

(Dj,0, Dj,1) = (g
dj,0
1 , g

dj,1
1 ),

and the values Di,b for all other indices i ∈ [n] \ {j} remain the same.

We show that under the Subgroup Decision assumption (Definition A.2), hybrids H
(b)
j−1 and H

(b)
j

are computationally indistinguishable for all j ∈ [n] and b ∈ {0, 1}. Let A be an efficient adversary

that is able to distinguish hybrid H
(b)
j−1 from H

(b)
j with advantage ε. We construct an algorithm B

that breaks the Subgroup Decision assumption with the same advantage ε. Algorithm B is given a
Subgroup Decision challenge of the form

(~G, N, g1, gγp,1, T ),

56



where γ is uniform over Zp, and its goal is to determine if T = gr1 or if T = grp,1 for a random r ∈ ZN .

Algorithm B begins by running A. First, the adversary A sends two input strings s(0), s(1) ∈ {0, 1}n

to B. For i ∈ [n], algorithm B chooses random exponents di,0, di,1
r←− ZN . For all i < j, B sets

(Di,0, Di,1) = (g
di,0
1 , g

di,1
1 ), and for all i > j, B sets (Di,0, Di,1) as follows:

(Di,0, Di,1) =

{
(g
di,0
1 , g

di,1
p,1 ), if s

(b)
i = 0

(g
di,0
p,1 , g

di,1
1 ), if s

(b)
i = 1

Finally, it sets

(Dj,0, Dj,1) =

{
(g
dj,0
1 , T ), if s

(b)
j = 0

(T, g
dj,1
1 ), if s

(b)
j = 1

.

First, note that for all i 6= j, the components (Di,0, Di,1) are distributed identically to the components

in H
(b)
j−1 and H

(b)
j . Next, if T = gr, then T is uniform in G1, and so (Dj,0, Dj,1) consists of two

uniformly distributed elements in G1, which means that B has simulated H
(b)
j . On the other hand, if

T = grp, then T is a uniform random element in Gp,1, so B has simulated H
(b)
j−1. Thus, if A is able to

distinguish H
(b)
j−1 from H

(b)
j with advantage ε for any j ∈ [n], then B is able to break the Subgroup

Decision assumption with the same advantage ε.

Finally, we note that in H
(b)
n , the challenger behaves independently of b, and hence the adversary

has no advantage in guessing b correctly. By taking a union bound, we therefore conclude that for
all efficient adversaries A that participates in the experiment Exptcprivb , there exists an adversary B
that breaks the Subgroup Decision assumption with advantage at least Advppriv[ΠpuncPRF,A]/n.

H Proofs from Section 6.1

H.1 Proof of Theorem 6.9

We show that the Πwm is correct (Definition 6.3). Take a message m ∈ {0, 1}t. Let msk =
(k, z1, . . . , zd) ← WM.Setup(1λ) and (k,C) ← WM.Mark(msk,m). We now check each of the
requirements:

• Since k is generated by invoking the setup algorithm for Πpprf , it is properly distributed and
the first requirement is satisfied.

• Let w ∈ ({0, 1}` × {0, 1}t)d be a vector where wi = pPRF.Eval(k, zi) for each i ∈ [d]. Let
(x∗, y∗, τ∗) = F (k,w). By construction, we have C(·) = pPRF.ProgramEval(skk, ·) where
skk = pPRF.Program(k, x∗, (y∗,m ⊕ τ∗)). By correctness of Πpprf , for all inputs x 6= x∗, we
have that

C(x) = pPRF.ProgramEval(skk, x) = pPRF.Eval(k, x). (H.1)

Certainly then, C(·) ∼f pPRF.Eval(k, ·) where 1/f = negl(λ), so the second requirement is
satisfied.

• Since (x∗, y∗, τ∗) = F (k,w), by PRF security of F , we have for all i ∈ [d], Pr[x∗ = zi] = negl(λ).
Since d = poly(λ), by a union bound, with overwhelming probability, x∗ 6= zi for all i ∈ [d],
and so by Equation (H.1), we conclude C(zi) = pPRF.Eval(k, zi) for all i ∈ [d]. Thus,

57



with overwhelming probability, the tuple (x, y, τ) computed by the verification algorithm
WM.Verify(msk, C) satisfies (x, y, τ) = (x∗, y∗, τ∗). The verification algorithm then computes
C(x) = C(x∗) = (y∗,m⊕ τ∗), and outputs (m⊕ τ∗)⊕ τ∗ = m, so the third requirement holds.

Since all three requirements hold, we conclude that Πwm is correct.

H.2 Proof of Theorems 6.10 and 6.11

To prove security of Πwm we construct a series of hybrid experiments between a challenger and an
adversary A, where A is given access to a marking oracle and a challenge oracle. We will assume
without loss of generality that A only makes distinct marking queries, since repeated marking queries
can be responded to by simply recalling the response from the previous such query. We write Hi(A)
to denote the output of the challenger in hybrid Hi. The first hybrid experiment, H0, is identical to
Exptwm; we recall it here for clarity.

Definition H.1 (Hybrid H0). Let H0 = Exptwm, so H0 represents the real watermarking game.
For clarity, we recall the challenger’s behavior in Exptwm for the construction Πwm here. First, the

challenger chooses k
r←− K and (z1, . . . , zd)

r←− ({0, 1}n)d uniformly at random. Then, the challenger
responds to each marking or challenge oracle query made by A in the following manner.

• Marking oracle: On input a message m ∈ {0, 1}t, the challenger generates k ← pPRF.Setup(1λ),
and computes w = (pPRF.Eval(k, z1), . . . , pPRF.Eval(k, zd)). It then sets (x, y, τ) = F (k,w)
and v = m⊕ τ . Then, it computes skk ← pPRF.Program(k, x, (y, v)), sets the circuit C(·) =
pPRF.ProgramEval(skk, ·) and returns (k,C) to A.

• Challenge oracle: On input a message m ∈ {0, 1}t, the challenger generates a key by computing

k∗
r←− pPRF.Setup(1λ), and then computes w = (pPRF.Eval(k∗, z1), . . . , pPRF.Eval(k

∗, zd))
and sets (x∗, y∗, τ∗) = F (k,w) and v∗ = m ⊕ τ∗. Then, it computes the key skk∗ ←
pPRF.Program(k∗, x∗, (y∗, v∗)), sets C∗(·) = pPRF.ProgramEval(skk∗ , ·). It gives C∗ to A.

Eventually, A outputs a circuit C ′. The challenger computes the tuple w = (C ′(z1), . . . , C
′(zd)),

sets (x, y, τ) = F (k,w), and (y′, v) = C ′(x). Finally, it outputs v ⊕ τ if y = y′, and ⊥ otherwise.

Proof of Theorem 6.10. We proceed via a hybrid argument. First, we define our sequence of
hybrid experiments:

• Hybrid H1. This is identical to H0, except the challenger initializes a set Z = ∅ in the setup
phase. When responding to marking and challenge queries, the challenger, after computing
w, checks to see if w ∈ Z. If so, the challenger sets the Bad1 flag and then continues with
the experiment. Otherwise, the challenger adds w to Z. During the verification step, if the
Bad1 flag has been set, the challenger aborts the experiment and outputs Bad1. Otherwise, it
proceeds as in H0.

• Hybrid H2. This is identical to H1, except in the setup phase, the challenger chooses a
random function g : ({0, 1}` × {0, 1}t)d → {0, 1}n × {0, 1}` × {0, 1}t instead of a random key
k ∈ K. When responding to marking queries, challenge queries, and in the verification step, the
challenger computes the tuple (x, y, τ) by evaluating g(w) rather than F (k,w). In addition,
when responding to the challenge query, if x∗ = zi for some i ∈ [d], the challenger sets the
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Bad2 flag and continues with the experiment. At the beginning of the verification step, if the
Bad2 flag has been set, the challenger aborts the experiments and outputs Bad2. Otherwise, it
proceeds as in H1.

• Hybrid H3. This is identical to H2, except when the challenger responds to marking and
challenge queries, it samples (x, y, τ)

r←− {0, 1}n × {0, 1}` × {0, 1}t uniformly rather than
computing g(w). Also, in the verification step, after A outputs a circuit C ′, the challenger
aborts and outputs Bad3 if for some i ∈ [d], C ′(zi) 6= pPRF.ProgramEval(skk∗ , zi). Otherwise,
the challenger sets (y′, v) = C ′(x∗) and outputs v ⊕ τ∗ if y′ = y∗, and ⊥ otherwise.

• Hybrid H4. This is identical to H3, except that in the verification step, after the chal-
lenger performs the check for Bad3, it computes the tuples (y′, v) = C ′(x∗) and (ȳ∗, v̄∗) =
pPRF.ProgramEval(skk∗ , x

∗). The challenger outputs v ⊕ (v̄∗ ⊕m) if y′ = ȳ∗ and ⊥ otherwise.
Here, skk∗ is the key the challenger generates when responding to the challenge query.

• Hybrid H5. This is identical to H4, except when responding to the challenge oracle, the chal-
lenger sets skk∗ ← pPRF.Program(k∗, 0n, (y∗, v∗)) instead of pPRF.Program(k∗, x∗, (y∗, v∗)).

We now show that each consecutive pair of hybrid experiments is computationally indistinguishable.
In addition, we show in Lemma H.7, that Pr[H5(A) 6= m] is negligible. This completes the proof of
Theorem 6.10. Note that in all of our proofs below, we will implicitly assume that d = poly(λ) in
our construction.

Lemma H.2. If Πpprf is a secure PRF, then for all efficient adversaries A, the absolute difference
|Pr[H0(A) 6= m]− Pr[H1(A) 6= m]| is negligible.

Proof. To prove this lemma, it suffices to show that for any efficient adversary A which makes Q
marking oracle and challenge oracle queries and causes H1 to output Bad1 with probability ε, we
can construct an algorithm B which wins the PRF security experiment with advantage at least
a negligible amount less than ε/Q. Recall in the PRF security game (Definition 2.1), B is either
given oracle access to the PRF or given oracle access to a truly random function and its goal is to
distinguish the two experiments.

We construct algorithm B as follows. First, a random index j
r←− [Q] is selected. Algorithm B

then conducts a faithful simulation of H1 for the setup phase and the first j − 1 marking oracle or
challenge oracle queries. Finally, on the jth query, for each i ∈ [d], algorithm B queries its oracle on
each zi for i ∈ [d] and receives output (yi, vi). Algorithm B then halts the experiment with A, and
if ((y1, v1), . . . , (yd, vd)) ∈ Z, algorithm B outputs 0. Otherwise it outputs 1.

By construction, the challenger in H1 aborts the experiment and outputs Bad1 if and only if the
challenger sets the Bad1 flag on some round j. Since A causes H1 to abort with probability ε, then
it must cause the challenger in H1 to set the Bad1 flag on the jth query (for a uniformly selected
index j) with probability at least ε/Q. Now, if b = 0 (if B is given oracle access to the PRF) then B
has perfectly simulated H1 up until the jth query, and hence B will output 0 with probability at
least ε/Q. If b = 1 (if B is given oracle access to the truly random function) then the probability
that B outputs 0 is equal to the probability that ((y1, v1) . . . , (yd, vd)) ∈ Z, which is bounded by
(j − 1)/2`+t ≤ Q/2`+t = negl(λ), since Q = poly(λ) and `, t = Ω(λ).

Lemma H.3. If F is a secure PRF, then for all efficient adversaries A, the absolute difference
|Pr[H1(A) 6= m]− Pr[H2(A) 6= m]| is negligible.
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Proof. For any efficient adversary A which makes Q marking oracle and challenge oracle queries, we
construct an algorithm B for the PRF security experiment. In the PRF security game, adversary
B is given oracle access to either the PRF F (k, ·) for k

r←− K or oracle access to a truly random

function f
r←− Funs(({0, 1}`×{0, 1}t)d, {0, 1}n×{0, 1}`×{0, 1}t). We show that B can win the PRF

security game with advantage at least |Pr[H1(A) 6= m]− Pr[H2(A) 6= m]|.
Algorithm B simulates H2, except that instead of computing F (k,w), B instead queries its oracle

on w to obtain a value (x, y, τ), which B uses to respond to marking and challenge query, as well as
in the verification step. If the oracle in the PRF security game implements the PRF, then B has
simulated H1. If instead the oracle implements a truly random function, then B has simulated H2.

To conclude the proof, it suffices to check that the challenger does not output Bad2 in H2. By
construction, the challenger in H2 sets Bad2 only if g(w) outputs (x∗, y∗, τ∗) such that x∗ = zi for
some i ∈ [d]. Since g is a truly random function, for any i ∈ [d], x∗ = zi with probability 1/2n.
By a union bound, x∗ 6= zi for all i ∈ [d] with probability 1 − d/2n = 1 − negl(λ). Thus, with
overwhelming probability, the challenger does not set Bad2 in H2, and the lemma follows.

Lemma H.4. For all unremoving admissible adversaries A (Definition 6.5), the absolute difference
|Pr[H2(A) 6= m]− Pr[H3(A) 6= m]| is negligible.

Proof. Since the conditions for outputting Bad1 and Bad2 are identical between H2 and H3, if the
challenger outputs Bad1 or Bad2 in one experiment, it produces the same output in the other, and
the claim follows. Thus, suppose that the challenger in H3 does not output Bad1 or Bad2. Then, the
vectors w that appear in the marking and challenge queries are all distinct. Hence, the outputs of
g(w) are all distributed uniformly and independently in {0, 1}n × {0, 1}` × {0, 1}t, which precisely
coincides with the distribution in H3. It remains to show that the adversary cannot cause H3

to output Bad3 with non-negligible probability, and that the remainder of the simulation in the
verification step is correct.

Observe that rather than sampling (z1, . . . , zd)
r←− {0, 1}n during the setup phase, the challenger

in H3 could at this point sample (z1, . . . , zd)
r←− ({0, 1}n)d after A outputs the circuit C ′ during the

verification step. This is because the challenger’s response to the marking queries and challenge
queries are now independent of (z1, . . . , zd).

15 Then, since A is unremoving admissible, for z
r←−

{0, 1}n, the probability Pr[C ′(z) 6= pPRF.ProgramEval(skk∗ , z)] is negligible. By a union bound, the
probability that there exists some i ∈ [d] where C ′(zi) 6= pPRF.ProgramEval(skk∗ , zi) is d · negl(λ).
Since d = poly(λ) in our construction, we conclude that the probability that the challenger in H3

outputs Bad3 is negligible.
Assuming the challenger in H3 does not output Bad3, then x∗ 6= zi for all i ∈ [d]. Then, by

correctness of Πpprf , pPRF.ProgramEval(skk∗ , zi) = pPRF.Eval(k∗, zi) for all i ∈ [d]. Thus, it is correct
to use the randomly sampled values (x∗, y∗, τ∗) from the challenge oracle query as the value for
g(w). The remainder of the verification step is implemented identically in H2 and H3. The lemma
follows.

Lemma H.5. For all adversaries A, Pr[H3(A) 6= m] = Pr[H4(A) 6= m].

Proof. By correctness of Πpprf , pPRF.ProgramEval(skk∗ , x
∗) = (y∗, v∗), so (ȳ∗, v̄∗) = (y∗, v∗). In H3,

v∗ = m⊕ τ∗ so v̄∗ ⊕m = v∗ ⊕m = τ∗. Thus, hybrids H3 and H4 are identical experiments.

15While the conditions for setting the flags Bad1 and Bad2 do depend on (z1, . . . , zd), the setting of the flag has no
effect on the experiment until the verification phase. Thus, it is equivalent to check whether the flags Bad1 and
Bad2 are set after sampling (z1, . . . , zd) in the verification phase.
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Lemma H.6. If Πpprf is 1-key private, then for all efficient adversaries A, the absolute difference
|Pr[H4(A) 6= m]− Pr[H5(A) 6= m]| is negligible.

Proof. Suppose |Pr[H4(A) 6= m]− Pr[H5(A) 6= m]| = ε. We use A to build an adversary B that can
distinguish between experiments Exptppriv0 from Exptppriv1 (Definition C.6) with advantage at least ε.

At the beginning of the 1-time privacy game for the programmable PRF, the challenger computes
msk ← pPRF.Setup(1λ) and samples a point (y∗, τ∗)

r←− {0, 1}` × {0, 1}t uniformly at random.
Algorithm B simulates the setup phase as described in H4 and H5.

Whenever A makes a marking oracle query, B can simulate the response perfectly without
interacting with the challenger for Exptpprivb . At some point, A will make a challenge oracle query

on input m ∈ {0, 1}t. First, B samples x∗
r←− {0, 1}n uniformly at random, and then submits the

two inputs x0 = x∗ and x1 = 0n to the challenger for Exptpprivb . The challenger responds with the
key skk∗ = pPRF.Program(msk, xb, (y

∗, τ∗)), which is returned to A. The verification procedure is
identical in H3 and H4. We argue that when b = 0, algorithm B perfectly simulates hybrid H3 and
when b = 1, algorithm B perfectly simulates hybrid H4. First, in both H3 and H4, the value at the pro-
grammed point is (y∗, v∗), where y∗ is uniform over {0, 1}`, v∗ = m⊕τ∗, and τ∗ is uniform over {0, 1}`.
Since τ∗ is independent of m, v∗ = m⊕ τ∗ is also uniform over {0, 1}`. When b = 0, the adversary
is given an evaluation circuit associated with the programmed key pPRF.Program(msk, x∗, (y∗, τ∗)),
where x∗, y∗, and τ∗ are all uniform over their respective sets, and msk is the output of pPRF.Setup.
Thus, B correctly simulates experiment H3. When b = 1, the adversary is given an evaluation circuit
associated with the programmed key pPRF.Program(msk, 0n, (y∗, τ∗)), where y∗ and τ∗ are uniform
over their respective sets. This is the distribution in H4.

Lemma H.7. For all unremoving admissible adversaries A, if m ∈ {0, 1}t is the message submitted
to the challenge oracle query, then Pr[H5(A) 6= m] is negligible.

Proof. Rather than sampling x∗
r←− {0, 1}n when responding to the challenge query, the challenger

in H5 could instead sample x∗
r←− {0, 1}n after A outputs the circuit C ′ during the verification step.

This is because the response to the challenge query is now independent of x∗. Let x∗
r←− {0, 1}n

and (y′, v) = C ′(x∗). Since A is unremoving admissible (Definition 6.5), the probability that
(y′, v) 6= pPRF.ProgramEval(skk∗ , x

∗) is negligible. This means that with overwhelming probability,
(y′, v) = pPRF.ProgramEval(skk∗ , x

∗) = (ȳ∗, v̄∗). In the verification step, the challenger affirms that
y′ = ȳ∗, and outputs v ⊕ (v̄∗ ⊕ m) = m. Hence, the probability that H5 does not output m is
negligible.

By combining Lemmas H.2-H.7, we have shown that Πwm satisfies unremovable watermarking
security.

Proof of Theorem 6.11. We proceed via a hybrid argument. First, we describe our sequence of
hybrids.

• Hybrid H1. This is the same as hybrid H1 from the proof of Theorem 6.10.

• Hybrid H2. This is identical to H1, except in the setup phase, the challenger chooses a
random function g : ({0, 1}` × {0, 1}t)d → {0, 1}n × {0, 1}` × {0, 1}t instead of a random key
k ∈ K. When responding to marking queries, challenge queries, and in the verification step,
the challenger computes the tuple (x, y, τ) by evaluating g(w) rather than F (k,w).
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• Hybrid H3. This is identical to H2, except when the challenger responds to marking queries,
it samples (x, y, τ)

r←− {0, 1}n × {0, 1}` × {0, 1}t uniformly rather than computing g(w). In
the verification step, after computing w = (C ′(z1), . . . , C ′(zd)), where C ′ is the circuit output
by the adversary, the challenger aborts the experiment and outputs Bad2 if w ∈ Z (where Z
is specified in H1). Otherwise, it proceeds as in H2.

• Hybrid H4. This is identical to H3, except in each of the marking queries and in the
verification step, the challenger samples (x, y, τ)

r←− {0, 1}n × {0, 1}` × {0, 1}t independently
and uniformly at random instead of setting (x, y, τ) = g(w).

We now show that each consecutive pairs of hybrid experiments is computationally indistinguishable.
In addition, in Lemma H.12, we show that Pr[H4(A) 6= ⊥] is negligible, which completes the proof
of Theorem 6.11.

Lemma H.8. If Πpprf is secure, then for all efficient adversaries A, |Pr[H0(A) 6= ⊥]− Pr[H1(A) 6= ⊥]|
is negligible.

Proof. The proof of this statement is identical to that of Lemma H.2.

Lemma H.9. If F is a secure PRF, then |Pr[H1(A) 6= ⊥]− Pr[H2(A) 6= ⊥]| is negligible.

Proof. Hybrid H2 is identical to the corresponding hybrid in the proof of Theorem 6.10, except the
challenger does not perform the check for Bad2. The proof thus follows same argument as that given
in the proof of Lemma H.3.

Lemma H.10. For all δ-unforging admissible adversaries A where δ = 1/poly(λ) (Definition 6.7),
the absolute difference |Pr[H2(A) 6= ⊥]− Pr[H3(A) 6= ⊥]| is negligible.

Proof. This proof is very similar to the proof of Lemma H.4. Since the condition for outputting Bad1
is identical between H2 and H3, if the challenger outputs Bad1 in one experiment, then it produces
the same output in the other, and the claim follows. Thus, suppose that the challenger does not
output Bad1. Then, the vectors w that appear in the marking queries are all distinct, and so the
outputs of g(w) in H2 are all distributed uniformly and independently in {0, 1}n × {0, 1}` × {0, 1}t,
which precisely coincides with the distribution in H3. It suffices to show that the adversary cannot
cause the challenger in H3 to output Bad2 with non-negligible probability.

Let Q = poly(λ) be the number of marking queries the adversary makes, and let C1, . . . , CQ
be the circuits the challenger outputs in response to the mark queries. Let C ′ be the circuit the
adversary outputs, and for i ∈ [Q], let Si be the set of points on which C ′(·) and Ci(·) differ. Since
A is δ-unforging admissible, for all i ∈ [Q], |Si|/2n ≥ δ. Now, as argued in the proof of Lemma H.4,

the challenger in H3 can sample (z1, . . . , zd)
r←− ({0, 1}n)d after A outputs its circuit C ′ during the

verification step. In this case then, for each j ∈ d, Pr[zj ∈ Si] = |Si| /2n ≥ δ. It follows that

Pr [∀j ∈ [d] : zj /∈ Si] =

(
1− |Si|

2n

)d
≤ (1− δ)λ/δ = negl(λ),

where we have used the fact that d = λ/δ and δ = 1/poly(λ). Since this holds for all i ∈ [Q], we
conclude that with overwhelming probability, it is the case that for each i ∈ [Q], there exists some
j for which zj ∈ Si, or equivalently, where C ′(zj) 6= Ci(zj). Since w = (C ′(z1), . . . , C

′(zd)), we
conclude that with overwhelming probability w /∈ Z. The claim follows.
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Lemma H.11. For all adversaries A, Pr[H3(A) 6= ⊥] = Pr[H4(A) 6= ⊥].

Proof. This follows from the fact that, conditioned on the challenger not outputting Bad1 and Bad2,
the function g is never evaluated on the same input twice. Hence, the inputs to g are always distinct,
in which case, the outputs (x, y, τ) are distributed uniformly and independently.

Lemma H.12. For all adversaries A, Pr[H4(A) 6= ⊥] is negligible.

Proof. In the verification step, we can think of the tuple (x, y, τ) as being sampled uniformly and
independently after the adversary submits the circuit C ′. Let C ′(x) = (y′, v′). Then, the probability
that y′ = y is exactly 1/2` = negl(λ), where the probability is taken over the distribution of y.

Combining Lemmas H.8 through H.12, we conclude that Πwm is δ-unforgeable.

I Proofs from Section 6.2

I.1 Proof of Theorem 6.17

Let (sk, dk) ← DE.Setup(1λ). Take any message m ∈ M and let ct ← DE.Encrypt(sk,m). Then,
ct = (r, y ⊕m) for r ∈ {0, 1}n and y = cPRF.ConstrainEval(sk, r). Then,

DE.Decrypt(sk, ct) = cPRF.ConstrainEval(sk, r)⊕ (y ⊕m) = y ⊕ y ⊕m = m.

Correctness follows.

I.2 Proof of Theorem 6.18

Semantic security follows directly from PRF security. Let (sk,msk) be the keys the challenger
generates via DE.Setup at the beginning of the security game. Suppose the adversary makes q
encryption queries. Let r1, . . . , rq ∈ {0, 1}n be the random points sampled by DE.Encrypt(sk, ·)
when responding to the q queries. Since n = Ω(λ) and q = poly(λ), with probability 1− negl(λ),
the points r1, . . . , rq sampled by DE.Encrypt(sk, ·) will be unique, and moreover for all i ∈ [q],
ri 6= x where x is the punctured point in the secret key. By correctness of Πpprf , we have that
cPRF.ConstrainEval(sk, ri) = cPRF.Eval(msk, ri) for all i ∈ [q]. Semantic security now follows from a
standard hybrid argument and PRF security of Πpprf .

I.3 Proof of Theorem 6.19

We proceed via a hybrid argument. First, we define the hybrid experiments:

• Hybrid H0. This is the real experiment ExptDE
0 (Definition 6.15).

• Hybrid H1. This is identical to H0, except when constructing cti∗ , the challenger chooses a
random r

r←− {0, 1}n and sets cti∗ = (ri∗ , r ⊕mi∗).

• Hybrid H2. This is identical to H1, except the challenger sends
(
sk, {cti}i∈[q]

)
to the

adversary.

• Hybrid H3. This is the real experiment ExptDE
1 (Definition 6.15).
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As usual, for an adversary A, we write Hi(A) to denote the output of A in Hi. We now show
that each successive pair of hybrids is computationally indistinguishable.

Lemma I.1. If Πpprf is selectively-secure, then for aIan Goodfellow ¡goodfellow.ian@gmail.com¿ll
efficient adversaries A, the absolute difference |Pr[H0(A) = 1]− Pr[H1(A) = 1]| is negligible.

Proof. Suppose A distinguishes hybrids H0 from H1 with advantage ε. We use A to build an
adversary B that breaks the puncturing security of Πpprf . Algorithm B proceeds as follows.

1. Chooses a random point z
r←− {0, 1}n and query the puncturing oracle at z to obtain a

punctured key skz. Let sk′ = skz. Query the challenge oracle to obtain the challenge T .

2. Start running algorithm A. Adversary A will output a tuple of messages (m1, . . . ,mq)

and an index i∗ ∈ [q]. For each i 6= i∗, choose a random point r′i
r←− {0, 1}n, and let

t′i = cPRF.ConstrainEval(skz, r
′
i). Set r′i∗ = z and set t′i∗ = T . For each i ∈ [q], construct the

ciphertext ct′i = (r′i, t
′
i ⊕mi).

3. Send
(
sk′, {ct′i}i∈[q]

)
to A and output whatever A outputs.

First, since the r′i are drawn uniformly and independently from {0, 1}n, with overwhelming prob-
ability, r′i 6= z. By correctness of the puncturing scheme, t′i = cPRF.ConstrainEval(skz, r

′
i) =

cPRF.Eval(msk, r′i), where msk is the master secret key chosen by the puncturing security challenger.
We now show that if T = cPRF.Eval(msk, z), then B perfectly simulates H0 and if T is uniform over
{0, 1}n, then B perfectly simulates H1.

• Consider the case where T = cPRF.Eval(msk, z). In hybrid H0, each ciphertext cti is a

tuple of the form (ri, ti ⊕ mi) where ri
r←− {0, 1}n, ti = cPRF.ConstrainEval(skx, ri), skx ←

cPRF.Puncture(msk, x), and x
r←− {0, 1}n. Since the ri are sampled uniformly and independently

from {0, 1}n, with all but negligible probability, ri 6= x. By correctness of the puncturing
scheme, ti = cPRF.ConstrainEval(skx, ri) = cPRF.Eval(msk, ri). At the end of the experiment,
the challenger gives a punctured key skri∗ = cPRF.Puncture(msk, ri∗) together with the
ciphertexts {cti}i∈[q] to the adversary. In the simulation, for all i ∈ [q], each r′i is sampled
uniformly and independently from {0, 1}n and moreover, if T = cPRF.Eval(msk, z), then
t′i = cPRF.Eval(msk, r′i), exactly as in H0. Moreover, B constructs the secret key sk′ exactly as
the challenger does in H0, so we conclude that B perfectly simulates H0 for A.

• Suppose instead that T was uniform in {0, 1}`. As in hybrid H0, each ciphertext in H1 can

be written as a tuple (ri, ti ⊕mi) where ri
r←− {0, 1}n, ti = cPRF.Eval(msk, ri) for all i 6= i∗,

and ti∗
r←− {0, 1}`. If T is uniform in {0, 1}`, then the ciphertexts constructed by B precisely

coincides with this distribution. Moreover, in hybrid H1, the challenger gives the adversary
a secret key punctured at ri∗ , and in the simulation, algorithm B gives the adversary a key
punctured at z = r′i∗ . We conclude that if T is random, then B perfectly simulates H1 for A.

Thus, if A is able to distinguish hybrids H0 from H1 with advantage ε, then AdvcPRF[Πpprf ,B] = ε.
This proves the lemma.

Lemma I.2. If Πpprf is 1-key private (Definition 2.10), then for all efficient adversaries A, the
quantity |Pr[H1(A) = 1]− Pr[H2(A) = 1]| is negligible.
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Proof. Suppose A can distinguish H1 from H2 with advantage ε. We use A to build an adversary B
that breaks the 1-key privacy of Πpprf . Algorithm B proceeds as follows.

1. Choose two points x0, x1
r←− {0, 1}n, and submit them to the 1-key privacy challenger to obtain

a punctured key skb. Define sk′ = skb.

2. Start running algorithm A. Adversary A will output a tuple of messages (m1, . . . ,mq) and an

index i∗ ∈ [q]. For i 6= i∗, choose r′i
r←− {0, 1}n, and set t′i = cPRF.ConstrainEval(skb, r

′
i). Set

r′i∗ = x0, and choose t′i∗
r←− {0, 1}`. For all i ∈ [q], construct the ciphertexts ct′i = (r′i, t

′
i ⊕mi).

3. Send
(
sk′, {ct′i}i∈[q]

)
to A and output whatever A outputs.

Since each r′i is chosen uniformly and independently from {0, 1}n, with all but negligible probability,
r′1, . . . , r

′
q /∈ {x0, x1}. Thus, by correctness of the punctured PRF, cPRF.ConstrainEval(skb, r

′
i) =

cPRF.Eval(msk, r′i), where msk is the underlying master secret key chosen by the 1-key privacy
challenger. We now show that if b = 0, then B perfectly simulates for A hybrid H1 and if b = 1,
then B perfectly simulates for A hybrid H2.

• Suppose b = 0. Then in the simulation, ct′i = (r′i, t
′
i ⊕ mi), where for all i 6= i∗, t′i =

cPRF.Eval(msk, r′i) and t′i∗
r←− {0, 1}`. In hybrid H1, the challenger similarly samples ran-

domness ri
r←− {0, 1}n for all i ∈ [q], and for i 6= i∗, sets ti = cPRF.ConstrainEval(skx, ri) =

cPRF.Eval(msk, ri). Note that the last equality holds with overwhelming probability since ri
are sampled uniformly and independently in {0, 1}n, and by correctness of Πpprf . The chal-

lenger sets ti∗
r←− {0, 1}` in hybrid H1. Thus, the ciphertexts B constructs in the simulation are

distributed identically to those the challenger constructs in H1. Finally, in H1, the challenger
outputs a secret key punctured at ri∗ . In the simulation, when b = 0, B gives A a secret
key punctured at x0 = r′i∗ . Since x0 is sampled from the same distribution as ri∗ in H1, we
conclude that B perfectly simulates H1 in this case.

• Suppose b = 1. The distribution of the ciphertexts is identical to that described in the previous
case. Similarly, the ciphertexts in H0 and H1 are constructed in exactly the same manner.
Thus, we conclude that the distribution of ciphertexts in the simulation are distributed as
in H2. In hybrid H2, then challenger constructs a key punctured at x, where x is uniform in
{0, 1}n and independent of the randomness r1, . . . , rq used to construct the ciphertexts. In
the simulation, when b = 1, B gives A a secret key punctured at a uniform random point x1
independent of the randomness used in constructing the ciphertexts. We conclude that B
correctly simulates H2 in this case.

We conclude that if A can distinguish H1 from H2 with advantage ε, then Advcpriv[Πpprf ,B] = ε.
This proves the lemma.

Lemma I.3. For all adversaries A, Pr[H2(A) = 1] = Pr[H3(A) = 1].

Proof. In H2, cti∗ = (ri∗ , r ⊕mi∗), where r is chosen independently and uniformly from {0, 1}`. In
H3, cti∗ = (ri∗ ,m

∗⊕ cPRF.ConstrainEval(skx, ri∗)), where m∗ is chosen independently and uniformly
from {0, 1}`. In both cases, both components of cti∗ are distributed uniformly and independently of
all other cti for i 6= i∗. For i 6= i∗, the ciphertexts cti are generated identically in H2 and H3. The
claim follows.

Combining Lemmas I.1 through I.3, we conclude that ΠDE is a deniable encryption scheme.
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