
Improved Meet-in-the-Middle Distinguisher on
Feistel Schemes

Li Lin1,2 and Wenling Wu1

1 Trusted Computing and Information Assurance Laboratory, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China

2 Graduate University of Chinese Academy of Sciences, Beijing 100190, China
{linli, wwl}@tca.iscas.ac.cn

Abstract. Improved meet-in-the-middle cryptanalysis with efficient tab-
ulation technique has been shown to be a very powerful form of crypt-
analysis against SPN block ciphers. However, few literatures show the ef-
fectiveness of this cryptanalysis against Balanced-Feistel-Networks (BFN)
and Generalized-Feistel-Networks (GFN) ciphers due to the stagger of
affected trail and special truncated differential trail. In this paper, we de-
scribe a versatile and powerful algorithm for searching the best improved
meet-in-the-middle distinguisher with efficient tabulation technique on
word-oriented BFN and GFN block ciphers, which is based on recursion
and greedy algorithm. To demonstrate the usefulness of our approach, we
show key recovery attacks on 14/16-round CLEFIA-192/256 which are
the best attacks. We also propose key recovery attacks on 13/15-round
Camellia-192/256 (without FL/FL−1).

Keywords: Block Ciphers, Improved Meet-in-the-Middle Attack, Effi-

cient Tabulation Technique, Automatic Search Tool, Truncated Differ-

ential Trail, CLEFIA, Camellia.

1 Introduction

The meet-in-the-middle attack was first proposed by Diffie and Hellman to attack
DES [7]. In recent years, it was widely researched due to its effectiveness against
block cipher AES [4]. For AES, Gilbert and Minier showed in [10] a collision
attack on 7-round AES. At FSE 2008, Demirci and Selçuk improved the Gilbert
and Minier attack using meet-in-the-middle technique instead of collision ideas
[5]. At ASIACRYPT 2010, Dunkelman, Keller and Shamir improved Dermirci
and Selçuk attacks on 7-round AES-192 and 8-round AES-256 by introducing
the idea of multiset and differential enumeration technique in [8]. Further more,
Derbez, Fouque and Jean presented a significant improvement of Dunkelman et
al. attack at EUROCRYPT 2013 [6], called efficient tabulation technique. Using
the rebound-like idea, they showed that many values in precomputation table
are not reached at all under the constraint of the truncated differential trail. At
FSE 2014, Li et al. proposed key-dependent sieve technique to attack 9-round
AES-192 [13].

2

In [14], Lin et al. defined the T -δ-set which is a special set of states and
the S-multiset which is a multiset of S cells. Then using these definitions, they
got the least spread T -δ-set which has the minimum number of active cells and
affected-cell-set which is affected by the minimun number of active cells3. After
that, they introduced a general algorithm for searching the best affected trail
from a T -δ-set to an S-multiset, and found that building a better affected trail
is equivalent to a positive integer optimization problem.

Although pnew results on Substitution-Permutation Networks (SPN) block
ciphers using improved meet-in-the-middle attack with efficient tabulation tech-
nique were given in many literatures, few results were proposed on Balanced-
Feistel-Networks (BPN) [11] and Generalized-Feistel-Networks (GFN) [19]. This
is due to the stagger of affected trail and truncated differential trail in the pre-
computation phase.

Our contribution. In this paper, we describe a versatile and powerful algorith-
m for searching the best improved meet-in-the-middle distinguisher with efficient
tabulation technique on word-oriented BFN and GFN block ciphers. This algo-
rithm is based on recursion and greedy algorithm. Given an affected trail D from
a T -δ-set to an S-multiset by the algorithm of [14], our algorithm is made up
of two phase: table construction phase and searching phase.

The table construction phase is based on the precomputation phase Fouque
et al. proposed in [9]. In this phase, we build a graph G that contains all the
2-equipartite directed acyclic graph of all the possible one-round transitions.

The searching phase is based on the algorithm Matsui proposed to find the
best differential characteristics for DES [18]. Our algorithm works by recursion
and can be seen as a tree traversal in a depth-first manner. One truncated
differential trail is a path in this tree, and its weight equals the product of
all traversed edges. We are looking for the path with the minimum number of
guessed-cells in this tree under certain transition probability. The knowledge of
the previous best truncated differential trail allows pruning during the procedure.
To speed up this algorithm, We also use greedy algorithm to divide the search
into 2 parts.

To demonstrate the usefulness of our approach, we apply our algorithm
to CLEFIA-192/256 [20] and Camellia-192/256 (without FL/FL−1)4 [1]. For
CLEFIA-256, we propose a 10-round distinguisher, then give a 16-round key re-
covery attack with data complexity of 2121.5 chosen-plaintexts, time complexity
of 2203.5 encryptions and memory complexity of 2201.5 128-bit blocks. To the best
of our knowledge, this is currently the best attack with respect to the number of
attacked rounds. For CLEFIA-192, we propose a 9-round distinguisher, then give
a 14-round key recovery attack with data complexity of 2121.5 chosen-plaintexts,
time complexity of 2139.5 encryptions and memory complexity of 2137.5 128-bit
blocks. To the best of our knowledge, this is currently the best attack with
respect to the attack complexity.

3 We call it the affected trail in this paper
4 We call it Camellia* in this paper.

3

We also propose an 8-round distinguisher on Camellia*-192, then give a 13-
round key recovery attack with data complexity of 2113 chosen-plaintexts, time
complexity of 2180 encryptions and memory complexity of 2130 128-bit blocks.
For Camellia*-256, we propose a 9-round distinguisher, then give a 15-round key
recovery attack with data complexity of 2113 chosen-plaintexts, time complexity
of 2244 encryptions and memory complexity of 2194 128-bit blocks. Although Lu
et al. proposed a 14-round attack on Camellia*-192 and a 16-round attack on
Camellia*-256 [17], they didn’t consider the whitening operations. So we think
our works on Camellia* are quite meaningful.

We present here a summary of our attack result on CLEFIA and Camellia*,
and compare them to the best attacks known for them. This summary is given
in Table 1.

Cipher Attack type Rounds Data Memory (Bytes) Time (Euc) Source
CLEFIA-192 Improbable 14 2127.0 CPs 2127.0 2183.2 [21]

Multidim. ZC 14 2127.5 KPs 2115 2180.2 [2]
Improved MITM 14 2121.5 CPs 2141.5 2139.5 Sec. 4.1

CLEFIA-256 Improbable 15 2127.4 CPs 2127.4 2247.5 [21]
Multidim. ZC 15 2127.5 KPs 2115 2244.2 [2]
Improved MITM 16 2121.5 CPs 2205.5 2203.5 Sec. 4.1

Camellia*-192 Imposible Diff 12 2119 CPs 2124 2147.3 [15]
Imposible Diff 14ww 2117 CPs 2122.1 2182.2 [16]
HO MITM 14ww 2118 CPs 2166 2164.6 [17]
Improved MITM 13 2113 CPs 2134 2180 Sec. 4.2.1

Camellia*-256 Imposible Diff 15ww 2122.5 KPs 2233 2236.1 [3]
Imposible Diff 16ww 2123 KPs 2129 2249 [16]
HO MITM 16ww 2120 CPs 2230 2252 [17]
Improved MITM 15 2113 CPs 2198 2244 Sec. 4.2.2

Table 1. Summary of the best attacks on CLEFIA-256, Camellia*-192/256.
KPs: Known-Plaintexts. CPs: Chosen-Plaintexts. ww: Without Whiten Operation

The rest of this paper is organized as follows. Section 2 provides notations and
definitions used throughout this paper, then gives a brief review of the algorithm
to build the affected trail. Section 2 also gives the general attack scheme, and
discusses the distinguisher on Feistel schemes with efficient tabulation technique.
We provide the automatic search tool to search the best improved meet-in-the-
middle distinguisher with efficient tabulation technique on Feistel schemes in
Section 3. Our attacks on CLEFIA-192/256 and Camellia*-192/256 are described
in Section 4. Finally, we conclude in Section 5.

4

2 Preliminaries

In this section, we give notations used throughout this paper, then briefly review
the approach presented in [14], after that give the attack scheme. Finally, we
discuss the improved meet-in-the-middle distinguisher on Feistel schemes with
efficient tabulation technique.

2.1 Notation

The following notation will be used throughout this paper (the size is counted
in number of cells):

– b: block size.
– k: the size of the master key.
– o: the size of one branch.
– r: number of rounds.
– c: number of bits in a cell.
– n: number of branches that will go through F -function in a state.
– |T |: number of active cells on a state T .
– xi: the input state of round-i.
– yi: the state after key addition layer of round-i.
– zi: the state after S-box layer of round-i.
– wi: the state after the linear transformation layer of round-i.
– s[i]: the ith branch of a state.
– s[i][j]: the jth cell in the ith branch of a state.
– RKi[j]: the jth cell of the ith round key.
– G(T): number of guessed-cells for a truncated differential trail T .
– P(T): probability of a truncated differential trail T .

– s1→s2: the probability that s1
1-round transition−−−−−−−−−−−→ s2 is greater than 0.

2.2 Reviews of Former Worksp

In [14], Lin et al. gave the algorithm to search the affected trail. In this subsec-
tion, we briefly review the definitions and algorithms they gave.

The improved meet-in-the-middle distinguisher is based on particular struc-
tures of messages captured by Definition 1 and 2.

Definition 1 (T -δ-set). T -δ-set is a set of 2T×c states that are all different in
T cells (the active cells) and all equal in the other cells (the inactive cells), where
c is the number of bits in a cell and T ≤ b.

Definition 2 (S-Multiset). S-multiset is an unordered set in which elements
can occur many times, and every element of the S-multiset consists of S cells,
S ≤ b.

In this paper, T presents T -δ-set and S presents S-Multiset. With these two
definitions in mind, we canp choose proper values of |T | and |S| [14].

The searching algorithm is based on a propagation-then-pruning method as
shown in Fig. 1. Suppose we have one (T, S) pair, the building of an affected
trail D is as follows:

5

Affected Trail.

1-round 1-round 1-round1-round

The cells being pruned in the pruning phase.

Propagation Pruning

Fig. 1. 4-round example of propagation-then-pruning method.

1. Propagation. In the forward direction, differences of T can propagate from
one round to the next. We need to guess the active cells going through the
S-box layer, then get S by this trail.

2. Pruning. In this trail, some guessed-cells have nothing to do with the build-
ing of S. These cells are pruned from the trail.

Using this algorithm, we can get an affected trail D for (T, S).

2.3 Attack Scheme

In this subsection, we present our new unified view of the single-key meet-in-
the-middle attack, where R rounds of the block cipher can be split into three
consecutive parts of r1, r, and r2.

The general attack uses two successive phases as shown in Fig. 2.

T
*S

2r round

P C

S
*T

1r round r round distinguisher

The trail to get multiset from δ-Set
in the online phase.

The trail to get the special truncated
differential characteristics in the online
phase.

The special truncated differential
trail in the precomputation phase.

Affected trail in the precomputation
phase.

The guessed-cells in the affected trail.
The extra guessed-cells to get the
special truncated differential trail.

The cells do not need to be guessed due to the differential property of S.

Fig. 2. General scheme of the improved meet-in-the-middle attack with efficient tabu-
lation technique.

6

Precomputation phase

1. In the precomputation phase, we build an affected trail from T to S by
guessing some cells.

2. Use efficient tabulation technique to build a special truncated differential
trail from T ∗ to one middle round, then build a truncated differential
trail from S∗ to another middle round in the reverse direction. This step
needs to guess some more cells. With the differential property of S [6],
we can prune some guessed-cells made in step 1.

3. Build a lookup table L containing all the possible trail constructed from
T to S.

Online phase

1. In the online phase, we need to identify a T -δ-set containing a message
m verifying the desired property. This is done by using a large number
of plaintexts and ciphertexts, and expecting that for each key candidate,
there is one pair of plaintexts satisfying the truncated differential trail
from P → T ∗ and C → S∗. m is one member of this plaintext pair. Then
use m to build a T -δ-set.

2. Finally, we partially decrypt the associated T -δ-set through the last r2
rounds and check whether it belongs to L.

2.4 Feistel Ciphers with Efficient Tabulation Technique

In this paper, we focus on the application of efficient tabulation technique on
BFN and GFN. The round functions F of them arep made up of 3 layers: key
addition layer, the S-box layer and the linear transformation layer. This is true
for most of BFN and GFN ciphers.

The advantage of improved meet-in-the-middle attack with efficient tabula-
tion technique on Feistel ciphers is that it can use the differential property of S
in b b

n×oc rounds. We take CLEFIA [20] as an example. CLEFIA is a 4-branch
type-2 GFN cipher with b = 16, n = 2 and o = 4.

As shown in Fig. 3 (A), ∆yi[0] = ∆xi[0], ∆zi[0] = M−1(∆xi[1]⊕∆xi+2[3]).
If we know ∆xi and ∆xi+2, using the differential property of S, we can get the
active bytes of yi[0]. Using the same method, if we know ∆xi and ∆xi+2, we can
get the active bytes of yi[2], yi+1[0] and yi+1[2] as well. So if we get the special
truncated differential trail, we can prune some guessed-cells.

However, things are just not as what we think. For SPN ciphers, affected
trail and truncated differential trail are almost the same. But for BFN and GFN
ciphers, they differ a lot from each other. We also take CLEFIA as an example. As
shown in Fig. 3 (B), the guessed-cells of affected trail and truncated differential
trail are totally different. For dependent trail, we only need to guess yi[2]. For
truncated differential trail, we need to guess yi+1[2][0] and yi[0].

To solve this problem, we present an automatic search tool in Section 3 to
search the best improved meet-in-the-middle distinguisher with efficient tabula-
tion technique on GFN and BFN.

7

S
S
S
S

M

K2i+1

S
S
S
S

M

S
S
S
S

M

S
S
S
S

M

Round-i

Round-i+1

ix

1ix

K2i+2

K2i+3 K2i+4

2ix

The input differential trail of S-box The output differential trail of S-box

S
S
S
S

M

K2i+1

S
S
S
S

M

S
S
S
S

M

S
S
S
S

M

Round-i

Round-i+1

ix

1ix

K2i+2

K2i+3 K2i+4

2ix

Active bytes of affected trail Guessed-bytes of affected trail

Active bytes of truncated differential trail Extra guessed-bytes of truncated differential trail

(A) The differentia trail to use the differential property of S. (B) The stagger of affected trail and truncated differential trail.

Fig. 3. (A) The differential trail with the differential property of S; (B) The stagger of
an affected trail and a truncated differential trail.

3 The Automatic Search Tool using Efficient Tabulation
Technique

In this section, we present a practical algorithm for deriving the best improved
meet-in-the-middle distinguisher on Feistel schemes in terms of efficient tabula-
tion technique, which combines the precomputation phase of [9] and the search
procedure of [18].

Suppose we have the affected trail Section 2.2 gives, our tool works by recur-
sion and consists on 2 phases: table construction phase and searching phase.

3.1 Table Construction Phase

As shown in [9], the table construction phase builds a graph G that contains all
the 2-equipartite directed acyclic graph of all the possible one-round transitions.
This graph can be built and stored efficiently by observing its inner structure:
the block cipher internal state output depends only on the block cipher internal
state input. Unlike [9], since we don’t consider the key schedule, the graph is
small and we can store it in truncated differential characteristic5. A toy example
of G is shown in Fig. 4.

We should build a graph G−1 that contains all the 2-equipartite directed
acyclic graph of all the possible one-round transitions in the backward direction
as well.

3.2 Searching Phase

As the algorithm in [18], our searching phase find the best n-round improved
meet-in-the-middle distinguisher. The algorithm works by recursion and can be
seen as a tree traversal in a depth-first manner, where the tree presents all

5 The memory cost of CLEFIA stored in truncated differences is less than 20 MB.

8

2S

3S

0S

1S

2S

3S

0S

1S

Fig. 4. Example of graph product to build G, with 4 possible internal state s0, s1, s2
and s3. There is an edge from si to sj if and only if si → sj after one round encryption.

the possible truncated differential trail in the cipher layered by round. The n-
odes present the truncated differential characteristics and the edges the possible
transitions between them, and are labeled by their numbers of guessed-cells and
transition probabilities. One truncated differential trail is a path in this tree, and
its weight equals the product of all traversed edges. We are looking for the path
with the minimum number of guessed-cells in this tree under certain transition
probability. The knowledge of the previous best truncated differential trail al-
lows pruning during the procedure. Since we only consider truncated differential
characteristic and the pruning is very efficient, the running time will not be so
long.

As analyzed in Section 2.4, the advantage of efficient tabulation technique on
Feistel schemes is that it can guess less cells in the middle b b

n×oc rounds using
a special truncated differential trail. However, since the stagger of affected trail
and truncated differential trail, we can only limit parts of values in the affected
trail.

3.2.1 Trail Probability. Almost all the truncated differential trails used in
the distinguisher on SPN ciphers are with probability 1. In our algorithm, we
consider the truncated differential trail with probability less than 1, which means
we can guess less extra cells. Suppose we guess one less cell in the backward
direction (with probability 2−c), it may cause less extra cells to be guessed.
Getting a trail with probability 2−c means that we should repeat the online
phase 2c times. So our algorithm require an “initial value” for the minimum trail
probability, which is presented as P . This value can be determined by analyzing
the online phase.

3.2.2 Comparing Trails. Next we introduce a (quasi-)order relation for 2
truncated differential trail T1 and T2 as follows:

Definition 3 (�). T1 is better than T2 if and only if it has less guessed-cells or
its probability is higher with the same number of guessed-cells, i.e.

T1 � T2 ⇔

G(T1) < G(T2)

or

G(T1) = G(T2) and P(T1) > P(T2)

(1)

9

Also T1 ≡ T2 ⇔ G(T1) = G(T2) and P(T1) = P(T2)6.

3.2.3 Ending Condition. Given key length k, probability lower bound P
and the best trail so far Tbest, we define ending condition E as follows:

T ∈ E ⇔

P(T) ≤ P
or G(T) ≥ k
or Tbest � T

(2)

If a trail belongs to E , we should stop the search procedure and try another
trail.

3.2.4 Finding the Best Trail. Although we could test all the truncated
differential trail under the probability lower bound P to find the best one, we
have a more efficient way using the greedy algorithm. Since the affected trail
is unique for each (S, T) pair, we can find out b b

n×oc successive rounds which
need to guess more cells than others. This means that we can use the differential
property of S to prune more guessed-cells. If the number of these successive
rounds is more than one, we present the beginning of these rounds as a set
called SR-set.

With SR-set in mind, we can divide the search procedure into 2 parts: one
starts at the first round from the forward direction, the other starts at the
last round from the backward direction. This algorithm will divide an r-round
truncated differential trail search into 2 parts of r1 and r2, where r = r1 + r2 +
b b
n×oc.

At the beginning of the algorithm, we should decrease G(D) by the number of
guessed-cells in the middle b b

n×oc rounds. Then at the end of the search for one
trail, increase the number of guessed-cells that the truncated differential trail
can’t prune in these b b

n×oc rounds . After that, we could get the exact number
of guessed-cells in this trail.

Although the first and the last truncated differential characteristics in the
trail can take any values, we put some limitations on them by some observa-
tions. Since there is little difference between an affected trail and a truncated
differential trail on the first r1-round, we fix the first truncated differential char-
acteristic to T . And by the propagation of differences, we constrain values of the
last truncated differential characteristics S∗ with |S∗| ≤ |S|.

The framework of our algorithm for the first r1 and the last r2 rounds is now
established by Algorithm 1 and 2 including essentially recursive calls.

The inputs of Algorithm 1 and 2 are affected trail D, input truncated differ-
ential trail T , best truncated differential trail Tbest, probability lower bound P
and graph G/G−1.

The sorting algorithm of line 3 in Algorithm 1 and Algorithm 2 is according
to �.

6 G means the total number of guessed-cells including the affected trail.

10

Algorithm 1 Search the first r1 rounds

1: function Procedure Roundbegini (D, T , Tbest, P)
2: Find all truncated values this trail can lead to in graph G
3: Sort these truncated differential characteristics
4: for all truncated differential characteristics do
5: Add this characteristic to T
6: if T /∈ E then
7: if i < r1 − 1 then
8: Call Procedure Roundbegini+1

9: else
10: for all truncated differences S∗ satisfying |S∗| ≤ |S| do
11: Call Procedure Roundend0 with S∗

12: end for
13: end if
14: end if
15: end for
16: end function

Line 10 of Algorithm 2 means sr1
b b
n×o crounds−−−−−−−−−→ sr2 , where sr1 and sr2 are

truncated differential characteristics of round-r1 and round-(r1 + b b
n×oc) in the

trail, respectively.
Line 11 of Algorithm 2 means we should increase G(T) by the guessed-cells

it can’t prune in the middle b b
n×oc rounds.

Algorithm 3 present the searching algorithm for a (T, S) pair.
We can loop through all possible (T, S) pairs to find the best r-round distin-

guisher under P , then find rmax = max{r|P(Tbest) > P and G(Tbest) < k}.

4 Applications

In this section, we propose our attacks on CLEFIA-192/256 and Camellia*-
192/256.

4.1 Applications to CLEFIA-192/256

CLEFIA is a lightweight 128-bit block cipher designed by Shirai et al. in 2007
[20] and based in a 4-branch type-2 GFN. It is adopted as an international
ISO/IEC 29192 standard in lightweight cryptography. We refer to [20] for a
detail description.

4.1.1 9/10-Round Distinguisher on CLEFIA. First, we use our search
tool to find the best 10-round distinguisher on CLEFIA-256 and 9-round distin-
guisher on CLEFIA-192, they are shown in Fig. 5 and Fig. 6.

11

Algorithm 2 Search the last r2 rounds

1: function Procedure Roundendi (D, T , Tbest, P)
2: Find all truncated values this trail can lead to in graph G−1

3: Sort these truncated differential characteristics
4: for all truncated differential characteristics do
5: Add this characteristic to T
6: if T /∈ E then
7: if i < r2 − 1 then
8: Call Procedure Roundendi+1

9: else
10: if Combining 2 parts of T together leads to a trail then
11: Increase G(T)
12: if T /∈ E then
13: Tbest ← T
14: end if
15: end if
16: end if
17: end if
18: end for
19: end function

In the attack of CLEFIA, we apply an equivalent transformation to the 10-
round and 9-round distinguishers, as shown in Fig. 5 and Fig. 6. Namely, the
right linear transformations of round i + 8 and i + 7 are removed from these
rounds, and linear transformations are added to three different positions in order
to obtain distinguishers that are computationally equivalent to the original one.

The 10-round distinguisher on CLEFIA-256 is based on the proposition be-
low.

Proposition 1. Considering to encrypt 28 values of the (1-)δ-set through 10-
round CLEFIA-256 starting from round-i, where xi[1][0] is the active byte, in
the case of that a message of the δ-set belongs to a pair which conforms to the

Algorithm 3 Search an optimal trail for (T, S)

1: function Procedure SerachingTrail(D, P , T , S, b b
n×oc)

2: Initial Tbest with k and P
3: Get the SR-set from D
4: for all r1 in SR-set do
5: Decrease G(D) by the number of guessed-cells in these b b

n×oc rounds

6: Call Roundbegin0 with r1 and T
7: end for
8: return Tbest
9: end function

12

truncated differential trail outlined in Fig. 5, then the corresponding (1-)multisets
of xi+10[1][0] only take about 2208 values.

F0 F1

F0 F1

F0 F1

F0 F1

F0 F1

F0 F1

F0 F1

F0

F0 F1

Round-i

Round-i+1

Round-i+2

Round-i+3

Round-i+5

Round-i+6

Round-i+7

Round-i+8

multiset

Active bytes of affected trail. Guessed-bytes of affected trail.

Active bytes of truncated differential trail. Extra guessed-bytes of truncated differential trail.

F0 F1Round-i+4

ix

1ix

3ix

2ix

4ix

5ix

7ix

6ix

8ix

9ix

10ix

We use the differential property of S in these 2 rounds

P

P-1

P

S
RK27

Round-i+9

Fig. 5. 10-Round Distinguisher on CLEFIA-256

Proof. As shown in Fig. 5, we first consider the affected trail from xi[1][0] to
xi+10[1][0]. This affected trail is determined by 39-byte intermediate variable:
yi+1[0][0], yi+2[0], yi+3[0], yi+3[2][0], yi+4[0], yi+4[2], yi+5[0], yi+5[2], yi+6[0],
yi+6[2], yi+7[2], yi+8[2][0].

This can be easily seen from the figure.

Furthermore, if there exists a message of the (1-)δ-set belongs to a pair
which conforms the truncated differential trail as in Fig. 5, the 35-byte vari-
able yi+1[0][0], yi+2[0], yi+3[0], yi+3[2][0], yi+4[0], yi+4[2], yi+5[0], yi+5[2], yi+6[0],
yi+6[2][0], yi+7[2] is determined by 22-byte variable: ∆xi[1][0], yi+1[0][0], yi+2[0],
yi+3[0], yi+3[2][0], yi+6[0], yi+6[2][0], yi+7[2], yi+8[0][0], ∆xi+10[2][0].

Using 11-byte variable ∆xi[1][0], yi+1[0][0], yi+2[0], yi+3[0], yi+3[2][0], we can
deduce ∆xi+4. In the backward direction, using ∆xi+10[2][0], yi+8[0][0],, yi+7[2],
yi+6[0], yi+6[2][0],we can deduce ∆xi+6. By the differential property of S, this
can deduce yi+4[0], yi+4[2], yi+5[0], yi+5[2].

13

F0 F1

F0 F1

F0 F1

F0 F1

F0 F1

F0 F1

F0

F0 F1

Round-i

Round-i+1

Round-i+2

Round-i+3

Round-i+5

Round-i+6

Round-i+7

Round-i+8

multiset

Active bytes of affected trail. Guessed-bytes of affected trail.

Active bytes of truncated differential trail. Extra guessed-bytes of truncated differential trail.

F0 F1Round-i+4

ix

1ix

3ix

2ix

4ix

5ix

7ix

6ix

8ix

9ix

We use the differential property of S in these 2 rounds

P

P-1

P

S
RK27

Fig. 6. 9-Round Distinguisher on CLEFIA-192

In conclusion, the corresponding (1-)multisets of byte xi+10[1][0] only take
about 2208 values with the truncated differential trail.

�

The 9-round distinguisher on CLEFIA-192 is based on the proposition below.

Proposition 2. Considering to encrypt 28 values of the (1-)δ-set through 9-
round CLEFIA-192 starting from round-i, where xi[1][0] is the active byte, in
the case of that a message of the δ-set belongs to a pair which conforms to the
truncated differential trail outlined in Fig. 6, then the corresponding (1-)multisets
of xi+9[1][0] only take about 2144 values.

The proof of this proposition is the same as before and shown in Fig. 6.

4.1.2 16/14-Round Attack on CLEIFA-256/192. Based on the 10-round
distinguisher, we extend 3 rounds on the top and 3 rounds on the bottom to
present the 16-round improved meet-in-the-middle attack on CLEFIA-256, and
based on the 9-round distinguisher, we extend 3 rounds on the top and 2 rounds
on the bottom to present the 14-round improved meet-in-the-middle attack on
CLEFIA-192. The procedure of this attack is shown in Fig. 7 and Fig. 8.

The linear transformation in round 13/12 is moved to two different posi-
tions as shown in Fig. 7 and 9. The newly-introduced P−1 and the P before
x13[2]/x12[2] generated by the distinguisher cancel each other, we therefore ig-
nore them.

14

The following proposition is important in finding the special truncated dif-
ferential trail.

Proposition 3. If MC(∆s0) = (a0, 0, 0, 0) and MC(∆s1) = (a1, 0, 0, 0), then
MC(∆s0 ⊕∆s1) = (a2, 0, 0, 0), where a0, a1, a2 are any bytes7.

This is because the linearity of MC. We call the set of 28 differences that
results in (a, 0, 0, 0) after linear transformation layer the α-set which is marked
by red triangle in Fig. 9.

The detail attack is shown below:

x13

x14

x15

F0 F1

F0 F1

F0 F1

Round-1

Round-2

x0

WK1

Round-0

Plaintext

WK0

x1

x2

x3

WK3WK2

Ciphertext

x16

F1

F0 F1

F0 F1

10-Round Distinguisher

S

Round-14

Round-15

Round-13

The guessed-bytes on Detecting the Right Pair phase.

The trail to find the right pair.

The extra guessed-bytes on Creating and Checking
the δ-set phase.

The trail to build the muliset in the backward direction.

RK0 RK1

RK26

RK31

α-set

P

P-1

P

multiset

RK30

Fig. 7. 16-Round Attack on CLEFIA-256

1. Precomputation phase. In the precomputation phase of the attack, we
build the lookup table L that contains the 2208 multisets for difference
∆x13[1][0] by following the method of Proposition 2.

2. Online Phase.
(a) Detecting the Right Pair:

i. p We prepare a structure of 280 plaintexts where ∆P [0][0], ∆P [2]
and ∆P [3] take all 272 values and ∆P [1] takes all the value of the
α-set. Hence, we can generate 280 × (280 − 1)/2 ≈ 2159 pairs sat-
isfying the plaintext difference. Choose 233 structures and get the
corresponding ciphertexts. Among the 2159+33 = 2192 corresponding
ciphertext pairs, we expect 2192 × 2−48 = 2144 pairs to verify the

7 MC denotes the linear transformation layer.

15

truncated difference pattern where ∆C[0][0], ∆C[2], ∆C[3] have dif-
ferences, and ∆C[1] has difference in α-set. Store the 2144 remaining
pairs in a hash table. This step require 2113 plaintext and ciphertext
pairs.

ii. Guess the values of RK0[0], RK1, y1[0], y2[2][0], using the guessed
values to encrypt the remaining pairs to x3. We choose the pairs that
have difference only in byte x3[1][0], there are 2144−72 = 272 pairs
left.

iii. Guess the values of RK30[0], RK31, y14[2] and y13[2][0], using the
guessed values to decrypt the remaining pairs to x13. We choose the
pairs that have difference only in byte x13[2][0], there are 272−72 = 1
pair left.

(b) Creating and Checking the Multiset:
i. For each guess of the 10 bytes made in Phase (a), decrypt the 28

possible differences in ∆x3 to ∆x0. Then XOR it with one plaintext
P0 of the pair.

ii. Using P0 as the standard plaintext, denote the other 255 plaintexts
as P1 to P255, and the corresponding ciphertexts as C0 to C255.
Partially decrypt the ciphertexts to x13, then get the multiset for
difference ∆x13[1][0] by guessing RK30[1, 2, 3], y13[0][0], and using
the knowledge RK30[0], RK31, y14[2].

iii. Checking whether the multiset exists in L. If not, discard the key
guess. The probability for a wrong guess to pass this test is smaller
than 21922−506.17 = 2−314.17.

(c) Searching the Rest of Key: For each remaining key guess, find the
remaining key bytes by exhaustive search.

Complexity. The look up table of the 2208 possible multisets requires about
2210 128-bit blocks to be stored [6]. To construct the table, we have to perform
2208 partial encryptions on 256 messages, which we estimate to be equivalent to
2212 encryptions.

In the online phase, first, we ask the encryption of 2113 chosen-plaintexts, so
the time/memory complexity of this step is 2113. Then, for each of the 2144 found
pairs, we perform 248 partial encryptions/decrytions of a δ-set. We evaluate the
time complexity of this part to 2144+48+8−5= 2195 encryptions.

In conclusion, the data complexity is 2121.5 chosen-plaintexts, the time com-
plexity is 2203.5 encryptions and the memory complexity is 2201.5 128-bit blocks
by a trade-off [13].

The 14-round attack on CLEFIA-192 is shown in Fig. 8. The procedure
is almost the same as the former attack. The data complexity is 2121.5 chosen-
plaintexts, the time complexity is 2139.5 encryptions and the memory complexity
is 2137.5 128-bit blocks.

4.2 Applications to Camellia*-192/256

Camellia is a 128-bit block cipher designed by Aoki et al. in 2000 [1]. It is a
Feistel-like construction where two key-dependent layer FL and FL−1 are ap-

16

x13

x14

F0 F1

F0 F1

F0 F1

Round-1

Round-2

x0

WK1

Round-0

Plaintext

WK0

x1

x2

x3
WK3WK2

Ciphertext

F1

F0 F1

9-Round Distinguisher

S

Round-13

Round-12

The guessed-bytes on Detecting the Right Pair phase.

The trail to find the right pair.

The extra guessed-bytes on Creating and Checking
the δ-set phase.

The trail to build the muliset in the backward direction.

RK0 RK1

RK24

α-set

P

P-1

P

multiset

x12

Fig. 8. 15-Round Attack on CLEFIA-192

plied every 6 rounds to each branch. In this paper, we analyze Camellia without
FL and FL−1, and call it Camellia* here. We refer to [1] for the detail description
of Camellia.

4.2.1 Attack on Camellia*-192. The 8-round distinguisher of Camellia*-
192 with 16 guessed-bytes is shown in Fig. 9. In this distinguisher, we modify
the method [14] gives, and let the multiset can take place after the permutation.
Then use this modified tool to search the affected trail. This idea is inspired by
[12].

By guessing yi+1[0][0], yi+2[0][0, 1, 2, 5, 7], yi+3[0], yi+4[0], yi+5[0][1, 2, 4, 6, 7]
and yi+6[5], we can get multiset of P−1(xi+7)[5]8. If there is a truncated d-
ifferential trail from xi[1][0] to xi+8[0][0] as the figure shows, then yi+1[0][0],
yi+2[0][0, 1, 2, 5, 7], yi+3[0], yi+4[0] and yi+5[0][1, 2, 4, 7] can be determined by
∆xi[1][0], yi+1[0][0], yi+2[0][0, 1, 2, 5, 7],∆xi+8[0][0], yi+6[0][0], yi+5[0][0, 1, 2, 4, 7].

In a word, the multiset of byte P−1(xi+7[0])[5] can be determined by 16-byte
variable.

The online phase of this attack is the same as the 12-round attack on Camellia-
192 in [12]. So we can extend 2 rounds on the top and 3 rounds on the bottom
to build a 13-round attack on Camellia*-192 with the time complexity of 2180

encryption, the data complexity of 2113 chosen plaintexts and the memory com-
plexity of 2130 128-bit block.

8 Since P−1(xi+7[0])[5] = ∆zi+6[0][5]⊕ P−1(∆xi+5[0])[5]

17

4.2.2 Attack on Camellia*-256. For the distinguisher of Camellia-256, we
simply extend one round after round-(i + 3) by simply guessing the whole 8-
byte state after key addition layer. Then we can get a 10-round distinguisher on
Camellia-256.

In the online phase, we simply extend one round after the distinguisher by
guessing all the 8-byte state after key addition layer. Then we can build a 15-
round attack on Camellia*-256 with the time complexity of 2244 encryption, the
data complexity of 2113 chosen plaintexts and the memory complexity of 2194

128-bit block.

5 Conclusion and Future Work

This paper has shown the improved meet-in-the-middle distinguisher with effi-
cient enumeration technique on BFN and GFN. We discussed the problem why
this technique was rarely used on the attacks of BFN and GFN, then described
a versatile and powerful algorithm for searching the best improved meet-in-the-
middle distinguisher with efficient tabulation technique on them, which is based
on recursion and greedy algorithm.

To demonstrate the usefulness and versatility of our approach, we showed sev-
eral attacks on block ciphers including CLEFIA and Camellia*. Among them, we
would like to stress that the presented attack on 14/16-round reduced CLEFIA-
192/256 are the best attacks. Since our approach is generic, it is expected to be
applied to other BFN and GFN ciphers. We believe that our results are useful
not only for a deeper understanding the security of the Feistel schemes, but also
for designing a secure block cipher.

The research community has still a lot to learn on the way to build bet-
ter attacks and there are many future works possible: the algorithm combining
the precomputation phase and online phase together, and to find out the link
between this kind of attack with other kinds of attacks, such as truncated dif-
ferential attack and impossible differential attack.

References

1. Kazumaro Aoki, Tetsuya Ichikawa, Masayuki Kanda, Mitsuru Matsui, Shiho Mori-
ai, Junko Nakajima, and Toshio Tokita. Camellia: A 128-bit Block Cipher Suitable
for Multiple PlatformsDesign and Analysis. In Selected Areas in Cryptography,
pages 39–56. Springer, 2001.

2. Andrey Bogdanov, Huizheng Geng, Meiqin Wang, Long Wen, and Baudoin Col-
lard. Zero-Correlation Linear Cryptanalysis with FFT and Iproved Attacks on ISO
standards Camellia and CLEFIA. In Selected Areas in Cryptography–SAC 2013,
pages 306–323. Springer, 2014.

3. Jiazhe Chen, Keting Jia, Hongbo Yu, and Xiaoyun Wang. New Impossible Differ-
ential Attacks of Reduced-Round Camellia-192 and Camellia-256. In Information
Security and Privacy, pages 16–33. Springer, 2011.

4. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES-the Advanced
Encryption Standard. Springer, 2002.

18

5. Hüseyin Demirci and Ali Aydın Selçuk. A Meet-In-the-Middle Attack on 8-Round
AES. In Fast Software Encryption, pages 116–126. Springer, 2008.

6. Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Improved Key Recov-
ery Attacks on Reduced-Round AES in the Single-Key Setting. In Advances in
Cryptology–EUROCRYPT 2013, pages 371–387. Springer, 2013.

7. Whitfield Diffie and Martin E Hellman. Special Feature Exhaustive Cryptanalysis
of the NBS Data Encryption Standard. Computer, 10(6):74–84, 1977.

8. Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved Single-Key Attacks on
8-Round AES-192 and AES-256. In Advances in Cryptology-ASIACRYPT 2010,
pages 158–176. Springer, 2010.

9. Pierre-Alain Fouque, Jérémy Jean, and Thomas Peyrin. Structural Evaluation
of AES and Chosen-Key Distinguisher of 9-round AES-128. In Advances in
Cryptology–CRYPTO 2013, pages 183–203. Springer, 2013.

10. Henri Gilbert and Marine Minier. A Collisions Sttack on the 7-Rounds Rijndael.
2000.

11. Takanori Isobe and Kyoji Shibutani. Generic Key Recovery Attack on Feistel
Scheme. In Advances in Cryptology-ASIACRYPT 2013, pages 464–485. Springer,
2013.

12. Leibo Li and Keting Jia. Improved Meet-in-the-Middle Attacks on Reduced-Round
Camellia-192/256.

13. Leibo Li, Keting Jia, Xiaoyun Wang, et al. Improved Single-Key Attacks on 9-
Round AES-192/256. In FSE 2014 (21st International Workshop on Fast Software
Encryption), 2014.

14. Li Lin, Wenling Wu, Yanfeng Wang, and Lei Zhang. General Model of the Single-
Key Meet-in-the-Middle Distinguisher on the Word-oriented Block Cipher. In
Information Security and Cryptology–ICISC 2013, pages 203–223. Springer, 2014.

15. Jiqiang Lu. Cryptanalysis of Block Ciphers. In PhD thesis. University of London,
UK, 2008.

16. Jiqiang Lu, Yongzhuang Wei, Pierre-Alain Fouque, and Jongsung Kim. Cryptanal-
ysis of Reduced Versions of the Camellia Block Cipher. IET Information Security,
6(3):228–238, 2012.

17. Jiqiang Lu, Yongzhuang Wei, Jongsung Kim, and Enes Pasalic. The Higher-Order
Meet-in-the-Middle Attack and its Application to the Camellia Block Cipher. The-
oretical Computer Science, 527:102–122, 2014.

18. Mitsuru Matsui. On Correlation Between the Order of S-boxes and the Strength
of DES. In Advances in Cryptology EUROCRYPT’94, pages 366–375. Springer,
1995.

19. Kaisa Nyberg. Generalized Feistel Networks. In Advances in CryptologyASI-
ACRYPT’96, pages 91–104. Springer, 1996.

20. Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata. The
128-bit Blockcipher CLEFIA. In Fast software encryption, pages 181–195. Springer,
2007.

21. Cihangir Tezcan. The Improbable Differential Attack: Cryptanalysis of Reduced
Round CLEFIA. In Progress in Cryptology-INDOCRYPT 2010, pages 197–209.
Springer, 2010.

19

FRound-i

Active bytes of affected trail.

P-1(xi+7[0])[5] as the multiset

Active bytes of truncated differential trail.

ix

The 2 rounds we choose to use the
property of S.

FRound-i+1

FRound-i+2

FRound-i+3

FRound-i+4

FRound-i+5

FRound-i+6

FRound-i+7

1ix

3ix

2ix

4ix

5ix

7ix

6ix

8ix

Guessed-bytes of affected trail.

The extra guessed-bytes of the truncated
differential trail.

The order of one brach

10 2 3

54 6 7

Fig. 9. 8-Round Distinguisher on Camellia-192

