
Balloon: A Forward-Secure Append-Only
Persistent Authenticated Data Structure

Tobias Pulls1 and Roel Peeters2

1 Karlstad University, Dept. of Mathematics and Computer Science, Sweden
tobias.pulls@kau.se,

2 KU Leuven, ESAT/COSIC & iMinds, Belgium
roel.peeters@esat.kuleuven.be

Abstract. We present Balloon, a forward-secure append-only persistent
authenticated data structure. Balloon is designed for an initially trusted
author that generates events to be stored in a data structure (the Bal-
loon) kept by an untrusted server, and clients that query this server for
events intended for them based on keys and snapshots. The data struc-
ture is persistent such that clients can query keys for the current or past
versions of the data structure based upon snapshots, which are generated
by the author as new events are inserted. The data structure is authenti-
cated in the sense that the server can verifiably prove all operations with
respect to snapshots created by the author. No event inserted into the
data structure prior to the compromise of the author can be modified or
deleted without detection due to Balloon being publicly verifiable. Bal-
loon supports efficient (non-)membership proofs and verifiable inserts by
the author, enabling the author to verify the correctness of inserts with-
out having to store a copy of the Balloon. We formally define and prove
that Balloon is a secure authenticated data structure.

1 Introduction

This paper is motivated by the lack of an appropriate data structure that would
enable the trust assumptions to be relaxed for privacy-preserving transparency
logging. In the setting of transparency logging, an author logs messages intended
for clients through a server : the author sends messages to the server, and clients
poll the server for messages intended for it. Previous work [20] assumes a forward
security model: both the author and the server are assumed to be initially trusted
and may be compromised at some point in time. Any messages logged before this
compromise remain secure and private. One can reduce the trust assumptions
at the server by introducing a secure hardware extension at the server as in [24].

This paper proposes a novel append-only authenticated data structure that
allows the server to be untrusted without the need for trusted hardware. Our data
structure, which is named Balloon, allows for efficient proofs of both membership
and non-membership. As such, the server is forced to provide a verifiable reply
to all queries. Balloon also provides efficient (non-)membership proofs for past
versions of the data structure (making it persistent), which is a key property for

providing proofs of time, when only some versions of the Balloon have been time-
stamped. Since Balloon is append-only, we can greatly improve the efficiency
in comparison with other authenticated data structures that provide the same
properties as described above, such as persistent authenticated dictionaries [1].

Balloon is a key building block for privacy-preserving transparency logging
to make data processing by service providers transparent to data subjects whose
personal data are being processed. Balloon can also be used as part of a secure
logging system, similar to the history tree system by Crosby and Wallach [6].
Another closely related application is as an extension to Certificate Transparency
(CT) [12], where Balloon can be used to provide efficient non-membership proofs,
which are highly relevant in relation to certificate revocation for CT [11,12,18].

For formally defining and proving the security of Balloon, we take a similar
approach as Papamanthou et al. [19]. We view Balloon in the model of authenti-
cated data structures (ADS), using the three-party setting [23]. The three party
setting for ADS consists of the source (corresponding to our author), one or more
servers, and one or more clients. The source is a trusted party that authors a
data structure (the Balloon) that is copied to the untrusted servers together
with some additional data that authenticates the data structure. The servers
answer queries made by clients. The goal for an ADS is for clients to be able to
verify the correctness of replies to queries based only on public information. The
public information takes the form of a verification key, for verifying signatures
made by the source, and some digest produced by the source to authenticate the
data structure. The source can update the ADS, in the process producing new
digests, to which is further referred to as snapshots. The reply we want to enable
clients to verify is the outcome of a membership query, which proves membership
or non-membership of an event with a provided key for a provided snapshot.

After we show that Balloon is a secure ADS in the three party setting, we
extend Balloon to enable the author to discard the data structure and still per-
form verifiable inserts of new events to update the Balloon. Finally, we describe
how monitors and a perfect gossiping mechanism would prevent the an author
from undetectably modifying or deleting events once inserted into the Balloon,
which lays the foundation for the forward-secure author setting.

We make the following contributions:

– A novel append-only authenticated data structure named Balloon that al-
lows for both efficient membership and non-membership proofs, also for past
versions of the Balloon, while keeping the storage and memory requirements
minimal (Section 3).

– We formally prove that Balloon is a secure authenticated data structure
(Section 4) according to the definition by Papamanthou et al. [19].

– Efficient verifiable inserts into our append-only authenticated data structure
that enable the author to ensure consistency of the data structure without
storing a copy of the entire (authenticated) data structure (Section 5).

– We define publicly verifiable consistency for an ADS scheme and show how it
enables a forward-secure source (Section 6). Verifiable inserts can also have
applications for monitors in, e.g., [3,10,11,12,21,26].

– In Section 7, we show that Balloon is practical, providing performance results
for a proof-of-concept implementation.

The rest of the paper is structured as follows. Section 2 introduces the back-
ground of our idea. Section 8 presents related work and compares Balloon to
prior work. Section 9 concludes the paper. Of independent interest, Appendix
B shows why probabilistic proofs are insufficient for ensuring consistency of a
Balloon without the burden on the prover increasing greatly.

2 Preliminaries

First, we introduce the used formalisation of an authenticated data structure
scheme. Next, we give some background on the two data structures that make
up Balloon: a history tree, for efficient membership proofs for any snapshot,
and a hash treap, for efficient non-membership proofs. Finally we present our
cryptographic building blocks.

2.1 An Authenticated Data Structure Scheme

Papamanthou et al. [19] define an authenticated data structure and its two
main properties: correctness and security. We make use of these definitions and
therefore present them here, be it with slight modifications to fit our terminology.

Definition 1 (ADS scheme). Let D be any data structure that supports queries
q and updates u. Let auth(D) denote the resulting authenticated data structure
and s the snapshot of the authenticated data structure, i.e., a constant-size de-
scription of D. An ADS scheme A is a collection of the following six probabilistic
polynomial-time algorithms:

1. {sk, pk} ← genkey(1λ): On input of the security parameter λ, it outputs a
secret key sk and public key pk;

2. {auth(D0), s0} ← setup(D0, sk, pk): On input of a (plain) data structure
D0, the secret key sk, and the public key pk, it computes the authenticated
data structure auth(D0) and the corresponding snapshot s0;

3. {Dh+1, auth(Dh+1), sh+1, upd} ← update(u,Dh, auth(Dh), sh, sk, pk): On
input of an update u on the data structure Dh, the authenticated data struc-
ture auth(Dh), the snapshot sh, the secret key sk, and the public key pk, it
outputs the updated data structure Dh+1 along with the updated authenticated
data structure auth(Dh+1), the updated snapshot sh+1 and some relative in-
formation upd;

4. {Dh+1, auth(Dh+1), sh+1} ← refresh(u,Dh, auth(Dh), sh, upd, pk): On in-
put of an update u on the data structure Dh, the authenticated data structure
auth(Dh), the snapshot sh, relative information upd and the public key pk, it
outputs the updated data structure Dh+1 along with the updated authenticated
data structure auth(Dh+1) and the updated snapshot sh+1;

5. {Π(q), α(q)} ← query(q,Dh, auth(Dh), pk): On input of a query q on data
structure Dh, the authenticated data structure auth(Dh) and the public key
pk, it returns the answer α(q) to the query, along with proof Π(q);

6. {accept, reject} ← verify(q, α,Π, sh, pk): On input of a query q, an an-
swer α, a proof Π, a snapshot sh and the public key pk, it outputs either
accept or reject.

Next to the definition of the ADS scheme, another algorithm was defined for
deciding whether or not an answer α to query q on data structure Dh is correct:
{accept, reject} ← check(q, α,Dh).

Definition 2 (Correctness). Let A be an ADS scheme {genkey,setup,update,
refresh,query,verify}. The ADS scheme A is correct if, for all λ ∈ N, for all
{sk, pk} output by algorithm genkey, for all Dh, auth(Dh), sh output by one in-
vocation of setup followed by polynomially-many invocations of refresh, where
h ≥ 0, for all queries q and for all Π(q), α(q) output by query(q,Dh, auth(Dh), pk)
with all but negligible probability, whenever algorithm check(q, α(q), Dh) outputs
accept, so does verify(q, α(q), Π(q), sh, pk).

Definition 3 (Security). Let A be an ADS scheme {genkey,setup,update,
refresh,query,verify}, λ be the security parameter, ε(λ) be a negligible func-
tion and {sk, pk} ← genkey(1λ). Let also Adv be a probabilistic polynomial-
time adversary that is only given pk. The adversary has unlimited access to all
algorithms of A, except for algorithms setup and update to which he has only
oracle access. The adversary picks an initial state of the data structure D0 and
computes D0, auth(D0), s0 through oracle access to algorithm setup. Then, for
i = 0, ..., h = poly(λ), Adv issues an update ui in the data structure Di and
computes Di+1, auth(Di+1) and si+1 through oracle access to algorithm update.
Finally the adversary picks an index 0 ≤ t ≤ h + 1, and computes a query q,
answer α and proof Π. The ADS scheme A is secure if for all λ ∈ N, for all
{sk, pk} output by algorithm genkey, and for any probabilistic polynomial-time
adversary Adv it holds that

Pr

[
{q,Π, α, t} ← Adv(1λ, pk); accept← verify(q, α,Π, st, pk)

reject← check(q, α,Dt).

]
≤ ε(λ) (1)

2.2 History Tree

A tamper-evident history system, as defined by Crosby and Wallach [6], consists
of a history tree data structure and five algorithms. A history tree is in essence
a versioned Merkle tree [15] (hash tree). Each leaf node in the tree is the hash
of an event, while interior nodes are labeled with the hash of its children nodes
in the subtree rooted at that node. The root of the tree fixes the content of
the entire tree. Different versions of history trees, produced as events are added,
can be proven to make consistent claims about the past. The five algorithms,
adjusted to our terminology, are defined as follows:

– ci ← H.Add(e): Given an event e the system appends it to the history tree
H as the i:th event and then outputs a commitment3 ci.

– {P, ei} ←H.MembershipGen(i, cj): Generates a membership proof P for the
i:th event with respect to commitment cj , where i ≤ j, from the history tree
H. The algorithm outputs P and the event ei.

– P ← H.IncGen(ci, cj): Generates an incremental proof P between ci and cj ,
where i ≤ j, from the history tree H. Outputs P .

– {accept, reject} ← P.MembershipVerify(i, cj , e
′
i): Verifies that P proves

that e′i is the i:th event in the history defined by cj (where i ≤ j). Outputs
accept if true, otherwise reject.

– {accept, reject} ← P.IncVerify(c′i, cj): Verifies that P proves that cj fixes
every event fixed by c′i (where i ≤ j). Outputs accept if true, otherwise
reject.

2.3 Hash Treap

A treap is a type of randomised binary search tree [2], where the binary search
tree is balanced using heap priorities. Each node in a treap has a key, value,
priority, left child and right child. A treap has three important properties:

1. Traversing the treap in order gives the sorted order of the keys;
2. Treaps are structured according to the nodes’ priorities, where each node’s

children have lower priorities;
3. Given a deterministic attribution of priorities to nodes, a treap is set unique

and history independent, i.e., its structure is unique for a given set of nodes,
regardless of the order in which nodes were inserted, and the structure does
not leak any information about the order in which nodes were inserted.

When a node is inserted in a treap, its position in the treap is first determined by
a binary search. Once the position is found, the node is inserted in place, and then
rotated upwards towards the root until its priority is consistent with the heap
priority. When the priorities are assigned to nodes using a cryptographic hash
function, the tree becomes probabilistically balanced with an expected depth
of log n, where n is the number of nodes in the treap. Inserting a node takes
expected O(logn) operations and results in expected O(1) rotations to preserve
the properties of the treap [9]. Given a treap, it is straightforward to build a hash
treap: have each node calculate the hash of its own attributes4 together with the
hash of its children. Since the hash treap is a Merkle tree, its root fixes the entire
hash treap. The concept of turning treaps into Merkle trees for authenticating
the treap has been used for example in the context of persistent authenticated
dictionaries [7] and authentication of certificate revocation lists [18].

We define the following algorithms on our hash treap, for which we assume
that keys k are unique and of predefined constant size cst:

3 A commitment ci is the root of the history tree for the i:th event, signed by the
system. For the purpose of this paper, we omit the signature from the commitments.

4 The priority can safely be discarded since it is derived solely from the key and
implicit in the structure of the treap.

– r ←T.Add(k, v): Given a unique key k and value v, where |k| = cst and
|v| > 0, the system inserts them into the hash treap T and then outputs the
updated hash of the root r. The add is done with priority Hash(k), which
results in a deterministic treap. After the new node is in place, the hash of
each node along the path from the root has its internal hash updated. The
hash of a node is Hash

(
k||v||left.hash||right.hash

)
. In case there is no right

(left) child node, the right.hash (left.hash) is set to a string of consecutive
zeros of size equal to the output of the used hash function 0|Hash(·)|.

– {PT , v} ← T.AuthPath(k): Generates an authenticated path PT from the
root of the treap T to the key k where |k| = cst. The algorithm outputs PT

and, in case of when a node with key k was found, the associated value v.
For each node i in PT , ki and vi need to be provided to verify the hash in
the authenticated path.

– {accept, reject} ← PT .AuthPathVerify(k, v): Verifies that PT proves that

k is a non-member if v ?
= null or otherwise a member. Verification checks

that |k| = cst and |v| > 0 (if 6= null), calculates and compares the authen-
ticator for each node in PT , and checks that each node in PT adheres to the
sorted order of keys and heap priority.

Additionally we define the following helper algorithms on our hash treap:

– pruned(T)← T.BuildPrunedTree(<PTj >): Generates a pruned hash treap

pruned(T) from the given authenticated paths PTj in the hash treap T .
This algorithm removes any redundancy between the authenticated paths,
resulting in a more compact representation as a pruned hash treap. Note
that evaluating pruned(T).AuthPathVerify(k, v) is equivalent with eval-
uating PT .AuthPathVerify(k, v) on the authenticated path PT through k
contained in the pruned hash treap.

– r ← PT .root(): Outputs the root r of an authenticated path. Note that
pruned(T).root() and PT .root() are equivalent for any authenticated path
PT contained by the pruned tree.

2.4 Cryptographic Building Blocks

We assume idealised cryptographic building blocks in the form of a hash func-
tion Hash(·), and signature scheme that is used to sign a message m and ver-
ify the resulting signature: {accept, reject} ← Verifyvk

(
Signsk(m),m

)
. The

hash function should be collision and pre-image resistant. The signature scheme
should be existentially unforgeable under known message attack. Furthermore,
we rely on the following lemma for the correctness and security of a Balloon:

Lemma 1. The security of an authenticated path in a Merkle (hash) tree reduces
to the collision resistance of the underlying hash function.

Proof. This follows from the work by Merkle [16] and Blum et al. [5]. ut

3 Construction and Algorithms

Our data structure is an append-only key-value store that stores events e con-
sisting of a key k and a value v. Each key ki is assumed to be unique and of
predefined constant size cst, where cst← |Hash(·)|. Additionally, our data struc-
ture encodes some extra information in order to identify in which set (epoch)
events were added. We define an algorithm k ← key(e) that returns the key k
of the event e.

Our authenticated data structure combines a hash treap and a history tree
when adding an event an event e as follows:

– First, the event is added to the history tree: ci ← H.add
(
Hash(k||v)

)
. Let i

be the index where the hashed event was inserted at into the history tree.
– Next, the hash of the event key Hash(k) and the event position i are added

to the hash treap: r ← T.Add(Hash(k), i).

Figure 1 visualises a simplified Balloon with a hash treap and a history tree. For
the sake of readability, we omit the hash values and priority, replace hashed keys
with integers, and replace hashed events with place-holder labels. For example,
the root in the hash treap has key 42 and value 1. The value 1 refers to the leaf
node in the history tree with index 1, whose value is p42, the place-holder label
for the hash of the event which key, once hashed, is represented by integer 42.

Hash Treap

History Tree

42, 1

37, 6 61, 4

24, 2

8, 3

50, 7 86, 5

90, 0 0, p90 1, p42 2, p24 3, p8 4, p61 5, p86 6, p37 7, p50

Fig. 1: A simplified example of a Balloon consisting of a hash treap and history
tree. A membership proof for an event e = (k, v) with Hash(k) = 50 and Hash(e)
denoted by p50 (place-holder label) consists of the circle nodes in both trees.

By putting the hash of the event key, Hash(k), instead of the key into the
hash treap, we avoid easy event enumeration by third parties: no valid event keys
leak as part of authenticated paths in the treap for non-membership proofs. Note
that when H.MembershipGen returns an event, as specified in Section 2.2, the
actual event is retrieved from the data structure, not the hash of the event as
stored in the history tree (authentication). We store the hash of the event in
the history tree for sake of efficiency, since the event is already stored in the
(non-authenticated) data structure.

3.1 Setup

Algorithm {sk, pk} ← genkey(1λ) : Generates a signature key-pair {sk, vk}
using the generation algorithm of a signature scheme with security level λ and
picks a function Ω that deterministically orders events. Outputs the signing key
as the private key sk = sk, and the verification key and the ordering function
Ω as the public key pk = {vk, Ω}.

Algorithm {auth(D0), s0} ← setup(D0, sk, pk): Let D0 be the initial data
structure, containing the initial set of events < ej >. The authenticated data
structure, auth(D0), is then computed by adding each event from the set to the,
yet empty, authenticated data structure in the order dictated by the function
Ω ← pk. The snapshot is defined as the root of the hash treap r and commitment
in the history tree ci for the event that was added last together with a digital
signature over those: s0 = {r, ci, σ}, where σ = Signsk({r, ci}).

3.2 Update and Refresh

Algorithm {Dh+1, auth(Dh+1), sh+1, upd} ← update(u,Dh, auth(Dh), sh, sk,
pk): Let u be a set of events to insert into Dh. The updated data structure Dh+1

is the result of appending the events in u to Dh and indicating that these belong
the (h+ 1)th set. The updated authenticated data structure, auth(Dh+1), is
then computed by adding each event from the set to the authenticated data
structure auth(Dh) in the order dictated by the function Ω ← pk. The updated
snapshot is the root of the hash treap r and commitment in the history tree ci
for the event that was added last together with a digital signature over those:
sh+1 = {r, ci, σ}, where σ = Signsk({r, ci}). The update information contains
this snapshot upd = sh+1.

Algorithm {Dh+1, auth(Dh+1), sh+1} ← refresh(u,Dh, auth(Dh), sh, upd, pk):
Let u be a set of events to insert into Dh. The updated data structure Dh+1

is the result of appending the events in u to Dh and indicating that these be-
long the (h+ 1)th set. The updated authenticated data structure, auth(Dh+1),
is then computed by adding each event from the set u to the authenticated data
structure auth(Dh) in the order dictated by the function Ω ← pk. Finally, the
new snapshot is set to sh+1 = upd.

3.3 Query and Verify

Algorithm {Π(q), α(q)} ← query(q,Dh, auth(Dh), pk) (Membership): We
consider the query q to be “a membership query for an event with key k in the
data structure that is fixed by squeried”, where queried ≤ h. The query has two
possible answers α(q): {true, e} in case an event e with key k exists in Dqueried,
otherwise false. The proof of correctness Π(q) consists of up to three parts:

1. An authenticated path PT in the hash treap to k′ = Hash(k);

2. The index i of the event in the history tree;

3. A membership proof P on index i in the history tree.

The algorithm generates an authenticated path in the hash treap, which is part

of auth(Dh), to k′: {PT , v} ← T.AuthPath(k′). If v ?
= null, then there is no

event with key k in Dh (and consequently in Dqueried) and the algorithm outputs
Π(q) = PT and α(q) = false.

Otherwise, the value v in the hash treap indicates the index i in the his-
tory tree of the event. Now the algorithm checks whether or not the index i is
contained in the history tree up till auth(Dqueried). If not, the algorithm out-
puts α(q) = false and Π(q) = {PT , i}. If it is, the algorithm outputs α(q) =
{true, ei} andΠ(q) = {PT , i, P}, where {P, ei} ← H.MembershipGen(i, cqueried)
and cqueried ← squeried.

Algorithm {accept, reject} ← verify(q, α,Π, sh, pk) (Membership): First,
the algorithm extracts {k, squeried} from the query q and {PT , i, P} from Π,
where i and P can be null. From the snapshot it extracts r ← sh. Then the

algorithm computes x ←PT .AuthPathVerify(k, i). If x ?
= false ∨ PT .root()

6= r, the algorithm outputs reject. The algorithm outputs accept if any of the
following three conditions hold, otherwise reject:

– α ?
= false ∧ i ?

= null ;

– α ?
= false ∧ i > queried[−1]5 ;

– α ?
= {true, e} ∧ key(e) ?

= k ∧ y ?
= true,

for y ← P.MembershipVerify(i, cqueried, Hash(e)) and cqueried ← squeried .

4 Security

Theorem 1. Balloon {genkey,setup,update,refresh,query,verify} is a cor-
rect ADS scheme for a data structure D, that contains a list of sets of events,
according to Definition 2, assuming the collision-resistance of the underlying
hash function.

The proof of correctness can be found in Appendix C.1.

Theorem 2. Balloon {genkey,setup,update,refresh,query,verify} is a se-
cure ADS scheme for a data structure D, that contains a list of sets of events,
according to Definition 3, assuming the collision-resistance of the underlying
hash function.

The full proof of security can be found in Appendix A.

5 queried[−1] denotes the index of the last inserted event in version queried of the
authenticated data structure.

Proof (Sketch). Given that the different versions of the authenticated data struc-
ture and corresponding snapshots are generated through oracle access, these are
correct, i.e., the authenticated data structure contains all elements of the data
structure for each version, the root and commitment in each snapshot correspond
to that version of the ADS and the signature in each snapshot verifies.

For all cases where the check algorithm outputs reject, Adv has to forge
an authenticated path in the hash treap and/or history tree in order to get the
verify algorithm to output accept, which implies breaking Lemma 1.

5 Verifiable Insert

In practical three-party settings, the source typically has less storage capabilities
than servers. As such, it would be desirable that the source does not need to keep
a copy of the entire (authenticated) data structure for update, but instead can
rely on its own (constant) storage combined with verifiable information from a
server. We define new query and verify algorithms that enable the construction
of a pruned authenticated data structure, containing only the nodes needed to be
insert the new set of events with a modified update algorithm. The pruned au-
thenticated data structure is denoted by pruned

(
auth(Dh), u

)
, where auth(Dh)

denotes the version of the ADS being pruned, and u the set of events where this
ADS is pruned for.

Algorithm {Π(q), α(q)} ← query(q,Dh, auth(Dh), pk) (Prune): We consider
the query q to be “a prune query for if a set of events u can be inserted into
Dh”. The query has two possible answers: α(q): true in case no key for the
events in u already exist in Dh, otherwise false. The proof of correctness Π(q)
either proves that there already is an event with a key from an event in u, or
provides proofs that enable the construction of a pruned auth(Dh), depending
on the answer. For every kj ← key(ej) in the set u, the algorithm uses as a sub-
algorithm {Π ′j(q), α′j(q)} ← query(q′j , Dh, auth(Dh), pk) (Membership) with

q′ = {kj , sh}, where sh fixes auth(Dh). If any α′j(q)
?
= true, the algorithm out-

puts α(q) = false and Π(q) = {Π ′j(q), kj} and stops. If not, the algorithm takes

PTj from each Π ′j(q) and creates the set <PTj >. Next, the algorithm extracts
the latest event ei inserted into the history tree from auth(Dh) and uses as
a sub-algorithm {Π ′(q), α′(q)} ← query(q′, Dh, auth(Dh), pk) (Membership)
with q′ = {key(ei), sh}. Finally, the algorithm outputs α(q) = true and Π(q) =
{<PTj >,Π

′(q)}.

Algorithm {accept, reject} ← verify(q, α,Π, sh, pk) (Prune): The algo-

rithm starts by extracting < ej >← u from the query q. If α ?
= false, it gets

{Π ′j(q), kj} fromΠ and uses as a sub-algorithm valid← verify(q′, α′, Π ′, sh, pk)
(Membership), with q′ = {k, sh}, α′ = true and Π ′ = Π ′j(q), where k ← kj . If

valid
?
= accept and there exists an event with key k in u, the algorithm outputs

accept, otherwise reject.

If α ?
= true, extract {<PTj >,Π ′(q)} from Π. For each event ej in u, the

algorithm gets kj ← key(ej), finds the corresponding PTj for k′j = Hash(kj), and
uses as a sub-algorithm valid← verify(q′, α′, Π ′, sh, pk) (Membership), with
q′ = {kj , sh}, α′ = false and Π ′ =PTj . If no corresponding PTj to k′j is found

in <PTj > or valid
?
= reject, then the algorithm outputs reject and stops.

Next, the algorithm uses as a sub-algorithm valid ← verify(q′, α,Π ′, sh, pk)
(Membership), with q′ = {key(ei), sh} and Π ′ = Π ′(q), where ei ∈ Π ′(q) . If

valid
?
= accept and i ?

= h[−1] the algorithm outputs accept, otherwise reject.

Algorithm {sh+1, upd} ← update*(u,Π, sh, sk, pk): Let u be a set of events
to insert into Dh and Π a proof that the sub-algorithm verify(q, α,Π, sh, pk)
(Prune) outputs accept for, where q = u and α = true. The algorithm ex-
tracts {<PTj >,Π ′(q)} from Π and builds a pruned hash treap pruned(T) ←
T.BuildPrunedTree(<PTj >). Next, it extracts P from Π ′(q) and constructs the

pruned Balloon pruned
(
auth(Dh), u

)
← {pruned(T), P}. Finally, the algorithm

adds each event in u to the pruned Balloon pruned
(
auth(Dh), u

)
in the order

dictated by Ω ← pk. The updated snapshot is the digital signature over the root
of the updated pruned hash treap r and commitment in the updated pruned
history tree ci for the event that was added last: sh+1 = {r, ci}, Signsk({r, ci}).
The update information contains this snapshot upd = sh+1.

Lemma 2. The output of update and update* is identical with respect to the
root of the hash treap and the latests commitment in the history tree of sh+1 and
upd6.

The proof of Lemma 2 can be found in in Appendix C.2. As a result of
Lemma 2, the update algorithm in Balloon can be replaced by update* without
breaking the correctness and security of the Balloon as in Theorems 1 and 2. This
means that the server can keep and refresh the (authenticated) data structure
while the author only needs to store the last snapshot sh to be able to produce
updates, resulting in a small constant size storage requirement for the author.

Note that, in order to reduce the size of the transmitted proof, verify

(Prune) could output the pruned authenticated data structure directly. Since
pruned(T). AuthPathVerify(k, v) and PT .AuthPathVerify(k, v) are equiva-
lent, the correctness and security of verify (Prune) reduce to verify (Mem-
bership). Section 7 shows the reduction in the size of the proof with pruning.

6 Publicly Verifiable Consistency

While the server is untrusted, the author is trusted. A stronger adversarial model
assumes forward security for the author: the author is only trusted up to a certain
point in time, i.e., the time of compromise, and afterwards cannot change the
past. In this stronger adversarial model, Balloon should still provide correctness

6 Note that the signatures may differ since the signature scheme can be probabilistic.

and security for all events inserted by the author up till the time of author
compromise.

Efficient incremental proofs, realised by the IncGen and IncVerify algo-
rithms, are a key feature of history trees [9]. Anyone can challenge the server to
provide a proof that one commitment as part of a snapshot is consistent with all
previous commitments as part of snapshots. However, it appears to be an open
problem to have an efficient algorithm for showing consistency between roots of
different versions of a treap (or any lexicographically sorted data structure) [8].
In appendix B, we show why one cannot efficiently use probabilistic proofs of
consistency for a Balloon. In absence of efficient (both for the server and verifier
in terms of computation, storage, and size) incremental proofs in hash treaps,
we rely on a concept from Certificate Transparency [12]: monitors.

We assume that a subset of clients, or any third party, will take on a role
referred to as a “monitor”, “auditor”, or “validator” in, e.g., [3,10,11,12,21,26].
A monitor continuously monitors all data stored at a server and ensures that
all snapshots issued by an author are consistent. We assume that clients and
monitors receive the snapshots through gossiping.

Definition 4 (Publicly Verifiable Consistency). An ADS scheme is pub-
licly verifiable consistent if anyone can verify that a set of events u has been cor-
rectly inserted in Dh and auth(Dh), fixed by sh to form Dh+1 and auth(Dh+1)
fixed by sh+1.

Algorithm {α,Dh+1, auth(Dh+1), sh+1} ← refreshVerify(u,Dh, auth(Dh), sh,
upd, pk): First, the algorithm runs {Dh+1, auth(Dh+1), sh+1} ← refresh(u,
Dh, auth(Dh), sh, upd, pk) as a sub-algorithm. Then, the algorithm verifies the
updated snapshot {r, ci, σ} ← sh+1 ← upd:

– verify the signature: true ?
= verifypk(σ, {r, ci}) ; and

– match the root of the updated hash treap r′ ?
= r ; and

– match the last commitment in the updated history tree c′i
?
= ci .

If the verify succeeds, the algorithm outputs {α = true, Dh+1, auth(Dh+1), sh+1}.
Otherwise, the algorithm outputs α = false.

Theorem 3. With refreshVerify, Balloon is publicly verifiable consistent ac-
cording to Definition 4, assuming perfect gossiping of the snapshots and the
collision-resistance of the underlying hash function.

The proof of publicly verifiable consistency can be found in Appendix C.3.
Note that for the purpose of verifying consistency between snapshots, it is not
necessary to keep the data structure D. Moreover, the storage requirement for
monitors can be further reduced by making use of pruned versions of the au-
thenticated data structure, i.e., by using a refresh∗ sub-algorithm, similar to
the update∗ algorithm. Finally, to preserve event privacy towards monitors, one
can provide the monitors with ũ =< ẽj >, where ẽj =

(
Hash(kj), Hash(ej)

)
, and

not the actual set of events. However, in this case, one must ensure that the
ordering function Ω ← pk provides the same output for u and ũ.

7 Performance

We implemented Balloon in the Go7 programming language using SHA-512 as
the hash function and Ed25519 for signatures [4]. The output of SHA-512 is
truncated to 256-bits, with the goal of reaching a 128-bits security level. The
source code and steps to reproduce our results are available at http://www.

cs.kau.se/pulls/balloon/. Our performance evaluation focuses on verifiable
inserts, which are composed of performing and verifying |u| + 1 membership
queries, since these algorithms presumably are the most common. Figure 2 shows
the size of the proof from query (Prune) in KiB based on the number of events
to insert ranging from 1–1000 for three different sizes of Balloon: 210, 215, and
220 events. Figure 2a includes redundant nodes in the membership query proofs,
and shows that the proof size is linear with the number of events to insert.
Figure 2b excludes redundant nodes between proofs, showing that excluding
redundant nodes roughly halves the proof size with bigger gains the more events
are inserted. For large Balloons the probability that any two authenticated paths
in the hash treap share nodes goes down, resulting in bigger proofs, until the
number of events get closer to the total size of the Balloon, when eventually all
nodes in the hash treap are included in the proof as for the 210 Balloon.

0 200 400 600 800 1000
events to insert

1000

2000

3000

4000

pr
oo

f s
iz

e
(K

iB
)

2^20 Balloon
2^15 Balloon
2^10 Balloon

(a) Including redundant nodes.

0 200 400 600 800 1000
events to insert

500

1000

1500

2000

pr
oo

f s
iz

e
(K

iB
)

2^20 Balloon
2^15 Balloon
2^10 Balloon

(b) Excluding redundant nodes.

Fig. 2: The size of the proof from query (Prune) in KiB based on the number
of events to insert |u| for different sizes of Balloon.

Table 1 shows a micro-benchmark of the three algorithms that enable ver-
ifiable inserts: query(Prune), verify(Prune), and update*. The table shows
the average insert time (ms) calculated by Go’s built-in benchmarking tool that
performed between 30–30000 samples per measurement. The update* algorithm
performs the bulk of the work, with little difference between the different Bal-
loon sizes, and linear scaling for all three algorithms based on the number of
events to insert.

8 Related Work

Balloon is closely related to authenticated dictionaries [18] and persistent au-
thenticated dictionaries (PADs) [1,7,8]. Balloon is not a PAD because it does not

7 golang.org, accessed 2015-04-10.

http://www.cs.kau.se/pulls/balloon/
http://www.cs.kau.se/pulls/balloon/
golang.org

Table 1: A micro-benchmark on Debian 7.8 (x64) using an Intel i5-3320M quad
core 2.6GHz CPU and 7.7 GB DDR3 RAM.

Average time (ms)
Balloon 210 Balloon 215 Balloon 220

Events |u| # Events |u| # Events |u|
10 100 1000 10 100 1000 10 100 1000

query (Prune) 0.04 0.37 3.64 0.04 0.37 3.64 0.06 0.37 3.62
verify (Prune) 0.07 0.72 6.83 0.07 0.73 6.84 0.07 0.72 6.85
update* 0.75 4.87 40.1 1.22 5.26 43.7 1.24 9.33 56.7

allow for the author to remove or update keys from the data structure, i.e., it is
append-only. By allowing the removal of keys, the server needs to be able to con-
struct past versions of the PAD to calculate proofs, which is relatively costly. In
Table 2, Balloon is compared to the most efficient tree-based PAD construction
according to Crosby & Wallach [8]: a red-black tree using Sarnak-Tarjan ver-
sioned nodes with a cache-everywhere strategy for calculated hash values. The
table shows expected complexity. Note that red-black trees are more efficient
than treaps due to their worst-case instead of expected logarithmic bounds on
several important operations. We opted for using a treap due to its relative sim-
plicity. For Balloon, the storage at the author is constant due to using verifiable
inserts, while the PAD maintains a copy of the entire data structure. To query
past versions, the PAD has to construct past versions of the data structure,
while Balloon does not. When inserting new events, the PAD has to store a copy
of the modified authenticated path in the red-black tree, while the storage for
Balloon is constant. However, Balloon is less efficient when inserting new events
with regard to the proof size due to verifiable inserts.

Table 2: Comparing Balloon and an efficient PAD construction [8]. The number
of events in the data structure is n and the size of the version cache is v.

Expected Complexity
Total Storage

Size (A)
Query Time

(current)
Query Time

(past)
Insert Storage

Size (S)
Insert

Time (A)
Insert

Time (S)
Insert Proof

Size

Balloon O(1) O(logn) O(logn) O(1) O(logn) O(logn) O(logn)
Tree-based PAD O(n) O(logn) O(log v · logn) O(logn) O(logn) O(logn) O(1)

Miller et al. [17] present a generic method for authenticating operations on
any data structure that can be defined by standard type constructors. The prover
provides the authenticated path in the data structure that are traversed by
the prover when performing an operation. The verifier can then perform the
same operation, only needing the authenticated paths provided in the proof.
The verifier only has to store the latest correct digest that fixes the content of
the data structure. Our verifiable insert is based on the same principle.

Secure logging schemes, like the work by Schneier and Kelsey [22], Ma and
Tsudik [13], and Yavuz et al. [25] can provide deletion detection and forward-
integrity in a forward secure model for append-only data. Some schemes, like
that of Yavuz et al., are publicly verifiable like Balloon. However, these schemes
are insufficient in our setting, since clients cannot get efficient non-membership

proofs, nor efficient membership-proofs for past versions of the data structure
when only some versions (snapshots) are timestamped.

All the following related work operates in a setting that is fundamentally
different to the one of Balloon. For Balloon, we assume a forward-secure au-
thor with an untrusted server, whereas the following related work assumes a
(minimally) trusted server with untrusted authors.

Certificate Transparency [12] and the tamper-evident history system by Crosby
& Wallach [6] use a nearly identical8 data structure and operations. Even though
in both Certificate Transparency and Crosby & Wallach’s history system, a num-
ber of minimally trusted authors insert data into a history tree kept by a server,
clients query the server for data and can act as auditors or monitors to challenge
the server to prove consistency between commitments. Non-membership proofs
require the entire data structure to be sent to the verifier.

In Revocation Transparency, Laurie and Kasper [11] present the use of a
sparse Merkle tree for certificate revocation. Sparse Merkle trees create a Merkle
tree with 2N leafs, where N is the bit output length of a hash algorithm. A leaf
is set to 1 if the certificate with the hash value fixed by the path to the leaf
from the root of the tree is revoked, and 0 if not. While the tree in general is
too big to store or compute on its own, the observation that most leafs are zero
(i.e., the tree is sparse) means that only paths including non-zero leafs need to
be computed and/or stored. At first glance, sparse Merkle trees could replace
the hash treap in a Balloon with similar size/time complexity operations.

Enhanced Certificate Transparency (ECT) by Ryan [21] extends CT by using
two data structures: one chronologically sorted and one lexicographically sorted.
Distributed Transparent Key Infrastructure (DTKI) [26] builds upon the same
data structures as ECT. The chronologically sorted data structure corresponds
to a history tree (like CT). The lexicographically sorted data structure is similar
to our hash treap. For checking consistency between the two data structures,
ECT and DTKI use probabilistic checks. The probabilistic checking verifies that
a random operation recorded in the chronological data structure has been cor-
rectly performed in the lexicographical data structure. However, this requires
the prover to generate past versions of the lexicographical data structure (or
cache all proofs), with similar trade-offs as for PADs, which is relatively costly.

CONIKS [14] is a privacy-friendly key management system where minimally
trusted clients manage their public keys in directories at untrusted key servers.
A directory is built using an authenticated binary prefix tree, offering similar
properties as our hash treap. In CONIKS, user identities are presumably easy to
brute-force, so they go further than Balloon in providing event privacy in proofs
by using verifiable unpredictable functions and commitments to hide keys (iden-
tities) and values (user data). CONIKS stores every version of their (authenti-
cated) data structure, introducing significant overhead compared to Balloon. On
the other hand, CONIKS supports modifying and removing keys, similar to a
PAD. Towards consistency, CONIKS additionally links snapshots together into
a snapshot chain, together with a specified gossiping mechanism that greatly in-

8 The difference is in how non-full trees are handled, as noted in Section 2.1 of [12].

creases the probability that an attacker creating inconsistent snapshots is caught.
This reduces the reliance on perfect gossiping, and could be used in Balloon. If
the author ever wants to create a fork of snapshots for a subset of clients and
monitors, it needs to maintain this fork forever for this subset or risk detection.
Like CONIKS, we do not prevent an adversary compromising a server, or author,
or both, from performing attacks: we provide means of detection after the fact.

9 Conclusions

This paper presented Balloon, an authenticated data structure composed of a
history tree and a hash treap, that is tailored for privacy-preserving transparency
logging. Balloon is a provably secure authenticated data structure, using a sim-
ilar approach as Papamanthou et al. [19], under the modest assumption of a
collision-resistant hash function. Balloon also supports efficiently verifiable in-
serts of new events and publicly verifiable consistency. Verifiable inserts enable
the author to discard its copy of the (authenticated) data structure, only keeping
constant storage, at the cost of transmitting and verifying proofs of a pruned
version of the authenticated data structure. Publicly verifiable consistency en-
ables anyone to verify the consistency of snapshots, laying the foundation for a
forward-secure author, under the additional assumption of a perfect gossiping
mechanism of snapshots. Balloon is practical, as shown in Section 7, and a more
efficient solution in our setting than using a PAD, as summarised by Table 2.

Acknowledgements

We would like to thank Simone Fischer-Hübner, Stefan Lindskog, Leonardo Mar-
tucci, Jenni Reuben, Philipp Winter, and Jiangshan Yu for their valuable feed-
back. Tobias Pulls has received funding from the Seventh Framework Programme
for Research of the European Community under grant agreement no. 317550.
This work was supported in part by the Research Council KU Leuven: GOA
TENSE (GOA/11/007).

References

1. Anagnostopoulos, A., Goodrich, M.T., Tamassia, R.: Persistent Authenticated Dic-
tionaries and Their Applications. In: ISC. LNCS, vol. 2200, pp. 379–393. Springer
(2001)

2. Aragon, C.R., Seidel, R.: Randomized Search Trees. In: FOCS. pp. 540–545. IEEE
Computer Society (1989)

3. Basin, D.A., Cremers, C.J.F., Kim, T.H., Perrig, A., Sasse, R., Szalachowski, P.:
ARPKI: attack resilient public-key infrastructure. In: CCS. ACM (2014)

4. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. J. Cryptographic Engineering 2(2), 77–89 (2012)

5. Blum, M., Evans, W.S., Gemmell, P., Kannan, S., Naor, M.: Checking the correct-
ness of memories. Algorithmica 12(2/3), 225–244 (1994)

6. Crosby, S.A., Wallach, D.S.: Efficient Data Structures For Tamper-Evident Log-
ging. In: USENIX Security Symposium. pp. 317–334. USENIX (2009)

7. Crosby, S.A., Wallach, D.S.: Super-Efficient Aggregating History-Independent Per-
sistent Authenticated Dictionaries. In: ESORICS. LNCS, vol. 5789, pp. 671–688.
Springer (2009)

8. Crosby, S.A., Wallach, D.S.: Authenticated dictionaries: Real-world costs and
trade-offs. ACM Trans. Inf. Syst. Secur. 14(2), 17 (2011)

9. Crosby, S.A.: Efficient tamper-evident data structures for untrusted servers. Ph.D.
thesis, Rice University (2010)

10. Kim, T.H., Huang, L., Perrig, A., Jackson, C., Gligor, V.D.: Accountable key in-
frastructure (AKI): a proposal for a public-key validation infrastructure. In: World
Wide Web Conference. pp. 679–690. ACM (2013)

11. Laurie, B., Kasper, E.: Revocation transparency (2012), http://www.links.org/
files/RevocationTransparency.pdf

12. Laurie, B., Langley, A., Kasper, E.: Certificate Transparency. RFC 6962 (2013),
http://tools.ietf.org/html/rfc6962

13. Ma, D., Tsudik, G.: Extended abstract: Forward-secure sequential aggregate au-
thentication. In: IEEE Symposium on Security and Privacy. pp. 86–91. IEEE Com-
puter Society (2007)

14. Melara, M.S., Blankstein, A., Bonneau, J., Freedman, M.J., Felten, E.W.:
CONIKS: A privacy-preserving consistent key service for secure end-to-end commu-
nication. Cryptology ePrint Archive, Report 2014/1004 (2014), https://eprint.
iacr.org/2014/1004

15. Merkle, R.C.: A Digital Signature Based on a Conventional Encryption Function.
In: CRYPTO. LNCS, vol. 293, pp. 369–378. Springer (1987)

16. Merkle, R.C.: A Certified Digital Signature. In: CRYPTO. LNCS, vol. 435, pp.
218–238. Springer (1989)

17. Miller, A., Hicks, M., Katz, J., Shi, E.: Authenticated data structures, generically.
In: POPL. pp. 411–424. ACM (2014)

18. Nissim, K., Naor, M.: Certificate revocation and certificate update. In: USENIX.
pp. 561–570. USENIX (1998)

19. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal verification of op-
erations on dynamic sets. In: CRYPTO. LNCS, vol. 6841, pp. 91–110. Springer
(2011)

20. Pulls, T., Peeters, R., Wouters, K.: Distributed privacy-preserving transparency
logging. In: WPES. pp. 83–94. ACM (2013)

21. Ryan, M.D.: Enhanced Certificate Transparency and End-to-End Encrypted Mail.
In: NDSS. The Internet Society (2014)

22. Schneier, B., Kelsey, J.: Secure audit logs to support computer forensics. ACM
Trans. Inf. Syst. Secur. 2(2), 159–176 (1999)

23. Tamassia, R.: Authenticated data structures. In: Algorithms - ESA 2003. LNCS,
vol. 2832, pp. 2–5. Springer (2003)

24. Vliegen, J., Wouters, K., Grahn, C., Pulls, T.: Hardware strengthening a dis-
tributed logging scheme. In: DSD. pp. 171–176. IEEE (2012)

25. Yavuz, A.A., Ning, P., Reiter, M.K.: BAF and FI-BAF: efficient and publicly ver-
ifiable cryptographic schemes for secure logging in resource-constrained systems.
ACM Trans. Inf. Syst. Secur. 15(2), 9 (2012)

26. Yu, J., Cheval, V., Ryan, M.: DTKI: a new formalized PKI with no trusted parties.
CoRR abs/1408.1023 (2014), http://arxiv.org/abs/1408.1023

http://www.links.org/files/RevocationTransparency.pdf
http://www.links.org/files/RevocationTransparency.pdf
http://tools.ietf.org/html/rfc6962
https://eprint.iacr.org/2014/1004
https://eprint.iacr.org/2014/1004
http://arxiv.org/abs/1408.1023

A Proof of Security

Theorem 2. Balloon {genkey,setup,update,refresh,query,verify} is a se-
cure ADS scheme for a data structure D, that contains a list of sets of events,
according to Definition 3, assuming the collision-resistance of the underlying
hash function.

Proof. The adversary initially outputs the authenticated data structure auth(D0)
and the snapshot s0 through an oracle call to algorithm setup. The adver-
sary picks a polynomial number i = 0, . . . , h of updates with ui insertions of
unique events and outputs the data structure Di, the authenticated data struc-
ture auth(Di), and the snapshot si through oracle access to update. Then it
picks a query q = “a membership query for an event with key k ∈ {0, 1}|Hash(·)|
in the data structure that is fixed by sj , with 0 ≤ j ≤ h + 1”, a proof Π(q),
and an answer α(q) which is rejected by check(q, α(q), Dj) as incorrect. An
adversary breaks security if verify(q, α(q), Π(q), sj , pk) outputs accept with
non-negligible probability.

Assume a probabilistic polynomial time adversary Adv that breaks security
with non-negligible probability. Given that the different versions of the authenti-
cated data structure and corresponding snapshots are generated through oracle
access, these are correct, i.e., the authenticated data structure contains all ele-
ments of the data structure for each version, the root and commitment in each
snapshot correspond to that version of the ADS and the signature in each snap-
shot verifies.

The tuple (q, α(q), Dj) is rejected by check in only three cases:

Case 1 α(q) = false and there exists an event with key k in Dj ;
Case 2 α(q) = {true, e} and there does not exists an event with key k in Dj ;
Case 3 α(q) = {true, e} and the event e∗ with key k in Dj differs from e:

e = (k, v) 6= e∗ = (k, v∗) or more specifically v 6= v∗ ;

For all three cases where the check algorithm outputs reject, Adv has to forge
an authenticated path in the hash treap and/or history tree in order to get the
verify algorithm to output accept:

Case 1 In the hash treap that is fixed by sh+1, there is a node with key k′ =
Hash(k) and the value v′ ≤ j[−1]. However for the verify algorithm to
output accept for α(q)=false, the authenticated path in the hash treap
must go to either no node with key k′ or a node with key k′ for which the
value v′ is greater than the index of the last inserted event in the history
tree that is fixed by sj : v

′ > j[−1].
Case 2 In the hash treap that is fixed by sh+1, there is either no node with

key k′ = Hash(k) or a node with key k′ for which the value v′ is greater
than the index of the last inserted event in the history tree that is fixed
by sj : v

′ > j[−1]. However for the verify algorithm to output accept for
α(q) = {true, e}, the authenticated path in the hash treap must go to a
node with key k′, where the value v′ ≤ j[−1]. Note that, in this case, A also
needs to forge an authenticated path in the history tree to succeed.

Case 3 In the hash treap that is fixed by sh+1, there is a leaf with key k′ =
Hash(k) and the value v′ ≤ j[−1]. In the history tree, the leaf with key v′

has the value Hash(e∗). However for the verify algorithm to output accept
for α(q) = {true, e}, the authenticated path in the hash treap must go to
a leaf with key k′, where the value v′ ≤ j[−1], for which the authenticated
path in the history tree must go to a leaf with key v′ and the value Hash(e).

From Lemma 1 it follows that we can construct a probabilistic polynomial
time adversary Adv∗, by using Adv, that outputs a collision of the underlying
hash function with non-negligible probability. ut

B Negative Result on Probabilistic Consistency

Probabilistic proofs are compelling, because they may enable more resource-
constrained clients en-mass to verify consistency, removing the need for monitors
that perform the relatively expensive role of downloading all events at a server.
Assume the following pair of algorithms:

– P ← B.IncGen(si, sj , rand): Generates a probabilistic incremental proof P
using randomness rand between si and sj , where i ≤ j, from the Balloon B.
Outputs P .

– {accept, reject} ← P.IncVerify(si, sj , rand): Verifies that P probabilisti-
cally proves that sj fixes every event fixed by si, where i ≤ j, using random-
ness rand.

B.1 Our Attempt

Our envisioned B.IncGen algorithm shows consistency in two steps. First, it
uses the H.IncGen algorithm from the history tree. This ensures that the snap-
shots are consistent for the history tree. Second, it selects deterministically and
uniformly at random based on rand a number of events E =< ej > from the
history tree. Which events to select from depend on the two snapshots. For each
selected event, the algorithm performs a query (Membership) for the event
key kj ← key(ej) to show that the event is part of the hash treap and points to
the index of the event in the history tree.

The P.IncVerify algorithm checks the incremental proof in the history tree,

verify (Membership) ?
= accept for each output of query (Membership), and

that the events E were selected correctly based on rand. Next, we explain an
attack, why it works, and lessons learnt.

B.2 Attack

The following attack allows an attacker to hide an arbitrary event that was in-
serted before author compromise. The attacker takes control over both the author
and server just after snapshot st. Assume that the attacker wants to remove an
event ej from Balloon, where j ≤ t[−1]. The attacker does the following:

1. Remove the event key k′j = Hash(kj), where kj ← key(ej), from the hash
treap, insert a random key, and rebalance the treap if needed. This results
is a modified ADS auth(Dt)

∗.
2. Generate a set of new events u and update the data structure: update(u,Dt,

auth(Dt)
∗, st, sk, pk), resulting in a new snapshot st+1 .

It is clear that the snapshot st+1 is inconsistent with all other prior snapshots,
sp, where p ≤ t.

Now, we show how the attacker can avoid being detected by P.IncVerify

in the case that the verifier challenges the server (and therefore the attacker)
to probabilistically prove the consistency between sp and st+1, AND that the
randomness rand provided by the verifier selects the event ej that was modified
by the attacker. The attacker can provide a valid incremental proof in the history
tree, using H.IncGen, since the history tree has not been modified. However, the
attacker cannot create a valid membership proof for an event with key kj ←
key(ej) in the ADS, since the key k′j = Hash(kj) was removed from the hash
treap in auth(Dt+1). To avoid detection, the attacker puts back the event key k′j
in the hash treap and rebalances the treap if needed. By inserting a set of events
using update, a new snapshot st+2 is generated, which is then used to perform
the membership query against that will now output a valid membership proof.

B.3 Lessons Learnt

This attack succeeds because the attacker can, once having compromised the
author and server, a) create snapshots at will; and b) membership queries are
always performed on the current version of the hash treap.

In settings where snapshots are generated periodically, e.g., once a day, the
probability of the attacker getting caught in this way is non-negligible given a suf-
ficient number of queries. However, as long as the attacker can create snapshots
at will, the probability that it will be detected with probabilistic incremental
proofs is zero, as long as it cannot be challenged to generate past versions of
the hash treap; and there are no monitors or another mechanism, that prevent
the attacker from modifying or deleting events that were inserted into the ADS
prior to compromise.

C Extended version: Additional proofs

This section contains the proofs that are not present in our paper as in the
conference proceedings of ESORICS 2015. The rest of the paper is identitical to
the conference version (with the exception of referring to these proofs).

C.1 Correctness

Theorem 1. Balloon {genkey,setup,update,refresh,query,verify} is a cor-
rect ADS scheme for a data structure D, that contains a list of sets of events,
according to Definition 2, assuming the collision-resistance of the underlying
hash function.

Proof. For every membership query q and for every answer α(q) that is accepted
by the check algorithm and proof output by query, verify accepts with over-
whelming probability. Let q be a membership query for a key k in the snapshot
sj . Regardless of the queried snapshot, in the hash treap, the current root r ∈ sh
is used to construct the authenticated path verified by verify.

If there is no event with key k in Dh, then there is no key with k′ ← Hash(k)
in the hash treap with overwhelming probability (a hash collision has negligible

probability), and verify accepts only if α(q) ?
= false. If there is an event with

key k in Dh, then there is a node with key k′ in the hash treap and α(q) is either
{true, e} or false. If α(q) is false, then the event with key k was inserted into
Dh after sj . This means that the index i in the history tree, that is the value v′ in
the hash treap node for k′, is i > j[−1] and hence the verify algorithm accepts.
Finally, if α(q) is {true, e}, then the proof contains a membership proof in the
history tree for the key i and value Hash(e) and hence the verify algorithm
accepts.

C.2 Verifiable Insert

Lemma 2. The output of update and update* is identical with respect to the
root of the hash treap and the latests commitment in the history tree of sh+1 and
upd.

Proof. For verify (Prune), when α ?
= true, the algorithm verifies |u|+ 1 mem-

bership queries using as a sub-algorithm verify (Membership), which is cor-
rect and secure according to Theorems 1 and 2. Furthermore, verify (Prune)
verifies that no event in u has already been inserted into the Balloon and that a
membership query fixes the last event inserted into the history tree. This enables
update* to verifiably create pruned

(
auth(Dh), u

)
← {pruned(T), P}. Next we

show that inserting events u into pruned
(
auth(Dh), u

)
and auth(Dh) result in

the same root r of the hash treap and commitment ci on the history tree.
The pruned hash treap pruned(T) is the only part of the hash treap that is

subject to change when inserting the events u. This follows from the fact that
the position to insert each a new node in a treap is determined by a binary search
(which path a membership query fixes and proves), and that balancing the treap
using the heap priority only rotates nodes along the authenticated path. Since a
treap is also set unique, i.e., independent of the insert order of events, all these
authenticated paths can safely be combined into one pruned tree. As such the
root of the hash treap after inserting the events will be identical when using the
pruned and full hash treap.

To compute the new root of a Merkle tree after adding a leaf node, one needs
the authenticated path of the last inserted leaf node to the root and the new leaf.
Note that any new leaf will always be inserted to the right of the authenticated
path. As such the roots (and by consequence the commitments) of the new
history tree after adding all events in the order determined by Ω ← pk will be
identical for both cases. ut

C.3 Publicly Verifable Consistency

Theorem 3. With refreshVerify, Balloon is publicly verifiable consistent ac-
cording to Definition 4, assuming perfect gossiping of the snapshots and the
collision-resistance of the underlying hash function.

Proof. By assuming perfect gossiping, one is assured that it receives all snapshots
in the order they were generated and that these snapshots have not been altered
afterwards.

First, one starts from the initial data structure D0 and constructs the initial
authenticated data structure auth(D0) by adding the events contained in D0 to
an empty Balloon. It then verifies the initial snapshot s0 (received by gossip) as
in refreshVerify(). If snapshot verifies, one now has {D0, auth(D0), s0} and
is assured these values are consistent with the (authenticated) data structure
as constructed by the author. Under the assumption that the underlying hash
function is collision resistant, this follows directly from Lemma 1 and the fact
that our authenticated data structure consists of two Merkle trees: a hash treap
and a history tree.

Now, one keeps on building the authenticated data structure, snapshot by
snapshot, until one finally ends up with the snapshots that one wants to check
the consistency between. The authenticated data structure is built by running
refreshVerify(u, Di, auth(Di), si, si+1, pk), where every time i is increased by
one. A balloon is verifiably consistent, if for i = h, this algorithm outputs
{Dh+1, auth(Dh+1), sh+1}. If the balloon is not consistent, then the output of
the refreshVerify() algorithm is α = false for some i ≤ h. ut

	Balloon: A Forward-Secure Append-Only Persistent Authenticated Data Structure

