
VABKS: Verifiable Attribute-based Keyword Search
over Outsourced Encrypted Data

Qingji Zheng† Shouhuai Xu† Giuseppe Ateniese‡
† University of Texas at San Antonio, USA

‡ Sapienza University of Rome, Italy and Johns Hopkins University, USA

Abstract—It is common nowadays for data owners to outsource
their data to the cloud. Since the cloud cannot be fully trusted,
the outsourced data should be encrypted. This however brings
a range of problems, such as: How should a data owner grant
search capabilities to the data users? How can the authorized data
users search over a data owner’s outsourced encrypted data?
How can the data users be assured that the cloud faithfully
executed the search operations on their behalf? Motivated by
these questions, we propose a novel cryptographic solution, called
verifiable attribute-based keyword search(VABKS). The solution
allows a data user, whose credentials satisfy a data owner’saccess
control policy, to (i) search over the data owner’s outsourced
encrypted data, (ii) outsource the tedious search operations
to the cloud, and (iii) verify whether the cloud has faithfully
executed the search operations. We formally define the security
requirements ofVABKS and describe a construction that satisfies
them. Performance evaluation shows that the proposed schemes
are practical and deployable.

I. I NTRODUCTION

Cloud computing allows data owners to use massive data
storage and vast computation capabilities at a very low price.
Despite the benefits, data outsourcing deprives data ownersof
direct control over their outsourced data. To alleviate concerns,
data owners should encrypt their data before outsourcing tothe
cloud. However, encryption can hinder some useful functions
such as searching over the outsourced encrypted data while
enforcing an access control policy. Moreover, it is naturalto
outsource the search operations to the cloud, while keeping
the outsourced data private. There is a need to allow the
data users to verify whether the cloud faithfully executed the
search operations or not. To the best of our knowledge, existing
solutions cannot achieve these objectives simultaneously.

A. Our Contributions

We propose a novel cryptographic primitive, calledverifi-
able attribute-based keyword search(VABKS). This primitive
allows a data owner to control the search, and use of, its
outsourced encrypted data according to an access control
policy, while allowing the legitimate data users to outsource
the (often costly) search operations to the cloud and verify
whether or not the cloud has faithfully executed the search
operations. In other words, a data user with proper credentials
(corresponding to a data owner’s access control policy) can
(i) search over the data owner’s outsourced encrypted data,
(ii) outsource the search operations to the cloud, and (iii)
verify whether or not the cloud has faithfully executed the
search operations. We formally define the security properties

of VABKS and present a scheme that provably satisfies them.
The scheme is constructed in a modular fashion, by using
attribute-based encryption, bloom filter, digital signature, and
a new building-block we callattribute-based keyword search
(ABKS) that may be of independent value. Experimental
evaluation shows that theVABKS solutions are practical.

B. Related Work

To the best of our knowledge, no existing solution is
adequate for what we want to achieve. In what follows we
briefly review the relevant techniques.

Attribute-Based Encryption (ABE). ABE is a popular
method for enforcing access control policies via cryptographic
means. Basically, this technique allows entities with proper
credentials to decrypt a ciphertext that was encrypted accord-
ing to an access control policy [1]. Depending on how the ac-
cess control policy is enforced, there are two variants:KP-ABE
(key-policy ABE) where the decryption key is associated to
the access control policy [2], andCP-ABE (ciphertext-policy
ABE) where the ciphertext is associated to the access control
policy [3]. ABE has been enriched with various features
(e.g., [4]–[7]). In this paper, we useABE to construct a new
primitive called attribute-based keyword search(ABKS), by
which keywords are encrypted according to an access control
policy and data users with proper cryptographic credentials can
generate tokens that can be used to search over the outsourced
encrypted data. This effectively prevents a data owner from
knowing the keywords a data user is searching for, while
requiring no interactions between the data users and the data
owners/trusted authorities. This is in contrast to [8], where the
data users interact with the data owners/trusted authorities to
obtain search tokens.

Keyword Search over Encrypted Data. This technique
allows a data owner to generate some tokens that can be used
by a data user to search over the data owner’s encrypted data.
Existing solutions for keyword search over encrypted data
can be classified into two categories: searchable encryption
in the symmetric-key setting (e.g., [9]–[18]) and searchable
encryption in the public-key setting (e.g., [8], [19]–[22]). Sev-
eral variants (e.g., [23]–[26]) have been proposed to support
complex search operations. Moreover, searchable encryption in
the multi-users setting has been investigated as well [12],[27],
where the data owner can enforce an access control policy
by distributing some (stateful) secret keys to the authorized

users. However, all these solutions do not solve the problemwe
study, because (i) some of these solutions require interactions
between the data users and the data owners (or a trusted
proxy, such as a trapdoor generation entity [8]) to grant
search capabilities, and (ii) all these solutions (except [18])
assume that the server faithfully executed search operations. In
contrast, our solution allows a data user with proper credentials
to issue search tokens by which the cloud can perform keyword
search operations on behalf of the user,without requiring any
interaction with the data owner. Moreover, the data user can
verify whether or not the cloud has faithfully executed the
keyword search operations. This is true even for the powerful
technique called predicate encryption [28], [29], which does
not offer the desired verifiability.

Verifiable Keyword Search. Recently, verifiable keyword
search solutions have been proposed in [30]–[32], where each
keyword is represented as a root of some polynomial. It is
possible to check whether a keyword is present by evaluating
the polynomial on the keyword and verifying whether the
output is zero or not. However, these approaches work only
when keywords are sent in plaintext to the cloud, and are not
suitable for our purpose because the cloud should not learn
anything about the keywords. It is worth mentioning that the
secure verifiable keyword search in the symmetric-key setting
[18] can be insecure in the public-key setting because the
attacker can infer keywords in question via anoff-linekeyword
guessing attack (in lieu of the off-line dictionary attack against
passwords).

Paper Organization: Section II reviews some cryptographic
preliminaries. Section III definesABKS and its security
properties, presentsKP-ABKS and CP-ABKS schemes and
analyzes their security properties. Section IV definesVABKS

and its security properties, presents theVABKS construction
and analyzes its security. Section V evaluates the performance
of theABKS andVABKS schemes. Section VI concludes the
paper.

II. PRELIMINARIES

Let a ← S denote selecting an elementa from a setS
uniformly at random,|| denote the concatenation operation and
string(S) denote the concatenation of elements ofS ordered
by their hash values. LetU = {at1, . . . , atn} be a set of
attributes that are used to specify access control policies.

A. Cryptographic Assumption

Let p be an ℓ-bit prime, andG,GT be cyclic groups of
prime orderp with generatorsg, gT , respectively. Lete be
a bilinear map:e : G × G → GT satisfying: (i) ∀a, b ←
Zp, e(ga, gb) = e(g, g)ab, (ii) e(g, g) 6= 1, and (iii) e can be
computed efficiently.

Decisional Linear Assumption (DL). Given (g, f, h, f r1,
gr2 , Q) whereg, f, h,Q ← G, r1, r2 ← Zp, this assumption
says that any probabilistic polynomial-time algorithmA can
determineQ

?
= hr1+r2 at most with a negligible advantage in

security parameterℓ, where “advantage” is defined as

|Pr[A(g, f, h, f r1 , gr2 , hr1+r2) = 1]−

Pr[A(g, f, h, f r1 , gr2 , Q) = 1]|.

Generic Bilinear Group [33]. Let ψ0, ψ1 be two random
encodings of the additive groupZ+

p , such thatψ0, ψ1 are
injective maps fromZ+

p to {0, 1}m, wherem > 3 log(p). Let
G = {ψ0(x)|x ∈ Zp} andGT = {ψ1(x)|x ∈ Zp}. There is
an oracle to computee : G×G→ GT . G is referred to as a
generic bilinear group. Letg denoteψ0(1), gx denoteψ0(x),
e(g, g) denoteψ1(1), ande(g, g)y denoteψ1(y).

Pseudorandom Generator [34].A pseudorandom genera-
torH : {0, 1}ℓ → {0, 1}m, ℓ < m, is a deterministic algorithm
that takes as input anℓ-bit seed and generates am-bit string
that cannot be distinguished from am-bit random string by
any polynormial-time algorithm (inℓ).

B. Bloom Filter for Membership Query

A Bloom filter [35] is a data structure for succinctly
representing a static set, while allowing membership queries.
A m-bit Bloom filter is an array ofm bits, which are all
initialized as 0. It usesk independent universal hash functions
H ′

1, . . . , H
′
k with the same range{0, . . . ,m − 1}. For each

elementw ∈ S = {w1, . . . , wn}, the bits corresponding
to H ′

j(w) are set to 1, where1 ≤ j ≤ k. To determine
whetherw belongs toS or not, once can check whether
all of the bits corresponding toH ′

j(w) equal to 1, where
1 ≤ j ≤ k. If not, it is certain thatw 6∈ S; otherwise,
w ∈ S with a high probability (i.e., there is a non-zero false-
positive rate). Suppose the hash functions are perfectly random
and n elements are hashed into am-bit Bloom filter, the
false-positive rate is(1 − (1 − 1

m)kn)k ≈ (1 − e−kn/m)k.
Note thatk = (ln 2)m/n hash functions lead to the minimal
false-positive rate(0.6185)m/n. A m-bit Bloom filter has two
associated algorithms:

• BF← BFGen({H ′
1, . . . , H

′
k}, {w1, . . . , wn}): This algo-

rithm generates am-bit Bloom filter by hashing a data
setS = {w1, . . . , wn} with {H ′

1, . . . , H
′
k}.

• {0, 1} ← BFVerify({H ′
1, . . . , H

′
k},BF, w): This algo-

rithm returns 1 ifw ∈ S, and 0 otherwise.

C. Access Trees for Representing Access Control Policies

Access trees can represent access control policies [2]. In an
access tree, a leaf is associated with an attribute and an inner
node represents a threshold gate. Letnumv be the number of
children of nodev, and label the children from the left to the
right as1, . . . , numv. Letkv, 1 ≤ kv ≤ numv, be the threshold
value associated with nodev, wherekv = 1 represents the OR
gate andkv = numv represents the AND gate. Letparent(v)
denote the parent of nodev, ind(v) denote the label of node
v, att(v) denote the attribute associated to leaf nodev, lvs(T)
denote the set of leaves of access treeT, andTv denote the
subtree ofT rooted at nodev (e.g.,Troot = T).

Let F (Atts,Tv) = 1 indicate that an attribute setAtts
satisfies the access control policy represented by subtreeTv,
whereF (Atts,Tv) can be evaluated iteratively as follows:

• In the casev is a leaf: Ifatt(v) ∈ Atts, setF (Atts,Tv) =
1; otherwise, setF (Atts,Tv) = 0.

• In the casev is an inner node with childrenv1, . . . , vnumv
:

If there exists a subsetI ⊆ {1, . . . , numv} such that|I| ≥
kv and∀ j ∈ I, F (Atts,Tvj) = 1, setF (Atts,Tv) = 1;
otherwise, setF (Atts,Tv) = 0.

Given an access treeT, we denote the algorithm for
distributing a secrets according toT by:

{qv(0)|v ∈ lvs(T)} ← Share(T, s).

This algorithm generates a polynomialqv of degreekv − 1
for each nodev in a top-down fashion (for each leaf node
kv = 1):

• If v is the root ofT (i.e., v = root), setqv(0) = s and
randomly pickkv − 1 coefficients for polynomialqv.

• If v is a leaf ofT, setqv(0) = qparent(v)(ind(v)).
• If v is an inner node (but not the root), setqv(0) =
qparent(v)(ind(v)) and randomly selectkv − 1 coefficients
for polynomialqv.

When the algorithm halts, each leafv is associated with a
valueqv(0), which is the secret share ofs at nodev.

Given an access treeT and a set of values{Eu1 ,
. . ., Eum

}, where u1, . . ., um are the leaves ofT,
F ({att(u1), . . . , att(um)},T) = 1, Euj

= e(g, h)quj
(0)

for 1 ≤ j ≤ m, g, h ∈ G, e is a bilinear map, and
qu1(0), . . . , qum

(0) are secret shares ofs according toT, the
algorithm for reconstructinge(g, h)s is denoted by

e(g, h)s ← Combine(T, {Eu1 , . . . , Eum
}).

This algorithm executes the following steps with respect to
nodev in a bottom-top fashion according toT:

• If F ({att(u1), . . . , att(um)},Tv) = 0, then setEv = ⊥.
• If F ({att(u1), . . . , att(um)},Tv) = 1, then execute the

following:

– If v is a leaf, setEv = Euj
(0) = e(g, h)quj

(0) where
v = uj for somej.

– If v is an inner node (including the root), forv’s
children nodes{v1, · · · , vnumv

}, there exists a set
of indices S such that |S| = kv, j ∈ S, and
F ({att(u1), . . . , att(um)},Tvj) = 1. Set

Ev =
∏

j∈S

E
∆vj
vj =

∏

j∈S

(e(g, h)qvj (0))∆vj = e(g, h)qv(0),

where∆vj =
∏

l∈S,l 6=j
−j
l−j .

When the algorithm halts, the root ofT is associated with
Eroot = e(g, h)qroot(0) = e(g, h)s.

III. A TTRIBUTE-BASED KEYWORD SEARCH (ABKS)

This new primitive allows a data owner to specify a policy
for controlling the keyword search operations over its out-
soured encrypted data. That is, a data user who possesses
attributes that satisfy the data owner’s policy can conduct
keyword search over the oursourced encrypted data. This
primitive naturally has two variants:KP-ABKS (key-policy

ABKS) where the cryptographic credentials are associated to
the access control policy, andCP-ABKS (ciphertext-policy
ABKS) where the ciphertext is associated to the access control
policy. To unify the presentation, letIEnc denote the input
to encryption functionEnc and IKeyGen denote the input to
key generation functionKeyGen. For CP-ABKS, IEnc and
IKeyGen are respectively the access tree and the attribute set; for
KP-ABKS, IEnc and IKeyGen are respectively the attribute set
and the access tree. LetF (IKeyGen, IEnc) = 1 denoteIKeyGen
satisfiesIEnc in CP-ABKS and IEnc satisfiesIKeyGen in KP-
ABKS.

A. Definition and Security

The model of ABKS is: A data owner outsources its
encrypted keywords to the cloud, a data user generates search
tokens according to some keywords, and the cloud, who
receives search tokens from the user, conducts the search
operations over outsourced encrypted keywords.

Definition 1:ABKS consists of the following algorithms:

• (mk, pm) ← Setup(1ℓ): This algorithm initializes the
public parameterpm and generates a master keymk.

• sk ← KeyGen(mk, IKeyGen): This algorithm outputs cre-
dentialsk for a user according toIKeyGen.

• cph← Enc(w, IEnc): This algorithm encrypts keywordw
to obtain ciphertextcph.

• tk← TokenGen(sk, w): This algorithm allows a data user
to generate a search tokentk according to its credential
sk and keywordw.

• {0, 1} ← Search(cph, tk): This algorithm returns 1 if (i)
F (IKeyGen, IEnc) = 1 and (ii) ciphertextcph and tokentk
correspond to the same keyword , and return 0 otherwise.

An ABKS scheme is correct if the following holds: Given
(mk, pm) ← Setup(1ℓ), sk ← KeyGen(mk, IKeyGen) and
F (IKeyGen, IEnc) = 1, cph ← Enc(w, IEnc) and tk ←
TokenGen(sk, w), Search(cph, tk) always returns 1.

The adversary model againstABKS is the following: data
owners and authorized data users are trusted, but the cloud is
trusted but curious(i.e., executing the protocol honestly but
attempting to infer private information as well). Intuitively,
security means that the cloud learn nothing beyond the search
results. Specifically, given a probabilistic polynomial-time
adversaryA (modeling the cloud), anABKS scheme is secure
if the following holds

• Selective security against chosen-keyword attack: Without
being given any matching search token,A cannot infer
any information about the plaintext keyword of a keyword
ciphertext in the selective security model, whereA must
determineIEnc it intends to attack before the system is
boostrapped [36]. We formalize this security property via
the selective chosen-keyword attack game .

• Keyword secrecy: In the public-key setting, it is impos-
sible to protect the search tokens (aka. predicate privacy
[37]) against thekeyword guessing attack. This is because
A can encrypt a keyword of its choice and check whether
the resulting keyword ciphertext and the target token

correspond to the same keyword, which is caused by the
use of “deterministic encryption.” Therefore, we use a
weaker security notion calledkeyword secrecy, assuring
that the probabilityA learning the keyword from the
keyword ciphertext and search tokens is negligibly more
than the probability of correct random keyword guess. We
formalize this security property via the keyword secrecy
game.

Selectively Chosen-Keyword Attack (SCKA) Game:
Setup: A selects a non-trivial challengeI∗Enc (a trivial chal-
lengeI∗Enc is one that can be satisfied by any data user who
does not have any credential), and gives it to the challenger.
Then the challenger runsSetup(1ℓ) to generate the public
parameterpm and the master keymk.
Phase 1:A can query the following oracles for polynomially
many times, and the challenger keeps a keyword listLkw,
which is initially empty.

• OKeyGen(IKeyGen): If F (IKeyGen, I
∗
Enc) = 1, then abort;

otherwise, the challenger returns toA credential sk
corresponding toIKeyGen.

• OTokenGen(IKeyGen, w) : The challenger generates creden-
tial sk with IKeyGen, and returns toA a search tokentk
by running algorithmTokenGen with inputssk andw. If
F (IKeyGen, I

∗
Enc) = 1, the challenger addsw to Lkw.

Challenge phase:A chooses two keywordsw0 andw1, where
w0, w1 /∈ Lkw. The challenger selectsλ ← {0, 1}, computes
cph∗ ← Enc(wλ, I

∗
Enc), and deliverscph∗ to A. Note that the

requirement ofw0, w1 /∈ Lkw is to preventA from trivially
guessingλ with tokens fromOTokenGen.
Phase 2:A continues to query the oracles as in Phase 1. The
restriction is that(IKeyGen , w0) and(IKeyGen, w1) cannot be the
input toOTokenGen if F (IKeyGen, I∗Enc) = 1.
Guess:A outputs a bitλ′, and wins the game ifλ′ = λ.

Let |Pr[λ = λ′] − 1
2 | be the advantage ofA winning the

aboveSCKA game. Thus, we have
Definition 2:An ABKS scheme isselectively secure against

chosen-keyword attackif the advantage of anyA winning the
SCKA game is negligible in security parameterℓ.
Keyword Secrecy Game:
Setup: The challenger runsSetup(1ℓ) to generate the public
parameterpm and the master keymk.
Phase 1: A can query the following oracles for polynomially
many times:

• OKeyGen(IKeyGen): The challenger returns toA credential
sk corresponding toIKeyGen. It adds IKeyGen to the list
LKeyGen, which is initially empty.

• OTokenGen(IKeyGen, w): The challenger generates creden-
tial sk with IKeyGen, and returns toA a search tokentk
by running algorithmTokenGen with input sk andw.

Challenge phase: A chooses a non-trivialI∗Enc and gives
it to the challenger. The challenger selectsw∗ from the
message space uniformly at random and selectsI∗KeyGen such
that F (I∗KeyGen, I

∗
Enc) = 1. The challenger runscph ←

Enc(w∗, I∗Enc) and tk ← TokenGen(sk, w∗) and delivers

(cph, tk) to A. We require that∀IKeyGen ∈ LKeyGen,
F (IKeyGen, I

∗
Enc) = 0.

Guess: After guessingq distinct keywords,A outputs a
keywordw′, and wins the game ifw′ = w.

Definition 3: An ABKS scheme achieveskeyword secrecy
if the probability thatA wins the keyword secrecy game is
at most 1

|M|−q + ǫ, whereM is the keyword space,q is the
number of distinct keywords that the adversary has attempted,
andǫ is a negligible in security parameterℓ.

B. Construction

The basic idea underlying the construction is the following:
each keyword ciphertext and each search token has two parts,
one is associated to the keyword and the other is associated
to the attributes (or access control policy). If the attributes
satisfy the access control policy, one can determine whether
the search token and keyword ciphertext correspond to the
same keyword or not. ConsiderKP-ABKS as an example. Let
H1 : {0, 1}∗ → G be a hash function modeled as random
oracle andH2 : {0, 1}∗ → Zp be an one-way hash function.
A data user’s credentials are generated by lettingt ← Zp,
Av = gqv(0)H1(att(v))

t, Bv = gt for each leafv, whereg
is a generator ofG, qv(0) is the share of secretac for leaf v
according to access treeT. The keyword ciphertext and search
token are generated as follows:

• Keywordw is encrypted into two parts: one is to “blend”
w with randomnessr1, r2 ← Zp by letting W ′ =
gcr1, W = ga(r1+r2)gbH2(w)r1 and W0 = gr2 where
ga, gb, gc ∈ G are public keys, and the other is associated
to attribute setAtts by lettingWj = H1(atj)

r2 for each
atj ∈ Atts. The two parts are tied together viar2.

• Given a set of credentials, a search token for keyword
w is generated with two parts: one is associated tow as
tok1 = (gagbH2(w))s and tok2 = gcs for somes ← Zp,
and the other is associated to the credentials by letting
A′

v = As
v, B

′
v = Bs

v for eachv ∈ lvs(T). The two parts
are tied together via randomnesss.

If the attribute setAtts satisfies the access treeT, the cloud
can useA′

v, B
′
v andW0,Wj to recovere(g, g)acr2s, which can

be used to test the keyword equality as elaborated below.

1) KP-ABKS Construction and Security Analysis:Let ℓ be
the primary security parameter. It consists of the following
algorithms.
Setup(1ℓ): Select a bilinear mape : G×G→ GT , whereG

andGT are cyclic groups of orderp, which is anℓ-bit prime.
Let H1 : {0, 1}∗ → G be a hash function modeled as random
oracle andH2 : {0, 1}∗ → Zp be an one-way hash function,
selecta, b, c← Zp andg ← G, and set

pm = (H1, H2, e, g, p, g
a, gb, gc, G,GT),mk = (a, b, c).

KeyGen(mk,T): ExecuteShare(T, ac) to obtain secret share
qv(0) of ac for each leavev ∈ lvs(T) on access treeT.
For each leafv ∈ lvs(T), pick t ← Zp, and compute
Av = gqv(0)H1(att(v))

t andBv = gt. Set

sk = (T, {(Av, Bv)|v ∈ lvs(T)}).

Enc(w,Atts): Selectr1, r2 ← Zp, and computeW ′ = gcr1,
W = ga(r1+r2)gbH2(w)r1 andW0 = gr2 . For eachatj ∈ Atts,
computeWj = H1(atj)

r2 . Set

cph = (Atts,W ′,W,W0, {Wj |atj ∈ Atts}).

TokenGen(sk, w): Select s ← Zp, and computeA′
v =

As
v, B

′
v = Bs

v for each v ∈ lvs(T). Compute tok1 =
(gagbH2(w))s and tok2 = gcs. Set

tk = (tok1, tok2,T, {(A
′
v, B

′
v)|v ∈ lvs(T)})

Search(tk, cph): Given attribute setAtts specified incph,
select an attribute setS satisfying the access treeT spec-
ified in tk. If S does not exist, return 0; otherwise, for
each atj ∈ S, computeEv = e(A′

v,W0)/e(B
′
v,Wj) =

e(g, g)sr2qv(0), where att(v) = atj for v ∈ lvs(T). Com-
pute e(g, g)sr2qroot(0) ← Combine(T, {Ev|att(v) ∈ S}) so
that Eroot = e(g, g)acsr2. Return 1 if e(W ′, tok1)Eroot =
e(W, tok2), and 0 otherwise.

The scheme is correct because

e(W ′, tok1)Eroot = e(gcr1 , (gagbH2(w))s)Eroot

= e(g, g)acs(r1+r2)e(g, g)bcsH2(w)r1 ,

e(W, tok2) = e(ga(r1+r2)gbH2(w)r1, gcs)

= e(g, g)acs(r1+r2)e(g, g)bcsH2(w)r1

The scheme is secure because of the following theorems,
whose proofs are given in Appendix A and Appendix B,
respectively.

Theorem 1:Given the DL assumption and one-way hash
function H2, the KP-ABKS scheme isselectively secure
against chosen-keyword attackin the random oracle model.

Theorem 2:Given the one-way hash functionH2, theKP-
ABKS scheme achieveskeyword secrecyin the random oracle
model.

2) CP-ABKS Construction and Security Analysis:Let ℓ be
the primary security parameter. It consists of the following
algorithms.
Setup(1ℓ): Select a bilinear groupe : G×G→ GT , where

G and GT are cyclic groups of orderp, which is anℓ-bit
prime. LetH1 : {0, 1}∗ → G be a hash function modeled as
random oracle andH2 : {0, 1}∗ → Zp be an one-way hash
function, selecta, b, c← Zp andg ← G, and set

pm = (H1, H2, e, g, p, g
a, gb, gc, G,GT),mk = (a, b, c).

KeyGen(mk,Atts): Selectr ← Zp, computeA = g(ac−r)/b.
For eachatj ∈ Atts, selectrj ← Zp and computesAj =
grH1(atj)

rj andBj = grj . Set

sk = (Atts, A, {(Aj , Bj)|atj ∈ Atts}).

Enc(w,T): Selectr1, r2 ← Zp, and computeW = gcr1,
W0 = ga(r1+r2)gbH2(w)r1 andW ′ = gbr2 . Compute secret
shares ofr2 for each leave of access treeT as {qv(0)|v ∈
lvs(T)} ← Share(T, r2). For eachv ∈ lvs(T), computeWv =
gqv(0) andDv = H1(att(v))

qv(0). Set

cph = (T,W,W0,W
′, {(Wv, Dv)|v ∈ lvs(T)}).

TokenGen(sk, w): Select s ← Zp, and computetok1 =
(gagbH2(w))s, tok2 = gcs and tok3 = As = g(acs−rs)/b. For
eachatj ∈ Atts, computeA′

j = As
j andB′

j = Bs
j . Set

tk = (Atts, tok1, tok2, tok3, {(A
′
j , B

′
j)|atj ∈ Atts}).

Search(tk, cph): Given attribute setAtts as specified in
tk, select an attribute setS that satisfies the access treeT
specified incph. If S does not exist, return 0; otherwise,
for eachatj ∈ S, computeEv = e(A′

j ,Wv)/e(B
′
j , Dv) =

e(g, g)rsqv(0), where att(v) = atj for v ∈ lvs(T). Com-
pute e(g, g)rsqroot(0) ← Combine(T, {Ev|att(v) ∈ S})
and Eroot = e(g, g)rsr2 . Return 1 if e(W0, tok2) =
e(W, tok1)Eroote(tok3,W

′), and 0 otherwise.

Correctness of the scheme can be verified similarly to that of
KP-ABKS. Security of the scheme is assured by the following
theorems, The proof of the former one is deferred to Appendix
C, and the proof of the latter one is omitted because it is similar
to that of Theorem 2.

Theorem 3:Given the one-way hash functionH2, theCP-
ABKS scheme isselectively secure against chosen-keyword
attack in the generic bilinear group model [33].

Theorem 4:Given the one-way hash functionH2, theCP-
ABKS scheme achieveskeyword secrecyin the random oracle
model.

IV. V ERIFIABLE ATTRIBUTE-BASED KEYWORD SEARCH

In the model ofABKS, the party (e.g., cloud) is assumed to
execute the search operation faithfully (despite that the party
may attempt to infer useful information about the keywords).
VABKS achieves the goal ofABKS despite that the party
executing the search operation may be malicious.

A. Model

We consider the system model illustrated in Figure 1,
which involves four parties: a data owner, who outsources
its encrypted data as well as encrypted keyword-index to
the cloud; a cloud, which provides storage services and can
conduct keyword search operations on behalf of the data users;
a data user, who is to retrieve the data owner’s encrypted data
according to some keyword (i.e., keyword search); a trusted
authority, which issues credentials to the data owners/users.
The credentials are sent over authenticated private channels
(which can be achieved through another layer of mechanisms).

Data owner

Cloud

Search Token for Keyword X

Outsourcing

Data user (W/ or W/o credentials

satisfying data owner’s access control policies)

Search result & proofTrusted authority

(issuing credentials

for all cloud users)

Y

X

F2
F1

F3

W

V

Keywords Data files

Fig. 1. VABKS system model, where keywordsX,Y and V,W may
correspond to different access control policies.

The data owners are naturally trusted. Both authorized and
unauthorized data users are semi-trusted, meaning that they
may try to infer some sensitive information of interest. The
cloud isnot trusted as it may manipulate the search operations,
which already implies that the cloud may manipulate the
outsourced encrypted data.

B. Definition

Let FS = {F1, . . . ,Fn} be a set of data files. LetKGj ,
1 ≤ j ≤ l, be a set of keywords (also called “keyword group”)
that are encrypted with the same access control policy (i.e.,
access tree). LetKG = {KG1, . . . ,KGl}. For each keywordw,
let MP(w) be the set of identifiers identifying data files that
contain keywordw. Let MP = {MP(w)|w ∈ ∪li=1KGi}. Let
D = (KG,MP,FS) denote keyword-index and the data files.

Definition 4: A VABKS scheme consists of the following
algorithms:

• (mk, pm)← Init(1ℓ): This algorithm is run by the trusted
authority to initialize the system.

• sk ← KeyGen(mk, IKeyGen): This algorithm is run by
the trusted authority to issue credentialssk for data
users/owners.

• (Au, Index,Dcph) ← BuildIndex({IEnc}l, {I
′
Enc}n,D):

This algorithm is run by a data owner to encryptD =
(KG,MP,FS) to data ciphertextDcph, index ciphertext
Index and auxiliary informationAu, where{IEnc}l is the
set of access control policies respectively for encrypting
the l keyword groupsKG1, . . . ,KGl and {I ′Enc}n is the
set of access control policies respectively for encrypting
the n data filesFS1, . . . ,FSn (It may happen that the
access control policies for keywords and their respective
data files are different).

• tk ← TokenGen(sk, w): This algorithm is run by an
authorized data user to generate a search tokentk for
keywordw.

• (proof, rslt) ← SearchIndex(Au, Index,Dcph, tk): This
algorithm is run by the cloud to conduct the search
operations over encrypted indexIndex on behalf of a data
user. It outputs the search resultrslt and a proofproof.

• {0, 1} ← Verify(sk, w, tk, rslt, proof): This algorithm is
run by the data user to verify that(rslt, proof) is valid
with respect to search tokentk.

A VABKS scheme is correct if the following holds:
given (mk, pm) ← Init(1ℓ), sk ← KeyGen(mk, IKeyGen),
(Au, Index,Dcph) ← BuildIndex({IEnc}l, {I

′
Enc}n,D), tk ←

TokenGen(sk, w) and (proof, rslt)← SearchIndex(Au, Index,
Dcph, tk), Verify(sk, w, tk, rslt, proof) always returns 1.

Informally, security ofVABKS is defined as the following
four requirements, where the cloud is the adversaryA.

• Data secrecy: Given encrypted keywords and search
tokens,A still cannot learn any information (in a compu-
tational sense) about the encrypted data files. This defi-
nition can be formalized by the chosen-plaintext security
game, where two challengesD0 = (KG,MP,FS0),D1 =
(KG,MP,FS1) correspond to the sameKG andMP, and
|FS0| = |FS1|.

• Selective security against chosen-keyword attack: Without
seeing corresponding search tokens,A cannot infer any
information about the keyword from the keyword cipher-
text. This property is extended from theselective security
against chosen-keyword attackof ABKS.

• Keyword secrecy: Given encrypted data files, the probabil-
ity thatA learn the plaintext keyword from the keyword
ciphertext as well as the search tokens is no more than
that of a random guess. This property is extended from
the keyword secrecyof ABKS.

• Verifiability: If A returns an incorrect search result, it can
be detected by the user with an overwhelming probability.
We formalize this security property via the following
verifiability game.

Verifiability Game :
Setup: The challenger runs(pm,mk) ← Init(1ℓ). A selects
D = (KG,MP,FS), {IEnc}l and {I ′Enc}n and sends them
to the challenger. The challenger runs(Au, Index,Dcph) ←
BuildIndex({IEnc}l, {I

′
Enc}n,D), and gives(Au, Index,Dcph)

to A.
Phase 1:A can query the following oracles for polynomially
many times.

• OKeyGen(IKeyGen): The challenger returns toA credential
sk corresponding toIKeyGen.

• OTokenGen(IKeyGen, w): The challenger generates creden-
tial sk with IKeyGen, and returns toA a search tokentk
by running algorithmTokenGen with inputssk andw.

• OVerify(IKeyGen, w, tk, rslt, proof): The challenger gener-
ates credentialsk with IKeyGen, returnsγ toA by running
γ ← Verify(sk, w, tk, rslt, proof).

Challenge phase:A selects a non-trivial challengeI∗Enc and a
keywordw∗ and gives them to the challenger. The challenger
selects I∗KeyGen such thatF (I∗KeyGen, I

∗
Enc) = 1, generates

credentialsk∗ with I∗KeyGen and returns toA a search token
tk∗ by runningtk∗ ← TokenGen(sk, w∗).
Guess:A outputs(rslt∗, proof∗) to the challenger. We sayA
wins the game if1 ← Verify(sk∗, w∗, tk∗, rslt∗, proof∗) and
rslt∗ 6= rslt, where(rslt, proof) is produced by the challenger
by runningSearchIndex(Au, Index, tk∗).

Definition 5:A VABKS scheme is verifiable if the advantage
that anyA wins the verifiability game is negligible in security
parameterℓ.

C. Construction

A trivial solution for achieving verifiability is that a data
user downloads the keyword ciphertexts and conduct the
search operations locally. This solution incurs prohibitive
communication and computational overhead. As highlighted
in Figure 2, we instead let a data user outsource the key-
word search operation to the cloud, and then verify that the
cloud faithfully performed the keyword search operation. More
specifically, the data owner uses the signatures and bloom
filters as follows:

• A keyword signatureis generated for each keyword
ciphertext and its associated data ciphertexts. It is used

Y

X

F2
F1

F3

W

V

Keywords encrypted with

access control policy 1

1: Encrypt keywords and data files, and generate keyword

signature (e.g., !X, !y) for each keyword ciphertext and its

associated data ciphertexts.

2: Generate a bloom filter for each keyword group, encrypt a

random number that is used for masking the bloom filter, and

generate a bloom filter signature (e.g., !BF1) for the masked bloom

filter (e.g. BF’1) and the random number ciphertext (e.g., CphBF1).

3: For each keyword group, generate a local signature (e.g., !1)

for all keyword ciphertexts.

4: Generate a global signature (e.g., !) for all random number

ciphertexts.
Keywords encrypted with

access control policy 2

!1

!2

!
CphF2

CphF1

CphF3

CphY

CphX

CphW

CphV

!X

!y

!v

!w

BF’1

CphBF1

!BF1

BF’2

CphBF2

!BF2

Fig. 2. Basic idea for achieving verifiability, where data files F1, F2, F3 were encrypted tocphF1 , cphF2 , cphF3 , keywordsX,Y were encrypted to
cphX , cphY with access control policy 1, and keywordsV,W were encrypted tocphV , cphW with access control policy 2. Given a search tokentk, for
keyword groupi, the cloud provides(σw, cphBFi) as the proof when it finds keyword ciphertextcphw that matchestk, and(cphBFi ,BF

′

i, σBFi) otherwise.

for preventing the cloud from returning incorrect data
ciphertexts as the search result.

• For each keyword group, one bloom filter is built from
its keywords. This allows a data user to check that the
searched keyword was indeed not in the keyword group
when the cloud returns a null search result,without
downloading all keyword ciphertexts from the cloud. A
random number is selected and encrypted with the same
access control policy as keywords. The random number
masks the bloom filter for preserving keyword privacy. A
bloom filter signatureis generated for the masked bloom
filter and the random number ciphertext for assuring their
integrity.

• A global signatureis obtained by signing random number
ciphertexts of all groups. It allows a data user to verify
the integrity of the random number ciphertexts.

• A local signatureis generated for all keyword ciphertexts
within the same keyword groupKGj . This signature
allows the user to validate the integrity of keyword
ciphertexts within the keyword group.

Figure 3 describes theVABKS scheme, which uses a
signature schemeSig = (KeyGen, Sign,Verify), a symmet-
ric encryption schemeSE = (KeyGen,Enc,Dec), an ABE

schemeABE = (Setup,KeyGen, Enc,Dec), where the latter
two encryption schemes are used to encrypt data files. The
VABKS scheme is built on top of anABKS schemeABKS =
(Setup, KeyGen,Enc,TokenGen, Search), which encrypts the
keywords. Note thatABE andABKS can be their ciphertext-
policy variant or their key-policy variant, but for the same
type. This leads to two variants ofVABKS.

Note that in theVerify algorithm of Figure 3, when an
authorized data user verifies a null search result for keyword
group {cphw|w ∈ KGi}, where the user searches keyword
w′, it can happen that1← BFVerify({H ′

1, . . . , H
′
k},BFi, w

′)
due to the false-positive of the Bloom filter. To validate the
search result in this case, theVerify algorithm has to download
{cphw|w ∈ KGi}, and checks the keyword ciphertexts one by
one. We stress that this does not incur significant communica-
tion cost on average because we can set the false-positive rate

as low as possible by choosing appropriatem andk (i.e., upon
one search request, the “wasted” bandwidth communication
and computational cost are proportional to this false-positive
rate). For example, in our experiment we set the false-positive
rate to be4.5× 10−9.

D. Security Analysis

Security of theVABKS scheme can be proven as the
following theorems, whose proofs are deferred to Appendix
D.

Theorem 5:If ABE andSE are secure against the chosen-
plaintext attack, theVABKS scheme achieves thedata secrecy.

Theorem 6:If ABE is secure against chosen-plaintext at-
tack, H is a secure pseudorandom generator andABKS is
selectively secure against chosen keyword attack, theVABKS

scheme isselectively secure against chosen-keyword attack.

Theorem 7:If ABE is secure against chosen-plaintext attack,
H is a secure pseudorandom generator andABKS achieves
keyword secrecy, theVABKS scheme achieveskeyword se-
crecy.

Theorem 8:If Sig is a secure signature, theVABKS con-
struction achieves theverifiability.

V. PERFORMANCEEVALUATION

We evaluate the efficiency of theABKS schemes in terms
of both asymptotic complexity and actual execution time,
and the efficiency of theVABKS scheme in terms of actual
execution time. We do not consider the asymptotic complexity
of VABKS because it uses multiple building-blocks (e.g.,
signing andABE schemes) that can be instantiated with any
secure solutions. Asymptotic complexity is measured in terms
of four kinds of operations:H1 denotes the operation of
mapping a bit-string to an element ofG, Pair denotes the
pairing operation,E denotes the exponentiation operation inG,
andET denotes the exponentiation operation inGT . We ignore
multiplication and hash operations (other thanH1) because
they are much more efficient than the above operations [38].

We implementedABKS andVABKS in JAVA, while using
the Java Pairing Based Cryptography library (jPBC) [38].

Init(1ℓ): Given security parameterℓ, the attribute authority choosesk universal hash functionsH ′
1, . . . , H

′
k, which are

used to construct am-bit Bloom filter. LetH : {0, 1}ℓ → {0, 1}m be a secure pseudorandom generator,SE be a secure
symmetric encryption scheme,ABE be a secureABE scheme andABKS be a secureABKS scheme. This algorithm executes
(ABE.pm,ABE.mk) ← ABE.Setup(1ℓ) and (ABKS.pm,ABKS.mk) ← ABKS.Setup(1ℓ). It sets the public parameter as
pm = (ABE.pm,ABKS.pm, H ′

1, . . . , H
′
k) andmk = (ABE.mk,ABKS.mk).

KeyGen(mk, IKeyGen): The attribute authority runsABE.sk ← ABE.KeyGen(ABE.mk, IKeyGen) and ABKS.sk ←
ABKS.KeyGen(ABKS.mk, IKeyGen), setssk = (ABE.sk,ABKS.sk), and sendssk to a data owner/user over an authenticated
private channel.

BuildIndex({IEnc}l, {I
′
Enc}n,D): The data owner runs(Sig.sk, Sig.pk) ← Sig.KeyGen(1ℓ), keepsSig.sk private and makes

Sig.pk public. GivenD = (KG = {KG1, . . . ,KGl},MP = {MP(w)|w ∈ ∪li=1KGi},FS = {F1, . . . ,Fn}), the data owner
executes as follows:

1) Encrypt each data file with hybrid encryption:∀Fj ∈ FS, generate ciphertextcphFj
= (cphskj , cphSEj

) by running
SE.skj ← SE.KeyGen(1ℓ), cphSEj

← SE.Enc(SE.skj ,Fj), andcphskj ← ABE.Enc(I ′Encj , SE.skj).
2) Encrypt each keyword and generate keyword signature: Given KGi, 1 ≤ i ≤ l, for each w ∈ KGi,

run cphw ← ABKS.Enc(IEnci , w), set MP(cphw) = {IDcphFj
|IDFj

∈ MP(w)}, and generateσw ←

Sig.Sign(Sig.sk, cphw||string({cphFj
|IDcphFj

∈ MP(cphw)})), whereIDFj
and IDcphFj

are identifiers for identifying
data fileFj and data ciphertextcphFj

, respectively.
3) Generate a bloom filter, a bloom filter signature and a localsignature for each groupKGi: Let BFi ←

BFGen({H ′
1, . . . , H

′
k},KGi), cphBFi

← ABE.Enc(IEnci ,M) for some randomly chosenM from the message
space ofABE, computeBF′

i = H(M)
⊗

BFi and generateσBFi
← Sig.Sign(Sig.sk,BF′||cphBFi

). Let σi ←
Sig.Sign(Sig.sk, string({cphw|w ∈ KGi})) .

4) Generate the global signature: Setσ = Sig.Sign(Sig.sk, cphBF1
|| . . . ||cphBFl

).
5) Let Au = (σ, σ1, . . . , σl, cphBF1

, . . . , cphBFl
, σBF1 , . . . , σBFl

, {σw|w ∈ ∪li=1KGi}), Index = ({cphw|w ∈
∪li=1KGi}, {MP(cphw)|w ∈ ∪

l
i=1KGi}) andDcph = ({cphFj

|Fj ∈ FS}).

TokenGen(sk, w): Given credentialssk, a data user generates search tokentk← ABKS.TokenGen(ABKS.sk, w).

SearchIndex(Au, Index,Dcph, tk): Let rslt be an empty set andproof = (σ) initially. The cloud enumerates
∏

i = {cphw|w ∈
KGi}, 1 ≤ i ≤ l, which are the keyword ciphertexts with respect to the same access control policy.

• For eachcphw ∈
∏

i, it runsγ ← ABKS.Search(cphw, tk). If γ = 0, it continues to process the next keyword ciphertext
in

∏
i; otherwise, it adds the tuple(cphw, {cphFj

|IDcphFj
∈ MP(cphw)}) to rslt and (σw, cphBFi

) to proof.
• If there exist noγ = 1 after processing allcphw in

∏
i, then its adds(BF′

i, cphBFi
, σBFi

) to proof.

Verify(sk, w, tk, proof, rslt): The data user verifies the search result from the cloud as follows:

1) Verify the integrity of the random number ciphertexts: Let γ = Sig.Verify(Sig.pk, σ, cphBF1
|| . . . ||cphBFl

). If γ = 0,
then return 0; otherwise, continue to execute the following.

2) For i = 1, . . . , l, it executes as follows to verify that the cloud indeed returned the correct result for each keyword
group i:
Case 1:If (cphw, {cphFj

|IDcphFj
∈ MP(cphw)}) ∈ rslt, meaning there exists the keyword ciphertextcphw, which

corresponds to the same access control policy as what is specified by cphBFi
, having the same keyword specified

by tk, then it runsγ ← ABKS.Search(cphw, tk) and γ′ ← Sig.Verify(Sig.pk, σw, cphw||string({cphFj
|IDcphFj

∈

MP(cphw)})) to verify whether or notcphw matchestk and all the associated data ciphertexts are returned by the
cloud. If eitherγ = 0 or γ′ = 0, then return 0, otherwise, continue toi = i+ 1.
Case 2:If (BF′

i, cphBFi
, σBFi

) ∈ proof meaning that there is no matching keyword ciphertext, then it continues to
verify the integrity of the masked Bloom filter by runningγ′ ← Sig.Verify(Sig.pk, σBFi

,BF′
i||cphBFi

). If γ′ = 0, return
0; otherwise, execute the following:

• If the data user is authorized, computeM ← ABE.Dec(ABE.sk, cphBFi
), BFi = H(M)

⊗
BF′

i. Executeδ ←
BFVerify({H ′

1, . . . , H
′
k},BFi, w) to check whetherw or not is present in the keyword group as represented by

BFi.

– If δ = 0, meaning thatw is not present in the keyword group as represented byBFi, then continue toi = i+1.
– If δ = 1, download

∏
i = {cphw|w ∈ KGi} and σi from the cloud, and runη ← Sig.Verify(Sig.pk, σi,

string({cphw|w ∈ KGi})). If η = 0, return 0; otherwise, runτ ← ABKS.Search(cphw, tk) by enumerating
cphw in cphw|w ∈ KGi}. If there exists someτ = 1 after processing allcphw (meaning that there exists some
cphw that matchestk), return 0; otherwise, continue toi = i+ 1.

• If the data user is unauthorized, then it continues toi = i+ 1 becausecphBFi
cannot be decrypted.

Case 3:If none of the above two cases happens, return 0.
3) Return 1 if all tuples in the search result have been verified, and 0 otherwise.

Fig. 3. VABKS construction

In our implementation, the bilinear map is instantiated as
Type A pairing (ℓ = 512), which offers a level of security
equivalent to 1024-bit DLOG [38]. For bothCP-VABKS and
KP-VABKS, we instantiated the symmetric encryption scheme
as AES-CBC, and the signature scheme with DSA provided
by JDK1.6. We instantiatedABKS, ABE asCP-ABKS, CP-
ABE [3] for CP-ABKS, and KP-ABKS, KP-ABE [2] for
KP-VABKS, respectively. Finally, we set the example access
control policy as “at1 AND . . . AND atN .”

A. Efficiency ofABKS

Asymptotic Complexity of the ABKS Schemes.Table I
describes the asymptotic complexities of theABKS schemes.
We observe that in theCP-ABKS scheme, the complexity of
KeyGen is almost the same as that ofEnc. In theKP-ABKS
scheme,KeyGen is more expensive thanEnc. In both schemes,
the twoSearch algorithms incur almost the same cost.

complexity output size

KP-
KeyGen 3NE + NH1 2N |G|
Enc (S + 4)E + SH1 (S + 3)|G|

ABKS
TokenGen (2N + 2)E (2N + 2)|G|
Search (2S + 2)Pair + SET

CP-
KeyGen (2S + 2)E + SH1 (2S + 1)|G|
Enc (2N + 4)E + NH1 (2N + 3)|G|

ABKS
TokenGen (2S + 4)E (2S + 3)|G|
Search (2N + 3)Pair + NET

TABLE I
ASYMPTOTIC COMPLEXITIES OFCP-ABKS AND KP-ABKS, WHERES IS

THE NUMBER OF A DATA USER’ S ATTRIBUTES ANDN IS THE NUMBER OF

ATTRIBUTES THAT ARE INVOLVED IN A DATA OWNER ’ S ACCESS CONTROL
POLICY (I .E., THE NUMBER OF LEAVES IN THE ACCESS TREE).

Actual Performance of theABKS Schemes.To evaluate the
performance of theABKS schemes, we ran the experiments
on a client machine with Linux OS, 2.93GHz Intel Core Duo
CPU (E7500), and 2GB RAM. We variedN , the number
of attributes that are involved in the example access control
policy, from 1 to 50 with step length 10. We ran each
experiment for 10 times to obtain the average execution time.

S/N
1 10 20 30 40 50

KP-
KeyGen 0.088 0.786 1.539 2.316 3.081 3.863
Enc 0.108 0.539 1.016 1.492 1.983 2.434

ABKS
TokenGen 0.073 0.331 0.627 0.917 1.211 1.504
Search 0.049 0.275 0.480 0.711 0.947 1.182

CP-
KeyGen 0.107 0.686 1.275 1.901 2.525 3.151
Enc 0.121 0.681 1.304 1.923 2.546 3.169

ABKS
TokenGen 0.088 0.349 0.673 0.932 1.228 1.513
Search 0.061 0.329 0.493 0.728 0.97 1.202

TABLE II
EXECUTION TIME (SECOND) OF THE ALGORITHMS IN THEKP -ABKS
AND CP -ABKS SCHEMES, WHEREN IS THE NUMBER OF ATTRIBUTES

INVOLVED IN THE EXAMPLE ACCESS CONTROL POLICY. THE NUMBER OF

DATA USER’ S ATTRIBUTES IS ALSO SET TON , NAMELY S = N IN THE

EXPERIMENTS.
Table II shows the execution time of the twoABKS

schemes. We observe that for both schemes, the keyword
encryption algorithmEnc (run by the data owner) is more
expensive than that of the keyword search algorithmSearch

(run by the cloud) with the sameN . However, the keyword
encryption algorithm is executed only once for each keyword,
whereas the keyword search algorithm will be performed as
many times as needed. Furthermore, we advocate that the data
users outsource the keyword search operations to the cloud
(i.e., taking advantage of the cloud’s computational resources).

B. Efficiency ofVABKS with Real Data

To demonstrate the feasibility ofVABKS in practice, we
evaluated it with real data, which consists of 2,019 distinct
keywords extracted from 670 PDF documents (papers) from
the ACM Digital Library with a total size of 778.1MB. We
set k = 28 and m = 10KB for Bloom filter so that
m
n = 10∗8∗1024

2019 ≈ 40 and the false-positive rate is around
4.5 × 10−9. We vary the access control policy ranging from
1 to 50 attributes with step-length 10. In each experiment, we
encrypted all keywords with the same access control policy.
The algorithms run by the data owner and the data users
(i.e. BuildIndex, TokenGen and Verify) were executed on a
client machine with Linux OS, 2.93GHz Intel Core Duo CPU
(E7500), and 2GB RAM. The algorithm run by the cloud (i.e.,
SearchIndex) was executed on a server machine (a laptop) with
Windows 7, Intel i5 2.60GHz CPU, and 8GB RAM.

Figure 4(a) shows the execution time ofBuildIndex that
was run by the data owner. We observe that with the same
attribute/policy complexity,CP-VABKS is more costly than
that ofKP-VABKS when running algorithmBuildIndex. Figure
4(b) plots the execution time of the algorithms run by the data
user and the cloud. We simulated that algorithmSearchIndex
needs to conduct search operations over 1,010 keyword cipher-
texts to find the matched keyword ciphertext. We observe that
the execution time ofTokenGen and Verify is really small
compared with keyword search algorithmSearchIndex. This
again confirms that the data user should outsource keyword
search operations to the cloud. Figure 4(c) plots the size
of index and auxiliary information, including 2,019 keyword
ciphertexts, bloom filters and signatures. We also see thatCP-
VABKS consumes around two times more storage space than
KP-VABKS with the same attribute/policy complexity. These
discrepancies should serve as a factor when deciding whether
to useCP-VABKS or KP-VABKS in practice.

VI. CONCLUSION

We have introduced a novel cryptographic primitive called
verifiable attribute-based keyword searchfor secure cloud
computing over outsourced encrypted data. This primitive
allows a data owner to control the search of its outsourced
encrypted data according to an access control policy, whilethe
authorized data users can outsource the search operations to
the cloud and force the cloud to faithfully execute the search
(as a cheating cloud can be held accountable). Performance
evaluation shows that the new primitive is practical. Our study
focused on static data. As such, one interesting open problem
for future research is to accommodate dynamic data.
Acknowledgement. Zheng and Xu were supported in part by
the National Science Foundation under Grant No. 1111925.
Ateniese was supported by a Google Faculty Research Award,
an IBM Faculty Award, and the PRIN project TENACE.

REFERENCES

[1] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Proc. of
EUROCRYPT, pp. 457–473, 2005.

1 10 20 30 40 50
0

1000

2000

3000

4000

5000

6000

7000

S(N)

T
im

e
(s

ec
on

d)

CP−VAKBS.BuildIndex
KP−VABKS.BuildIndex

(a) BuildIndex

1 10 20 30 40 50
0

200

400

600

800

1000

S(N)

T
im

e
(s

ec
on

d)

CP−VAKBS.SearchIndex
CP−VAKBS.TokenGen
CP−VAKBS.Verify
KP−VABKS.SearchIndex
KP−VABKS.TokenGen
KP−VABKS.Verify

(b) TokenGen, SearchIndex andVerify

1 10 20 30 40 50
0

5

10

15

20

25

30

S(N)

In
de

x
si

ze
 (

M
B

)

CP−VAKBS
KP−VABKS

(c) Size of index and auxiliary information

Fig. 4. Performance of theCP-VABKS andKP-VABKS schemes, whereN is the number of attributes involved in the example access control policy. The
number of data user’s attributes is also set toN , namelyS = N in the experiments.

[2] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” inProc. of ACM
CCS, pp. 89–98, 2006.

[3] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” inProc. of IEEE S&P, pp. 321–334, 2007.

[4] T. Okamoto and K. Takashima, “Fully secure functional encryption with
general relations from the decisional linear assumption,”in Proc. of
CRYPTO, pp. 191–208, 2010.

[5] A. B. Lewko and B. Waters, “New proof methods for attribute-based
encryption: Achieving full security through selective techniques,” in
Proc. of CRYPTO, pp. 180–198, 2012.

[6] M. Chase, “Multi-authority attribute based encryption,” in Proc. of TCC,
pp. 515–534, 2007.

[7] M. Chase and S. S. Chow, “Improving privacy and security in multi-
authority attribute-based encryption,” inProc. of ACM CCS, pp. 121–
130, 2009.

[8] J. Camenisch, M. Kohlweiss, A. Rial, and C. Sheedy, “Blind and
anonymous identity-based encryption and authorised private searches
on public key encrypted data,” inProc. of PKC, pp. 196–214, 2009.

[9] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” inProc. of IEEE S&P, pp. 44–, 2000.

[10] E.-J. Goh, “Secure indexes.” Cryptology ePrint Archive, Report
2003/216, 2003. http://eprint.iacr.org/2003/216/.

[11] Y.-C. Chang and M. Mitzenmacher, “Privacy preserving keyword
searches on remote encrypted data,” inProc. of ACNS, pp. 442–455,
2005.

[12] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient constructions,”
in Proc. of, pp. 79–88, 2006.

[13] M. Chase and S. Kamara, “Structured encryption and controlled disclo-
sure,” in Proc. of ASIACRYPT, pp. 577–594, 2010.

[14] K. Kurosawa and Y. Ohtaki, “Uc-secure searchable symmetric encryp-
tion,” in Proc. of FC, pp. 285–298, Springer Berlin / Heidelberg.

[15] S. Kamara and K. Lauter, “Cryptographic cloud storage,” in Proc. of
FC, pp. 136–149, 2010.

[16] S. Kamara, C. Papamanthou, and T. Roeder, “Cs2: A searchable cryp-
tographic cloud storage system.” Microsoft Technical Report, 2011.
http://research.microsoft.com/apps/pubs/?id=148632.

[17] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” inProc. of ACM CCS, pp. 965–976, 2012.

[18] Q. Chai and G. Gong, “Verifiable symmetric searchable encryption for
semi-honest-but-curious cloud servers,” inProc. of ICC, pp. 917–922,
2012.

[19] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, “Public key
encryption with keyword search,” inProc. of EUROCRYPT, pp. 506–
522, 2004.

[20] B. R. Waters, D. Balfanz, G. Durfee, and D. K. Smetters, “Building an
encrypted and searchable audit log,” inProc. of NDSS, 2004.

[21] M. Bellare, A. Boldyreva, and A. O’Neill, “Deterministic and efficiently
searchable encryption,” inProc. of CRYPTO, pp. 535–552, 2007.

[22] J. Baek, R. Safavi-Naini, and W. Susilo, “Public key encryption with
keyword search revisited,” inProc. of ICCSA, pp. 1249–1259, 2008.

[23] P. Golle, J. Staddon, and B. Waters, “Secure conjunctive keyword search
over encrypted data,” inProc. of ACNS, pp. 31–45, 2004.

[24] E. Shi, J. Bethencourt, H. T.-H. Chan, D. X. Song, and A. Perrig, “Multi-

dimensional range query over encrypted data,” inProc. of IEEE S&P,
pp. 350–364, 2007.

[25] D. Boneh and B. Waters, “Conjunctive, subset, and rangequeries on
encrypted data,” inProc. of TCC, pp. 535–554, 2007.

[26] M. Li, S. Yu, N. Cao, and W. Lou, “Authorized private keyword search
over encrypted data in cloud computing,” inProc. of ICDCS, pp. 383–
392, 2011.

[27] F. Bao, R. H. Deng, X. Ding, and Y. Yang, “Private query onencrypted
data in multi-user settings,” inProc. of ISPEC, pp. 71–85, 2008.

[28] T. Okamoto and K. Takashima, “Hierarchical predicate encryption for
inner-products,” inProc. of ASIACRYPT, pp. 214–231, 2009.

[29] J. Katz, A. Sahai, and B. Waters, “Predicate encryptionsupporting
disjunctions, polynomial equations, and inner products,”in Proc. of
EUROCRYPT, pp. 146–162, 2008.

[30] S. Benabbas, R. Gennaro, and Y. Vahlis, “Verifiable delegation of
computation over large datasets,” inProc. of CRYPTO, pp. 111–131,
2011.

[31] C. Papamanthou, E. Shi, and R. Tamassia, “Signatures ofcorrect
computation.” Cryptology ePrint Archive, Report 2011/587, 2011. http:
//eprint.iacr.org/.

[32] D. Fiore and R. Gennaro, “Publicly verifiable delegation of large
polynomials and matrix computations, with applications,”in Proc. of
ACM CCS, pp. 501–512, 2012.

[33] D. Boneh, X. Boyen, and E.-J. Goh, “Hierarchical identity based
encryption with constant size ciphertext,” inProc. of EUROCRYPT,
pp. 440–456, 2005.

[34] J. Katz and Y. Lindell,Introduction to Modern Cryptography. Chapman
and Hall/CRC Press, 2007.

[35] B. H. Bloom, “Space/time trade-offs in hash coding withallowable
errors,” Commun. ACM, vol. 13, pp. 422–426, July 1970.

[36] R. Canetti, S. Halevi, and J. Katz, “Chosen-ciphertextsecurity from
identity-based encryption,” inEUROCRYPT, pp. 207–222, 2004.

[37] E. Shen, E. Shi, and B. Waters, “Predicate privacy in encryption
systems,” inProc. of TCC, pp. 457–473, 2009.

[38] “The java pairing based cryptography library.
http://gas.dia.unisa.it/projects/jpbc/.”

APPENDIX A
PROOF OFTHEOREM 1

Proof 1: We show that if there is a polynomial-time ad-
versaryA that wins theSCKA game with advantageµ, then
there is a challenger algorithm that solves the DL problem
with advantageµ/2. Given a DL instance(g, h, f, f r1 , gr2, Q),
where g, f, h,Q ← G and r1, r2 ← Zp, the challenger
simulates theSCKA game as follows.
Setup: The challenger setsga = h andgc = f wherea and
c are unknown, selectsd← Zp and computesgb = fd = gcd

by implicitly defining b = cd. Let H2 be an one-way hash
function andpm = (e, g, p, h, fd, f) andmk = (d).
A selects an attribute setAtts∗ and gives it to the challenger.

The random oracleOH1(atj) is defined as follows:

• If atj has not been queried before,

– if atj ∈ Atts∗, selectβj ← Zp, add(atj , αj = 0, βj)
to OH1 , and returngβj ;

– otherwise, selectαj , βj ← Zp, add (atj , αj , βj) to
OH1 , and returnfαjgβj .

• If atj has been queried before, retrieve(αj , βj) fromOH1

and returnfαjgβj .

Phase 1:A can adaptively query the following oracles for
polynomially-many times and the challenger keeps a keyword
list Lkw, which is empty initially.

OKeyGen(T): A gives an access treeT to the challenger. If
F (Atts∗,T) = 1, then the challenger aborts; otherwise, the
challenger generates attributes as follows.

Define the following two procedures to determine the poly-
nomial for each node ofT:

• PolySat(Tv,Atts
∗, λv): Given secretλv, this procedure

determines the polynomial for each node ofTv rooted at
v whenF (Atts∗,Tv) = 1. It works as follows: Suppose
the threshold value of nodev is kv, it setsqv(0) = λv
and pickskv − 1 coefficients randomly to fix the poly-
nomial qv. For each child nodev′ of v, recursively call
PolySat(Tv′,Atts∗, λv′) whereλv′ = qv(Index(v

′)).
• PolyUnsat(Tv,Atts

∗, gλv): Given elementgλv ∈ G
where the secretλv is unknown, this procedure deter-
mines the polynomial for each node ofTv rooted atv
whenF (Atts∗,Tv) = 0 as follows. Suppose the threshold
value of the nodev is kv. Let V be the empty set.
For each child nodev′ of v, if F (Atts,Tv′) = 1, then
set V = V

⋃
{v′}. BecauseF (Atts,Tv) = 0, then

|V | < kv. For each nodev′ ∈ V , it selectsλv′ ← Zp, and
setsqv(Index(v′)) = λv′ . Finally it fixes the remaining
kv − |V | points of qv randomly to defineqv and makes
gqv(0) = gλv . For each child nodev′ of v,

– if F (Atts∗,Tv′) = 1, then run
PolySat(Tv′ ,Atts∗, qv(Index(v

′)), where
qv(Index(v

′)) is known to the challenger;
– otherwise, call PolyUnsat(Tv′,Atts∗, gλv′), where
gλv′ = gqv(Index(v

′) is known to the challenger.

With the above two procedures, the challenger runs
PolyUnsat(T,Atts∗, ga), by implicitly defining qroot(0) = a.
Then for eachv ∈ lvs(T), the challenger getsqv(0) if
att(v) ∈ Atts∗, and getsgqv(0) otherwise. Becausecqv(0) is
the secret share ofac, due to the linear property, the challenger
generates credentials for eachv ∈ lvs(T) as follows:

• If att(v) = atj for someatj ∈ Atts∗: Selectt← Zp, set
Av = f qv(0)gβjt = gcqv(0)H1(att(v))

t andBv = gt;
• If att(v) /∈ Atts∗ (assumingatt(v) = atj): Select

t′ ← Zp, set Av = (gqv(0))
−βj
αj (fαjgβj)t

′

and Bv =

g
qv(0)

−1
αj gt

′

. Note that (Av, Bv) is a valid credential

because

Bv = g
qv(0)

−1
αj gt

′

= g
t′−

qv(0)
αj

Av = g
qv(0)

−βj
αj (fαjgβj)t

′

= f qv(0)(fαjgβj)
−qv (0)

αj (fαjgβj)t
′

= f qv(0)(fαjgβj)
t′− qv(0)

αj

= gcqv(0)H1(att(v))
t′− qv(0)

αj

by implicitly letting t = t′ − qv(0)
αj

. Note also thatA
cannot constructAv andBv without knowingαj , βj .

Eventually, the challenger returnssk = {(Av, Bv)|v ∈ lvs(T)}
to A.

OTokenGen(T, w): The challenger runsOKeyGen(T) to getsk =
(T, {Av, Bv|v ∈ lvs(T)}), computestk ← TokenGen(sk, w),
and returnstk to A. If F (Atts,T) = 1, the challenger addsw
to the keyword ListLkw.
Challenge phase:A chooses two keywordsw0 and w1 of
equal length, such thatw0, w1 /∈ Lkw. The challenger outputs
cph∗ as:

• Selectλ← {0, 1}.
• For eachatj ∈ Atts∗, setWj = (gr2)βj .
• SetW ′ = f r1 , W = Q(f r1)dH2(wλ), andW0 = gr2 .
• Set cph∗ = (Atts∗,W ′,W,W0, {Wj|atj ∈ Atts∗}) and

returncph∗ to A.

We note that if Q = hr1+r2 , then cph∗ is indeed a
legitimate ciphertext for keywordwλ. The reason is that
W ′ = f r1 = gcr1, W = Qf r1dH2(wλ) = Qgr1cdH2(wλ) =
ga(r1+r2)gbr1H2(wλ), W0 = gr2 , and foratj ∈ Atts∗, Wj =
(gr2)βj = H1(atj)

r2 .
Phase 2:A continues to query the oracles as in Phase 1. The
only restriction is that(T, w0) and(T, w1) cannot be the input
to OTokenGen if F (Atts∗,T) = 1.
Guess: Finally, A outputs a bitλ′ and gives it to the chal-
lenger. If λ′ = λ, then the challenger outputsQ = hr1+r2 ;
otherwise, it outputsQ 6= hr1+r2 .

This completes the simulation. In the challenge phase, if
Q = hr1+r2 , then cph∗ is a valid ciphertext ofwλ, so the
probability ofA outputtingλ = λ′ is 1

2+µ. If Q is an element
randomly selected fromG, thencph∗ is not a valid ciphertext
of wλ. The probability ofA outputtingλ = λ′ is 1

2 since
W is an random element inG. Therefore, the probability of
the challenger correctly guessingQ

?
= hr1+r2 with the DL

instance(g, h, f, f r1, gr2 , Q) is 1
2 (

1
2 + µ+ 1

2) =
1
2 + µ

2 . That
is, the challenger solves the DL problem with advantageµ/2
if A wins theSCKA game with an advantageµ.

APPENDIX B
PROOF OFTHEOREM 2

Proof 2:We construct a challenger that exploits the keyword
secrecy game as follows:
Setup: The challenger selectsa, b, c← Zp, f ← G. LetH2 be
an one-way hash function andpm = (e, g, ga, gb, gc, f) and
mk = (a, b, c).

The random oracleOH1(atj) is simulated as follows: If
atj has not been queried before, the challenger selectsαj ←
Zp, adds(atj , αj) to OH1 , and returnsgαj ; otherwise, the
challenger retrievesαj from OH1 and returnsgαj .
Phase 1:A can adaptively query the following oracles for
polynomially-many times.
OKeyGen(T): The challenger generatessk ← KeyGen(T,mk)
and returnssk to A. It addsT to the list LKeyGen, which is
initially empty.
OTokenGen(T, w): The challenger runsOKeyGen(T) to ob-
tain sk = (T, {Av, Bv|v ∈ lvs(T)}), computestk ←
TokenGen(sk, w), and returnstk to A.
Challenge Phase:A selects an attribute setAtts∗. The
challenger chooses an access control policy that is repre-
sented asT∗ such thatF (Atts∗,T∗) = 1, computessk∗ ←
KeyGen(mk,T∗). By taking as inputAtts∗ andsk∗, it selects
w∗ from keyword space uniformly at random, and computes
cph∗ and tk∗ with Enc andTokenGen. Atts∗ should satisfy
the requirement defined in the keyword secrecy game.
Guess:Finally, A outputs a keywordw′ and gives it to the
challenger. The challenger computescph′ ← Enc(Atts, w′)
and if Search(tk∗, cph′) = 1, thenA wins the game.

This finishes the simulation. SupposeA has already at-
temptedq distinct keywords before outputtingw′, we can see
that the probability ofA winning the keyword secrecy game
is at most 1

|M|−q +ǫ. This is because the size of the remaining
keyword space is|M|−q, and as theH2 is an one way secure
hash function, meaning derivingw∗ fromH2(w

∗) is at most a
negligible probabilityǫ. Therefore, givenq distinct keywords
A has attempted, the probability ofA winning the keyword
secrecy game is at most 1

|M|−q+ǫ. Thus, our scheme achieves
keyword secrecy as in Definition 3.

APPENDIX C
PROOF OFTHEOREM 3 ON CP-ABKS

Proof 3: We show that theCP-ABE scheme is selectively
secure against chosen-keyword attack in the generic bilinear
group model, whereH1 is modeled as a random oracle and
H2 is a one-way hash function.

In the SCKA game, A attempts to distinguish
ga(r1+r2)g

br1H2(w0)

from ga(r1+r2)g
br1H2(w1)

. Given θ ← Zp,
the probability of distinguishingga(r1+r2)gbr1H2(w0) from gθ

is equal to that of distinguishinggθ from ga(r1+r2)gbr1H2(w1).
Therefore, ifA has advantageǫ in breaking theSCKA game,
then it has advantageǫ/2 in distinguishingga(r1+r2)gbr1H2(w0)

from gθ. Thus, let us consider a modified game whereA can
distinguishga(r1+r2) from gθ. The modifiedSCKA game is
described as follows:
Setup: The challenger choosesa, b, c← Zp and sends public
parameters(e, g, p, ga, gb, gc) to A. A chooses an access tree
T∗, which is sent to the challenger.
H1(atj) is simulated as follows: Ifatj has not been queried

before, the challenger choosesαj ← Zp, adds(atj , αj) to
OH1 and returnsgαj ; otherwise the challenger returnsgαj by
retrievingαj from OH1 .
Phase 1: A can queryOKeyGen andOTokenGen as follows:

a r
(t)
j s(ac+ r(t))/b cr1

b r(t) + αjr
(t)
j s(r

(t)
j) qv(0)

c (ac+ r(t))/b s(r(t) + αjr
(t)
j) αjqv(0)

αj cs s(a+ bH2(w)) br2
TABLE III

POSSIBLE TERMS FOR QUERYING GROUP ORACLEGT

OKeyGen(Atts): The challenger selectsr(t) ← Zp and com-
putesA = g(ac+r(t))/b. For each attributeatj ∈ Atts, the

challenger choosesr(t)j ← Zp, computesAj = gr
(t)

gαjr
(t)
j

andBj = gr
(t)
j , and returns(Atts, A, {(Aj , Bj)|atj ∈ Atts}).

OTokenGen(Atts, w): The challenger queriesOKeyGen(Atts) to
get sk = (Atts, A, {(Aj , Bj)|atj ∈ Atts}) and returnstk =
(Atts, tok1, tok2, tok3, {(A

′
j , B

′
j)|atj ∈ Atts}) wheretok1 =

(gagbH2(w))s, tok2 = gcs, tok3 = As, A′
j = As

j andB′
j = Bs

j

by selectings← Zp. If F (Atts,T∗) = 1, the challenger adds
w to the keyword ListLkw.
Challenge phase:Given two keywordsw0, w1 of equal length
wherew0, w1 /∈ Lkw, the challenger choosesr1, r2 ← Zp,
and computes secret shares ofr2 for each leaves inT∗. The
challenger selectsλ← {0, 1}. If λ = 0, it outputs

W = gcr1,W0 = gθ,W ′ = gbr2 ,

{(Wv = gqv(0), Dv = gαjqv(0))|v ∈ lvs(T∗), att(v) = atj}

by selectingθ ∈ Zp; otherwise it outputs

W = gcr1,W0 = ga(r1+r2),W ′ = gbr2 ,

{(Wv = gqv(0), Dv = gαjqv(0))|v ∈ lvs(T∗), att(v) = atj}.

Phase 2:This is the same as in theSCKA game.
We can see that ifA can constructe(g, g)δa(r1+r2) for

somegδ that can be composed from the oracle outputs he
has already queried, thenA can use it to distinguishgθ from
ga(r1+r2). Therefore, we need to show thatA can construct
e(g, g)δa(r1+r2) for somegδ with a negligible probability. That
is,A cannot gain non-negligible advantage in theSCKA game.

In the generic group model,ψ0 andψ1 are random injective
maps fromZp into a set ofp3 elements. Then the probability of
A guessing an element in the image ofψ0 andψ1 is negligible.
Recall thatG = {ψ0(x)|x ∈ Zp} andGT = {ψ1(x)|x ∈
Zp}. Hence, let us consider the probability ofA constructing
e(g, g)δa(r1+r2) for someδ ∈ Zp from the oracle outputs he
has queried.

We list all terms that can be queried to the group oracleGT

in Table III. Let us consider how to constructe(g, g)δa(r1+r2)

for some δ. Becauser1 only appears in the termcr1, δ
should containc in order to constructe(g, g)δa(r1+r2). That
is, let δ = δ′c for some δ′ and A wishes to construct
e(g, g)δ

′ac(r1+r2). Therefore,A needs to constructδ′acr2,
which will use termsbr2 and(ac+r(t))/b . Because(br2)(ac+
r(t))/b = acr2+r

(t)r2, A needs to cancelr(t)r2, which needs
to use the termsαj , r

(t) + αjr
(t)
j , qv(0) andαjqv(0) because

qv(0) is the secret share ofr2 according toT∗. However, it is
impossible to constructr(t)r2 with these terms becauser(t)r2

only can be reconstructed if the attributes corresponding to
r
(t)
j of r(t) + αjr

(t)
j satisfies the access treeT∗.

Therefore, we can conclude thatA gains a negligible
advantage in the modified game, which means thatA gains a
negligible advantage in theSCKA game. This completes the
proof.

APPENDIX D
PROOFS OFTHEOREM 5, THEOREM 6, THEOREM 7 AND

THEOREM 8 ON VABKS

A. Proof of Theorem 5 onVABKS

Proof 4: We show that if there exists a polynomial-time
algorithmA breaksVABKS’s data secrecy with the advantage
ρ, then we can break either CPA security forABE or CPA
security forSE with the advantageρn2 wheren is the number
of data files to be encrypted.

The challenger proceeds the conventional CPA security
game withA. In the challenge phase, supposeA presents
two data collectionsD0 = (KG,MP,FS0 = {F01, . . . ,F0n}),
D1 = (KG,MP,FS1 = {F11, . . . ,F1n}), {IEnc}l and{I ′Enc}n.
The challenge selectsλ ← {0, 1} and encryptsFSλ with the
ABE and{I ′Enc}n.

Now let us consider the advantage ofA correctly guess-
ing λ. As we know, given two messages, the advantage of
distinguishing which message was encrypted by the hybrid
encryption ofABE andSE is equal. Therefore, given two sets
of data filesFS0 andFS1, if the advantage of distinguishing
which data set was encrypted isρ, then the advantage of
distinguishing which data file was encrypted isρn2 by selecting
one data file fromFS0 and one fromFS1.

Therefore, we can see that ifA breaksVABKS’s data se-
crecy of with a non-negligible advantageρ, then the advantage
of breaking CPA security forABE or CPA security forSE is ρ

n2

–a non-negligible probability, which contracts the assumption
thatABE is CPA-secure andSE is CPA-secure.

B. Proof of Theorem 6 onVABKS

Proof 5: We show that if there exists a polynomial-time
algorithm A breaks the selective security against chosen-
keyword attack ofABKS with the advantageρ, then we can
break the selective security against chosen-keyword attack
game ofABKS with the advantage ofρl2 , given thatABE is
CPA-secure andH is a secure pseudorandom generator.

The challenger proceeds selective security against chosen-
keyword attack game withA. In the challenge phase, sup-
pose A presents two data collectionsD0 = (KG0 =
{KG01, . . . ,KG0l},MP,FS), and {I ′Enc}n. The challenge se-
lectsλ← {0, 1} and encryptsKG with ABKS, and generates
BF′

i, cphBFi
andσi for each keyword group.

SinceABE is CPA-secure andH is a secure pseudorandom
generator, the probability ofA inferring λ via BF′

i, cphBFi
is

negligible. Then let us consider the advantage ofA correctly
guessingλ from keyword ciphertexts. As we know, given two
keywords, the advantage of distinguishing which keyword was
encrypted byABKS is equal. Therefore, given two keyword
setsKG0 andKG1, if the advantage of distinguishing which

keyword set was encrypted isρ, then the advantage of distin-
guishing which keyword was encrypted isρl2 by selecting one
keyword fromKG0 and one fromKG1.

Therefore, we can see that ifA breaksVABKS’s selective
security against chosen-keyword attack with a non-negligible
advantageρ, then the advantage of breakingABKS’s selective
security against chosen-keyword attack isρ

l2 –a non-negligible
probability, which contracts the assumption thatABKS achieve
selective security against chosen-keyword attack, given that
ABE is CPA-secure andH is a secure pseudorandom genera-
tor.

C. Proof of Theorem 7 onVABKS

Proof 6: We show that if there exists polynomial time
algorithmA breakingVABKS’skeyword secrecy, then it breaks
the assumption thatABKS achieves keyword secrecy.

SupposeA presents a data collectionD = (KG =
{KG1, . . . ,KGl},MP,FS), {IEnc}l and {I ′Enc}n. The chal-
lenger simulates the keyword secrecy game as in B, where
the keyword space consists of keywords specified byFS.
We can see that the probability ofA inferring the keyword
from a search token and corresponding keyword ciphertext is
equal to that ofABKS. Therefore, if inVABKSA guesses the
keyword from the search token and corresponding keyword
ciphertext with the probability more than 1

|M|−q + ǫ after
guessingq distinct keywords, then the probability of guessing
the keyword from the search token and keyword ciphertext
in ABKS is more than 1

|M|−q + ǫ after guessingq distinct
keywords, which contracts the assumption thatABKS achieves
keyword secrecy.

D. Proof of Theorem 8 onVABKS

Proof 7: We show that under the assumptions thatSig is
unforgeable, any polynomial-time adversaryA presents an
incorrect search result and succeeds in the verification with
negligible probability.

The challenger proceeds the verifiability game, where
A provides the keyword-based dataD = (KG =
{KG1, . . . ,KGl},MP = {MP(w)|w ∈ ∪li=1KGi},FS =
{F1, . . . ,Fn}), {IEnc}l and {I ′Enc}n. The challenger runs
(Au, Index,Dcph) ← BuildIndex({IEnc}l, {I

′
Enc}n,D), and

gives(Au, Index,Dcph) to A.
In the challenge phase, withw∗ and I∗Enc from A, the

challenger selectsI∗KeyGen such thatF (I∗KeyGen, I
∗
Enc) = 1

where I∗Enc is selected byA, generates credentialsk∗ with
I∗KeyGen and returns toA a search tokentk∗ by running
tk∗ ← TokenGen(sk, w∗). A returns (rslt∗, proof∗) to the
challenger.

Suppose that(rslt∗, proof∗) succeeds in the verification.
That is,1← Verify(sk∗, w∗, tk∗, rslt∗, proof∗). Let us consider
the probability ofA cheating with incorrect search result.

First, we claim that the global signatureσ and random
keyword ciphertextscphBF1

, . . . , cphBFl
are included inproof∗

without being manipulated; otherwise we can break the un-
forgeability of Sig.

Second, let us consider the search result within each group
with respect to access control policies, i.e.i = 1, . . . , l:

• If there exists no keyword ciphertext matched the search
token tk∗, then we claim thatA cannot cheat the chal-
lenger with some keyword ciphertext and data ciphertexts
in order to makeVABKS.Verify output 1. The reason
is thatA cannot forge a keyword signatureσw for the
keyword ciphertext and data ciphertexts; otherwise, we
can break the unforgeability ofSig.

• If there exists a keyword ciphertext matched the search to-
kentk∗, then we claim thatA cannot cheat the challenger
with a null search result in order to makeVABKS.Verify
output 1. SupposeA returns a null result and the proof
(BF′

i, cphBFi
, σBFi

). SinceBF′
i cannot be manipulated due

to σBFi
, the unmasked bloom filter indicates thatw∗ is

a member within the group. The challenger downloads
cphw1

, . . . , cphw|KGi| andσi without being manipulated;
otherwise we break theSig’s unforgeability. Then the
challenger can conduct the search operation with each
keyword ciphertext, andVABKS.Verify will output 0.
That is, if there exists keyword ciphertext matched the
search token,A returns a null result, then it cannot make
VABKS.Verify output 1.

To sum up, in order to makeVABKS.Verify output 1,A has
to faithfully execute search operations and return the search
result honestly; otherwise, we will breakSig’s unforgeability.

