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Abstract

In this work, we explore building constructions with full domain hash structure, but with
standard model proofs that do not employ the random oracle heuristic. The launching point for
our results will be the utilization of a “leveled” multilinear map setting for which Garg, Gentry,
and Halevi (GGH) recently gave an approximate candidate. Our first step is the creation of a
standard model signature scheme that exhibits the structure of the Boneh, Lynn and Shacham
signatures. In particular, this gives us a signature that admits unrestricted aggregation.

We build on this result to offer the first identity-based aggregate signature scheme that
admits unrestricted aggregation. In our construction, an arbitrary-sized set of signatures on
identity/message pairs can be aggregated into a single group element, which authenticates the
entire set. The identity-based setting has important advantages over regular aggregate signatures
in that it eliminates the considerable burden of having to store, retrieve or verify a set of
verification keys, and minimizes the total cryptographic overhead that must be attached to a set
of signer/message pairs. While identity-based signatures are trivial to achieve, their aggregate
counterparts are not. To the best of our knowledge, no prior candidate for realizing unrestricted
identity-based aggregate signatures exists in either the standard or random oracle models.

A key technical idea underlying these results is the realization of a hash function with a
Naor-Reingold-type structure that is publicly computable using repeated application of the
multilinear map. We present our results in a generic “leveled” multilinear map setting and then
show how they can be translated to the GGH graded algebras analogue of multilinear maps.
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1 Introduction

Applying a full domain hash is a technique introduced by Bellare and Rogaway [4, 5] where a
hash function, modeled as a random oracle, is used to hash a string into the full domain of a set.
Originally, the concept referred to a signature scheme where one hashed into the range of a trapdoor
permutation [4]. Subsequently, full domain hash has been treated as a more general concept and
applied in bilinear map cryptography where typically a hash function H : {0, 1}∗ → G is used
to hash a string into a bilinear group. (We note that multiple early works [12, 14, 13] employ
this terminology.) Pairing-based applications of Full Domain Hash include: the original Boneh-
Franklin [12], short and aggregate signatures [14, 13], Hierarchical Identity-Based Encryption [26],
and decentralized Attribute-Based Encryption [31]. Typically, proofs of such schemes will use the
random oracle heuristic to “program” the output of the hash function in a certain way for which
there is no known standard model equivalent (see [29]).

Given that there are well-known issues with random oracle instantiability in general [17] and
problems with Full Domain Hash in particular [21, 20], there has been a push to find standard model
realizations of these applications. These endeavors have been successful in several applications such
as signatures [10, 41] and (Hierarchical) Identity-Based Encryption [18, 8, 9, 41, 24, 42]. Despite
this progress, the current state is not entirely satisfactory on two fronts. First, each of the standard
model examples given above created new cryptographic constructions with fundamentally different
structure than the original Full Domain Hash construction. While creating a new structure is
a completely valid and novel approach, that path does not necessarily lend insight or further
understanding of the original constructions.

Second, there are important applications of the Full Domain Hash method where implementing
such a hash using a random oracle introduces significant limitations in the applicability of the
Full Domain Hash method. A prominent example concerns aggregate signature schemes and their
identity-based counterparts:

An aggregate signature system is one in which a signature σ′ on verification key/message pair
(VK′,M ′) can be combined with a signature σ̃ on (ṼK, M̃) producing a new signature σ on the set
S = {(VK′,M ′), (ṼK, M̃)}. This process can be repeated indefinitely to aggregrate an arbitrary
number of signatures together. Crucially, the size of σ should be independent of the number of
signatures aggregated, although the description of the set S will grow. The ultimate goal, however,
is to minimize the entire transmission size [36].

The need for a public-key infrastructure for verification keys is a major drawback of traditional
public-key cryptography, and for this reason identity-based cryptography has flourished [40, 12]:
In an identity-based aggregate signature scheme, verification keys like VK would be replaced with
simple identity strings like I =“harrypotter@hogwarts.edu”. This offers a very meaningful savings
for protocols such as BGPsec, which require routers to store, retrieve and verify certificates for
over 36,000 public keys [19, 16]. We note that while identity-based signatures follow trivially from
standard signatures, identity-based aggregate signatures are nontrivial (more on this below).

A decade ago, the Boneh, Gentry, Lynn and Shacham (BGLS) [13] aggregate signature scheme
was built using the Full Domain Hash methodology. In the original vision of BGLS, aggregation
could be performed by any third party on any number of signatures. The authors showed how
the Boneh, Lynn and Shacham (BLS) [14] signatures (which are in turn comprised of Boneh-
Franklin [12] private IBE keys) can be aggregated in this manner. The BLS construction uses a full
domain hash and its security proof is in the random oracle model. However, even though the BGLS
scheme was built upon the key mechanism for Boneh-Franklin Identity-Based Encryption, BGLS
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does not support identity-based aggregation. The Full Domain Hash in BGLS is realized using
a random oracle, which destroys the structure that would be needed for identity-based aggregate
signatures. To the best of our knowledge, no prior solution to identity-based aggregate signatures
in either the standard or random oracle models exists. Prior work considered ID-based aggregates
restricted to a common nonce [25] (e.g., where signatures can only be aggregated if they were
created with the same nonce or time period) or sequential additions [7] (e.g., where a group of
signers sequentially form an aggregate by each adding their own signature to the aggregate-so-far).

Our results in a nutshell. In this work, we give a new method for implementing the Full
Domain Hash method using leveled multilinear maps, including the ones recently proposed by
Garg, Gentry, and Halevi (GGH) [22]. We show how to use this method to implement aggregate
signatures in the standard model in a way that naturally extends to give the first full solution to
the problem of identity-based aggregate signatures (also in the standard model).

Prior work on standard model aggregate signatures. All previous work on achieving stan-
dard model aggregate signatures did so by departing fundamentally from the Full Domain Hash
methodology.

Subsequently to BGLS [13], different standard model solutions were proposed, but with differ-
ent restrictions on aggregation. These include: constructions [32] where the signatures must be
sequentially added in by the signers, multisignatures [32] where aggregation can occur only for the
same message M , or where aggregation is limited to signatures associated with the same nonce or
time period [1].1 These restrictions limit their practical applicability.

In 2009, Rückert and Schröder [39] gave an intriguing vision on how multilinear maps might
enable standard model constructions of aggregate signatures, also departing from the Full Domain
Hash methodology. They did not discuss or achieve identity-based aggregate signatures. Their
proposal came before the Garg, Gentry and Halevi [22] candidate and used the earlier Boneh-
Silverberg [15] view of multilinear maps, where a k-linear map would allow the simultaneous multi-
plication of k source group elements into one target group element. The GGH candidate in contrast
allows for encodings to exist on multiple levels and a pairing between an encoding on level i and
one on level j gives an encoding on level i+ j as long as i+ j is less than or equal to some k. One
drawback of the Rückert and Schröder construction is that the security proof requires access to an
interactive (or oracle-type) assumption in order to answer the signature queries where the structure
of the oracle output is essentially identical to the signatures required. This property seems to be
tightly coupled with the modeling of a multilinear map as a one time multiplication. In contrast, we
will exploit the leveling of the GGH abstraction to actually replace the hash function in a BLS-type
structure and obtain proofs from non-interactive assumptions.

1.1 Overview of our Aggregate Signature Constructions

We now overview the constructions and their security claims. To simplify the description of the
main ideas, we describe the constructions here in terms of leveled multilinear maps. Later on, we
explicitly give translations of both constructions to the GGH framework.

1We remark that these restrictions were considered in other works such as [38, 37, 34, 6, 33] prior to the standard
model constructions cited above.
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The Base Construction. A trusted setup algorithm will take as input security parameter λ
and message bit-length ` and run a group generator G(1λ, k = ` + 1) and outputs a sequence of
groups ~G = (G1, . . . ,Gk) of prime order p.2 The group sequence will have canonical generators
g = g1, g2, . . . , gk along with a pairing operation that computes e(gai , g

b
j) = gabi+j for any a, b ∈ Zp

and i + j ≤ k. The setup algorithm will also choose ~A = (A1,0 = ga1,0 , A1,1 = ga1,1), . . . , (A`,0 =

ga`,0 , A`,1 = ga`,1) ∈ G2
1. We define H : {0, 1}` → Gk−1 as H(M) = g

Q
i∈[1,`] ai,mi

k−1 , where mi are the
bits of message M . The hash function hashes a message into the group Gk−1. It exhibits a Naor-
Reingold [35]-type structure and is publicly computable using repeated application of a multilinear
map. Since a group element in Gk−1 has one pairing left, it intuitively reflects the bilinear map
setting. In our scheme a private key contains a random exponent α ∈ Zp and the corresponding
verification key VK contains gα. A signature on a message M is computed as σ = H(M)α and
verified by testing e(σ, g) ?= e(H(M), gα).

Stepping back, the structure of our scheme very closely resembles BLS signatures. For this
reason it is possible to aggregate them in the BGLS fashion by simply multiplying two together. The
size of an aggregate signature depends on the security parameter plus message length ` (assuming
the group representation size increases with k = `+ 1), but is independent of the number of times
aggregation is applied. Aggregation is unrestricted and can be done by any third party.

The Rückert and Schröder construction [39] also insightfully uses a Naor-Reingold type function
for aggregation. A key distinction is that in the RS method there is a unique NR function for each
signer and it is privately computed by each signer per each message/input. In our construction the
Naor-Reingold function is computed as a public hash using the levels of the multilinear map. A
signer simply multiplies in his secret exponent after computing the hash. Thus, this mimicks the
BLS structure much more closely. One advantage of our structure is that the hash function can be
derived from a single common reference string and then public keys are just a single group element.
In addition, we will see that our structure is amenable to proofs under non-interactive assumptions
and allow us to extend to the identity-based setting. In the aggregation setting, where bandwidth
is at a premium, our smaller public keys and the ability to go identity-based is important.

Proofs of Security. We view our aggregate signatures as signatures on a multiset of mes-
sage/verification key pairs for full generality. We prove security in a modular way as a two step
process. First, we define a weaker “distinct message” variant of security that only considers an
attacker successful if the aggregate forgery no two signers sign the same message. We then show
how to transform any distinct message secure scheme into one with standard security. The trans-
formation captures the BGLS idea (formalized by Bellare, Namprempre and Neven [2]) of hashing
the public key plus message together. Using the transformation we can focus on designing proofs
in the distinct message game. We first prove selective security under a natural analog of the CDH
assumption we call the k-Multilinear Computational Diffie-Hellman (k-MCDH) assumption. We
next show full (a.k.a., adaptive) security using a subexponentially secure version of the assumption.
Finally, we show full security with only polynomial factors in the reduction using a non-interactive,
but parameterized assumption.

Realizing Identity-Based Aggregation. The authority will run a setup algorithm that takes
the message bit-length ` and identity bit-length n. It runs a group generator G(1λ, k = ` + n)

2In practice one will perform a CRHF of an arbitrary length message to ` bits.
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and outputs a sequence of groups ~G = (G1, . . . ,Gk) of prime order p. It creates the parameters ~A
as in the prior scheme and ~B = (B1,0 = gb1,0 , B1,1 = gb1,1), . . . , (Bn,0 = gbn,0 , Bn,1 = gbn,1) ∈ G2

1.

We define H : {0, 1}n × {0, 1}` → Gk−1 as H(I,M) = g
(
Q
i∈[1,n] bi,idi )(

Q
i∈[1,`] ai,mi )

k , where mi are
the bits of message M and idi the bits of I. The hash function is publicly computable from the

multilinear map. A secret key for identity I is computed as SKI = g

Q
i∈[1,n] bi,idi

n−1 ∈ Gn−1. This
can be used to produce a signature on message M by computing (gk−1)(

Q
i∈[1,n] bi,idi )(

Q
i∈[1,`] ai,mi )

using the multilinear map. Finally, a signature can be verified by checking e(σ, g) ?= H(I,M). The
signatures will aggregate in the same manner by multiplying together.

The distinct message translation is not required in the identity-based setting, because there is
no rogue key problem. We first prove selective security under the k-MCDH assumption, and then
show full security using a subexponentially secure version of the assumption. We provide these
proofs in both the generic multilinear and the GGH framework.

Further Applications. Taken altogether we show that multilinear forms provide an opportu-
nity for revisiting cryptographic structures that were strongly associated with the random oracle
heuristic. It remains to be seen how widely this direction will apply. One interesting example of
an application that currently requires the full domain hash is the decentralized Attribute-Based
Encryption system of Lewko and Waters [31]. There is no standard model candidate that has com-
parable expressiveness. Here performing an analogous transformation to our aggregate signatures
hash function gives a candidate construction that we do not immediately see how to break. However,
it is less easy to see how our proof techniques would extend to the variant of the Lewko-Waters [31]
decentralized ABE scheme.

2 Leveled Multilinear Maps and the GGH Graded Encoding

We give a description of generic, leveled multilinear maps. The assumptions used in this setting
are defined inline with their respective security proofs. More details of the GGH graded algebras
analogue of mulitlinear maps are included in Appendix A, and for further details, please refer
to [22].

For generic, leveled multilinear maps, we assume the existence of a group generator G, which
takes as input a security parameter 1λ and a positive integer k to indicate the number of allowed
pairing operations. G(1λ, k) outputs a sequence of groups ~G = (G1, . . . ,Gk) each of large prime
order p > 2λ. In addition, we let gi be a canonical generator of Gi (and is known from the group’s
description). We let g = g1.

We assume the existence of a set of bilinear maps {ei,j : Gi ×Gj → Gi+j | i, j ≥ 1; i+ j ≤ k}.
The map ei,j satisfies the following relation:

ei,j

(
gai , g

b
j

)
= gabi+j : ∀a, b ∈ Zp

We observe that one consequence of this is that ei,j(gi, gj) = gi+j for each valid i, j.
When the context is obvious, we will sometimes abuse notation and drop the subscripts i, j,

For example, we may simply write e
(
gai , g

b
j

)
= gabi+j .
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Algorithmic components of GGH encodings. While we assume familiarity with the basics of
GGH encodings [22], we now review the algorithmic components of the GGH encodings that we will
use in our constructions and proofs. The setup algorithm InstGen(1λ, 1k) takes as input a security
parameter 1λ and the level of multilinearity 1k, and outputs the public parameters params needed
for using the remaining GGH algorithms, along with a special parameter pzt to be used for zero
testing. The sampling algorithm samp(params) outputs a level-0 encoding of a randomly chosen
element. The canonicalizing encoding cence(params, i, α) algorithm takes as input an encoding α
of some element a, and outputs a level-i encoding of a, with re-randomization parameter e. This
canonicalizing encoding algorithm can re-randomize an encoding for a fixed constant number of
re-randomization parameters e. Finally, the zero-testing algorithm isZero(pzt, α) takes as input
a level-k encoding α, and accepts iff α is an encoding of 0. A more elaborate review of these
algorithms can be found in Appendix A.

3 Definitions for Aggregate and ID-based Aggregate Signatures

We now give our definitions for aggregate signatures. In our setting, each aggregate signature is
associated with a multiset S over verification key/message pairs (or identity/message pairs in the
ID-based setting). A set S is of the form {(VK1,M1), . . . , (VK|S|,M|S|)}. Since S is a multiset it is
possible to have (VKi,Mi) = (VKj ,Mj) for i 6= j. All signatures, including those that come out of
the sign algorithm, are considered to be aggregate signatures. The aggregation algorithm is general
in that it can take any two aggregate signatures and combine them into a new aggregate signature.

Our definition allows for an initial trusted setup that will generate a set of common public
parameters PP. This will define a bit length of all messages (and identities). In practice one could
set these fixed lengths to be the output length ` of a collision resistant hash function and allow
arbitrary-length messages/identities by first hashing them down to ` bits. In the ID-based setting,
the authority also produces a master secret key used later to run the key generation algorithm.

We emphasize a few features of our setting. First, aggregation is very general in that it allows for
the combination of any two aggregate signatures into a single one. Some prior definitions required
an aggregate signature to be combined with a single message signature. This is a limitation for
applications where an aggregator comes across two aggregate signatures that is wishes to combine.
The aggregation operation does not require any secret keys. The multiset structure allows one to
combine two aggregate signatures which both include the same message from the same signer.

We begin formally with the ID-based definition, because it is novel to this work, and then
discuss its simpler counterpart.

Authority-Setup(1λ, `, n) The trusted setup algorithm takes as input the security parameter
as well the bit-length ` of messages and bit-length n of the identities. It outputs a common set of
public parameters PP and master secret key MSK.

KeyGen(MSK, I ∈ {0, 1}n) The key generation algorithm is run by the authority. It takes as
input the system master secret key and an identity I, and outputs a secret signing key SKI .

Sign(PP, SKI , I ∈ {0, 1}n,M ∈ {0, 1}`) The signing algorithm takes as input a secret signing
key and corresponding identity I ∈ {0, 1}n, the common public parameters as well as a message
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M ∈ {0, 1}`. It outputs a signature σ for identity I. We emphasize that a single signature that is
output by this algorithm is considered to also be an aggregate signature.

Aggregate(PP, S̃, S′, σ̃, σ′). The aggregation algorithm takes as input two multisets S̃ and S′ and
purported signatures σ̃ and σ′. The elements of S̃ consist of identity/message pairs {(Ĩ1, M̃1), . . . ,
(Ĩ|S̃|, M̃|S̃|)} and the elements of S′ consist of {(I ′1,M ′1), . . . , (I ′|S′|,M

′
|S′|)}. The process produces a

signature σ on the multiset S = S̃ ∪ S′, where ∪ is a multiset union.

Verify(PP, S, σ). The verification algorithm takes as input the public parameters, a multiset S
of identity and message pairs and an aggregate signature σ. It outputs true or false to indicate
whether verification succeeded.

Correctness The correctness property states that all valid aggregate signatures will pass the
verification algorithm, where a valid aggregate is defined recursively as an aggregate signature
derived by an application of the aggregation algorithm on two valid inputs or the signing algorithm.
More formally, for all integers λ, `, n, k ≥ 1, all PP ∈ Authority-Setup(1λ, `, n), all I1, . . . , Ik ∈
{0, 1}n, all SKIi ∈ KeyGen(PP, Ii), Verify(PP, S, σ) = 1, if σ is a valid aggregate for multiset S
under PP. We say that an aggregate signature σ is valid for multiset S if: (1) S = {(Ii,M)}
for some i ∈ [1, k], M ∈ {0, 1}` and σ ∈ Sign(PP,SKIi , Ii,M); or (2) there exists multisets
S′, S̃ where S = S′ ∪ S̃ and valid aggregate signatures σ′, σ̃ on them respectively such that σ ∈
Aggregate(PP, S̃, S′, σ̃, σ′).

Security Model for Aggregate Signatures. Adapting aggregation [13, 2] to the identity-
based setting takes some care in considering how keys are handled and which query requests the
adversary should be allowed to make. Informally, in the unforgeability game, it should be computa-
tionally infeasible for any adversary to produce a forgery implicating an honest identity, even when
the adversary can control all other identities involved in the aggregate and can mount a chosen-
message attack on the honest identity. This is defined using a game between a challenger and an
adversary A with respect to scheme Π = (Authority-Setup, KeyGen, Sign, Aggregate, Verify).

– ID-Unforg(Π,A, λ, `, n):

Setup. The challenger runs Authority-Setup(1λ, `, n) to obtain PP. It sends PP to A.
Queries. Proceeding adaptively, A can make three types of requests:

1. Create New Key: The challenger begins with an index i = 1 and an empty sequence of
index/identity/private key triples T . On input an identity I ∈ {0, 1}n, the challenger
runs KeyGen(MSK, I) to obtain SKI . It adds the triple (i, I,SKI) to T and then
increments i for the next call. Nothing is returned to the adversary. We note that the
adversary can query this oracle multiple times for the same identity. This will capture
security for applications that might release more than one secret key per identity.

2. Corrupt User: On input an index i ∈ [1, |T |], the challenger returns to the adversary the
triple (i, Ii,SKIi) ∈ T . It returns an error if T is empty or i is out of range.

3. Sign: On input an index i ∈ [1, |T |] and a message M ∈ {0, 1}`, the challenger obtains the
triple (i, Ii,SKIi) ∈ T (returning an error if it does not exist) and returns the signature
resulting from Sign(PP, SKIi , Ii,M) to A.
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Response. Finally, A outputs a multiset S∗ of identity/message pairs and a purported aggregate
signature σ∗.

We say the adversary “wins” or that the output of this experiment is 1 if: (1) Verify(PP, S∗, σ∗) = 1
and (2) there exists an element (I∗,M∗) ∈ S∗ such that M∗ was not queried for a signature by the
adversary on any index corresponding to I∗; i.e., any index i such that (i, I∗, ·) ∈ T . Otherwise,
the output is 0. Define ID-ForgA as the probability that Unforg(Π,A, λ, `, n) = 1, where the
probability is over the coin tosses of the Authority-Setup, KeyGen, and Sign algorithms and of A.

Definition 3.1 (Adaptive Unforgeability) An ID-based aggregate signature scheme Π is exis-
tentially unforgeable with respect to adaptive chosen-message attacks if for all probabilistic polynomial-
time adversaries A, the function ID-ForgA is negligible in λ.

Selective Security. We consider a selective variant to ID-Unforg (selective in both the identity
and the message) where there is an Init phase before the Setup phase, wherein A gives to the
challenger a forgery identity/message pair (I∗ ∈ {0, 1}n,M∗ ∈ {0, 1}`). The adversary cannot
request a signing key for I∗. (It may request that the challenger create one or more keys for this
identity, but it cannot corrupt any user index i associated with I∗.) Moreover, the adversary only
“wins” causing the experiment output to be 1 if the normal checks hold (i.e., its signature verifies
and it did not request that I∗ sign M∗) and additionally (I∗,M∗) appears in S∗.

Non-ID-Based Aggregates and the Distinct Message Variant. We provide security defi-
nitions for the non-ID-based setting in Appendix B that follow from [13, 2]. We provide adaptive
and selective variants. We also identify a weaker “distinct message” security game that is easier
to work with. In Appendix C, we describe and prove secure a simple transformation from distinct
message security to standard aggregate signature security. The transformation captures the idea
of hashing the public key and message together [13, 2] in a modular way. Focusing on distinct
message security allows one to avoid the “rogue key” attack (see Section 4.3). We do not consider
distinct message security in the ID-based setting, because there are no verification keys.

4 Our Base Aggregate Signature Construction

4.1 Generic Multlinear Construction

Setup(1λ, `) The trusted setup algorithm takes as input the security parameter as well as the
length ` of messages. It first runs G(1λ, k = `+1) and outputs a sequence of groups ~G = (G1, . . . ,Gk)
of prime order p, with canonical generators g1, . . . , gk, where we let g = g1.

Next, it outputs random group elements (A1,0, A1,1), . . . , (A`,0, A`,1) ∈ G2
1. These will be

used to compute a function H(M) : {0, 1}` → Gk−1, which serves as the analog of the full do-
main hash function of the BGLS [13] construction. Let m1, . . . ,m` be the bits of message M .
It is computed iteratively as H1(M) = A1,m1 and for i ∈ [2, `], Hi(M) = e(Hi−1(M), Ai,mi).
We define H(M) = H`(M). The public parameters, PP, consist of the group descriptions plus
(A1,0, A1,1), . . . , (A`,0, A`,1).

KeyGen(PP) The key generation algorithm first chooses random α ∈ Zp. It outputs the public
verification key as VK = gα. The secret key SK is α ∈ Zp.
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Sign(PP, SK,M ∈ {0, 1}`) The signing algorithm computes the signature as σ = H(M)α ∈ Gk−1.
This serves as an aggregate signature for the (single element) multiset S = (VK,M).

Aggregate(PP, S̃, S′, σ̃, σ′). The aggregation algorithm simply computes the output signature σ
as σ = σ̃ · σ′. The serves as a signature on the multiset S = S̃ ∪ S′, where ∪ is a multiset union.

Verify(PP, S, σ). The verification algorithm parses S as {(VK1,M1), . . . , (VK|S|,M|S|)}. It then

checks that e(σ, g) ?=
∏
i=1,...,|S| e(H(Mi),VKi) and accepts if and only if it holds.

Correctness To see correctness, an aggregate σ on S = {(VK1,M1), . . . , (VK|S|,M|S|} will be the

product of individual signatures; i.e., σ =
∏|S|
i=1H(Mi)αi where VKi = gαi , and thus will pass the

verification equation as e(σ, g) = e(
∏|S|
i=1H(Mi)αi , g) =

∏|S|
i=1 e(H(Mi)αi , g) =

∏|S|
i=1 e(H(Mi), g)αi =∏|S|

i=1 e(H(Mi), gαi) =
∏|S|
i=1 e(H(Mi), V Ki).

Efficiency and Tradeoffs An aggregate signature is one group element in Gk−1 independent of
the number of messages aggregated. In a multilinear setting, the space to represent a group element
might grow with k (which is `+1). Indeed, this happens in the GGH [22] graded algebra translation.
One way to mitigate this is to differ the message alphabet size in a tradeoff of computation versus
storage. The above construction uses a binary message alphabet. If it used an alphabet of 2d

symbols, then the aggregate signature could resident in the group G`/d with `/d − 1 pairings
required to compute it, at the cost of the public parameters requiring 2d` group elements in G.

4.2 Construction in the GGH Framework

We give a translation of the above construction to the GGH [22] framework in Appendix E.

4.3 Security Analysis

Assumption 4.1 (Multilinear Computational Diffie-Hellman: k-MCDH) The k-Multilinear
Computational Diffie-Hellman (k-MCDH) problem states the following: A challenger runs G(1λ, k)
to generate groups and generators of order p. Then it picks random c1, . . . , ck ∈ Zp. The assump-
tion then states that given g = g1, g

c1 , . . . , gck it is hard for any poly-time algorithm to compute

g

Q
j∈[1,k] cj

k−1 with better than negligible advantage (in security parameter λ).

We say that the k-MCDH assumption holds against subexponential advantage if there exists a
universal constant ε0 > 0 such that no polynomial-time algorithm can succeed in the experiment
above with probability greater than 2−λ

ε0 . In Section 5.3, we will give a variant of the k-MCDH
assumption in the approximate multilinear maps setting of GGH [22] that we will call the GGH
k-MCDH assumption. We note that the best cryptanalysis available of the GGH framework [22]
suggests that the GGH k-MCDH assumption holds against subexponential advantage.

In Appendix D, we show that the basic aggregate signature scheme for message length ` in the
distinct message unforgeability game is:

• (Theorem D.1) selectively secure under the (`+ 1)-Multilinear Computational Diffie-Hellman
(MCDH) assumption.
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• (Corollary D.2) fully secure under the (` + 1)-MCDH assumption against subexponential
advantage.
• (Theorem D.4) fully secure under a non-interactive, parameterized assumption which depends

on `, the number of adversarial signing queries and the number of messages in the adversary’s
forgery.

By applying the simple transformation of Appendix C, the distinct message requirement can be
removed. Without this transformation, there is a simple attack where the attacker sets some VK′ =
VK−1 and submits the identity element in Gk−1 as an aggregate forgery for S = {(VK,M), (VK′,M)}
for any message M of its choosing.

5 Our ID-Based Aggregate Signature Construction

5.1 Generic Multilinear Construction

Authority-Setup(1λ, `, n) The trusted setup algorithm is run by the master authority of the
ID-based system. It takes as input the security parameter as well the bit-length ` of messages
and bit-length n of identities. It first runs G(1λ, k = ` + n) and outputs a sequence of groups
~G = (G1, . . . ,Gk) of prime order p, with canonical generators g1, . . . , gk, where we let g = g1.

Next, it chooses random group elements (A1,0 = ga1,0 , A1,1 = ga1,1), . . . , (A`,0 = ga`,0 , A`,1 =
ga`,1) ∈ G2

1. It also chooses random exponents (b1,0, b1,1), . . . , (bn,0, bn,1) ∈ Zp2 and sets Bi,β = gbi,β

for i ∈ [1, n] and β ∈ {0, 1}.
These will be used to define a function H(I,M) : {0, 1}n × {0, 1}` → Gk. Let m1, . . . ,m` be

the bits of message M and id1, . . . , idn as the bits of I. It is computed iteratively as

H1(I,M) = B1,id1 for i ∈ [2, n] Hi(I,M) = e(Hi−1(I,M), Bi,idi)

for i ∈ [n+ 1, n+ ` = k] Hi(I,M) = e(Hi−1(I,M), Ai−n,mi−n).

We define H(I,M) = Hk=`+n(I,M).
The public parameters, PP, consist of the group sequence description plus:

(A1,0, A1,1), . . . , (A`,0, A`,1), (B1,0, B1,1), . . . , (Bn,0, Bn,1)

The master secret key MSK includes PP together with the values (b1,0, b1,1), . . . , (bn,0, bn,1).

KeyGen(MSK, I ∈ {0, 1}n) The signing key for identity I is SKI = g

Q
i∈[1,n] bi,idi

n−1 ∈ Gn−1.

Sign(PP, SKI , I ∈ {0, 1}n,M ∈ {0, 1}`) The signing algorithm lets temporary variable D0 =
SKI . Then for i = 1 to ` it computes Di = e(Di−1, Ai,mi) ∈ Gn−1+i. The output signature is

σ = D` = (gk−1)(
Q
i∈[1,n] bi,idi )(

Q
i∈[1,`] ai,mi ).

This serves as an ID-based aggregate signature for the (single element) multiset S = (I,M).

Aggregate(PP, S̃, S′, σ̃, σ′). The aggregation algorithm simply computes the output signature σ
as σ = σ̃ · σ′. The serves as a signature on the multiset S = S̃ ∪ S′, where ∪ is a multiset union.
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Verify(PP, S, σ). It parses S as {(I1,M1), . . . , (I|S|,M|S|)}. It then accepts if and only if

e(σ, g) ?=
∏

i=1,...,|S|

H(Ii,Mi).

Correctness and Security To see correctness, an aggregate σ on S = {(I1,M1), . . . , (I|S|,M|S|)
will be the product of individual signatures; i.e., σi where e(σi, g) = H(Ii,Mi), and thus we have∏|S|
i=1 e(σi, g) = e(

∏|S|
i=1 σi, g) = e(σ, g) =

∏|S|
i=1H(Ii,Mi). We show that this scheme is selectively

secure under the k-MCDH assumption in Appendix F, where the proof is very similar to that of
the GGH translation which we provide shortly in Section 5.3.

5.2 ID-Based Construction in the GGH Framework

We show how to modify our ID-based construction to use the GGH [22] graded algebras analogue
of multilinear maps. Please note that we use the same notation developed in [22], with some minor
changes: Firstly, we use the canonical encoding function cenc provided by the GGH framework
more than once at each level of the encoding, but only a globally fixed constant number of times
per level. This is compatible with the GGH encoding [22], and allows for a simpler exposition of
our scheme and proof. Also, for ease of notation on the reader, we suppress repeated
params arguments that are provided to every algorithm. Thus, for instance, we will write
α ← samp() instead of α ← samp(params). Note that in our scheme, there will only ever be a
single uniquely chosen value for params throughout the scheme, so there is no cause for confusion.
Finally, we use the variant of the GGH framework with “strong” zero-testing, where the zero test
statistically guarantees that a vector is a valid encoding of zero if it passes the zero test. For further
details on the GGH framework, please refer to [22]. See also the summary of [23] as included in
Appendix A.

Authority-Setup(1λ, `, n) The trusted setup algorithm is run by the master authority of the
ID-based system. It takes as input the security parameter as well the bit-length ` of messages and
bit-length n of identities. It then runs (params,pzt)← InstGen(1λ, 1k=`+n). Recall that params will
be implicitly given as input to all GGH-related algorithms below.

Next, it chooses random encodings ai,β = samp() for i ∈ [1, `] and β ∈ {0, 1}; and random
encodings bi,β = samp() for i ∈ [1, n] and β ∈ {0, 1}. Then it assigns Ai,β = cenc1(1, ai,β) for
i ∈ [1, `] and β ∈ {0, 1}; and it assigns Bi,β = cenc1(1, bi,β) for i ∈ [1, n] and β ∈ {0, 1}.

These will be used to compute a function H mapping `+ n bit strings to level k− 1 encodings.
Let m1, . . . ,m` be the bits of M and id1, . . . , idn be the bits of I. It is computed iteratively as

H1(I,M) = B1,id1 for i ∈ [2, n] Hi(I,M) = Hi−1(I,M) ·Bi,idi

for i ∈ [n+ 1, n+ ` = k] Hi(I,M) = Hi−1(I,M) ·Ai−n,mi−n .

We define H(I,M) = cenc2(k,Hk=`+n(I,M)).
The public parameters, PP, consist of the params,pzt plus:

(A1,0, A1,1), . . . , (A`,0, A`,1), (B1,0, B1,1), . . . , (Bn,0, Bn,1)

Note that params includes a level 1 encoding of 1, which we denote as g.
The master secret key MSK includes PP together with the encodings (b1,0, b1,1), . . . , (bn,0, bn,1).
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KeyGen(MSK, I ∈ {0, 1}n) The signing key for identity I is SKI = cenc2(n− 1,
∏
i∈[1,n] bi,idi).

Sign(PP, SKI , I ∈ {0, 1}n,M ∈ {0, 1}`) The signing algorithm lets temporary variable D0 =
SKI . Then for i = 1 to ` it computes Di = Di−1 ·Ai,mi . The output signature is

σ = cenc3(k − 1, D`).

This serves as an ID-based aggregate signature for the (single element) multiset S = (I,M).

Aggregate(PP, S̃, S′, σ̃, σ′). The aggregation algorithm simply computes the output signature σ
as σ = σ̃ + σ′. The serves as a signature on the multiset S = S̃ ∪ S′, where ∪ is a multiset union.

Verify(PP, S, σ). The verification algorithm parses S as {(I1,M1), . . . , (I|S|,M|S|)}. It rejects if
the multiplicity of any identity/message pair is greater than 2λ.

The algorithm then proceeds to check the signature by setting τ = cenc2(1, g), and testing: :

isZero

pzt, τ · σ −
∑

i=1,...,|S|

H(Ii,Mi)


and accepts if and only if the zero testing procedure outputs true. Recall that g above is a canonical
level 1 encoding of 1 that is included in params, part of the public parameters.

Correctness. Correctness follows from the same argument as for the ID-based aggregate signa-
ture scheme in the generic multilinear setting.

5.3 Proof of Security for ID-based Aggregate Signatures in the GGH framework

We now describe how to modify our proof of security for our ID-based construction to use the
GGH [22] graded algebras analogue of multilinear maps. As before, for ease of notation on the
reader, we suppress repeated params arguments that are provided to every algorithm. For further
details on the GGH framework, please refer to Appendix A or [22].

We begin by describing the GGH analogue of the k-MCDH assumption that we will employ:

Assumption 5.1 (GGH analogue of k-MCDH: GGH k-MCDH) The GGH k-Multilinear
Computational Diffie-Hellman (GGH k-MCDH) problem states the following: A challenger runs
InstGen(1λ, 1k) to obtain (params,pzt). Note that params includes a level 1 encoding of 1, which we
denote as g. Then it picks random c1, . . . , ck each equal to the result of a fresh call to samp().

The assumption then states that given params,pzt, cenc1(1, c1), . . . , cenc1(1, ck) it is hard for any
poly-time algorithm to compute an integer t ∈ [1, 2λ] and an encoding z such that

zTst

pzt, cenc2(1, g) · z − cenc1(k, t ·
∏

j∈[1,k]

cj)


outputs true.
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We say the GGH k-MCDH assumption holds against subexponential advantage if there exists
a universal constant ε0 > 0 such that no polynomial-time algorithm can succeed in the experiment
above with probability greater than 2λ

ε0 . The best cryptanalysis available of the GGH frame-
work [22] suggests that the GGH k-MCDH assumption holds against subexponential advantage.

We establish full security of our ID-based aggregate signature scheme conditioned on the k-
MCDH assumption holding against subexponential advantage. This follows immediately from the
following theorem and a standard complexity leveraging argument:

Theorem 5.2 (Selective Security of GGH ID-Based Construction) The ID-based aggregate
signature scheme for message length ` and identity length n in Section 5.2 is selectively secure in
the unforgeability game in Section 3 under the GGH (`+ n)-MCDH assumption.

Corollary 5.3 The ID-based aggregate signature scheme for message length ` in Section 5.2 is
fully secure in the distinct message unforgeability game under the GGH (`+n)-MCDH assumption
against subexponential advantage.

Proof. This follows immediately from a complexity leveraging argument: the security parameter
λ is chosen to ensure that 2λ

ε0 >> 2`, where 2−λ
ε0 is the maximum probability of success allowed

in the k-MCDH assumption against subexponential advantage. Now, to establish full security, the
simulator performs exactly as in the selective security proof, but first it simply guesses the message
that will be forged (instead of expecting the adversary to produce this message). Because this
guess will be correct with probability at least 2−`, and the security parameter λ is chosen carefully,
full security with polynomial advantage (or even appropriately defined subexponential advantage)
implies an attacker on the GGH k-MCDH assumption with subexponential advantage. �

Proof. (of Theorem 5.2) We show that if there exists a PPT adversary A that can break
the selective security of the ID-based aggregate signature scheme in the unforgettability game
with probability ε for message length `, identity length n and security parameter λ, then there
exists a PPT simulator that can break the GGH (`+n)-MCDH assumption for security parameter
λ with probability ε. The simulator takes as input a GGH MCDH instance params,pzt, C1 =
cenc1(1, c1), . . . , Ck = cenc1(1, ck) where k = `+ n. Let mi denote the ith bit of M and idi denote
the ith bit of I. The simulator plays the role of the challenger in the game as follows.

Init. Let I∗ ∈ {0, 1}n and M∗ ∈ {0, 1}` be the forgery identity/message pair output by A.

Setup. The simulator chooses random x1, . . . , x`, y1, . . . , yn with fresh calls to samp(). For i = 1
to `, let Ai,m∗i = Ci+n and Ai,m̄∗i

= cenc1(1, xi). For i = 1 to n, let Bi,id∗i = Ci and
Bi, ¯id∗i

= cenc1(1, yi). We remark that the parameters are distributed independently and
uniformly at random as in the real scheme.

Queries. Conceptually, the simulator will be able to create keys or signatures for the adversary,
because his requests will differ from the challenge identity or message in at least one bit.
More specifically,

1. Create New Key: The simulator begins with an index i = 1 and an empty sequence of
index/identity/private key triples T . On input an identity I ∈ {0, 1}n, if I = I∗, the
simulator records (i, I∗,⊥) in T . Otherwise, the simulator computes the secret key as
follows. Let β be the first index such that idi 6= id∗i . Compute s =

∏
i=1,...,n∧i 6=β Bi,idi .
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Then compute SKI = cenc2(n − 1, s · yβ). Record (i, I,SKI) in T . Secret keys are
well-formed and, due to the rerandomization in the cenc2 algorithm, are distributed in
a manner statistically exponentially close to the keys generated in the real game.

2. Corrupt User: On input an index i ∈ [1, |T |], the simulator returns to the adversary the
triple (i, Ii, SKIi) ∈ T . It returns an error if T is empty or i is out of range. Recall that
i cannot be associated with I∗ in this game.

3. Sign: On input an index i ∈ [1, |T |] and a message M ∈ {0, 1}`, the simulator obtains
the triple (i, Ii, SKIi) ∈ T or returns an error if it does not exist. If Ii 6= I∗, then the
simulator signs M with SKIi in the usual way.
If Ii = I∗, then we know M 6= M∗. Let β be the first index such that mβ 6= m∗β.
First compute σ′ =

∏
i=1,...,`∧i 6=β Ai,mi . Next, compute σ′′ = σ′ · xi. Also compute γ =∏

i=1,...,nBi,idi . Finally, compute σ = cenc3(k − 1, γ · σ′′) Return σ to A. Signatures are
are well-formed and, due to the rerandomization in the cenc3 algorithm, are distributed
in a manner statistically exponentially close to the keys generated in the real game.

Response. Eventually, A outputs an aggregate signature σ∗ on multiset S∗ where (I∗,M∗) ∈
S∗. The simulator will extract from this a solution to the MCDH problem. This works
by iteratively computing all the other signatures in S∗ and then subtracting them out of
the aggregate until only one or more signatures on (I∗,M∗) remain. That is, the simulator
takes an aggregate for S∗ and computes an aggregate signature for S′ where S′ has one less
verification key/message pair than S at each step. These signatures will be computed as in
the query phase.

Eventually, we have an aggregate σ′ on t ≥ 1 instances of (I∗,M∗). However recall that
H(I∗,M∗) is a level k encoding of (

∏
i∈[1,n] bi,id∗i )(

∏
i∈[1,`] ai,m∗i ) =

∏
i∈[k] ci. Thus verification

of the signature σ′ implies that (t, σ′) is a solution to the GGH k-MCDH problem, and so the
simulator returns (t, σ′) to break the GGH k-MCDH assumption.

As remarked above, the responses of the challenger are distributed statistically exponentially
closely to the real unforgeability game. The simulator succeeds whenever A does. �
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A Background on GGH

In this section, we provide some background on the GGH framework. We use the GGH framework
in a manner very similar to the way it was used in the recent work of Garg, Gentry, Halevi, Sahai,
and Waters on constructing Attribute-Based Encryption for Circuits [23]. For consistency, the
following text is taken verbatim from [23]:

A.1 Graded Encoding Systems: Definition

Garg, Gentry and Halevi (GGH) [22] defined an “approximate” version of a multilinear group family,
which they call a graded encoding system. As a starting point, they view gαi in a multilinear group
family as simply an encoding of α at “level-i”. This encoding permits basic functionalities, such as
equality testing (it is easy to check that two level-i encodings encode the same exponent), additive
homomorphism (via the group operation in Gi), and bounded multiplicative homomorphism (via
the multilinear map e). They retain the notion of a somewhat homomorphic encoding with equality
testing, but they use probabilistic encodings, and replace the multilinear group family with “less
structured” sets of encodings related to lattices.

Abstractly, their n-graded encoding system for a ring R includes a system of sets S = {S(α)
i ⊂

{0, 1}∗ : i ∈ [0, n], α ∈ R} such that, for every fixed i ∈ [0, n], the sets {S(α)
i : α ∈ R} are disjoint

(and thus form a partition of Si :=
⋃
α S

(α)
i ). The set S(α)

i consists of the “level-i encodings of α”.
Moreover, the system comes equipped with efficient procedures, as follows:3

Instance Generation. The randomized InstGen(1λ, 1n) takes as input the security parameter λ
and integer n. The procedure outputs (params,pzt), where params is a description of an
n-graded encoding system as above, and pzt is a level-n “zero-test parameter”.

Ring Sampler. The randomized samp(params) outputs a “level-zero encoding” a ∈ S0, such that
the induced distribution on α such that a ∈ S(α)

0 is statistically uniform.

Encoding. The (possibly randomized) enc(params, i, a) takes i ∈ [n] and a level-zero encoding
a ∈ S(α)

0 for some α ∈ R, and outputs a level-i encoding u ∈ S(α)
i for the same α.

3Since GGH’s realization of a graded encoding system uses “noisy” encodings over ideal lattices, the procedures
incorporate information about the magnitude of the noise.
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Re-Randomization. The randomized reRand(params, i, u) re-randomizes encodings to the same
level, as long as the initial encoding is under a given noise bound. Specifically, for a level
i ∈ [n] and encoding u ∈ S(α)

i , it outputs another encoding u′ ∈ S(α)
i . Moreover for any two

encodings u1, u2 ∈ S
(α)
i whose noise bound is at most some b, the output distributions of

reRand(params, i, u1) and reRand(params, i, u2) are statistically the same.

Addition and negation. Given params and two encodings at the same level, u1 ∈ S
(α1)
i and

u2 ∈ S(α2)
i , we have add(params, u1, u2) ∈ S(α1+α2)

i , and neg(params, u1) ∈ S(−α1)
i , subject to

bounds on the noise.

Multiplication. For u1 ∈ S(α1)
i1

, u2 ∈ S(α2)
i2

, we have mult(params, u1, u2) ∈ S(α1·α2)
i1+i2

.

Zero-test. The procedure isZero(params,pzt, u) outputs 1 if u ∈ S(0)
n and 0 otherwise. Note that

in conjunction with the procedure for subtracting encodings, this gives us an equality test.

Extraction. This procedure extracts a “canonical” and “random” representation of ring elements
from their level-n encoding. Namely ext(params,pzt, u) outputs (say) K ∈ {0, 1}λ, such that:

(a) With overwhelming probability over the choice of α ∈ R, for any two u1, u2 ∈ S
(α)
n ,

ext(params,pzt, u1) = ext(params,pzt, u2),
(b) The distribution {ext(params,pzt, u) : α ∈ R, u ∈ S

(α)
n } is statistically uniform over

{0, 1}λ.

We can extend add and mult to handle more than two encodings as inputs, by applying the
binary versions of add and mult iteratively. Also, it is convenient to define a canonicalized encoding
algorithm cenc`params, i, a) which takes as input encoding of a and generates another encoding
according to a “nice” distribution. The parameter ` denotes that the noise introduced with `
successive invocations of the reRand operation. This parameter was implicit in [22] encoding scheme
and we make it explicit. This parameter essentially captures the noise present in the encodings.
In our scheme we will need to re-randomize at most a constant number of times and hence the
maximum value ` takes will be a small constant.

A.2 Graded Encoding Systems: Realization

Concretely, GGH’s n-graded encoding system works as follows. (This is a whirlwind overview; see
[22] for details.) The system uses three rings. First, it uses the ring of integers O of the m-th
cyclotomic field. This ring is typically represented as the ring of polynomials O = Z[x]/(Φm(x)),
where Φm(x) is the m-th cyclotomic polynomial, which has degree N = φ(m). Second, for some
suitable integer modulus q, it uses the quotient ring O/(q) = Zq[x]/(Φm(x)), similar to the NTRU
encryption scheme [27]. The encodings live in O/(q). Finally, it uses the quotient ring R = O/I,
where I = 〈g〉 is a principal ideal of O that is generated by g and where |O/I| is a large prime.
This is the ring “R” referred to above; elements of R are what is encoded.

What does a GGH encoding look like? For a fixed random z ∈ O/(q), an element of S(α)
i – that

is, a level-i encoding of α ∈ R – has the form e/zi ∈ O/(q), where e ∈ O is a “small” representative
of the coset α + I (it has coefficients that are very small compared to q). To add encodings
e1/z

i ∈ S(α1)
i and e2/z

i ∈ S(α2)
i , just add them in O/(q) to obtain (e1 + e2)/zi, which is in S(α1+α2)

i

if e1 + e2 is “small”. To mult encodings e1/z
i1 ∈ S(α1)

i1
and e2/z

i2 ∈ S(α2)
i2

, just multiply them in
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O/(q) to obtain e1 ·e2/z
i1+i2 , which is in S(α1·α2)

i1+i2
if e1 ·e2 is “small”. This smallness condition limits

the GGH encoding system to degree polynomial in the security parameter. Intuitively, dividing
encodings does not “work”, since the resulting denominator has a nontrivial term that is not z.

The GGH params allow everyone to generate encodings of random (known) values. The params
include a level-1 encoding of 1 (from which one can generate encodings of 1 at other levels), and
(for each i ∈ [n]) a sufficient number of level-i encodings of 0 to enable re-randomization. To encode
(say at level-1), run samp(params) to sample a small element a from O, e.g. according to a discrete
Gaussian distribution. For a Gaussian with appropriate deviation, this will induce a statistically
uniform distribution over the cosets of I. Then, multiply a with the level-1 encoding of 1 to get
a level-1 encoding u of a ∈ R. Finally, run reRand(params, 1, u), which involves adding a random
Gaussian linear combination of the level-1 encodings of 0, whose noisiness (i.e., numerator size)
“drowns out” the initial encoding. The parameters for the GGH scheme can be instantiated such
that the re-randomization procedure can be used for any pre-specified polynomial number of times.

To permit testing of whether a level-n encoding u = e/zn ∈ Sn encodes 0, GGH publishes a
level-n zero-test parameter pzt = hzn/g, where h is “somewhat small”4 and g is the generator of I.
The procedure isZero(params,pzt, u) simply computes pzt · u and tests whether its coefficients are
small modulo q. If u encodes 0, then e ∈ I and equals g ·c for some (small) c, and thus pzt ·u = h ·c
has no denominator and is small modulo q. If u encodes something nonzero, pzt · u has g in the
denominator and is not small modulo q. The ext(params,pzt, u) procedure works by applying a
strong extractor to the most significant bits of pzt · u. For any two u1, u2 ∈ S(α)

n , we have (subject
to noise issues) u1 − u2 ∈ S(0)

n , which implies pzt(u1 − u2) is small, and hence pzt · u1 and pzt · u2

have the same most significant bits (for an overwhelming fraction of α’s).
Garg et al. provide an extensive cryptanalysis of the encoding system, which we will not

review here. We remark that the underlying assumptions are stronger, but related to, the hardness
assumption underlying the NTRU encryption scheme: that it is hard to distinguish a uniformly
random element from O/(q) from a ratio of “small” elements – i.e., an element u/v ∈ O/(q) where
u, v ∈ O/(q) both have coefficients that are on the order of (say) qε for small constant ε.

B Definitions for Aggregate Signatures

We introduced our general definitional setting in Section 3. Now, for our regular aggregate security
definition, we define adaptive and selective variants. We also identify a slightly weaker “distinct
message” security game that is easier to work with. In Appendix C, we describe and prove secure
a simple transformation from distinct message security to standard aggregate signature security.
The transformation captures the idea of hashing the public key and message together [13, 2] in a
modular way.

An aggregate signature scheme is comprised of the following algorithms:

Setup(1λ, `) The trusted setup algorithm takes as input the security parameter as well the bit-
length ` of messages. It outputs a common set of public parameters PP.

4Its coefficients are on the order of (say) q2/3, while other terms – such as a numerator e or the principal ideal
generator g – are much, much smaller.
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KeyGen(PP) The key generation algorithm takes as input the system public parameters and
outputs a signature verification key and secret key pair (VK, SK).

Sign(PP, SK,M ∈ {0, 1}`) The signing algorithm takes as input a secret signing key, the common
public parameters as well as a message M ∈ {0, 1}`. It outputs a signature σ. We emphasize that
a single signature that is output by this algorithm is considered to also be an aggregate signature.

Aggregate(PP, S̃, S′, σ̃, σ′). The aggregation algorithm takes as input two multisets S̃ and S′,
two purported signatures on these multisets and the public parameters. The elements of S̃ consist
of verification key/message pairs {(ṼK1, M̃1), . . . , (ṼK|S̃|, M̃|S̃|)} and the elements of S consist of

{(VK′1,M
′
1), . . . , (VK′|S′|,M

′
|S′|)}. The process produces a signature σ on the multiset S = S̃ ∪ S′,

where ∪ is a multiset union.

Verify(PP, S, σ). The verification algorithm takes a input the public parameters, a multiset S of
verification key/message pairs and a purported aggregate signature σ. It outputs true or false to
indicate whether verification succeeded.

Correctness The correctness property states that all valid aggregate signatures will pass the
verification algorithm, where a valid aggregate is defined recursively as an aggregate signature
derived by an application of the aggregation algorithm on two valid inputs or the signing algorithm.
More formally, for all integers λ, `, k ≥ 1, all PP ∈ Setup(1λ, `), all (VKi,SKi) ∈ KeyGen(PP) for
i = 1 to k, Verify(PP, S, σ) = 1, if σ is a valid aggregate for multiset S under PP. We say that an
aggregate signature σ is valid for multiset S if: (1) S = {(VKi,M)} for some i ∈ [1, k], M ∈ {0, 1}`
and σ ∈ Sign(PP,SKi,M); or (2) there exists multisets S′, S̃ where S = S′ ∪ S̃ and valid aggregate
signatures σ′, σ̃ on them respectively such that σ ∈ Aggregate(PP, S̃, S′, σ̃, σ′).

B.1 Security Model for Aggregate Signatures

We define the adaptive security game as in [13, 2]. Informally, it should be computationally
infeasible for any adversary to produce a forgery implicating an honest signer, even when the
adversary can control all other keys involved in the aggregate and can mount a chosen-message
attack on the honest signer. This is defined using a game between a challenger and an adversary
A with respect to scheme Π = (Setup, KeyGen, Sign, Aggregate, Verify).

– Unforg(Π,A, λ, `):

Setup. The challenger runs Setup(1λ, `) to obtain PP and KeyGen(PP) to obtain (VK, SK). It
sends (PP,VK) to A.

Queries. Proceeding adaptively, A requests signatures under VK on `-bit messages of his choice.
Response. Finally, A outputs a multiset S∗ of verification key/message pairs and a purported

aggregate signature σ∗.

We say the adversary “wins” or that the output of this experiment is 1 if: (1) Verify(PP, S∗, σ∗) = 1
and (2) there exists an element (VK,M∗) ∈ S∗ such that M∗ was not queried for a signature by the
adversary. Otherwise, the output is 0. Define ForgA as the probability that Unforg(Π,A, λ, `) = 1,
where the probability is over the coin tosses of the Setup, KeyGen, and Sign algorithms and of A.
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Definition B.1 (Adaptive Unforgeability) An aggregate signature scheme Π is existentially
unforgeable with respect to adaptive chosen-message attacks if for all probabilistic polynomial-time
adversaries A, the function ForgA is negligible in λ.

Selective Security. We consider a selective variant to Unforg where there is an Init phase
before the Setup phase, wherein A gives to the challenger the forgery message M∗ ∈ {0, 1}`. This
message M∗ cannot be queried for a signature and yet (VK,M∗) must appear in S∗.

Distinct Message Security. We consider a distinct message variant to Unforg, where the
game is the same as above, but we change how we define the experiment output. The output of the
experiment is 1 if and only if: (1) it was 1 in the Unforg game, and (2) the message M∗ was not
associated with any other signer. That is, for all (V Ki,Mi) ∈ S∗, if V Ki 6= VK, then Mi 6= M∗.
(The forgery message M∗ could be associated with the key VK multiple times. This is allowed.)

C Transforming Distinct Message Security into Standard Security

In this section, we show how to transform any aggregate signature scheme proved in the distinct
message security game into one which is secure in the standard security game. This will apply to
both the selective and full security games. We remind the reader that distinct message security is
not used in the ID-based setting, so we consider only regular signatures here.

The transformation essentially captures and modularizes idea of Boneh, Gentry, Lynn and
Shacham [13], which was formally captured by Bellare, Namprempre, and Neven [2], of hashing the
public key and message to get an output that is plugged in as the message for the core scheme.
To execute this transformation the message length, `, of the core scheme must be as large as the
output of a collision-resistant hash function. We give the construction.

Let Π =(Setup, KeyGen, Sign, Aggregate, Verify) be an aggregate signature scheme for message
length `. Let H : {0, 1}∗ → {0, 1}` be a collision resistant hash function. We build a second
aggregate signature scheme Π′ derived from Π as follows. The public parameters now include the
description of H. Keys are generated as before. To sign a message M ∈ {0, 1}∗ for the user
associated with verification key VK, first compute M ′ = H(VK,M) and then run the regular
signing algorithm on M ′. Aggregation works the same as before. The verification algorithm re-
computes M ′i = H(VKi,Mi) for each (VKi,Mi) ∈ S and treats these as the messages in the regular
verification algorithm.

Lemma C.1 (Distinct Message to Standard Transformation) If Π is an adaptively (resp.,
selectively), distinct message secure aggregate signature scheme for message length ` and H :
{0, 1}∗ → {0, 1}` is a collision-resistant hash function, then Π′ as defined above is an adaptively
(reps., selectively) secure aggregate signature scheme.

Proof. We argue that any PPT adversary A′ against Π′ can be turned into a PPT adversary A
that breaks either Π in the distinct message game or finds a collision in H. Let σ∗ be the forgery
on S∗ submitted by the adversary at the end of the standard security game. Let M ′1, . . . ,M

′
|S| be

derived as M ′i = H(VKi,Mi) for each entry (VKi,Mi) in S∗. We consider two cases.
First, suppose there exists some M ′i ,M

′
j such that M ′i = M ′j and yet (VKi,Mi) 6= (VKj ,Mj).

Then, the simulator can use the adversary to find a collision in the hash function sinceH(VKi,Mi) =
H(VKj ,Mj) and the inputs are not equal.
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Otherwise, it must be the case that if M ′i = M ′j , then (VKi,Mi) = (VKj ,Mj). Thus, the
adversary is not violating the distinct message property since there cannot be VKi 6= VKj where
M ′i = M ′j . The simulator can reduce to the security of the underlying distinct message secure
scheme. �

There are alternatives to proving security in the distinct message setting and then applying the
above transformation, which have been explored in prior works. One possibility is to require public
keys to be registered with some authority, where registration is contingent upon proving knowledge
of the secret key to the authority. Verification only proceeds if the public key includes a registration
certificate from the authority. Alternatively, one could include a non-interactive zero knowledge
proof of knowledge of the private key as part of the private key. Verification only proceeds after
the verifier checks the NIZKs. While we choose the distinct message plus transformation route, we
expect these other alternatives would be viable with only minor technical modifications.

D Security of the Base Construction

We provide three claims on the security of the generic, base construction from Section 4.1. The
proofs for the translation to the GGH framework follow along the same lines from these and the
proof of the ID-Based construction in the GGH framework.

D.1 Security against Selective or Subexponential Advantage Attacks

The k-Multilinear Computational Diffie-Hellman (k-MDDH) assumption was defined in Section 4.3.
We establish full security of our basic aggregate signature scheme conditioned on the k-MCDH
assumption holding against subexponential advantage. This follows immediately from the following
theorem and a standard complexity leveraging argument:

Theorem D.1 (Selective Security of Base Construction) The aggregate signature scheme for
message length ` in Section 4.1 is selectively secure in the distinct message unforgeability game un-
der the (`+ 1)-MCDH assumption.

Corollary D.2 The aggregate signature scheme for message length ` in Section 4.1 is fully secure
in the distinct message unforgeability game under the (` + 1)-MCDH assumption against subexpo-
nential advantage.

Proof. This follows immediately from a complexity leveraging argument: the security parameter
λ is chosen to ensure that 2λ

ε0 >> 2`, where 2−λ
ε0 is the maximum probability of success allowed

in the k-MCDH assumption against subexponential advantage. Now, to establish full security, the
simulator performs exactly as in the selective security proof, but first it simply guesses the message
that will be forged (instead of expecting the adversary to produce this message). Because this
guess will be correct with probability at least 2−`, and the security parameter λ is chosen carefully,
full security with polynomial advantage (or even appropriately defined subexponential advantage)
implies an attacker on the k-MCDH assumption with subexponential advantage. �

Proof. (of Theorem D.1) We show that if there exists a PPT adversary A that can break the
selective security of the aggregate signature scheme in the distinct message unforgeability game with
probability ε for message length ` and security parameter λ, then there exists a PPT simulator

22



that can break the (` + 1)-MCDH assumption for security parameter λ with probability ε. The
simulator takes as input a MCDH instance (g, gc1 , . . . , gck) together with the group descriptions
where k = `+ 1. The simulator plays the role of the challenger in the game as follows.

Init. Let M∗ ∈ {0, 1}` be the forgery message output by A.

Setup. The simulator chooses random x1, . . . , x` ∈ Zp. Let Ai,m∗i = gci and Ai,m̄∗i
= gxi . Set

the challenge verification key as VK∗ = gck . We remark that the parameters are distributed
independently and uniformly at random as in the real scheme.

Queries. The simulator can sign any of A’s message requests using the multilinear map. Let
M ∈ {0, 1}` be the request. The key point is that since M 6= M∗ there will be at least one i
where xi is used (and xi is known to the simulator). So at most ` of the k = `+ 1 parameters
associated with ci will need to be accumulated to make σ which is doable. That is, letting β
be the first index such that mβ 6= m∗β, compute the pairing of all `− 1 elements Ai,mi where
i 6= β together with VK∗ and denote this σ′. This requires ` − 1 pairings resulting in an
element in Gk−1. Next compute σ = σ′xβ and return σ. Signatures are unique and perfectly
distributed as in the real game.

Response. Eventually, A outputs an aggregate signature σ∗ on multiset S∗ where (VK∗,M∗) ∈
S∗. The simulator will extract from this a solution to the MCDH problem. This works
by iteratively computing all the other signatures in S∗ and then dividing them out of the
aggregate until only one or more signatures on (VK∗,M∗) remain. That is, the simulator
takes an aggregate for S∗ and computes an aggregate signature for S′ where S′ has one less
verification key/message pair than S at each step. These signatures will be peeled off in one
of two ways. If the signature is under key VK∗, then it can be computed as in the query
phase. If the signature is under key VK 6= VK∗, then due to the distinct message restriction,
we know M 6= M∗. Thus, there is some β where mβ 6= m∗β. The signature can be computed
similarly to the query phase by pairing VK with all Ai,mi where i 6= β and then raising the
result to xβ. To help see why this works, recall that these signatures are unique.

Eventually, we have an aggregate σ′ on t ≥ 1 instances of (VK∗,M∗). We have that e(σ′, g) =

e(H(M∗), V K∗)t = g
t

Qk
i=1 ci

k and thus σ′ = g
t

Qk
i=1 ci

k−1 . The simulator computes σ′1/t (recall

that t is not 0 mod p) which gives g
Qk
i=1 ci

k−1 and this is given as the solution to the MCDH
problem.

As remarked in the Setup and Query phase, the responses of the challenger are distributed
identically to the real unforgeability game. The simulator succeeds whenever A does. �

D.2 Security against Adaptive Attacks

We now give an adaptive proof of security under a polynomial assumption (as opposed to the
subexponential advantage assumption necessary to achieve full security given previously). We
will employ a parameterized assumption family, where the choice of assumption depends on the
adversary’s behavior. It can be viewed as a modification/adaptation of the computation Bilinear-
Diffie Hellman Assumption (introduced by Boneh, Boyen, and Goh [11]) to the multilinear map
setting.
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Assumption D.3 ((n, k)-Modified Multilinear Computational Diffie-Hellman Exponent)
The (n, k)-Modified Multilinear Computational Diffie-Hellman Exponent ((n, k)-MMCDHE) prob-
lem states the following: A challenger runs G(1λ, k) to generate groups and generators of order p.
Then it picks random a, b, c ∈ Zp.

The assumption then states that given

g = g1, g
b, ∀i ∈ [1, n] ga

ic, ∀i 6= n ∈ [1, 2n] (gk−2)a
ick−1

it is hard to compute (gk−1)a
nck−1b with better than negligible advantage (in security parameter λ).

The above assumption is only defined for k ≥ 3 due to the reference of the gk−2 generator.
Intuitively, our proof will follow in the Waters [41] framework. Waters gave a technique for

partitioning approximately a (hidden) 1/Q fraction of messages to be useful as challenge forgeries
and the other 1−1/Q to be messages a reduction algorithm could create signatures on. 5 Typically,
one sets Q to be the maximum number of queries made by the adversary, although in this case, we
must also add in the messages involved in the adversary’s forgery aggregate signature. We will use
a multiplicative analog of the technique which is closer to the VRF analysis of Hohenberger and
Waters [30].

Theorem D.4 (Adaptive Security of Base Construction) The aggregate signature scheme for
message length ` in Section 4.1 is adaptively secure in the distinct message unforgeability game un-
der the (4Q(` + 2), ` + 1)-MMCDHE assumption, where Q is the number of signing queries made
by the adversary plus one minus the number of distinct messages in the forgery aggregate.

Proof. We show that if there exists a PPT adversary A that can break the adaptive security of
the aggregate signature scheme in the distinct message unforgeability game with probability ε for
message length `, security parameter λ, making at most Q signing queries and Q′ distinct messages
in the forgery aggregate, then there exists a PPT simulator that can break the (n, k)-MMCDHE
assumption for security parameter λ with probability ≥ 3ε

64Q(`+1) .
The simulator takes as input an MMCDHE instance

(g, gb, ∀i ∈ [1, n] ga
ic, ∀i 6= n ∈ [1, 2n] (gk−2)a

ick−1
)

together with the group descriptions where n = 4Q(`+ 2) and k = `+ 1. The simulator’s challenge
is to compute (gk−1)a

nc(k−1)b = (gk−1)a
nc`b. The simulator plays the role of the challenger in the

game as follows.

Setup. The simulator first sets an integer z = 4Q and chooses an integer t uniformly at random
between 0 and `. Recall that Q is the number of queries made by the adversary plus one
minus the number of distinct messages in S∗ that forms the forgery aggregate and ` is the
message bit-length. It then chooses random integers r1,0, r1,1, . . . , r`,0, r`,1, r

′ between 0 and
z − 1. Additionally, the simulator chooses random values s1,0, s1,1, . . . , s`,0, s`,1 ∈ Zp∗. These
values are all kept internal to the simulator. Intuitively, the r values will be used to embed the
challenge, while the s values will be used as blinding factors to present the proper distribution
to the adversary.

5There exists some variants of this technique [3, 29, 28] with different loss tradeoffs. We believe these tradeoffs
are applicable to our setting, but we choose to stick closest to the original analysis.
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Let mi denote the ith bit of M . For M ∈ {0, 1}`, define the functions:

C(M) = zt+ r′ +
∑̀
i=1

ri,mi , J(M) =
∏̀
i=1

si,mi

For M ∈ {0, 1}`, define the binary function:

K(M) =

{
0 if r′ +

∑`
i=1 ri,mi ≡ 0 mod z;

1 otherwise.

If the function K outputs 1 on a given message, then we know that the simulator will be
able to correctly produce a signature on this message. If the function outputs 0, then the
simulator may or may not be able to do it. This function will be used in later analysis.

The simulator sets the public parameters asA1,0 = (ga
(zt+r′+r1,0)c)s1,0 , A1,1 = (ga

(zt+r′+r1,1)c)s1,1 ,
and Ai,0 = (ga

ri,0c)si,0 and Ai,1 = (ga
ri,1c)si,1 for i = 2 to `. The simulator can compute

these values from the challenge input since all powers of a in the exponent are at most
zt + 2(z − 1) = 4Q(` + 2) − 2 < n for any possible choice of r′, ri, t. It sets the challenge
verification key as VK∗ = gb. It passes the public information to the adversary. We remark
that the parameters are distributed independently and uniformly at random as in the real
scheme.

Queries. The adversary will ask for signatures under the challenge verification key. On message
input M , the simulator first checks if C(M) = n and aborts if this is true. Otherwise, it
outputs the signature as

σ = e(gb, ga
C(M)ck−1

k−2 )J(M) = g
baC(M)c`J(M)
k−1 .

Given the above settings, we can verify that for any value of M ∈ {0, 1}`, the maximum value
of C(M) is z`+ (`+ 1)(z − 1) < 2z(`+ 1) = 2n. Thus, if C(M) 6= n, then the simulator can
correctly compute the signature.

Response. Eventually, the adversary will output a multiset S∗ of verification key/message pairs
and a purported aggregate signature σ∗ such that:

1. Verify(PP, S∗, σ∗) = 1, and

2. there exists an element (VK,M∗) ∈ S∗ such that M∗ was not one of the adversary’s
signature query inputs, and

3. the message M∗ is not signed by any other signer. (This is the distinct message require-
ment.)

If C(M∗) 6= n, then the simulator will abort. The goal is that the forgery message will fall
into the “hole” of the assumption and that all other messages with not.

If C(M∗) = n, then the simulator will now work to extract a forgery on M∗ from the aggregate
by calculating the other signatures and then removing them from the aggregate. These can
come both from the challenge signer and other signers. The simulator does this as follows:
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Signatures from other signers. For (VK′,M) where VK′ = gb
′ 6= VK, if C(M) = n, then the

simulator aborts. Otherwise, it computes the signature as

σ = e(VK′, ga
C(M)ck−1

k−2 )J(M) = g
b′aC(M)c`J(M)
k−1 .

Signatures from challenge signer. For (VK,M) where M 6= M∗, if C(M) = n, then the
simulator aborts. Otherwise, it computes the signature as

σ = e(gb, ga
C(M)ck−1

k−2 )J(M) = g
baC(M)c`J(M)
k−1 .

Extracting the response. Once these signatures are calculated they can be removed from the
aggregate by division, resulting in an aggregate on w ≥ 1 (non-multiple of p) signatures by
the challenge signer on M∗. The uniqueness of this scheme dictates that this aggregate is:

σ′ = ((gk−1)ba
C(M∗)c`)J(M∗)w = ((gk−1)ba

nck−1
)J(M∗)w

and raising σ′ to 1/(J(M∗)w) results in (gk−1)ba
nck−1

, the solution to the MMCDHE instance.
Recall that w is not a multiple of the group order p. J(M∗) is a product of elements from
Zp∗ where p is prime and therefore will also have an inverse modulo p.

A Series of Games Analysis. We now argue that any successful adversaryA against our scheme
will have success in the game presented by the simulator. To do this, we first define a sequence of
games, where the first game models the real security game and the final game is exactly the view
of the adversary when interacting with the simulator. We then show via a series of claims that if
A is successful in Game j, then it will also be successful in Game j + 1.

Game 1: This game is defined to be the same as the distinct message unforgeability game.

Game 2: The same as Game 1, with the exception that we keep a record of each signing query
made by A concatenated together with each distinct message in the forgery multiset S∗ minus
M∗. We’ll denote ~M = (M0,M1,M2, ....,MQ). Without loss of generality, let M0 = M∗. At
the end of the game, we set z = 4Q and choose random integers ~r = (r1,0, r1,1, . . . , r`,0, r`,1, r

′)
between 0 and z − 1 and a random integer t between 0 and `. We define the regular abort
function:

regabort( ~M,~r, t) =

{
1 if C(M∗) 6= n

∨Q
i=1 K(Mi) = 0;

0 otherwise.

This function evaluates to 0 if the queries and forgery messages will not cause a regular
abort by the simulator for the given choice of simulation values. Consider the probabil-
ity over all simulation values for the given set of queries and forgery messages as ζ( ~M) =
Pr~r,t[regabort( ~M,~r, t) = 0].

As in [41], the simulator estimates ζ( ~M) as ζ ′ by evaluating τ( ~M,~r, t) with fresh random
~r, t values a total of O(ε−2 ln(ε−1)ζ−1

min ln(ζ−1
min)) times, where ζmin = 1

8Q(`+1) . This does not
require running the adversary again.

The adversary’s success in the game is determined as follows:
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1. Regular Abort. If regabort( ~M,~r, t) = 1, then the adversary wins.

2. Balancing (Artificial) Abort. Let ζmin = 1
8Q(`+1) as derived from Claim D.5. If ζ ′ ≥ ζmin,

the simulator will abort with probability ζ′−ζmin
ζ′ (not abort with probability ζmin

ζ′ ). If it
aborts, then the adversary wins.

3. Otherwise, the adversary wins if and only if it outputs a valid forgery.

Game 3: The same as Game 2, with the exception that the simulator tests if any abort conditions
are satisfied, with each new query or response from the adversary, and if so, follows the abort
procedure immediately instead of waiting until the end.

Game 3 is exactly the view of the adversary when interacting with the simulator. We will
shortly prove that if A succeeds in Game 1 with probability ε, then it succeeds in Game 3 with
probability ≥ 3ε

64Q(`+1) .

Claims Regarding the Probability of Aborting. We now establish one claim which was
referenced above and two claims which will be needed shortly. Our first claim helps us establish a
minimum probability that a given set of queries/forgery sets do not cause a regular abort. We use
this minimum during our balancing abort in Game 2, to “even out” the probability of an abort over
all possible queries/forgery sets. In the next two claims, we employ Chernoff Bounds to establish
upper and lower bounds for any abort (regular or balancing) for any adversary behavior. The latter
two claims will be used in the analysis of the adversary’s probability of success in Game 2.

Proofs of these claims are similar to related arguments in [41, 30], but we include them here for
completeness.

Claim D.5 Let ζmin = 1
8Q(`+1) . For any vector ~M , ζ( ~M) ≥ ζmin.

Proof. In other words, the probability of the simulation not triggering a general abort is at least
ζmin. This analysis follows that of [41], which we reproduce here for completeness. Without loss
of generality, we can assume the adversary always makes the maximum Q queries and number of
distinct messages in the output forgery set (since the probability of not aborting increases with
fewer queries/smaller output set size). Fix an arbitrary ~M = (M∗,M1, . . . ,MQ) ∈ {0, 1}(Q+1)×`.
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Then, with the probability over the choice of ~r, t, we have that Pr[abort on ~M ] is

= Pr[
Q∧
i=1

K(Mi) = 1 ∧ C(M∗) = n)] (1)

= (1− Pr[
Q∨
i=1

K(Mi) = 0]) Pr[(zt+ r′ +
∑̀
i=1

ri,m∗i = n)|
Q∧
i=1

K(Mi) = 1] (2)

≥ (1−
Q∑
i=1

Pr[K(Mi) = 0]) Pr[(zt+ r′ +
∑̀
i=1

ri,m∗i = n)|
Q∧
i=1

K(Mi) = 1] (3)

= (1− Q

z
) · Pr[(zt+ r′ +

∑̀
i=1

ri,m∗i = n) |
Q∧
i=1

K(Mi) = 1] (4)

=
1

`+ 1
· (1− Q

z
) · Pr[K(M∗) = 0 |

Q∧
i=1

K(Mi) = 1] (5)

=
1

`+ 1
· (1− Q

z
) ·

Pr[K(M∗) = 0] · Pr[
∧Q
i=1K(Mi) = 1] | K(M∗) = 0]

Pr[
∧Q
i=1K(Mi) = 1]]

(6)

≥ 1
(`+ 1)z

· (1− Q

z
) · Pr[

Q∧
i=1

K(Mi) = 1] | K(M∗) = 0] (7)

=
1

(`+ 1)z
· (1− Q

z
) · (1− Pr[

Q∨
i=1

K(Mi) = 0] | K(M∗) = 0]) (8)

≥ 1
(`+ 1)z

· (1− Q

z
) · (1−

Q∑
i=1

Pr[K(Mi) = 0] | K(M∗) = 0]) (9)

=
1

(`+ 1)z
· (1− Q

z
)2 (10)

≥ 1
(`+ 1)z

· (1− 2Q
z

) (11)

=
1

8Q(`+ 1)
(12)

Equations 4 and 7 derive from Pr[K(M) = 0] = 1
z for any query M . Equation 5 gets a factor of

1
`+1 from the simulator taking a guess of t. Equation 6 follows from Bayes’ Theorem. Equation 10
follows from the pairwise independence of the probabilities that K(M) = 0,K(M ′) = 0 for any
pair of queries M 6= M ′, since they will differ in at least one random rj value. Equation 12 follows
from our setting of z = 4Q. �

Claim D.6 For any vector ~M , the probability that there is an abort (i.e., regular or balancing) is
≥ 1− ζmin − 3

8ζminε.

Proof. Let ζx = ζ( ~M) be the probability that the set of queries/forgery messages ~M do not cause
a regular abort. In Game 2, T = O(ε−2 ln(ε−1)ζ−1

min ln(ζ−1
min)) samples are taken to approximate this
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value as ζ ′x. By Chernoff Bounds, we have that for all ~M ,

Pr[Tζ ′x < Tζx(1− ε

8
)] < e−[128ε−2 ln((ε/8)−1)ζ−1

min ln(ζ−1
min)(ζmin)(ε/8)2/2],

which reduces to
Pr[ζ ′x < ζx(1− ε

8
)] < ζmin

ε

8
.

The probability of not aborting is equal to the probability of not regular aborting (RA) times the
probability of not artificial aborting (AA). Recall that for a measured ζ ′x an artificial abort will not
happen with probability ζmin/ζ

′
x. The probability of aborting is therefore

Pr[abort] = 1− Pr[abort] = 1− Pr[RA] Pr[AA] = 1− ζx Pr[AA]

≥ 1− ζx(ζmin
ε

8
+

ζmin

ζx(1− ε/8)
)

≥ 1− (ζmin
ε

8
+

ζmin

1− ε/8
)

≥ 1− (
ζminε

8
+ ζmin(1 +

2ε
8

))

≥ 1− ζmin − ζmin
3ε
8

�

Claim D.7 For any vector ~M , the probability that there is no abort (i.e., regular or balancing) is
≥ ζmin − 1

4ζminε.

Proof. Let ζx = ζ( ~M) be the probability that the set of queries/forgery messages ~M do not cause
a regular abort. In Game 2, T = O(ε−2 ln(ε−1)ζ−1

min ln(ζ−1
min)) samples are taken to approximate this

value as ζ ′x. By Chernoff Bounds, we have that for all ~M ,

Pr[Tζ ′x > Tζx(1 +
ε

8
)] < e−[256ε−2 ln((ε/8)−1)ζ−1

min ln(ζ−1
min)](ζmin)(ε/8)2/4],

which reduces to
Pr[ζ ′x > ζx(1 +

ε

8
)] < ζmin

ε

8
.

Recall that for a measured ζ ′x an artificial abort (AA) will not happen with probability ζmin/ζ
′
x.

Therefore, for any ~M , the Pr[AA] ≥ (1− ζminε
8 ) ζmin

ζx(1+ε/8) . It follows that

Pr[abort] ≥ ζx(1− ζminε

8
)

ζmin

ζx(1 + ε/8)
≥ ζmin(1− ε

8
)2 ≥ ζmin(1− 1

4
ε).

�
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Analyzing A’s Probability of Winning in Each Game. Define A’s probability of success in
Game x as AdvA[Game x]. We reason about the probability of A’s success in the series of games
as follows.

Lemma D.8 If AdvA[Game 1] = ε, then AdvA[Game 2] ≥ 3·ε
64Q(`+1) .

Proof. We begin by observing that AdvA[Game 2] is

= AdvA[Game 2|abort] · Pr[abort] + AdvA[Game 2|abort] · Pr[abort] (13)
= Pr[abort] + AdvA[Game 2|abort] · Pr[abort] (14)
= Pr[abort] + Pr[A forges |abort] · Pr[abort] (15)
= Pr[abort] + Pr[A forges] · Pr[abort|A forges] (16)
= Pr[abort] + ε · Pr[abort|A forges] (17)

≥ (1− ζmin − ζmin
3ε
8

) + ε · (ζmin − ζmin
ε

4
) (18)

≥ 3 · ε · ζmin

8
(19)

=
3 · ε

64Q(`+ 1)
(20)

Equation 14 follows from the fact that, in the case of abort, A always wins. It would be very
convenient if we could claim that AdvA[Game 2 | abort] = AdvA[Game 1], but unfortunately, this
is false. The event that A wins Game 2 and the event of an abort are not independent; however,
we have inserted the balancing abort condition in the attempt to lessen the dependence between
these events. Equation 15 simply states that, when there is no abort, A wins if and only if it forges
correctly. Equation 16 follows from Bayes’ Theorem. In Equation 17, we observe that Pr[A forges]
is exactly A’s success in Game 1.

Now, the purpose of our balancing abort is to even the probability of aborting, for all queries
and outputs of A, to be roughly ζmin. This will also get rid of the conditional dependence on A
forging. There will be a small error, which must be taken into account. We set ζmin = 1

8Q(`+1) from
Claim D.5. We know, for all queries/outputs, that Pr[abort] ≥ 1 − ζmin − 3

8ζminε from Claim D.6
and that Pr[abort] ≥ ζmin − 1

4ζminε from Claim D.7. Plugging these values into Equations 18 and
20 establishes the lemma. �

Lemma D.9 AD[Game 3] = AD[Game 2].

Proof. We make the explicit observation that these games are equivalent by observing that their
only difference is the time at which the regular aborts occur. The artificial abort stage is identical.
All public parameters and signatures provided by the simulator have the same distribution. �

�

E The Base Aggregate Construction in the GGH framework

We now describe how to modify the construction of Section 4.1 to use the GGH [22] graded algebras
analogue of multilinear maps. The translation of our scheme above is straightforward to the GGH
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setting. Please note that we use the same notation developed in [22], with some minor changes:
Firstly, we use the canonical encoding function cenc provided by the GGH framework more than
once at each level of the encoding, but only a globally fixed constant number of times per level. This
is compatible with the GGH encoding [22], and allows for a simpler exposition of our scheme and
proof. Also, for ease of notation on the reader, we suppress repeated params arguments
that are provided to every algorithm.. Thus, for instance, we will write α← samp() instead of
α← samp(params). Note that in our scheme, there will only ever be a single uniquely chosen value
for params throughout the scheme, so there is no cause for confusion. Finally, we use the variant
of the GGH framework with “strong” zero-testing, where the zero test statistically guarantees that
a vector is a valid encoding of zero if it passes the zero test. For further details on the GGH
framework, please refer to [22].

Setup(1λ, `) The trusted setup algorithm takes as input the security parameter as well as the
length ` of messages. It then runs (params,pzt) ← InstGen(1λ, 1k=`+1). Recall that params will be
implicitly given as input to all GGH-related algorithms below.

Next, it generates elements (A1,0, A1,1), . . . , (A`,0, A`,1), each equal to a fresh invocation of
cenc1(1, samp()).

These will be used to compute a function H mapping ` bit messages to level k − 1 encodings.
This function serves as the analog of the full domain hash function of the BGLS [13] construction.
Let m1, . . . ,m` be the bits of message M . It is computed iteratively as

H1(M) = A1,m1 for i ∈ [2, `] Hi(M) = Hi−1(M) ·Ai,mi .

We define H(M) = cenc2(k − 1, H`(M)).
The public parameters, PP, consist of the params,pzt plus:

(A1,0, A1,1), . . . , (A`,0, A`,1)

Note that params includes a level 1 encoding of 1, which we denote as g.

KeyGen(PP) The key generation algorithm first chooses random α = samp(). It outputs the
public verification key as

VK = cenc2(1, α).

The secret key SK is α.

Sign(PP, SK,M ∈ {0, 1}`) The signing algorithm computes the signature as

σ = cenc3(k − 1, H(M) · α).

This serves as an aggregate signature for the (single element) multiset S = {(VK,M)}.

Aggregate(PP, S̃, S′, σ̃, σ′). The aggregation algorithm simply computes the output signature σ
as σ = σ̃ + σ′. The serves as a signature on the multiset S = S̃ ∪ S′, where ∪ is a multiset union.
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Verify(PP, S, σ). The verification algorithm parses S as {(VK1,M1), . . . , (VK|S|,M|S|)}. It re-
jects if the multiplicity of any public key, message pair is greater than 2λ. We don’t expect this to
naturally occur much in practice.

The algorithm then proceeds to check the signature by setting τ = cenc2(1, g), and testing:

isZero

pzt, τ · σ −
∑

i=1,...,|S|

H(Mi) ·VKi


and accepts if and only if the zero testing procedure outputs true. Recall that g above is a canonical
level 1 encoding of 1 that is included in params, part of the public parameters.

Correctness. Correctness follows from the same argument as for the “basic” aggregate signature
scheme in the generic multilinear setting.

Proof of Security. In Section 5.2, we generalize this construction to provide ID-based aggregate
signatures in the GGH framework. We provide a proof of selective security for the ID-based version
of this scheme in the GGH framework, based on a variant of the MCDH assumption. Since our main
focus is the ID-based aggregate signature scheme, we omit the formal proof of selective security for
this scheme, but we note that it would be essentially identical to the proof of the ID-based scheme
that we give in Section 5.3.

Efficiency and Tradeoffs. An aggregate signature is one level k−1 encoding, independent of the
number of messages aggregated. In a multilinear setting, the space to represent an encoding might
grow with k (which is ` + 1). Indeed, this happens in the GGH [22] graded algebra translation.
One way to mitigate this is to differ the message alphabet size in a tradeoff of computation versus
storage. The above construction uses a binary message alphabet. If it used an alphabet of 2d

symbols, then the aggregate signature could be an `/d level encoding, with `/d− 1 multiplications
required to compute it, at the cost of the public parameters requiring 2d` encodings in order to
define the hash function H.

F Proof of Security for the Generic ID-Based Construction

The k-MCDH assumption is defined in Appendix D.1.

Theorem F.1 (Selective Security of ID-Based Construction) The ID-based aggregate sig-
nature scheme for message length ` and identity length n in Section 5.1 is selectively secure in the
unforgeability game in Section 3 under the (`+ n)-MCDH assumption.

Proof. We show that if there exists a PPT adversary A that can break the selective security
of the ID-based aggregate signature scheme in the unforgettability game with probability ε for
message length `, identity length n and security parameter λ, then there exists a PPT simulator
that can break the (` + n)-MCDH assumption for security parameter λ with probability ε. The
simulator takes as input a MCDH instance (g, gc1 , . . . , gck) together with the group descriptions
where k = ` + n. Let mi denote the ith bit of M and idi denote the ith bit of I. The simulator
plays the role of the challenger in the game as follows.
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Init. Let I∗ ∈ {0, 1}n and M∗ ∈ {0, 1}` be the forgery identity/message pair output by A.

Setup. The simulator chooses random x1, . . . , x`, y1, . . . , yn ∈ Zp. For i = 1 to `, let Ai,m∗i = gci+n

and Ai,m̄∗i
= gxi . For i = 1 to n, iet Bi,id∗i = gci and Bi, ¯id∗i

= gyi . We remark that the
parameters are distributed independently and uniformly at random as in the real scheme.

Queries. Conceptually, the simulator will be able to create keys or signatures for the adversary,
because his requests will differ from the challenge identity or message in at least one bit.
More specifically,

1. Create New Key: The simulator begins with an index i = 1 and an empty sequence of
index/identity/private key triples T . On input an identity I ∈ {0, 1}n, if I = I∗, the
simulator records (i, I∗,⊥) in T . Otherwise, the simulator computes the secret key as
follows. Let β be the first index such that idi 6= id∗i . Use n−2 pairings on the Bi,idi values
to compute s = (gn−1)

Q
i=1,...,n∧i 6=β bi,idi . Then compute SKI = syβ = (gn−1)

Q
i=1,...,n bi,idi .

Record (i, I,SKI) in T . Secret keys are unique and perfectly distributed as in the real
game.

2. Corrupt User: On input an index i ∈ [1, |T |], the simulator returns to the adversary the
triple (i, Ii, SKIi) ∈ T . It returns an error if T is empty or i is out of range. Recall that
i cannot be associated with I∗ in this game.

3. Sign: On input an index i ∈ [1, |T |] and a message M ∈ {0, 1}`, the simulator obtains
the triple (i, Ii, SKIi) ∈ T or returns an error if it does not exist. If Ii 6= I∗, then the
simulator signs M with SKIi in the usual way.
If Ii = I∗, then we know M 6= M∗. Let β be the first index such that mβ 6= m∗β. Use

`−2 pairings on the Ai,mi values to compute σ′ = (g`−1)
Q
i=1,...,`∧i 6=β ai,mi . Next, compute

σ′′ = σ′xi = (g`−1)
Q
i=1,...,` ai,mi . Use n − 1 pairings on the Bi,idi values to compute

γ = (gn)
Q
i=1,...,n bi,idi . Finally, compute σ = e(γ, σ′′) = (gk−1)(

Q
i∈[1,n] bi,idi )(

Q
i∈[1,`] ai,mi ).

Return σ to A. Signatures are unique and perfectly distributed as in the real game.

Response. Eventually, A outputs an aggregate signature σ∗ on multiset S∗ where (I∗,M∗) ∈
S∗. The simulator will extract from this a solution to the MCDH problem. This works
by iteratively computing all the other signatures in S∗ and then dividing them out of the
aggregate until only one or more signatures on (I∗,M∗) remain. That is, the simulator
takes an aggregate for S∗ and computes an aggregate signature for S′ where S′ has one less
verification key/message pair than S at each step. These signatures will be computed as in
the query phase.

Eventually, we have an aggregate σ′ on t ≥ 1 instances of (I∗,M∗). We have that e(σ′, g) =
H(I∗,M∗)t = (gk)

t(
Q
i∈[1,n] bi,id∗i

)(
Q
i∈[1,`] ai,m∗i

) = (gk)t
Qk
i=1 ci and thus σ′ = (gk−1)t

Qk
i=1 ci . The

simulator computes σ′1/t (recall that t is not 0 mod p) which gives (gk−1)
Qk
i=1 ci and this is

given as the solution to the MCDH problem.

As remarked in the Setup and Query phase, the responses of the challenger are distributed
identically to the real unforgeability game. The simulator succeeds whenever A does. �
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