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Abstract

This paper introduces key-versatile signatures. Key-versatile signatures allow us to sign with keys
already in use for another purpose, without changing the keys and without impacting the security of the
original purpose. This allows us to obtain advances across a collection of challenging domains includ-
ing joint Enc/Sig, security against related-key attack (RKA) and security for key-dependent messages
(KDM). Specifically we can (1) Add signing capability to existing encryption capability with zero over-
head in the size of the public key (2) Obtain RKA-secure signatures from any RKA-secure one-way
function, yielding new RKA-secure signature schemes (3) Add integrity to encryption while maintaining
KDM-security.
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1 Introduction

One of the recommended principles of sound cryptographic design is key separation, meaning that keys
used for one purpose (e.g. encryption) should not be used for another purpose (e.g. signing). The reason
is that, even if the individual uses are secure, the joint usage could be insecure [42]. This paper shows,
to the contrary, that there are important applications where key reuse is not only desirable but crucial to
maintain security, and that when done “right” it works. We offer key-versatile signatures as a general tool
to enable signing with existing keys already in use for another purpose, without adding key material and
while maintaining security of both the new and the old usage of the keys. Our applications include: (1)
adding signing capability to existing encryption capability with zero overhead in the size of the public key
(2) obtaining RKA-secure signatures from RKA-secure one-way functions (3) adding integrity to encryption
while preserving KDM security.

Closer look. Key-versatility refers to the ability to take an arbitrary one-way function F and return a
signature scheme where the secret signing key is a random domain point x for F and the public verification
key is its image y = F (x). By requiring strong simulatability and key-extractability security conditions [35]
from these “F -keyed” signatures, and then defining F based on keys already existing for another purpose,
we will be able to add signing capability while maintaining existing keys and security.

The most compelling motivation comes from security against related-key attack (RKA) and security for
key-dependent messages (KDM), technically challenging areas where solutions create, and depend on, very
specific key structures. We would like to expand the set of primitives for which we can provide these forms
of security. Rather than start from scratch, we would like to leverage the existing, hard-won advances in
these areas by modular design, transforming a primitive X into a primitive Y while preserving RKA or
KDM security. Since security is relative to a set of functions (either key or message deriving) on the space
of keys, the transform must preserve the existing keys. Key-versatile signatures will thus allow us to create
new RKA and KDM secure primitives in a modular way.

We warn that our results are theoretical feasibility ones. They demonstrate that certain practical
goals can in principle be reached, but the solutions are not efficient. Below we begin with a more direct
application of key versatile signatures to Joint Enc/Sig and then go on to our RKA and KDM results.

Joining signatures to encryption with zero public-key overhead. Suppose Alice has keys
(ske, pke) for a public-key encryption scheme and wants to also have signing capability. Certainly, she
could pick new and separate keys (sks, pks) enabling her to use her favorite signature scheme. However,
it means that Alice’s public key, now pk = (pke, pks), has doubled in size. Practitioners ask if one can do
better. We want a joint encryption and signature (JES) scheme [53, 61], where there is a single key-pair
(sk , pk) used for both encryption and signing. We aim to minimize the public-key overhead, (loosely)
defined as the size of pk minus the size of the public key pke of the underlying encryption scheme.

Haber and Pinkas [53] initiated an investigation of JES. They note that the key re-use requires defining
and achieving new notions of security particular to JES: signatures should remain unforgeable even in the
presence of a decryption oracle, and encryption should retain IND-CCA privacy even in the presence of a
signing oracle. In the random oracle model [17], specific IND-CCA-secure public-key encryption schemes
have been presented where signing can be added with no public-key overhead [53, 36, 57]. In the standard
model, encryption schemes have been presented that allow signing with a public-key overhead lower than
that of the “Cartesian product” solution of just adding a separate signing key [53, 61], with the best results,
from [61], using IBE or combining encryption and signature schemes of [29, 25].

All these results, however, pertain to specific encryption schemes. We step back to ask a general
theoretical question. Namely, suppose we are given an arbitrary IND-CCA-secure public-key encryption
scheme. We wish to add signing capability to form a JES scheme. How low can the public-key overhead
go? The (perhaps surprising) answer we provide is that we can achieve a public-key overhead of zero.
The public key for our JES scheme remains exactly that of the given encryption scheme, meaning we add
signing capability without changing the public key. (Zero public-key overhead has a particular advantage
besides space savings, namely that, in adding signing, no new certificates are needed. This makes key
management significantly easier for the potentially large number of entities already using Alice’s public
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key. This advantage is absent if the public key is at all modified.) We emphasize again that this is for any
starting encryption scheme.

To do this, we let F be the function that maps the secret key of the given encryption scheme to the
public key. (Not all encryption schemes will directly derive the public key as a deterministic function of
the secret key, although many, including Cramer-Shoup [38], do. However, we can modify any encryption
scheme to have this property, without changing the public key, by using the coins of the key-generation
algorithm as the secret key.) The assumed security of the encryption scheme means this function is one-way.
Now, we simply use an F -keyed signature scheme, with the keys remaining those of the encryption scheme.
No new keys are introduced. We need however to ensure that the joint use of the keys does not result
in bad interactions that make either the encryption or the signature insecure. This amounts to showing
that the JES security conditions, namely that encryption remains secure even given a signing oracle and
signing remains secure even given a decryption oracle, are met. This will follow from the simulatability
and key-extractability requirements we impose on our F -keyed signatures. See Section 4.

New RKA-secure signatures. In a related-key attack (RKA) [56, 19, 14, 9] an adversary can modify a
stored secret key and observe outcomes of the cryptographic primitive under the modified key. Such attacks
may be mounted by tampering [27, 20, 48], so RKA security improves resistance to side-channel attacks.
Achieving proven security against RKAs, however, is broadly recognized as very challenging. This has lead
several authors [49, 9] to suggest that we “bootstrap,” building higher-level Φ-RKA-secure primitives from
lower-level Φ-RKA-secure primitives. (As per the framework of [14, 9], security is parameterized by the
class of functions Φ that the adversary is allowed to apply to the key. Security is never possible for the
class of all functions [14], so we seek results for specific Φ.) In this vein, [9] show how to build Φ-RKA
signatures from Φ-RKA PRFs. Building Φ-RKA PRFs remains difficult, however, and we really have only
one construction [8]. This has lead to direct (non-bootstrapping) constructions of Φ-RKA signatures for
classes Φ of polynomials over certain specific pairing groups [16].

We return to bootstrapping and provide a much stronger result, building Φ-RKA signatures from Φ-
RKA one-way functions rather than from Φ-RKA PRFs. (For a one-way function, the input is the “key.”
In attempting to recover x from F (x), the adversary may also obtain F (x′) where x′ is created by applying
to x some modification function from Φ. The definition is from [49].) The difference is significant because
building Φ-RKA one-way functions under standard assumptions is easy. Adapting the key-malleability
technique of [8], we show that many natural one-way functions are Φ-RKA secure assuming nothing more
than their standard one-wayness. In particular this is true for discrete exponentiation over an arbitrary
group and for the one-way functions underlying the LWE and LPN problems. In this way we obtain
Φ-RKA signatures for many new and natural classes Φ.

The central challenge in our bootstrapping is to preserve the keyspace, meaning that the space of
secret keys of the constructed signature scheme must be the domain of the given Φ-RKA one-way function
F . (Without this, it is not even meaningful to talk of preserving Φ-RKA security, let alone to show
that it happens.) This is exactly what an F -keyed signature scheme allows us to do. The proof that
Φ-RKA security is preserved exploits strong features built into our definitions of simulatability and key-
extractability for F -keyed signatures, in particular that these conditions hold even under secret keys selected
by the adversary. See Section 5.

KDM-secure storage. Over the last few years we have seen a large number of sophisticated schemes to
address the (challenging) problem of encryption of key-dependent data (e.g., [22, 28, 5, 4, 32, 33, 21, 7, 59,
3, 30, 31, 13, 46, 55]). The most touted application is secure outsourced storage, where Alice’s decryption
key, or some function thereof, is in a file she is encrypting and uploading to the cloud. But in this setting
integrity is just as important as privacy. To this end, we would like to add signatures, thus enabling
the server, based on Alice’s public key, to validate her uploads, and enabling Alice herself to validate her
downloads, all while preserving KDM security.

What emerges is a new goal that we call KDM-secure (encrypted and authenticated) storage. In
Section 6 we formalize the corresponding primitive, providing both syntax and notions of security for
key-dependent messages. Briefly, Alice uses a secret key sk to turn her message M into an encrypted and
authenticated “data” object that she stores on the server. The server is able to check integrity based on
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Alice’s public key. When Alice retrieves data, she can check integrity and decrypt based on her secret
key. Security requires both privacy and integrity even when M depends on sk . (As we explain in more
depth below, this goal is different from signcryption [66], authenticated public-key encryption [2] and
authenticated symmetric encryption [15, 62], even in the absence of KDM considerations.)

A natural approach to achieve our goal is for Alice to encrypt under a symmetric, KDM-secure scheme
and sign the ciphertexts under a conventional signature scheme. But it is not clear how to prove the
resulting storage scheme is KDM-secure. The difficulty is that sk would include the signing key in addition
to the encryption (and decryption) key K, so that messages depend on both these keys while the KDM
security of the encryption only covers messages depending on K. We could attempt to start from scratch
and design a secure storage scheme meeting our notions. But key-versatile signatures offer a simpler and
more modular solution. Briefly, we take a KDM-secure public-key encryption scheme and let F be the
one-way function that maps a secret key to a public key. Alice holds (only) a secret key sk and the server
holds pk = F (sk). To upload M , Alice re-computes pk from sk , encrypts M under it using the KDM
scheme, and signs the ciphertext with an F -keyed signature scheme using the same key sk . The server
verifies signatures under pk .

In Section 6 we present in full the construction outlined above, and prove that it meets our notion of
KDM security. The crux, as for our RKA-secure constructions, is that adding signing capability without
changing the keys puts us in a position to exploit the assumed KDM security of the underlying encryption
scheme. The strong simulatability and key-extractability properties of our signatures do the rest. We note
that as an added bonus, we assume only CPA KDM security of the base encryption scheme, yet our storage
scheme achieves CCA KDM security.

Getting F -keyed signatures. In Section 3 we define F -keyed signature schemes and show how to
construct them for arbitrary one-way F . This enables us to realize the above applications.

Our simulatability condition, adapting [35, 1, 34], asks for a trapdoor allowing the creation of simulated
signatures given only the message and public key, even when the secret key underlying this public key is
adversarially chosen. Our key-extractability condition, adapting [35], asks that, using the same trapdoor,
one can extract from a valid signature the corresponding secret key, even when the public key is adversarially
chosen. Theorem 3.1, showing these conditions imply not just standard but strong unforgeability, functions
not just as a sanity check but as a way to introduce, in a simple form, a proof template that we will extend
for our applications.

Our construction of an F -keyed signature scheme is a minor adaptation of a NIZK-based signature
scheme of Dodis, Haralambiev, López-Alt and Wichs (DHLW) [43]. While DHLW [43] prove leakage-
resilience of their scheme, we prove simulatability and key-extractability. The underlying SE NIZKs are a
variant of simulation-sound extractable NIZKs [39, 51, 52] introduced by [43] under the name tSE NIZKs
and shown by [43, 54] to be achievable for all of NP under standard assumptions.

Discussion and related work. F -keyed signatures can be viewed as a special case of signatures of
knowledge as introduced by Chase and Lysyanskaya [35]. The main novelty of our work is in the notion
of key-versatility, namely that F -keyed signatures can add signing capability without changing keys, and
the ensuing applications to Joint Enc/Sig, RKA and KDM. In particular our work shows that signatures
of knowledge have applications beyond those envisaged in [35].

The first NIZK-based signature scheme was that of [11]. It achieved only unforgeability. Simulatability
and extractability were achieved in [35] using dense cryptosystems [41, 40] and simulation-sound NIZKs [64,
39]. The DHLW construction we use can be viewed as a simplification and strengthening made possible
by the significant advances in NIZK technology since then.

F -keyed signatures, and, more generally, signatures of knowledge [35] can be seen as a signing analogue
of Witness encryption [47, 12], and we might have named them Witness Signatures. GGSW [47] show how
witness encryption allows encryption with a flexible choice of keys, just as we show that F -keyed signatures
allow signing with a flexible choice of keys.

Signcryption [66], authenticated public-key encryption [2], JES [53, 61] and our secure storage goal all
have in common that both encryption and signature are involved. However, in signcryption and authenti-
cated public-key encryption, there are two parties and thus two sets of keys, Alice encrypting under Bob’s
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public key and signing under her own secret key. In JES and secure storage, there is one set of keys, namely
Alice’s. Thus for signcryption and authenticated public-key encryption, the question of using the same keys
for the two purposes, which is at the core of our goals and methods, does not arise. Self-signcryption [45]
is however similar to secure storage, minus the key-dependent message aspect. Authenticated symmetric
encryption [15, 62] also involves both encryption and authentication, but under a shared key, while JES and
secure storage involve public keys. KDM-secure authenticated symmetric encryption was studied in [13, 6].

KDM-secure signatures were studied in [60], who show limitations on the security achievable. Our secure
storage scheme bypasses these limitations by signing ciphertexts rather than plaintexts and by avoiding
KDM-secure signatures altogether: we use F -keyed signatures and are making no standalone claims or
assumptions regarding their KDM security. Combining KDM encryption and KDM signatures would not
give us KDM-secure storage because the keys for the two primitives would be different and we want joint
KDM security.

Secure storage is an amalgam of symmetric and asymmetric cryptography, encryption being of the
former kind and authentication of the latter. With secure storage, we are directly modeling a goal of
practical interest rather than trying to create a general-purpose tool like many of the other works just
mentioned. The difference between JES and secure storage is that in the former, arbitrary messages may
be signed, while in the latter only ciphertexts may be signed. The difference is crucial for KDM security,
which for JES would inherit the limitations of KDM-secure signatures just mentioned, but is not so limited
for secure storage.

2 Notation

The empty string is denoted by ε. If x is a (binary) string then |x| is its length. If S is a finite set then |S|
denotes its size and s←$ S denotes picking an element uniformly from S and assigning it to s. We denote
by λ ∈ N the security parameter and by 1λ its unary representation.

Algorithms are randomized unless otherwise indicated. “PT” stands for “polynomial time,” whether
for randomized algorithms or deterministic. By y ← A(x1, . . . ;R), we denote the operation of running
algorithm A on inputs x1, . . . and coins R and letting y denote the output. By y←$A(x1, . . .), we denote
the operation of letting y ← A(x1, . . . ;R) for random R. We denote by [A(x1, . . .)] the set of points that
have positive probability of being output by A on inputs x1, . . .. Adversaries are algorithms.

We use games in definitions of security and in proofs. A game G (e.g. Figure 1) has a main procedure
whose output (what it returns) is the output of the game. We let Pr[G] denote the probability that this
output is the boolean true. The boolean flag bad, if used in a game, is assumed initialized to false.

3 Key-versatile signatures

We define F-keyed signature schemes, for F a family of functions rather than the single function F used
for simplicity in Section 1. The requirement is that the secret key sk is an input for an instance fp of the
family and the public key pk = F.Ev(1λ, fp, sk) is the corresponding image under this instance, the instance
fp itself specified in public parameters. We intend to use these schemes to add authenticity in a setting
where keys (sk , pk) may already be in use for another purpose (such as encryption). We need to ensure
that signing will neither lessen the security of the existing usage of the keys nor have its own security be
lessened by it. To ensure this strong form of composability, we define simulatability and key-extractability
requirements for our F-keyed schemes. The fact that the keys will already be in use for another purpose
also means that we do not have the luxury of picking the family F, but must work with an arbitrary family
emerging from another setting. The only assumption we will make on F is thus that it is one-way. (This
is necessary, else security is clearly impossible.) With the definitions in place, we go on to indicate how to
build F-keyed signature schemes for arbitrary, one-way F.

We clarify that being F-keyed under an F assumed to be one-way does not mean that security (sim-
ulatability and key-extractability) of the signature scheme is based solely on the assumption that F is
one-way. The additional assumption is a SE-secure NIZK. (But this itself can be built under standard
assumptions.) It is possible to build a signature scheme that is unforgeable assuming only that a given F
is one-way [63], but this scheme will not be F-keyed relative to the same F underlying its security, and it
will not be simulatable or key-extractable.
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main SIMA
DS,F(λ)

b←$ {0, 1}
(fp, ap1)←$ DS.Pg(1λ)

pp1 ← (fp, ap1)

(ap0, std , xtd)←$ DS.SimPg(1λ)

pp0 ← (fp, ap0)

b′←$ASign(1λ, ppb) ; Ret (b = b′)

Sign(sk ,M)

If sk 6∈ F.Dom(1λ, fp) then Ret ⊥
pk ← F.Ev(1λ, fp, sk)

If b = 1 then σ←$ DS.Sig(1λ, pp1, sk ,M)

Else σ←$ DS.SimSig(1λ, pp0, std , pk ,M)

Ret σ

main EXTADS,F(λ)

fp←$ F.Pg(1λ) ;Q← ∅ ; (ap, std , xtd)←$ DS.SimPg(1λ)

pp ← (fp, ap) ;(pk ,M, σ)←$ASign(1λ, pp)

If pk 6∈ F.Rng(1λ, fp) then Ret false

If not DS.Ver(1λ, pp, pk ,M, σ) then Ret false

If (pk ,M, σ) ∈ Q then Ret false

sk ←$ DS.Ext(1λ, pp, xtd , pk ,M, σ)

Ret (F.Ev(1λ, fp, sk) 6= pk)

Sign(sk ,M)

If sk 6∈ F.Dom(1λ, fp) then Ret ⊥
pk ← F.Ev(1λ, fp, sk)

σ←$ DS.SimSig(1λ, pp, std , pk ,M)

Q← Q ∪ {(pk ,M, σ)} ; Ret σ

Figure 1: Games defining security of F-keyed signature scheme DS. Left: Game defining simulata-
bility. Right: Game defining key-extractability.

Signature schemes. A signature scheme DS specifies the following PT algorithms: via pp←$ DS.Pg(1λ)
one generates public parameters pp common to all users; via (sk , pk)←$ DS.Kg(1λ, pp) a user can generate
a secret signing key sk and corresponding public verification key pk ; via σ←$ DS.Sig(1λ, pp, sk ,M) the
signer can generate a signature σ on a message M ∈ {0, 1}∗; via d ← DS.Ver(1λ, pp, pk ,M, σ) a verifier
can deterministically produce a decision d ∈ {true, false} regarding whether σ is a valid signature of M
under pk . Correctness requires that DS.Ver(1λ, pp, pk ,M,DS.Sig(1λ, pp, sk ,M)) = true for all λ ∈ N, all
pp ∈ [DS.Pg(1λ)], all (sk , pk) ∈ [DS.Kg(1λ, pp)], and all M .

Function families. A function family F specifies the following. Via fp←$ F.Pg(1λ) one can in PT
generate a description fp of a function F.Ev(1λ, fp, ·): F.Dom(1λ, fp) → F.Rng(1λ, fp). We assume that
membership of x in the non-empty domain F.Dom(1λ, fp) can be tested in time polynomial in 1λ, fp, x
and one can in time polynomial in 1λ, fp sample a point x←$ F.Dom(1λ, fp) from the domain F.Dom(1λ,
fp). The deterministic evaluation algorithm F.Ev is PT. The range is defined by F.Rng(1λ, fp) = {F.Ev(1λ,
fp, x) : x ∈ F.Dom(1λ, fp) }. Testing membership in the range is not required to be PT. (But is in
many examples.) We say that F is one-way or F is a OWF if Advow

F,I(·) is negligible for all PT I, where

Advow
F,I(λ) = Pr[F.Ev(1λ, fp, x′) = y] under the experiment fp←$ F.Pg(1λ) ; x←$ F.Dom(1λ, fp) ; y ←

F.Ev(1λ, fp, x) ; x′←$ I(1λ, fp, y).

F-keyed signature schemes. Let F be a function family. We say that a signature scheme DS is F-keyed
if the following are true:

• Parameter compatibility: Parameters pp for DS are a pair pp = (fp, ap) consisting of parameters fp
for F and auxiliary parameters ap, these independently generated. Formally, there is a PT auxiliary
parameter generation algorithm APg such that DS.Pg(1λ) picks fp←$ F.Pg(1λ) ; ap←$ APg(1λ) and
returns (fp, ap).

• Key compatibility: The signing key sk is a random point in the domain of F.Ev and the verifying key pk

its image under F.Ev. Formally, DS.Kg(1λ, (fp, ap)) picks sk ←$ F.Dom(1λ, fp), lets pk ← F.Ev(1λ, fp, sk)
and returns (sk , pk). (DS.Kg ignores the auxiliary parameters ap, meaning the keys do not depend on
it.)

Security of F-keyed signature schemes. We require two (strong) security properties of an F-keyed
signature scheme DS:

• Simulatable: Under simulated auxiliary parameters and an associated simulation trapdoor std , a simu-
lator, given pk = F.Ev(1λ, fp, sk) and M , can produce a signature σ indistinguishable from the real one
produced under sk , when not just M , but even the secret key sk , is adaptively chosen by the adversary.
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Formally, DS is simulatable if it specifies additional PT algorithms DS.SimPg (the auxiliary parameter
simulator) and DS.SimSig (the signature simulator) such that Advsim

DS,F,A(·) is negligible for every PT

adversary A, where Advsim
DS,F,A(λ) = 2 Pr[SIMA

DS,F(λ)] − 1 and game SIM is specified on the left-hand
side of Figure 1.

• Key-extractable: Under the same simulated auxiliary parameters and an associated extraction trapdoor
xtd , an extractor can extract from any valid forgery relative to pk an underlying secret key sk , even
when pk is chosen by the adversary and the adversary can adaptively obtain simulated signatures under
secret keys of its choice. Formally, DS is key-extractable if it specifies another PT algorithm DS.Ext
(the extractor) such that Advext

DS,F,A(·) is negligible for every PT adversary A, where Advext
DS,F,A(λ) =

Pr[EXTA
DS,F(λ)] and game EXT is specified on the right-hand side of Figure 1.

The EXT game includes a possibly non-PT test of membership in the range of the family, but we will
ensure that adversaries (who must remain PT) do not perform this test. Our definition of simulatability
follows [35, 1, 34]. Those definitions were for general signatures, not F-keyed ones, and one difference is
that our simulator can set only the auxiliary parameters, not the full parameters, meaning it does not set
fp.

Sim+Ext implies unforgeability. The simulatability and key-extractability notions we have defined
may seem quite unrelated to the standard unforgeability requirement for signature schemes [50]. As a
warm-up towards applying these new conditions, we show that in fact they imply not just the standard
unforgeability but strong unforgeability, under the minimal assumption that F is one-way.

Theorem 3.1 Let DS be an F-keyed signature scheme that is simulatable and key-extractable. If F is
one-way then DS is strongly unforgeable.

In Appendix A we recall the definition of strong unforgeability and formally prove the above. Here we
sketch the intuition. Given an adversary A against unforgeability, we build an inverter I for F. On
input 1λ, fp, pk , adversary I generates simulated auxiliary parameters ap together with simulation and
extraction trapdoors. It now runs A with parameters (fp, ap), answering signing queries via the signature
simulator. (Note the latter only needs the simulation trapdoor and the public key, not the secret key.)
When A produces its forgery M,σ, the inverter I runs the extractor to obtain sk , a pre-image of pk
under F.Ev(1λ, fp, ·). The simulation and key-extractability conditions are invoked to show that I succeeds
with almost the same probability as A. This involves the construction of adversaries A1, A2 for the two
conditions. A question here is that these adversaries can only make signing queries under secret keys
that they know, so how do they proceed not knowing sk? The answer is that they will themselves run
key-generation to get (sk , pk) and then run A on the latter. Now, when A makes a signing query M ,
adversaries A1, A2 can answer by invoking their own signing oracles on sk ,M .

A reader may note that the above theorem would hold under weaker simulatability and extractability
conditions where the adversaries do not choose secret and public keys. This is true, but the stronger
conditions are crucial to other upcoming applications in this paper.

Construction.A key-versatile signing schema is a transform KvS that given an arbitrary family of
functions F returns an F-keyed signature scheme DS = KvS[F]. We want the constructed signature scheme
to be simulatable and key-extractable. We now show that this is possible with the aid of appropriate NIZK
systems which are themselves known to be possible under standard assumptions.

Theorem 3.2 Assume there exist SE NIZK systems for all of NP. Then there is a key-versatile signing
schema KvS such that if F is any family of functions then the signature scheme DS = KvS[F] is simulatable
and key-extractable.

In Appendix B we recall the definition of a SE (Simulation Extractable) NIZK system. SE was called tSE
in [43] and is a variant of NIZK-security notions from [51, 39, 64]. We then specify the construction and
prove it has the claimed properties. Here we sketch the construction and its history.

The scheme is simple. We define the relation R((1λ, fp, pk ,M), sk) to return true iff F.Ev(1λ, fp, sk) = pk .
A signature of M under sk is then a SE-secure NIZK proof for this relation in which the witness is sk and
the instance (input) is (1λ, fp, pk ,M). The interesting aspect of this construction is that it at first sounds
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blatantly insecure, since the relation R ignores the message M . Does this not mean that a signature
is independent of the message, in which case an adversary could violate unforgeability by requesting a
signature σ of a message M under pk and then outputting (M ′, σ) as a forgery for some M ′ 6= M?
What prevents this is the strength of the SE notion of NIZKs. The message M is present in the instance
(1λ, fp, pk ,M), even if it is ignored by the relation; the proof in turn depends on the instance, making the
signature depend onM . Intuitively the SE-secure NIZK guarantees a form of non-malleability, so signatures
(proofs) for one message (instance) cannot be transferred to another. The formal proof of Theorem 3.2 in
Appendix B shows simulatability of the F-keyed signature scheme based on the zero-knowledge property
of the NIZK and key-extractability of the F-keyed signature scheme based on extractability of the NIZK,
both in a natural and simple way.

A similar construction of signatures was given in [43] starting from a leakage-resilient hard relation
rather than (as in our case) a relation arising from a one-way function. Our construction could be considered
a special case of theirs, with the added difference that they use labeled NIZKs with the message as the label
while we avoid labels and put the message in the input. The claims established about the construction are
however different, with [43] establishing leakage resilience and unforgeability of the signature and our work
showing simulatability and key-extractability. The technique of [43] was also used by [34] to construct
malleable signatures. Going back further, the first NIZK-based signature scheme was that of [11]. This
used PRFs and commitment, but only regular (as opposed to SE) NIZKs, these being all that was available
at the time. One might see the simpler and more elegant modern NIZK-based signatures as being made
possible by the arrival of the stronger NIZK systems of works like [39, 51, 52, 43].

4 Joining signature to encryption with no public-key overhead

Let PKE be an arbitrary IND-CCA-secure public-key encryption scheme. As an example, it could be the
Cramer-Shoup scheme [38], the Kurosawa-Desmedt scheme [58], or the DDN scheme [44], but it could
be any other IND-CCA-secure scheme as well. Alice has already established a key-pair (ske, pke) for this
scheme, allowing anyone to send her ciphertexts computed under pke that she can decrypt under ske. She
wants now to add signature capability. This is easily done. She can create a key-pair (sks, pks) for her
favorite signature scheme and sign an arbitrary message M under sks, verification being possible given
pks. The difficulty is that her public key is now pk = (pke, pks). It is not just larger but will require
a new certificate. The question we ask is whether we can add signing capability in a way that is more
parsimonious with regard to public key size. Technically, we seek a joint encryption and signature (JES)
scheme where Alice has a single key-pair (sk , pk), with sk used to decrypt and sign, and pk used to encrypt
and verify, each usage secure in the face of the other, and we want pk smaller than that of the trivial
solution pk = (pke, pks). Perhaps surprisingly, we show how to construct a JES scheme with pk-overhead
zero, meaning pk is unchanged, remaining pke. We not only manage to use ske to sign and pke to verify,
but do so in such a way that the security of the encryption is not affected by the presence of the signature,
and vice versa. Previous standard model JES schemes had been able to reduce the pk-overhead only for
specific starting encryption schemes [53, 61] while our result says the overhead can be zero regardless of
the starting encryption scheme. The result is obtained by defining F as the function mapping ske to pke
and using a simulatable and key-extractable F-keyed signature scheme with the keys remaining (ske, pke).

JES schemes. A joint encryption and signature (JES) scheme JES specifies the following PT algorithms:
via jp←$ JES.Pg(1λ) one generates public parameters jp common to all users; via (sk , pk)←$ JES.Kg(1λ, jp)
a user can generate a secret (signing and decryption) key sk and corresponding public (verification and
encryption) key pk ; via σ←$ JES.Sig(1λ, jp, sk ,M) the user can generate a signature σ on a message
M ∈ {0, 1}∗; via d ← JES.Ver(1λ, jp, pk ,M, σ) a verifier can deterministically produce a decision d ∈
{true, false} regarding whether σ is a valid signature of M under pk ; via C←$ JES.Enc(1λ, jp, pk ,M)
anyone can generate a ciphertext C encrypting message M under pk ; via M ← JES.Dec(1λ, jp, sk , C) the
user can deterministically decrypt ciphertext C to get a value M ∈ {0, 1}∗∪{⊥}. Correctness requires that
JES.Ver(1λ, jp, pk ,M, JES.Sig(1λ, jp, sk ,M)) = true and that JES.Dec(1λ, jp, sk , JES.Enc(1λ, jp, pk ,M)) =
M for all λ ∈ N, all jp ∈ [JES.Pg(1λ)], all (sk , pk) ∈ [JES.Kg(1λ, jp)], and all M ∈ {0, 1}∗. We say that JES
is IND-secure if Advind

JES,A(·) is negligible for all PT adversaries A, where Advind
JES,A(λ) = 2 Pr[INDA

JES(λ)]−1
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main INDA
JES(λ)

b←$ {0, 1} ; C∗ ←⊥ ; jp←$ JES.Pg(1λ)

(pk , sk)←$ JES.Kg(1λ, jp)

b′←$ADec,Sign,LR(1λ, jp, pk)

Ret (b = b′)

proc Dec(C)

If (C = C∗) then Ret ⊥
Else Ret M ← JES.Dec(1λ, jp, sk , C)

proc Sign(M)

Ret σ←$ JES.Sig(1λ, jp, sk ,M)

proc LR(M0,M1)

If (|M0| 6= |M1|) then Ret ⊥
Else Ret C∗←$ JES.Enc(1λ, jp, pk ,Mb)

main SUFAJES(λ)

Q← ∅
jp←$ JES.Pg(1λ);(pk , sk)←$ JES.Kg(1λ, jp)

(M,σ)←$ASign,Dec(1λ, jp, pk)

Ret (JES.Ver(1λ, jp, pk ,M, σ) and (M,σ) 6∈ Q)

proc Sign(M)

σ←$ JES.Sig(1λ, jp, sk ,M)

Q← Q ∪ {(M,σ)} ; Ret σ

proc Dec(C)

Ret M ← JES.Dec(1λ, jp, sk , C)

Figure 2: Games defining security of joint encryption and signature scheme JES. Left: Game
IND defining privacy against chosen-ciphertext attack in the presence of a signing oracle. Right: Game
SUF defining strong unforgeability in the presence of a decryption oracle.

and game IND is on the left-hand side of Figure 2. Here the adversary is allowed only one query to LR.
This represents privacy under chosen-ciphertext attack in the presence of a signing oracle. We say that JES
is SUF-secure if Advsuf

JES,A(·) is negligible for all PT adversaries A, where Advsuf
JES,A(λ) = Pr[SUFAJES(λ)]

and game SUF is on the right-hand side of Figure 2. This represents (strong) unforgeability of the signature
in the presence of a decryption oracle. These definitions are from [53, 61].

The base PKE scheme. We are given a public-key encryption scheme PKE, specifying the following
PT algorithms: via fp←$ PKE.Pg(1λ) one generates public parameters; via (sk , pk)←$ PKE.Kg(1λ, fp) a
user generates a decryption key sk and encryption key pk ; via C←$ PKE.Enc(1λ, fp, pk ,M) anyone can
generate a ciphertext C encrypting a message M under pk ; and via M ← PKE.Dec(1λ, fp, sk , C) a user
can deterministically decrypt a ciphertext C to get a value M ∈ {0, 1}∗ ∪ {⊥}. Correctness requires
that PKE.Dec(1λ, fp, sk ,PKE.Enc(1λ, fp, pk ,M)) = M for all λ ∈ N, all fp ∈ [PKE.Pg(1λ)], all (sk , pk) ∈
[PKE.Kg(1λ, fp)], and all M ∈ {0, 1}∗. We assume that PKE meets the usual notion of IND-CCA security.

Let us say that PKE is canonical if the operation (sk , pk)←$ PKE.Kg(1λ, fp) picks sk at random from a
finite, non-empty set we denote PKE.SK(1λ, fp), and then applies to (1λ, fp, sk) a PT deterministic public-
key derivation function we denote PKE.PK to get pk . Canonicity may seem like an extra assumption, but
isn’t. First, many (most) schemes are already canonical. This is true for the Cramer-Shoup scheme [38],
the Kurosawa-Desmedt scheme [58] and for schemes obtained via the BCHK transform [26] applied to the
identity-based encryption schemes of Boneh-Boyen [24] or Waters [65]. Second, if by chance a scheme is
not canonical, we can modify it be so. Crucially (for our purposes), the modification does not change the
public key. (But it might change the secret key.) Briefly, the modification, which is standard, is to use the
random coins of the key generation algorithm as the secret key. In some more detail, given PKE, the new
key-generation algorithm, on inputs 1λ, fp, picks random coins ω, lets (sk , pk) ← PKE.Kg(1λ, fp;ω), and
returns (ω, pk), so that the new secret key is ω and the public key is still pk . Encryption is unchanged.
The modified decryption algorithm, given 1λ, fp, ω, C, lets (sk , pk)←$ PKE.Kg(1λ, fp;ω) and outputs M ←
PKE.Dec(1λ, fp, sk , C). It is easy to see that the modified scheme is canonical and also inherits both the
correctness and the IND-CCA security of the original scheme.

Construction. Given canonical PKE as above, we construct a JES scheme JES. The first step is to
construct from PKE a function family F as follows: let F.Pg = PKE.Pg, so the parameters of F are the
same those of PKE; let F.Dom = PKE.SK, so the domain of F is the space of secret keys of PKE; and
let F.Ev = PKE.PK, so the function defined by fp maps a secret key to a corresponding public key. Now
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main RKAOWFAF,Φ(λ)

fp←$ F.Pg(1λ)

x←$ F.Dom(1λ, fp) ; y ← F.Ev(1λ, fp, x)

x′←$AEval(1λ, fp, y)

Ret (F.Ev(1λ, fp, x′) = y)

Eval(φ)

x′ ← Φ(1λ, fp, φ, x) ; y′ ← F.Ev(1λ, fp, x′)

Ret y′

main RKASIGA
DS,F,Φ(λ)

Q← ∅ ; (fp, ap)←$ DS.Pg(1λ) ; pp ← (fp, ap)

(sk , pk)←$ DS.Kg(1λ, pp) ; (M,σ)←$ASign(1λ, pp, pk)

Ret (DS.Ver(1λ, pp, pk ,M, σ) and (pk ,M, σ) 6∈ Q)

Sign(φ,M)

sk ′ ← Φ(1λ, fp, φ, sk) ; pk ′ ← F.Ev(1λ, fp, sk ′)

σ←$ DS.Sig(1λ, pp, sk ′,M) ; Q← Q ∪ {(pk ′,M, σ)}
Ret σ′

Figure 3: Games defining Φ-RKA security of a function family F (left) and an F-keyed signature
scheme DS (right).

let DS be an F-keyed signature scheme that is simulatable and key-extractable. (We can obtain DS via
Theorem 3.2.) Now we define our JES scheme JES. Let JES.Pg = DS.Pg, so parameters for JES have
the form jp = (fp, ap), where fp are parameters for F, which by definition of F are also parameters for
PKE. Let JES.Kg = DS.Kg. (Keys are those of PKE which are also those of DS.) Let JES.Sig = DS.Sig
and JES.Ver = DS.Ver, so the signing and verifying algorithms of the joint scheme JES are inherited
from the signature scheme DS. Let JES.Enc(1λ, (fp, ap), pk ,M) return PKE.Enc(1λ, fp, pk ,M) and let
JES.Dec(1λ, (fp, ap), sk , C) return PKE.Dec(1λ, fp, sk , C), so the encryption and decryption algorithms of
the joint scheme JES are inherited from the PKE scheme PKE. Note that the public key of the joint scheme
JES is exactly that of PKE, so there is zero public-key overhead. (If PKE had been born canonical, there is
also zero secret-key overhead. Had it undergone the transformation described above to make it canonical,
the secret-key overhead would be non-zero but the public-key overhead would still be zero because the
transformation did not change the public key.) The following says that JES is both IND and SUF secure.

Theorem 4.1 Let PKE be a canonical public-key encryption scheme. Let F be defined from it as above. Let
DS be an F-keyed signature scheme, and let JES be the corresponding joint encryption and signature scheme
constructed above. Assume PKE is IND-CCA secure. Assume DS is simulatable and key-extractable. Then
(1) JES is IND secure, and (2) JES is SUF secure.

A full proof of this theorem is in Appendix C. Here we sketch the main ideas. For (1), given an adversary
A against the IND security of JES, we build an adversary D against the IND-CCA security of PKE. D
will simply run A on simulated auxiliary parameters, using the simulator to answer A’s Sign queries and
using its own Dec oracle to answer A’s Dec queries. A simulation adversary is built alongside, but key
extraction is not needed. For (2), given an adversary A against the SUF security of JES, we again build
an adversary D against the IND-CCA security of PKE. It will run A with simulated auxiliary parameters,
replying to A’s oracle queries as before. From a forgery it extracts the secret key, using this to defeat
IND-CCA security. Adversaries A1 and A2 against simulatability and key-extractability of DS are built
alongside to show that D succeeds.

5 RKA-secure signatures from RKA-secure OWFs

RKA security is notoriously hard to provably achieve. Recognizing this, several authors [49, 9] have
suggested a bootstrapping approach in which we build higher-level RKA-secure primitives from lower-level
RKA-secure primitives. In this vein, a construction of RKA-secure signatures from RKA-secure PRFs was
given in [9]. We improve on this via a construction of RKA-secure signatures from RKA-secure one-way
functions. The result is simple: If F is a Φ-RKA-secure OWF then any F-keyed simulatable and key-
extractable signature scheme is also Φ-RKA secure. The benefit is that (as we will show) many popular
OWFs are already RKA secure and we immediately get new RKA-secure signatures.

RKA security. Let F be a function family. A class of RKD (related-key deriving) functions Φ for F
is a PT-computable function that specifies for each λ ∈ N, each fp ∈ [F.Pg(1λ)] and each φ ∈ {0, 1}∗
a map Φ(1λ, fp, φ, ·) : F.Dom(1λ, fp) → F.Dom(1λ, fp) called the RKD function described by φ. We say
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that F is Φ-RKA secure if Advrka
F,A,Φ(·) is negligible for every PT adversary A, where Advrka

F,A,Φ(λ) =

Pr[RKAOWFAF,Φ(λ)] and game RKAOWF is on the left-hand side of Figure 3. In this game, A, like in the

basic one-wayness notion, is given y = F.Ev(1λ, fp, x) and attempts to find x′ such that F.Ev(1λ, fp, x′) =
y. Now, however, it has help. It can request that the hidden challenge input x be modified to x′ =
Φ(1λ, fp, φ, x) for any description φ of its choice, and obtain y′ = F.Ev(1λ, fp, x′). This should not help
it in its inversion task. The definition is from Goldenberg and Liskov [49], adapted to our notation, and
represents a particularly simple and basic form of RKA security.

Let DS be an F-keyed signature scheme and let Φ be as above. We say that DS is Φ-RKA secure
if Advrka

DS,F,A,Φ(·) is negligible for every PT adversary A, where Advrka
DS,F,A,Φ(λ) = Pr[RKASIGA

DS,F,Φ(λ)]
and game RKASIG is on the right-hand side of Figure 3. In this game, A, like in the basic (strong)
unforgeability notion, is given public key pk and is attempting to forge a signature under it. Now, however,
it has help beyond its usual signing oracle. It can request that the hidden secret key sk be modified to
sk ′ = Φ(1λ, fp, φ, sk) for any description φ of its choice, and obtain a signature under sk ′ of any message
of its choice. This should not help it in its forgery task. Our definition adapts the one of Bellare, Cash
and Miller [9] for Φ-RKA security of arbitrary signature schemes to the special case of F-keyed signature
schemes.1

Construction. Suppose we are given a Φ-RKA-secure OWF F and want to build a Φ-RKA-secure
signature scheme. For the question to even make sense, RKD functions specified by Φ must apply to the
secret signing key. Thus, the secret key needs to be an input for the OWF and the public key needs
to be the image of the secret key under the OWF. The main technical difficulty is, given F, finding a
signature scheme with this property. But this is exactly what a key-versatile signing schema gives us. The
following says that if the signature scheme produced by this schema is simulatable and key-extractable
then it inherits the Φ-RKA security of the OWF.

Theorem 5.1 Let DS be an F-keyed signature scheme that is simulatable and key-extractable. Let Φ be a
class of RKD functions. If F is Φ-RKA secure then DS is also Φ-RKA secure.

A formal proof of this theorem is in Appendix E. The proof extends that of Theorem 3.1. The adversary
I that we build uses its Eval oracle to simulate the Sign oracle of the given adversary A. In applying the
simulation and key-extractability, we make crucial use of the fact that the adversaries can obtain signatures
under secret keys of their choice.

Finding Φ-RKA OWFs. Theorem 5.1 motivates finding Φ-RKA-secure function families F. The merit
of our approach is that there are many such families. To enable systematically identifying them, we adapt
the definition of key-malleable PRFs of [8] to OWFs. We say that a function family F is Φ-key-malleable if
there is a PT algorithm M , called a Φ-key-simulator, such that M(1λ, fp, φ,F.Ev(1λ, fp, x)) = F.Ev(1λ, fp,
Φ(1λ, fp, φ, x)) for all λ ∈ N, all fp ∈ [F.Pg(1λ)], all φ ∈ {0, 1}∗ and all x ∈ F.Dom(1λ, fp). The proof of the
following is in Appendix D.

Proposition 5.2 Let F be a function family and Φ a class of RKD functions. If F is Φ-key-malleable and
one-way then F is Φ-RKA secure.

Previous uses of key-malleability [8, 16] for RKA security required additional conditions on the primitives,
such as key-fingerprints in the first case and some form of collision-resistance in the second. For OWFs, it
is considerably easier, key-malleability alone sufficing. We now exemplify how to leverage Proposition 5.2
to find Φ-RKA OWFs and thence, via Theorem 5.1, Φ-RKA signature schemes. Table 1 examines three
popular one-way functions: discrete exponentiation in a cyclic group, RSA, and the LWE one-way function.
It succinctly describes F, Φ, and the Φ-key-simulator M showing Φ-key-malleability. Briefly:

1 One change (strengthening the definition) is that we use a strong unforgeability formulation rather than an unforgeability
one. On the other hand while [9] disallow A a victory from forgery M,σ when M was previously signed under sk ′ = sk , we
disallow it when M was previously signed under pk ′ = pk even if sk ′ 6= sk . In our setting this is more natural since the secret
key determines the public key. In any case Theorem 5.1 extends to the definition of [9] assuming F is additionally injective or
collision-resistant, which is true in most examples.
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F fp x F.Ev(1λ, fp, x) φ Φ(1λ, fp, φ, x) M(1λ, fp, φ, y)

EXP (〈G〉, g,m) ∈ Zm gx (a, b) ∈ Zm×Zm (ax+b) mod m yagb

RSA (N, e) ∈ Z∗N xe mod N a ∈ N xa mod N ya mod N
LWE (A,n,m, q) (s, e) ∈ Zmq ×Znq (As+e) mod q (s′, e′) ∈ Zmq × Znq (s+s′, e+e′) mod q (y+As′+e′) mod q

Table 1: Φ-RKA secure OWFs: We succinctly define the families and the Φ-key-simulator showing their
Φ malleability and hence their Φ-RKA security.

main KDMA
PKE,Φ(λ)

b←$ {0, 1} ; ppe←$ PKE.Pg(1λ)

b′←$AMkKey,Enc(1λ, ppe) ; Ret (b = b′)

MkKey(1n)

For i = 1, . . . , n do (sk[i],pk[i])←$ PKE.Kg(1λ, ppe)

Ret pk

Enc(φ, i)

If not (1 ≤ i ≤ n) then Ret ⊥
M ← Φ(1λ, φ, sk)

If (b = 1) then C←$ PKE.Enc(1λ, ppe,pk[i],M)

Else C←$ PKE.Enc(1λ, ppe,pk[i], 0|M |)

Ret C

Figure 4: Game defining Φ-KDM security of a public-key encryption scheme PKE.

• EXP: The first row of Table 1 shows that exponentiation in any group with hard discrete logarithm
problem is Φ-RKA secure for the class Φ of affine functions over the exponent space. Here G is a cyclic
group of order m generated by g ∈ G.

• RSA: The second row of Table 1 shows that the RSA function is Φ-RKA secure for the class Φ of
functions raising the input to integer powers a, under the assumption that RSA is one-way. Here N is
an RSA modulus and e ∈ Z∗ϕ(N) is an encryption exponent. Notice that in this rendition of RSA the
latter has no trapdoor.

• LWE: The third row of Table 1 shows that the LWE function is Φ-RKA secure for the class Φ of
functions shown. Here A is an n by m matrix over Zq and Φ-RKA-security relies on the standard LWE
one-wayness assumption.

The summary is that standard, natural one-way functions are Φ-RKA secure, leading to Φ-RKA security
over standard and natural keyspaces.

6 KDM-secure storage

Services like Dropbox, Google Drive and Amazon S3 offer outsourced storage. Users see obvious benefits
but equally obvious security concerns. We would like to secure this storage, even when messages (files
needing to be stored) depend on the keys securing them. If privacy is the only concern, existing KDM-
secure encryption schemes (e.g., [22, 28, 5, 4, 32, 33, 21, 7, 59, 3, 30, 31, 13, 46, 55]) will do the job.
However, integrity is just as much of a concern, and adding it without losing KDM security is challenging.
This is because conventional ways of adding integrity introduce new keys and create new ways for messages
to depend on keys. Key-versatile signing, by leaving the keys unchanged, will provide a solution.

We begin below by formalizing our goal of encrypted and authenticated outsourced storage secure for
key-dependent messages. In our syntax, the user encrypts and authenticates under her secret key, and then
verifies and decrypts under the same secret key, with the public key utilized by the server for verification.
Our requirement for KDM security has two components: IND for privacy and SUF for integrity. With
the definitions in hand, we take a base KDM-secure encryption scheme and show how, via a key-versatile
signature, to obtain storage schemes meeting our goal. Our resulting storage schemes will achieve KDM
security with respect to the same class of message-deriving functions Φ as the underlying encryption
scheme. Also, we will assume only CPA KDM security of the base scheme, yet achieve CCA KDM privacy
for the constructed storage scheme. Interestingly, our solution uses a public-key base encryption scheme,
even though the privacy component of the goal is symmetric and nobody but the user will encrypt. This
allows us to start with KDM privacy under keys permitting signatures through key-versatile signing. This
represents a novel application for public-key KDM-secure encryption.
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KDM security. A class of KDM (key-dependent message) functions Φ is a PT-computable function
specifying for each λ ∈ N and each φ ∈ {0, 1}∗ a map Φ(1λ, φ, ·) called the message-deriving function
described by φ. This map takes input a vector sk (of keys) and returns a string (the message) of length
φ.m, where φ.m ∈ N, the output length of φ, is computable in polynomial time given 1λ, φ. We assume Φ
always includes all constant functions. Formally, 〈M〉 describes the function defined by Φ(1λ, 〈M〉, sk) = M
for all M ∈ {0, 1}∗. We say that public-key encryption scheme PKE is Φ-KDM secure if Advkdm

PKE,A,Φ(·)
is negligible for every PT adversary A, where Advkdm

PKE,A,Φ(λ) = 2 Pr[KDMA
PKE,Φ(λ)] − 1 and game KDM

is in Figure 4. We require that A make exactly one query to MkKey and that this be its first oracle
query. The argument n ≥ 1 determines the number of keys and must be given in unary. The definition
follows [22] except in parameterizing security by the class Φ of allowed message-deriving functions. The
parameterization is important because many existing KDM-secure encryption schemes are for particular
classes Φ, for example for encryption cycles, affine functions or cliques [28, 4, 30, 31, 55]. We aim to
transfer whatever KDM security we have in the encryption to the secure storage, meaning we want to
preserve Φ regardless of what it is. Of course a particularly interesting case is that of “full” security, but
this is captured as the special case where Φ is all functions.

In the setting of direct practical interest, Alice arguably has just one key, corresponding to the vector
sk above having just one component. However, as noted above, much of the literature on KDM security
concerns itself with the encryption of cycles and cliques, which represent message-deriving functions on
multiple keys, and so our definitions allow the latter.

Secure storage schemes. A storage scheme ST specifies the following PT algorithms: via pp←$

ST.Pg(1λ) one generates public parameters pp common to all users; via (sk , pk)←$ ST.Kg(1λ, pp) a user can
generate a secret key sk and corresponding public key pk ; via D←$ ST.Store(1λ, pp, sk ,M) a user can pro-
duce some dataD based onM ∈ {0, 1}∗ to store on the server; viaM ← ST.Retrieve(1λ, pp, sk , D) a user can
deterministically retrieve M ∈ {0, 1}∗∪{⊥} from their stored data D; and via d← ST.Verify(1λ, pp, pk , D)
the server can deterministically produce a decision d ∈ {true, false} regarding the validity of D. Correctness
requires that ST.Retrieve(1λ, pp, sk ,ST.Store(1λ, pp, sk ,M)) = M and ST.Verify(1λ, pp, pk , ST.Store(1λ, pp,
sk ,M)) = true for all λ ∈ N, all pp ∈ [ST.Pg(1λ)], all (sk , pk) ∈ [ST.Kg(1λ, pp)], and all messages
M ∈ {0, 1}∗. Let Φ be a class of KDM functions as above. We say that ST is Φ-IND-secure if Advind

ST,A,Φ(·)
is negligible for all PT adversaries A, where Advind

ST,A,Φ(λ) = 2 Pr[INDA
ST,Φ(λ)] − 1 and game IND is

on the left-hand side of Figure 5. The presence of the Retrieve oracle makes this a CCA KDM no-
tion. We say that ST is Φ-SUF-secure if Advsuf

ST,A,Φ(·) is negligible for all PT adversaries A, where

Advsuf
ST,A,Φ(λ) = Pr[SUFAST,Φ(λ)] and game SUF is on the right-hand side of Figure 5. In both cases, we

require that A make exactly one query to MkKey and that this be its first oracle query, and again the
argument n ≥ 1, indicating the number of keys, must be given in unary.

Construction. The base scheme we take as given is a Φ-KDM secure, canonical public-key encryption
scheme PKE. As in Section 4, we begin by constructing from PKE a function family F. We do not repeat
this construction here, but refer the reader to Section 4. We then let DS be an F-keyed signature scheme
that is simulatable and key-extractable. We construct our storage scheme ST as follows:

• ST.Pg(λ): Ret (fp, ap)←$ DS.Pg(1λ). Thus, parameters for ST have the form pp = (fp, ap), where fp
are parameters for both F and PKE.

• ST.Kg(1λ, (fp, ap)): Ret (sk , pk)←$ DS.Kg(1λ, (fp, ap)). Thus, keys are those of PKE and DS.

• ST.Store(1λ, (fp, ap), sk ,M): pk ← F.Ev(1λ, fp, sk) ; C←$ PKE.Enc(1λ, fp, pk ,M) ; σ←$ DS.Sig(1λ, pp,
sk , C) ; Ret (C, σ).

• ST.Retrieve(1λ, (fp, ap), sk , (C, σ)): pk ← F.Ev(1λ, fp, sk). If DS.Ver(1λ, pp, pk , C, σ) = false then Ret⊥.

Else Ret PKE.Dec(1λ, fp, sk , C).

• ST.Verify(1λ, (fp, ap), pk , (C, σ)): Ret DS.Ver(1λ, (fp, ap), pk , C, σ).

The following says that our construction provides both privacy and integrity for key-dependent messages,
assuming privacy for key-dependent messages of the base encryption scheme and simulatability and key-
extractability of the F-keyed signature scheme:
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main INDA
ST,Φ(λ)

b←$ {0, 1} ; Q← ∅ ; pp←$ ST.Pg(1λ)

b′←$AMkKey,Store,Retrieve(1λ, pp) ; Ret (b = b′)

MkKey(1n)

For i = 1, . . . , n do (sk[i],pk[i])←$ ST.Kg(1λ, pp)

Ret pk

Store(φ, i)

If not (1 ≤ i ≤ n) then Ret ⊥
If (b = 1) then M ← Φ(1λ, φ, sk) else M ← 0φ.m

D←$ ST.Store(1λ, pp, sk[i],M)

Q← Q ∪ {(D, i)} ; Ret D

Retrieve(D, i)

If not (1 ≤ i ≤ n) then Ret ⊥
If ((D, i) ∈ Q) then Ret ⊥
M ← ST.Retrieve(1λ, pp, sk[i], D) ; Ret M

main SUFAST,Φ(λ)

Q← ∅ ; pp←$ ST.Pg(1λ)

(D, i)←$AMkKey,Store,Retrieve(1λ, pp)

If (D, i) ∈ Q then Ret false

If not (1 ≤ i ≤ n) then Ret false

Ret ST.Verify(1λ, pp,pk[i], D)

MkKey(1n)

For i = 1, . . . , n do (sk[i],pk[i])←$ ST.Kg(1λ, pp)

Ret pk

Store(φ, i)

If not (1 ≤ i ≤ n) then Ret ⊥
M ← Φ(1λ, φ, sk) ; D←$ ST.Store(1λ, pp, sk[i],M)

Q← Q ∪ {(D, i)} ; Ret D

Retrieve(D, i)

If not (1 ≤ i ≤ n) then Ret ⊥
If ((D, i) ∈ Q) then Ret ⊥
M ← ST.Retrieve(1λ, pp, sk[i], D) ; Ret M

Figure 5: Games defining KDM-security of storage scheme ST: Privacy (left) and unforgeability
(right).

Theorem 6.1 Let PKE be a canonical public-key encryption scheme, and let F be defined from it as above.
Let DS be an F-keyed signature scheme, and let ST be the corresponding storage scheme constructed above.
Let Φ be a class of message-deriving functions. Assume PKE is Φ-KDM secure. Assume DS is simulatable
and key-extractable. Then (1) ST is Φ-IND secure and (2) ST is Φ-SUF secure.

A full proof of Theorem 6.1 is in Appendix F. Here we provide sketches to highlight some of the unusual
difficulties. Taking first the proof of privacy, we would like, given an adversary A breaking the Φ-IND
security of ST, to build an adversary D breaking the assumed Φ-KDM security of PKE. The first problem
is how D can create the signatures needed to answer Store queries of A, since these rely on secret keys
hidden from D. We solve this by switching to simulation parameters, so that D can simulate signatures
without a secret key. In answering Retrieve queries, however, we run into another problem: the assumed
KDM security of PKE is only under CPA. To solve this, we use the extractor to extract the secret key from
signatures and decrypt under it. The full proof involves building simulation and extractability adversaries
in addition to D.

Turning next to the proof of unforgeability, we might at first expect that it relies on nothing more
than the unforgeability of the signature scheme, so that given an adversary A breaking the Φ-SUF security
of ST we could build an adversary breaking the SUF security of DS. However, we run into the basic
issue that, since the same keys are used for signing, encryption, and decryption, an adversary against the
unforgeability of the signature scheme cannot even construct the messages (ciphertexts) on which A would
forge. Instead, we will build from A an adversary D breaking the Φ-KDM security of PKE. This adversary
will extract a secret key from a forgery of A and use this to break privacy. To get D to work we must first,
as above, switch to simulated signatures, and then use extractability to switch to a simpler Retrieve
oracle.

Instantiation. We require our base scheme PKE to be canonical. In Section 4 we showed how to modify
an encryption scheme to be canonical while preserving IND-CCA, but the transformation does not in
general preserve KDM security. Instead, we would use KDM-secure schemes that are already canonical.
One possibility is the scheme of [59]. The schemes of [28, 7, 4] are not canonical.
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[5] M. Backes, M. Dürmuth, and D. Unruh. OAEP is secure under key-dependent messages. In J. Pieprzyk, editor,
ASIACRYPT 2008, volume 5350 of LNCS, pages 506–523. Springer, Dec. 2008. (Cited on page 4, 13.)

[6] M. Backes, B. Pfitzmann, and A. Scedrov. Key-dependent message security under active attacks - brsim/uc-
soundness of dolev-yao-style encryption with key cycles. Journal of Computer Security, 16(5):497–530, 2008.
(Cited on page 6.)

[7] B. Barak, I. Haitner, D. Hofheinz, and Y. Ishai. Bounded key-dependent message security. In H. Gilbert, editor,
EUROCRYPT 2010, volume 6110 of LNCS, pages 423–444. Springer, May 2010. (Cited on page 4, 13, 15.)

[8] M. Bellare and D. Cash. Pseudorandom functions and permutations provably secure against related-key attacks.
In T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 666–684. Springer, Aug. 2010. (Cited on page 4,
12.)

[9] M. Bellare, D. Cash, and R. Miller. Cryptography secure against related-key attacks and tampering. In D. H.
Lee and X. Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 486–503. Springer, Dec. 2011.
(Cited on page 4, 11, 12.)

[10] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security for public-key
encryption schemes. In H. Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 26–45. Springer, Aug.
1998. (Cited on page 22.)

[11] M. Bellare and S. Goldwasser. New paradigms for digital signatures and message authentication based on non-
interative zero knowledge proofs. In G. Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 194–211.
Springer, Aug. 1990. (Cited on page 5, 9.)

[12] M. Bellare and V. T. Hoang. Adaptive witness encryption and asymmetric password-based cryptography.
Cryptology ePrint Archive, Report 2013/704, 2013. (Cited on page 5.)

[13] M. Bellare and S. Keelveedhi. Authenticated and misuse-resistant encryption of key-dependent data. In P. Ro-
gaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 610–629. Springer, Aug. 2011. (Cited on page 4, 6,
13.)

[14] M. Bellare and T. Kohno. A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and appli-
cations. In E. Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 491–506. Springer, May 2003.
(Cited on page 4.)

[15] M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and analysis of the generic
composition paradigm. Journal of Cryptology, 21(4):469–491, Oct. 2008. (Cited on page 5, 6.)

[16] M. Bellare, K. G. Paterson, and S. Thomson. RKA security beyond the linear barrier: IBE, encryption and
signatures. In ASIACRYPT, pages 331–348, 2012. (Cited on page 4, 12.)

[17] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In
V. Ashby, editor, ACM CCS 93, pages 62–73. ACM Press, Nov. 1993. (Cited on page 3.)

[18] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-playing
proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 409–426. Springer, May / June
2006. (Cited on page 20, 24, 26, 27, 31.)

[19] E. Biham. New types of cryptoanalytic attacks using related keys (extended abstract). In T. Helleseth, editor,
EUROCRYPT’93, volume 765 of LNCS, pages 398–409. Springer, May 1993. (Cited on page 4.)

16



[20] E. Biham and A. Shamir. Differential fault analysis of secret key cryptosystems. In B. S. Kaliski Jr., editor,
CRYPTO’97, volume 1294 of LNCS, pages 513–525. Springer, Aug. 1997. (Cited on page 4.)

[21] N. Bitansky and R. Canetti. On strong simulation and composable point obfuscation. In T. Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 520–537. Springer, Aug. 2010. (Cited on page 4, 13.)

[22] J. Black, P. Rogaway, and T. Shrimpton. Encryption-scheme security in the presence of key-dependent messages.
In K. Nyberg and H. M. Heys, editors, SAC 2002, volume 2595 of LNCS, pages 62–75. Springer, Aug. 2003.
(Cited on page 4, 13, 14.)

[23] M. Blum, A. De Santis, S. Micali, and G. Persiano. Noninteractive zero-knowledge. SIAM Journal on Computing,
20(6):1084–1118, 1991. (Cited on page 21.)

[24] D. Boneh and X. Boyen. Efficient selective-ID secure identity based encryption without random oracles. In
C. Cachin and J. Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 223–238. Springer, May
2004. (Cited on page 10.)

[25] D. Boneh and X. Boyen. Short signatures without random oracles. In C. Cachin and J. Camenisch, editors,
EUROCRYPT 2004, volume 3027 of LNCS, pages 56–73. Springer, May 2004. (Cited on page 3.)

[26] D. Boneh, R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based encryption. SIAM
Journal on Computing, 36(5):1301–1328, 2007. (Cited on page 10.)

[27] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of checking cryptographic protocols for faults
(extended abstract). In W. Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 37–51. Springer, May
1997. (Cited on page 4.)

[28] D. Boneh, S. Halevi, M. Hamburg, and R. Ostrovsky. Circular-secure encryption from decision diffie-hellman.
In D. Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 108–125. Springer, Aug. 2008. (Cited on
page 4, 13, 14, 15.)

[29] X. Boyen, Q. Mei, and B. Waters. Direct chosen ciphertext security from identity-based techniques. In V. Atluri,
C. Meadows, and A. Juels, editors, ACM CCS 05, pages 320–329. ACM Press, Nov. 2005. (Cited on page 3.)

[30] Z. Brakerski, S. Goldwasser, and Y. T. Kalai. Black-box circular-secure encryption beyond affine functions. In
Y. Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 201–218. Springer, Mar. 2011. (Cited on page 4, 13,
14.)

[31] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-LWE and security for key
dependent messages. In P. Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 505–524. Springer,
Aug. 2011. (Cited on page 4, 13, 14.)

[32] J. Camenisch, N. Chandran, and V. Shoup. A public key encryption scheme secure against key dependent
chosen plaintext and adaptive chosen ciphertext attacks. In A. Joux, editor, EUROCRYPT 2009, volume 5479
of LNCS, pages 351–368. Springer, Apr. 2009. (Cited on page 4, 13.)

[33] R. Canetti, Y. T. Kalai, M. Varia, and D. Wichs. On symmetric encryption and point obfuscation. In D. Mic-
ciancio, editor, TCC 2010, volume 5978 of LNCS, pages 52–71. Springer, Feb. 2010. (Cited on page 4, 13.)

[34] M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. Malleable signatures: Complex unary transfor-
mations and delegatable anonymous credentials. Cryptology ePrint Archive, Report 2013/179, 2013. (Cited on
page 5, 8, 9.)

[35] M. Chase and A. Lysyanskaya. On signatures of knowledge. In C. Dwork, editor, CRYPTO 2006, volume 4117
of LNCS, pages 78–96. Springer, Aug. 2006. (Cited on page 3, 5, 8.)

[36] J.-S. Coron, M. Joye, D. Naccache, and P. Paillier. Universal padding schemes for RSA. In M. Yung, editor,
CRYPTO 2002, volume 2442 of LNCS, pages 226–241. Springer, Aug. 2002. (Cited on page 3.)

[37] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive chosen ciphertext
attack. In H. Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 13–25. Springer, Aug. 1998. (Cited
on page 22.)

[38] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes secure against adaptive
chosen ciphertext attack. SIAM Journal on Computing, 33(1):167–226, 2003. (Cited on page 4, 9, 10.)

[39] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust non-interactive zero knowledge.
In J. Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 566–598. Springer, Aug. 2001. (Cited on page 5,
8, 9, 21.)

17



[40] A. De Santis, G. Di Crescenzo, and G. Persiano. Necessary and sufficient assumptions for non-interactive zero-
knowledge proofs of knowledge for all np relations. In Automata, Languages and Programming, pages 451–462.
Springer, 2000. (Cited on page 5.)

[41] A. De Santis and G. Persiano. Zero-knowledge proofs of knowledge without interaction. In Foundations of
Computer Science, 1992. Proceedings., 33rd Annual Symposium on, pages 427–436. IEEE, 1992. (Cited on
page 5.)

[42] J. P. Degabriele, A. Lehmann, K. G. Paterson, N. P. Smart, and M. Strefler. On the joint security of encryption
and signature in EMV. In O. Dunkelman, editor, CT-RSA 2012, volume 7178 of LNCS, pages 116–135. Springer,
Feb. / Mar. 2012. (Cited on page 3.)

[43] Y. Dodis, K. Haralambiev, A. López-Alt, and D. Wichs. Efficient public-key cryptography in the presence of
key leakage. In M. Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 613–631. Springer, Dec. 2010.
(Cited on page 5, 8, 9, 21.)

[44] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM Journal on Computing, 30(2):391–437,
2000. (Cited on page 9.)

[45] J. Fan, Y. Zheng, and X. Tang. A single key pair is adequate for the zheng signcryption. In U. Parampalli and
P. Hawkes, editors, ACISP 11, volume 6812 of LNCS, pages 371–388. Springer, July 2011. (Cited on page 6.)

[46] D. Galindo, J. Herranz, and J. L. Villar. Identity-based encryption with master key-dependent message security
and leakage-resilience. In S. Foresti, M. Yung, and F. Martinelli, editors, ESORICS 2012, volume 7459 of LNCS,
pages 627–642. Springer, Sept. 2012. (Cited on page 4, 13.)

[47] S. Garg, C. Gentry, A. Sahai, and B. Waters. Witness encryption and its applications. In Proceedings of the
45th annual ACM symposium on Symposium on theory of computing, pages 467–476. ACM, 2013. (Cited on
page 5.)

[48] R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali, and T. Rabin. Algorithmic tamper-proof (ATP) security:
Theoretical foundations for security against hardware tampering. In M. Naor, editor, TCC 2004, volume 2951
of LNCS, pages 258–277. Springer, Feb. 2004. (Cited on page 4.)

[49] D. Goldenberg and M. Liskov. On related-secret pseudorandomness. In D. Micciancio, editor, TCC 2010, volume
5978 of LNCS, pages 255–272. Springer, Feb. 2010. (Cited on page 4, 11, 12.)

[50] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive chosen-message
attacks. SIAM Journal on Computing, 17(2):281–308, Apr. 1988. (Cited on page 8.)

[51] J. Groth. Simulation-sound NIZK proofs for a practical language and constant size group signatures. In X. Lai
and K. Chen, editors, ASIACRYPT 2006, volume 4284 of LNCS, pages 444–459. Springer, Dec. 2006. (Cited
on page 5, 8, 9, 21.)

[52] J. Groth and R. Ostrovsky. Cryptography in the multi-string model. In A. Menezes, editor, CRYPTO 2007,
volume 4622 of LNCS, pages 323–341. Springer, Aug. 2007. (Cited on page 5, 9, 21.)

[53] S. Haber and B. Pinkas. Securely combining public-key cryptosystems. In ACM CCS 01, pages 215–224. ACM
Press, Nov. 2001. (Cited on page 3, 5, 9, 10.)

[54] K. Haralambiev. Efficient Cryptographic Primitives for Non-Interactive Zero-Knowledge Proofs and Applica-
tions. PhD thesis, New York University, May 2011. (Cited on page 5, 21.)

[55] D. Hofheinz. Circular chosen-ciphertext security with compact ciphertexts. In EUROCRYPT, volume 7881 of
Lecture Notes in Computer Science, pages 520–536. Springer, 2013. To appear. (Cited on page 4, 13, 14.)

[56] L. R. Knudsen. Cryptanalysis of LOKI91. In J. Seberry and Y. Zheng, editors, AUSCRYPT’92, volume 718 of
LNCS, pages 196–208. Springer, Dec. 1992. (Cited on page 4.)

[57] Y. Komano and K. Ohta. Efficient universal padding techniques for multiplicative trapdoor one-way permuta-
tion. In D. Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 366–382. Springer, Aug. 2003. (Cited
on page 3.)

[58] K. Kurosawa and Y. Desmedt. A new paradigm of hybrid encryption scheme. In M. Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 426–442. Springer, Aug. 2004. (Cited on page 9, 10.)

[59] T. Malkin, I. Teranishi, and M. Yung. Efficient circuit-size independent public key encryption with KDM
security. In K. G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 507–526. Springer, May
2011. (Cited on page 4, 13, 15.)

18



main SUFADS(λ)

Q← ∅ ; pp←$ DS.Pg(1λ) ; (sk , pk)←$ DS.Kg(1λ, pp)

(M,σ)←$ASign(1λ, pp, pk)

Ret (DS.Ver(1λ, pp, pk ,M, σ) and (M,σ) 6∈ Q)

Sign(M)

σ←$ DS.Sig(1λ, pp, sk ,M) ; Q← Q ∪ {(M,σ)}
Ret σ

Figure 6: Game defining strong unforgeability of signature scheme DS.

main GA
0 (λ) / GA

1 (λ)

Q← ∅ ; d← false

fp←$ F.Pg(1λ) ; (ap, std , xtd)←$ DS.SimPg(1λ) ; pp ← (fp, ap) ; (sk , pk)←$ DS.Kg(1λ, pp)

(M,σ)←$ASign(1λ, pp, pk) ; sk ′←$ DS.Ext(1λ, pp, xtd , pk ,M, σ)

If (DS.Ver(1λ, pp, pk ,M, σ) and (M,σ) 6∈ Q) then

d← true

If (F.Ev(1λ, fp, sk ′) 6= pk) then bad← true ; d← false

Ret d

Sign(M)

σ←$ DS.SimSig(1λ, pp, std , pk ,M)

Q← Q ∪ {(M,σ)}
Ret σ

Figure 7: Games for the proof of Theorem 3.1: Game G1 includes the boxed code while G0 does not.
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A Sim+Ext implies SUF: Proof of Theorem 3.1

We say a signature scheme DS is strongly unforgeable if Advsuf
DS,A(·) is negligible for all PT adversaries A,

where Advsuf
DS,A(λ) = Pr[SUFADS(λ)] and game SUF is in Figure 6. We proceed to prove Theorem 3.1.

Proof: Let A be a PT adversary playing game SUF. We build PT adversaries I, A1, A2 such that

Advsuf
DS,A(λ) ≤ Advow

F,I(λ) + Advsim
DS,F,A1

(λ) + Advext
DS,F,A2

(λ)

for all λ ∈ N, from which the theorem follows. The proof uses the games in Figure 7. These games switch
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to using simulated parameters and signatures. We will build I, A1, A2 so that for all λ ∈ N we have

Pr[SUFADS(λ)]− Pr[GA
0 (λ)] ≤ Advsim

DS,F,A1
(λ) (1)

Pr[GA
0 (λ) sets bad] ≤ Advext

DS,F,A2
(λ) (2)

Pr[GA
1 (λ)] ≤ Advow

F,I(λ) . (3)

Games G0 and G1 are identical until bad, so by the Fundamental Lemma of Game-Playing [18] and the
above, for all λ ∈ N we have:

Advsuf
DS,A(λ) = Pr[SUFADS(λ)]

= (Pr[SUFADS(λ)]− Pr[GA
0 (λ)]) + (Pr[GA

0 (λ)]− Pr[GA
1 (λ)]) + Pr[GA

1 (λ)]

≤ (Pr[SUFADS(λ)]− Pr[GA
0 (λ)]) + Pr[GA

0 (λ) sets bad] + Pr[GA
1 (λ)]

≤ Advsim
DS,F,A1

(λ) + Advext
DS,F,A2

(λ) + Advow
F,I(λ)

as desired. We proceed to the constructions of A1, A2, I. Adversary A1 behaves as follows:

ASign
1 (1λ, pp)

(sk , pk)←$ DS.Kg(1λ, pp) ; Q← ∅
(M,σ)←$ASignSim(1λ, pp, pk)
If (DS.Ver(1λ, pp, pk ,M, σ) and (M,σ) 6∈ Q) then b′ ← 1
Else b′ ← 0
Return b′

SignSim(M)

σ←$ Sign(sk ,M) ; Q← Q ∪ {(M,σ)}
Ret σ

When the challenge bit b in game SIM is 0, adversary A1 simulates for A game G0, while if b = 1, adversary
A1 simulates game SUF. We thus have

Pr[SUFADS(λ)]− Pr[GA
0 (λ)] = Pr[b′ = 1 | b = 1]− Pr[b′ = 1 | b = 0] ≤ Advsim

DS,A1
(λ) ,

which establishes Equation (1). Adversary A2 behaves as follows:

ASign
2 (1λ, pp)

(sk , pk)←$ DS.Kg(1λ, pp) ; (M,σ)←$ASignSim(1λ, pp, pk)
Ret (pk ,M, σ)

SignSim(M)

σ←$ Sign(sk ,M)
Ret σ

We skip the simple analysis establishing Equation (2). Adversary I behaves as follows:

I(1λ, fp, pk)

(ap, std , xtd)←$ DS.SimPg(1λ)
(M,σ)←$ASignSim(1λ, (fp, ap), pk)
sk ′←$ DS.Ext(1λ, pp, xtd , pk ,M, σ)
Ret sk ′

SignSim(M)

σ←$ DS.SimSig(1λ, pp, std , pk ,M)
Ret σ

We skip the simple analysis establishing Equation (3).

B Construction: Proof of Theorem 3.2

NIZK systems. Suppose R: {0, 1}∗×{0, 1}∗ → {true, false}. For x ∈ {0, 1}∗ we let R(x) = {w : R(x,w) =
true } be the witness set of x. We say that R is an NP-relation if it is computable in time polynomial in
the length of its first input and there is a function ` such that R(x) ⊆ {0, 1}`(|x|) for all x ∈ {0, 1}∗. We let
L(R) = { x : R(x) 6= ∅ } be the language associated to R. The fact that R is an NP-relation means that
L(R) ∈ NP.
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main ZKA
Π,R(λ)

b←$ {0, 1} ; crs1←$ Π.Pg(1λ)

(crs0, std , xtd)←$ Π.SimPg(1λ)

b′←$AProve(1λ, crsb)

Ret (b = b′)

Prove(x,w)

If not R(x,w) then Ret false

If b = 1 then π←$ Π.P(1λ, crs1, x, w)

Else π←$ Π.SimP(1λ, crs0, std , x)

Ret π

main SEAΠ,R(λ)

Q← ∅ ; (crs, std , xtd)←$ Π.SimPg(1λ)

(x, π)←$AProve(1λ, crs)

If x 6∈ L(R) then Ret false

If not Π.V(1λ, crs, x, π) then Ret false

If (x, π) ∈ Q then Ret false

w←$ Π.Ext(1λ, crs, xtd , x, π)

Ret not R(x,w)

Prove(x,w)

If not R(x,w) then Ret ⊥
π←$ Π.SimP(1λ, crs, std , x) ; Q← Q ∪ {(x, π)}
Ret π

Figure 8: Games defining security of NIZK system Π. Left: Game defining zero knowledge. Right:
Game defining simulation extractability.

A non-interactive (NI) system Π for R specifies the following PT algorithms: via crs ←$ Π.Pg(1λ)
one generates a common reference string crs; via π←$ Π.P(1λ, crs, x, w) the prover given x and w ∈
R(x) generates a proof π that x ∈ L(R); via d ← Π.V(1λ, crs, x, π) a verifier can produce a decision
d ∈ {true, false} regarding whether π is a valid proof that x ∈ L(R). We require completeness, namely
Π.V(1λ, crs, x,Π.P(1λ, crs, x, w)) = true for all λ ∈ N, all crs ∈ [Π.Pg(λ)], all x ∈ {0, 1}∗ and all w ∈ R(x).
We say that Π is zero-knowledge (ZK) if it specifies additional PT algorithms Π.SimPg and Π.SimP such
that Advzk

Π,R,A(·) is negligible for every PT adversary A, where Advzk
Π,R,A(λ) = 2 Pr[ZKA

Π,R(λ)] − 1 and
game ZK is specified on the left-hand side of Figure 8. This definition is based on [23, 39]. We say that
Π is simulation-extractable (SE) if it specifies an additional PT algorithm Π.Ext such that Advse

Π,R,A(·) is

negligible for every PT adversary A, where Advse
Π,R,A(λ) = Pr[SEAΠ,R(λ)] and game SE is specified on the

right-hand side of Figure 8. This definition is based on [39, 51, 52, 43].

Before we use such proofs to construct a F-keyed signature scheme, we must know that they exist. The
first construction of SE NIZKs (using a stronger notion of simulation extractability) was given in [51], but
for a fairly restricted language related to sets of pairing product equations in bilinear groups. In [43] (and
further formalized in [54]), the authors provide a generic construction of SE NIZKs from a (regular) NIZK,
an IND-CCA encryption scheme, and a one-time signature, which establishes that SE NIZKs exist for all
NP.

Construction. Let F be the function family given in the theorem statement. We associate to it the NP-
relation R defined by R((1λ, fp, pk ,M), sk) = (F.Ev(1λ, fp, sk) = pk) for all λ ∈ N and all fp, pk ,M, sk ∈
{0, 1}∗. Let Π be a NI system for R that is zero knowledge and simulation extractable. The signature
scheme DS = KvS[F] is specified as follows:

• DS.Pg(1λ): crs ←$ Π.Pg(1λ) ; fp←$ F.Pg(1λ). Return (fp, crs).

• DS.Kg(1λ, (fp, crs)): sk ←$ F.Dom(1λ, fp) ; pk ← F.Ev(1λ, fp, sk) ; Ret (sk , pk).

• DS.Sig(1λ, (fp, crs), sk ,M): pk ← F.Ev(1λ, fp, sk) ; Ret Π.P(1λ, crs, (1λ, fp, pk ,M), sk).

• DS.Ver(1λ, (fp, crs), pk ,M, σ): Ret Π.V(1λ, crs, (1λ, fp, pk ,M), σ).

• DS.SimPg(1λ): Ret Π.SimPg(1λ).

• DS.SimSig(1λ, (fp, crs), std , pk ,M): Ret Π.SimP(1λ, crs, std , (1λ, fp, pk ,M)).

• DS.Ext(1λ, (fp, crs), xtd , pk ,M, σ): Ret Π.Ext(1λ, crs, xtd , (1λ, fp, pk ,M), σ).

Security of the construction. Simulatability of the signature scheme follows directly from the zero
knowledge property of the NIZK. Let A be a PT adversary playing game SIM. We construct a PT adversary
B such that Advsim

DS,F,A(λ) ≤ Advzk
Π,R,B(λ) for all λ ∈ N. B behaves as follows:
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main IND-CCAA
PKE(λ)

b←$ {0, 1} ; C∗ ←⊥
fp←$ PKE.Pg(1λ) ; (pk , sk)←$ PKE.Kg(1λ, fp)

b′←$ADec,LR(1λ, fp, pk)

Ret (b = b′)

proc Dec(C)

If (C = C∗) then Ret ⊥
Ret M ← PKE.Dec(1λ, fp, sk , C)

proc LR(M0,M1)

If (|M0| 6= |M1|) then Ret ⊥
C∗←$ PKE.Enc(1λ, fp, pk ,Mb)

Ret C∗

Figure 9: Game defining IND-CCA security of PKE scheme PKE.

BProve(1λ, crs)

fp←$ F.Pg(1λ) ; pp ← (fp, crs)
b′←$ASignSim(1λ, pp)
Return b′

SignSim(sk ,M)

If sk 6∈ F.Dom(1λ, fp) then Ret ⊥
pk ← F.Ev(1λ, fp, sk) ; π←$ Prove((1λ, fp, pk ,M), sk)
Ret π

The key extractability of the signature scheme likewise follows from the SE security of the NIZK. Let A be a
PT adversary playing game EXT. We construct a PT adversary B such that Advext

DS,F,A(λ) ≤ Advse
Π,R,B(λ)

for all λ ∈ N. B behaves as follows:

BProve(1λ, crs)

fp←$ F.Pg(1λ) ; pp ← (fp, crs)
(pk ,M, σ)←$ASignSim(1λ, pp)
Return ((1λ, fp, pk ,M), σ)

SignSim(sk ,M)

If sk 6∈ F.Dom(1λ, fp) then Ret ⊥
pk ← F.Ev(1λ, fp, sk) ; π←$ Prove((1λ, fp, pk ,M), sk)
Ret π

If (pk ,M, σ) /∈ Q in game EXT then ((1λ, fp, pk ,M), σ) /∈ Q in game SE, the sets being those defined in
the games. Furthermore, by the definition of DS.Ext and R, if sk ← DS.Ext(1λ, crs, xtd , pk ,M, σ) is such
that F.Ev(1λ, fp, sk) 6= pk , then R((1λ, fp, pk ,M), sk) = false.

C Proof of Theorem 4.1

We say PKE scheme PKE is IND-CCA secure if Advind-cca
PKE,A (·) is negligible for all PT adversaries A, where

Advind-cca
PKE,A (λ) = 2 Pr[IND-CCAA

PKE(λ)] − 1 and game IND-CCA is in Figure 9. The adversary is allowed
only one query to LR. This definition is from [10, 37]. We proceed to prove Theorem 4.1.

Proof: Part (1): IND security

Let A be a PT adversary playing game IND. We build PT adversaries A1, D such that

Advind
JES,A(λ) ≤ Advind-cca

PKE,D (λ) + 2Advsim
DS,F,A1

(λ)

for all λ ∈ N, from which part (1) of the theorem follows.

The proof uses the game in Figure 10. This game switches to using simulated parameters and signatures.
We will build A1, D so that for all λ ∈ N we have

Pr[INDA
JES(λ)]− Pr[GA

0 (λ)] ≤ Advsim
DS,F,A1

(λ) (4)

2 Pr[GA
0 (λ)]− 1 ≤ Advind-cca

PKE,D (λ) . (5)
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main GA
0 (λ)

b←$ {0, 1} ; C∗ ←⊥
fp←$ F.Pg(1λ) ; (ap, std , xtd)←$ DS.SimPg(1λ) ; jp ← (fp, ap) ; (sk , pk)←$ DS.Kg(1λ, jp)

b′←$ADec,Sign,LR(1λ, jp, pk)

Ret (b = b′)

proc Dec(C)

If (C = C∗) then Ret ⊥
Ret M ← JES.Dec(1λ, jp, sk , C)

proc Sign(M)

Ret DS.SimSig(1λ, jp, std , pk ,M)

proc LR(M0,M1)

If (|M0| 6= |M1|) then Ret ⊥
C∗←$ JES.Enc(1λ, jp, pk ,Mb)

Ret C∗

Figure 10: Game used in the proof of part (1) of Theorem 4.1

Using this we have

Advind
JES,A(λ) = 2 Pr[INDA

JES(λ)]− 1

= 2
(

Pr[INDA
JES(λ)]− Pr[GA

0 (λ)] + Pr[GA
0 (λ)]

)
− 1

= 2
(

Pr[INDA
JES(λ)]− Pr[GA

0 (λ)]
)

+ 2 Pr[GA
0 (λ)]− 1

≤ 2Advsim
DS,F,A1

(λ) + Advind-cca
PKE,D (λ)

as desired. We proceed to the constructions of A1, D. Adversary A1 behaves as follows:

ASign
1 (1λ, pp)

(sk , pk)←$ DS.Kg(1λ, pp)
C∗ ← ⊥ ; d←$ {0, 1}
d′←$ADecSim,SignSim,LRSim(1λ, pp, pk)
If (d′ = d) then b′ ← 1
Else b′ ← 0
Ret b′

SignSim(M)

σ←$ Sign(sk ,M)
Ret σ

DecSim(C)

If C = C∗ then M ← ⊥
Else M ← JES.Dec(1λ, pp, sk , C)
Ret M

LRSim(M0,M1)

If (|M0| 6= |M1|) then Ret ⊥
C∗ ← JES.Enc(1λ, pp, pk ,Md)
Ret C∗

When the challenge bit b in game SIM is 0, adversary A1 simulates for A game G0, and if b = 1, adversary
A1 simulates game IND. We thus have

Pr[INDA
JES(λ)]− Pr[GA

0 (λ)] = Pr[b′ = 1 | b = 1]− Pr[b′ = 1 | b = 0] ≤ Advsim
DS,F,A1

(λ) ,

establishing Equation (4). Adversary D behaves as follows:

DDec,LR(1λ, fp, pk)

(ap, std , xtd)←$ DS.SimPg(1λ) ; jp ← (fp, ap)
b′←$ADec,SignSim,LR(1λ, jp, pk)
Ret b′

SignSim(M)

σ←$ DS.SimSig(1λ, jp, std , pk ,M)
Ret σ

We omit the analysis establishing Equation (5).

Part (2): SUF security
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main GA
0 (λ) / GA

1 (λ)

Q← ∅ ; d← false

fp←$ F.Pg(1λ) ; (ap, std , xtd)←$ DS.SimPg(1λ) ; jp ← (fp, ap) ; (sk , pk)←$ DS.Kg(1λ, jp)

(M,σ)←$ASign,Dec(1λ, jp, pk) ; sk ′←$ DS.Ext(1λ, jp, xtd , pk ,M, σ)

If (DS.Ver(1λ, jp, pk ,M, σ) and (M,σ) 6∈ Q) then

d← true

If (F.Ev(1λ, fp, sk ′) 6= pk) then bad← true ; d← false

Ret d

proc Sign(M)

σ←$ DS.SimSig(1λ, jp, std , pk ,M)

Q← Q ∪ {(M,σ)}
Ret σ

proc Dec(C)

Ret M ← Dec(1λ, jp, sk , C)

Figure 11: Games used in the proof of part (2) of Theorem 4.1: Game G1 includes the boxed code
and G0 does not.

Let A be a PT adversary playing game SUF. We build PT adversaries A1, A2, D such that

Advsuf
JES,A(λ) ≤ Advind-cca

PKE,D (λ) + Advsim
DS,F,A1

(λ) + Advext
DS,F,A2

(λ)

for all λ ∈ N, from which part (2) of the theorem follows.

The proof uses the games in Figure 11. These games switch to using simulated parameters and signatures.
We will build A1, A2, D so that for all λ ∈ N we have

Pr[SUFAJES(λ)]− Pr[GA
0 (λ)] ≤ Advsim

DS,F,A1
(λ) (6)

Pr[GA
0 (λ) sets bad] ≤ Advext

DS,F,A2
(λ) (7)

Pr[GA
1 (λ)] ≤ Advind-cca

PKE,D (λ) . (8)

Games G0 and G1 are identical until bad, so by the Fundamental Lemma of Game-Playing [18] and the
above, for all λ ∈ N we have:

Advsuf
JES,A(λ) = Pr[SUFAJES(λ)]

= (Pr[SUFAJES(λ)]− Pr[GA
0 (λ)]) + (Pr[GA

0 (λ)]− Pr[GA
1 (λ)]) + Pr[GA

1 (λ)]

≤ (Pr[SUFAJES(λ)]− Pr[GA
0 (λ)]) + Pr[GA

0 (λ) sets bad] + Pr[GA
1 (λ)]

≤ Advsim
DS,F,A1

(λ) + Advext
DS,F,A2

(λ) + Advind-cca
PKE,D (λ)

as desired. We proceed to the constructions of A1, A2, D. Adversary A1 behaves as follows:

ASign
1 (1λ, pp)

(sk , pk)←$ DS.Kg(1λ, pp) ; Q← ∅
(M,σ)←$ADecSim,SignSim(1λ, pp, pk)
If (DS.Ver(1λ, pp, pk ,M, σ) and (M,σ) 6∈ Q) then b′ ← 1
Else b′ ← 0
Return b′

DecSim(C)

M ← JES.Dec(1λ, pp, sk , C)
Ret M

SignSim(M)

Q← Q ∪ {(M,σ)}
σ←$ Sign(sk ,M)
Ret σ

When the challenge bit b in game SIM is 0, adversary A1 simulates for A game G0, and if b = 1, adversary
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A1 simulates game SUF. We thus have

Pr[SUFAJES(λ)]− Pr[GA
0 (λ)] = Pr[b′ = 1 | b = 1]− Pr[b′ = 1 | b = 0] ≤ Advsim

DS,F,A1
(λ) ,

establishing Equation (6). Adversary A2 behaves as follows:

ASign
2 (1λ, pp)

(sk , pk)←$ DS.Kg(1λ, pp)
(M,σ)←$ADecSim,SignSim(1λ, pp, pk)
Ret (pk ,M, σ)

DecSim(C)

M ← JES.Dec(1λ, pp, sk , C)
Ret M

SignSim(M)

σ←$ Sign(sk ,M)
Ret σ

We omit the analysis establishing Equation (7). Adversary D behaves as follows:

DDec,LR(1λ, fp, pk)

(ap, std , xtd)←$ DS.SimPg(1λ) ; jp ← (fp, ap)
(M,σ)←$ADec,SignSim(1λ, jp, pk)
sk ′←$ DS.Ext(1λ, pp, xtd , pk ,M, σ)
If (F.Ev(1λ, fp, sk ′) 6= pk) then Ret 0
M0 ← 0λ ; M1 ← 1λ

C∗←$ LR(M0,M1) ; M ← PKE.Dec(1λ, fp, sk ′, C∗)
If (M = M1) then b′ ← 1 else b′ ← 0
Ret b′

SignSim(M)

σ←$ DS.SimSig(1λ, jp, std , pk ,M)
Ret σ

When A wins G1 we have that F.Ev(1λ, fp, sk ′) = pk , so sk ′ is a valid secret key for pk . By correctness
of PKE, we then have PKE.Dec(1λ, pp, sk ′,PKE.Enc(1λ, pp, pk ,Mb)) = Mb, where b is the challenge bit in
game IND-CCA, so

Advind-cca
PKE,D (λ) = Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0] ≥ Pr[GA

1 (λ)] .

This is because the first term in the difference above is at least Pr[GA
1 (λ)] and the second term is zero.

This establishes Equation (8).

D Proof of Proposition 5.2

Let A be a PT adversary attacking the Φ-RKA security of F and let M be a Φ-key-simulator. We construct
a PT adversary B against the (regular) one-wayness of F such that Advrka

F,A(λ) ≤ Advow
F,B(λ) for all λ ∈ N.

On input (1λ, fp, y), adversary B runs A(1λ, fp, y). When A makes a Eval query φ, adversary B computes
y′ ←M(1λ, fp, φ, y) and returns y′ to A. Φ-key malleability says that y′ = F.Ev(1λ, fp,Φ(1λ, fp, φ, x)) as A
expects. When A eventually halts and outputs a value x′, adversary B does the same.

E Proof of Theorem 5.1

Proof: Let A be a PT adversary playing game RKASIG. We build PT adversaries A1, A2, I such that

Advrka
DS,F,A,Φ(λ) ≤ Advrka

F,I,Φ(λ) + Advsim
DS,F,A1

(λ) + Advext
DS,F,A2

(λ)

for all λ ∈ N, from which the theorem follows.

The proof uses the games in Figure 12. These games switch to using simulated parameters and signatures.
We will build A1, A2, I so that for all λ ∈ N we have

Pr[RKASIGA
DS,F,Φ(λ)]− Pr[GA

0 (λ)] ≤ Advsim
DS,F,A1

(λ) (9)

Pr[GA
0 (λ) sets bad] ≤ Advext

DS,F,A2
(λ) (10)

Pr[GA
1 (λ)] ≤ Advrka

F,I,Φ(λ) . (11)
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main GA
0 (λ) / GA

1 (λ)

Q← ∅ ; d← false

fp←$ F.Pg(1λ) ; (ap, std , xtd)←$ DS.SimPg(1λ) ; pp ← (fp, ap) ; (sk , pk)←$ DS.Kg(1λ, pp)

(M,σ)←$ASign(1λ, pp, pk) ; sk ′←$ DS.Ext(1λ, pp, xtd , pk ,M, σ)

If (DS.Ver(1λ, pp, pk ,M, σ) and (pk ,M, σ) 6∈ Q) then

d← true

If (F.Ev(1λ, fp, sk ′) 6= pk) then bad← true ; d← false

Ret d

Sign(φ,M)

sk ′ ← Φ(1λ, fp, φ, sk) ; pk ′ ← F.Ev(1λ, fp, sk ′)

σ←$ DS.SimSig(1λ, pp, std , pk ′,M)

Q← Q ∪ {(pk ′,M, σ)}
Ret σ

Figure 12: Games used in proof of Theorem 5.1: Game G1 includes the boxed code and G0 does not.

Games G0 and G1 are identical until bad, so by the Fundamental Lemma of Game-Playing [18] and the
above, for all λ ∈ N we have:

Advrka
DS,F,A,Φ(λ) = Pr[RKASIGA

DS,F,Φ(λ)]

= (Pr[RKASIGA
DS,F,Φ(λ)]− Pr[GA

0 (λ)]) + (Pr[GA
0 (λ)]− Pr[GA

1 (λ)]) + Pr[GA
1 (λ)]

≤ (Pr[RKASIGA
DS,F,Φ(λ)]− Pr[GA

0 (λ)]) + Pr[GA
0 (λ) sets bad] + Pr[GA

1 (λ)]

≤ Advsim
DS,F,A1

(λ) + Advext
DS,F,A2

(λ) + Advrka
F,I,Φ(λ)

as desired. We proceed to the constructions of A1, A2, I. Adversary A1 behaves as follows:

ASign
1 (1λ, pp)

(sk , pk)←$ DS.Kg(1λ, pp) ; Q← ∅
(M,σ)←$ASignSim(1λ, pp, pk)
If (DS.Ver(1λ, pp, pk ,M, σ) and (pk ,M, σ) 6∈ Q) then b′ ← 1
Else b′ ← 0
Return b′

SignSim(φ,M)

sk ′ ← Φ(1λ, fp, φ, sk)
pk ′ ← F.Ev(1λ, fp, sk ′)
σ←$ Sign(sk ′,M)
Q← Q ∪ {(pk ′,M, σ)}
Ret σ

When the challenge bit b in game SIM is 0, adversary A1 simulates for A game G0, and if b = 1, adversary
A1 simulates game RKASIG. We thus have

Pr[RKASIGA
DS,F,Φ(λ)]− Pr[GA

0 (λ)] = Pr[b′ = 1 | b = 1]− Pr[b′ = 1 | b = 0] ≤ Advsim
DS,F,A1

(λ) ,

establishing Equation (9). Adversary A2 behaves as follows:

ASign
2 (1λ, pp)

(sk , pk)←$ DS.Kg(1λ, pp)
(M,σ)←$ASignSim(1λ, pp, pk)
Ret (pk ,M, σ)

SignSim(φ,M)

sk ′ ← Φ(1λ, fp, φ, sk) ; pk ′ ← F.Ev(1λ, fp, sk ′)
σ←$ Sign(sk ′,M) ; Q← Q ∪ {(pk ′,M, σ)}
Ret σ

If bad is set to true in game G0 then we have: (1) DS.Ver(1λ, pp, pk ,M, σ) (2) (pk ,M, σ) 6∈ Q, and (3)
F.Ev(1λ, fp, sk ′) 6= pk . These are exactly the necessary conditions for A2 to win game EXT, establishing
Equation (10). I behaves as follows:
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IEval(1λ, fp, pk)

(ap, std , xtd)←$ DS.SimPg(1λ)
(M,σ)←$ASignSim(1λ, (fp, ap), pk)
sk ′←$ DS.Ext(1λ, pp, xtd , pk ,M, σ)
Ret sk ′

SignSim(φ,M)

pk ′←$ Eval(φ)
σ←$ DS.SimSig(1λ, pp, std , pk ′,M)
Ret σ

We omit the analysis establishing Equation (11).

F Proof of Theorem 6.1

Proof: Part (1): IND security

Let A be a PT adversary playing game IND. Let q(·) be a polynomial such that the number of Retrieve
queries of A in game INDA

ST,Φ(λ) is q(λ) for all λ ∈ N. We provide PT adversaries A1, A2, D and a negligible
function ν(·) such that

Advind
ST,A,Φ(λ) ≤ 2Advsim

DS,F,A1
(λ) + Advkdm

PKE,D,Φ(λ) + 2ν(λ) + 2q(λ) ·Advext
DS,F,A2

(λ)

for all λ ∈ N, from which part (1) of the theorem follows.

The proof uses the games in Figure 13. We build A1, A2, D and ν(·) such that for all λ ∈ N we have

Pr[INDA
ST,Φ(λ)]− Pr[GA

0 (λ)] ≤ Advsim
DS,F,A1

(λ) (12)

2 Pr[GA
1 (λ)]− 1 ≤ Advkdm

PKE,D,Φ(λ) (13)

Pr[GA
2 (λ) sets bad] ≤ ν(λ) + q(λ) ·Advext

DS,F,A2
(λ) . (14)

Games G0,G1 are identical until bad. We also observe that Pr[GA
0 (λ) sets bad] ≤ Pr[GA

2 (λ) sets bad]. (In
both games, decryption in Retrieve is always done correctly.) Combining this with the above and the
Fundamental Lemma of Game-Playing [18], for all λ ∈ N we have:

Advind
ST,A,Φ(λ) = 2 Pr[INDA

ST,Φ(λ)]− 1

= 2
(

Pr[INDA
ST,Φ(λ)− Pr[GA

0 (λ)]
)

+ 2
(

Pr[GA
0 (λ)]− Pr[GA

1 (λ)]
)

+ 2 Pr[GA
1 (λ)]− 1

≤ 2
(

Pr[INDA
ST,Φ(λ)− Pr[GA

0 (λ)]
)

+ 2 Pr[GA
0 (λ) sets bad] + 2 Pr[GA

1 (λ)]− 1

≤ 2Advsim
DS,F,A1

(λ) + Advkdm
PKE,D,Φ(λ) + 2 Pr[GA

0 (λ) sets bad]

≤ 2Advsim
DS,F,A1

(λ) + Advkdm
PKE,D,Φ(λ) + 2 Pr[GA

2 (λ) sets bad]

≤ 2Advsim
DS,F,A1

(λ) + Advkdm
PKE,D,Φ(λ) + 2ν(λ) + 2q(λ) ·Advext

DS,F,A2
(λ)

as desired. We proceed to the constructions of A1, A2, D and ν.

Adversary A1 behaves as follows:
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main GA
0 (λ) / GA

1 (λ) / GA
2 (λ)

Q← ∅ ; Q′ ← ∅ ; b←$ {0, 1}
fp←$ F.Pg(1λ) ; (ap, std , xtd)←$ DS.SimPg(1λ) ; pp ← (fp, ap)

b′←$AMkKey,Store,Retrieve(1λ, pp)

Ret (b = b′)

MkKey(1n) // GA
0 (λ) / GA

1 (λ) / GA
2 (λ)

For i = 1, . . . , n do (sk[i],pk[i])←$ DS.Kg(1λ, pp)

Ret pk

proc Store(φ, i) // GA
0 (λ) / GA

1 (λ) / GA
2 (λ)

If not (1 ≤ i ≤ n) then return ⊥
If (b = 1) then M ← Φ(1λ, φ, sk) else M ← 0φ.m

C←$ PKE.Enc(1λ, fp,pk[i],M) ; σ←$ DS.SimSig(1λ, pp, std ,pk[i], C)

Q← Q ∪ {((C, σ), i)} ; Q′ ← Q′ ∪ {(pk[i], C, σ)}
Ret (C, σ)

proc Retrieve((C, σ), i) // GA
0 (λ) / GA

1 (λ)

If not (1 ≤ i ≤ n) then return ⊥
If (not DS.Ver(1λ, pp,pk[i], C, σ)) then Ret ⊥
If (((C, σ), i) ∈ Q) then Ret ⊥
sk ′←$ DS.Ext(1λ, pp, xtd ,pk[i], C, σ) ; pk ′ ← F.Ev(1λ, fp, sk ′)

M ← PKE.Dec(1λ, fp, sk ′, C)

If (pk ′ 6= pk[i]) then bad← true ; M ← PKE.Dec(1λ, fp, sk[i], C)

Ret M

proc Retrieve((C, σ), i) // GA
2 (λ)

If not (1 ≤ i ≤ n) then return ⊥
If (not DS.Ver(1λ, pp,pk[i], C, σ)) then Ret ⊥
If (((C, σ), i) ∈ Q) then Ret ⊥
M ← PKE.Dec(1λ, fp, sk[i], C)

If (pk[i], C, σ) ∈ Q′ then bad← true ; Ret M

sk ′←$ DS.Ext(1λ, pp, xtd ,pk[i], C, σ) ; pk ′ ← F.Ev(1λ, fp, sk ′)

If (pk ′ 6= pk[i]) then bad← true

Ret M

Figure 13: Games used in the proof of part (1) of Theorem 6.1. Game G0 includes the boxed code
and game G1 does not.

ASign
1 (1λ, pp)

Q← ∅ ; d←$ {0, 1}
d′←$AMkKeySim,StoreSim,RetrieveSim(1λ, pp)
If (d′ = d) then b′ ← 1 else b′ ← 0
Ret b′

MkKeySim(1n)

For i = 1, . . . , n do
(sk[i],pk[i])←$ DS.Kg(1λ, pp)

Ret pk

StoreSim(φ, i)

If not (1 ≤ i ≤ n) then Ret ⊥
If d = 1 then M ← Φ(1λ, φ, sk)
Else M ← 0φ.m

C←$ PKE.Enc(1λ, fp,pk[i],M)
σ←$ Sign(sk[i], C) ; Q← Q ∪ {((C, σ), i)}
Ret (C, σ)

RetrieveSim((C, σ), i)

If not (1 ≤ i ≤ n) then Ret ⊥
If (not DS.Ver(1λ, pp,pk[i], C, σ)) then Ret ⊥
If ((C, σ), i) ∈ Q then Ret ⊥
M ← PKE.Dec(1λ, fp, sk[i], C)
Ret M

When the challenge bit b in game SIM is 1, adversary A1 simulates IND. We claim that if b = 0 then
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A1 simulates G0. This is because in G0, procedure Retrieve always performs the correct decryption,
regardless of whether or not bad is set, and so does A1. (A1 does not need to invoke the extractor, and
indeed could not, since it does not have an extraction trapdoor.) We thus have

Pr[INDA
ST,Φ(λ)]− Pr[GA

0 (λ)] = Pr[b′ = 1 | b = 1]− Pr[b′ = 1 | b = 0] ≤ Advsim
DS,F,A1

(λ),

establishing Equation (12).

Adversary D behaves as follows:

DMkKey,Enc(1λ, fp)

Q← ∅
(ap, std , xtd)←$ DS.SimPg(1λ)
pp ← (fp, ap)
b′←$AMkKey,StoreSim,RetrieveSim(1λ, pp)
Ret b′

StoreSim(φ, i)

If not (1 ≤ i ≤ n) then Ret ⊥
C←$ Enc(φ, i)
σ←$ DS.SimSig(1λ, pp, std ,pk[i], C)
Q← Q ∪ {((C, σ), i)}
Ret (C, σ)

RetrieveSim((C, σ), i)

If not (1 ≤ i ≤ n) then Ret ⊥
If (not DS.Ver(1λ, pp,pk[i], C, σ)) then Ret ⊥
If ((C, σ), i) ∈ Q then Ret ⊥
sk ′←$ DS.Ext(1λ, pp, xtd ,pk[i], C, σ)
M ← PKE.Dec(1λ, fp, sk ′, C)
Ret M

We omit the analysis to establish Equation (13).

Now we would like to show that G0 (equivalently, G1) sets bad with negligible probability. Intuitively,
this should follow from extractability, since bad is set when extraction fails. A difficulty is that extraction
is not required to succeed when (pk [i], C, σ) ∈ Q′. So first we show that the latter event is unlikely, and
then, assuming it does not happen, that failure of extraction is unlikely. This is formalized via G2, which
breaks the setting of bad from G0 into two parts corresponding to the two events of interest. To establish
Equation (17), let E1 be the event that bad is set by the line 5 “If” statement, and E2 the event that bad
is set by the line 7 “If” statement. We first show the existence of a negligible ν(·) such that Pr[E1] ≤ ν(λ).
Then we build A2 such that Pr[E2 ∧ E1] ≤ q(λ) · Advext

DS,F,A2
(λ). This establishes Equation (14), as we

have

Pr[GA
2 (λ) sets bad] = Pr[E1 ∨ E2]

= Pr[E1] + Pr[E2 ∧ E1]

≤ ν(λ) + q(λ) ·Advext
DS,F,A2

(λ).

For the first claim, let E be the event that there is a collision in the public keys chosen in MkKey, meaning
there are distinct i, j ∈ {1, . . . , n} such that pk[i] = pk[j]. We claim that if this event does not happen,
then neither will E1. This is because setting bad requires that (pk[i], C, σ) ∈ Q′ yet ((C, σ), i) 6∈ Q, but
this cannot happen if the public keys are all distinct. So Pr[E1] ≤ Pr[E]. However, if E does happen with
probability that is not negligible, then it is easy to break KDM security of PKE. An adversary just has to
itself sample key-pairs, hoping to get one where the public key matches one of her challenge public keys.
In that case, having the corresponding secret key, it is easy to defeat security. We omit the details because
this argument is standard.

Adversary A2 behaves as follows:
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main HA(λ)

Q← ∅ ; win← false ; (fp, ap)←$ DS.Pg(1λ) ; pp ← (fp, ap)

⊥←$AMkKey,Store,Retrieve(1λ, pp)

Ret win

MkKey(1n)

For i = 1, . . . , n do (sk[i],pk[i])←$ DS.Kg(1λ, pp)

Ret pk

Store(φ, i)

If not (1 ≤ i ≤ n) then Ret ⊥
M ← Φ(1λ, φ, sk) ; C←$ PKE.Enc(1λ, fp,pk[i],M)

σ←$ DS.Sig(1λ, pp, sk[i], C) ; Q← Q ∪ {((C, σ), i)}
Ret (C, σ)

Retrieve((C, σ), i)

If not (1 ≤ i ≤ n) then Ret ⊥
If ((C, σ), i) ∈ Q) then Ret ⊥
If DS.Ver(1λ, pp,pk[i], C, σ) then win← true else Ret ⊥
M ← PKE.Dec(1λ, fp, sk[i], C)

Ret M

Figure 14: Game defining alternate form of SUF for the proof of part (2) of Theorem 6.1.

ASign
2 (1λ, pp)

Q← ∅ ; d←$ {0, 1} ; j ← 0
d′←$AMkKeySim,StoreSim,RetrieveSim(1λ, pp)
`←$ {1, . . . , j}
Ret (pk `, C`, σ`)

MkKeySim(1n)

For i = 1, . . . , n do
(sk[i],pk[i])←$ DS.Kg(1λ, pp)

Ret pk

StoreSim(φ, i)

If not (1 ≤ i ≤ n) then Ret ⊥
If d = 1 then M ← Φ(1λ, φ, sk)
Else M ← 0φ.m

C←$ PKE.Enc(1λ, fp,pk[i],M)
σ←$ Sign(sk[i], C) ; Q← Q ∪ {((C, σ), i)}
Ret (C, σ)

RetrieveSim((C, σ), i)

If not (1 ≤ i ≤ n) then Ret ⊥
If (not DS.Ver(1λ, pp,pk[i], C, σ)) then Ret ⊥
If ((C, σ), i) ∈ Q then Ret ⊥
M ← PKE.Dec(1λ, fp, sk[i], C)
j ← j + 1 ; pk j ← pk[i] ; Cj ← C ; σj ← σ

Ret M

Adversary A2 always performs correct decryptions in responding to Retrieve queries, following G2. If
bad is set at line 7 but not at line 5, then there is some tuple on which the extractor would succeed. Since
a tuple is guessed at random we have Pr[E2 ∧ E1] ≤ q(λ) ·Advext

DS,F,A2
(λ) as desired. The importance of

bad not being set at line 5 is that otherwise extraction is not required to succeed according to game EXT.

Part (2): SUF security

Let A′ be a PT adversary playing game SUF. Our first step is to consider a simplified form of the SUF
game shown in Figure 14. Here the adversary does not output a forgery but instead wins via Retrieve
queries. We can easily transform A′ into a PT adversary A such that Advsuf

ST,A′,Φ(λ) ≤ Pr[HA(λ)] for all
λ ∈ N. Adversary A simply runs A′, answering all queries via its own oracles (the two adversaries have the
same oracles). When A′ halts with output ((C, σ), i), A makes query Retrieve((C, σ), i) and halts with
output ⊥. The flag win is set to true with at least the probability that A′ wins its game. Now we proceed
to upper bound Pr[HA(λ)].
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main GA
0 (λ) / GA

1 (λ) / GA
2 (λ)

Q← ∅ ; Q′ ← ∅ ; win← false

fp←$ F.Pg(1λ) ; (ap, std , xtd)←$ DS.SimPg(1λ) ; pp ← (fp, ap)

⊥←$AMkKey,Store,Retrieve(1λ, pp)

Ret win

MkKey(1n) // GA
0 (λ) / GA

1 (λ) / GA
2 (λ)

For i = 1, . . . , n do (sk[i],pk[i])←$ DS.Kg(1λ, pp)

Ret pk

proc Store(φ) // GA
0 (λ) / GA

1 (λ) / GA
2 (λ)

If not (1 ≤ i ≤ n) then return ⊥
M ← Φ(1λ, φ, sk) ; C←$ PKE.Enc(1λ, fp,pk[i],M)

σ←$ DS.SimSig(1λ, pp, std ,pk[i], C) ; Q← Q ∪ {((C, σ), i)} ; Q′ ← Q′ ∪ {(pk[i], C, σ)}
Ret (C, σ)

proc Retrieve((C, σ), i) // GA
0 (λ) / GA

1 (λ)

If not (1 ≤ i ≤ n) then return ⊥
If (((C, σ), i) ∈ Q) then Ret ⊥
If DS.Ver(1λ, pp,pk[i], C, σ) then win← true else Ret ⊥
sk ′←$ DS.Ext(1λ, pp, xtd ,pk[i], C, σ) ; pk ′ ← F.Ev(1λ, fp, sk ′)

M ← PKE.Dec(1λ, fp, sk ′, C)

If (pk ′ 6= pk[i]) then bad← true ; M ← PKE.Dec(1λ, fp, sk[i], C)

Ret M

proc Retrieve((C, σ), i) // GA
2 (λ)

If not (1 ≤ i ≤ n) then return ⊥
If (((C, σ), i) ∈ Q) then Ret ⊥
If DS.Ver(1λ, pp,pk[i], C, σ) then win← true else Ret ⊥
M ← PKE.Dec(1λ, fp, sk[i], C)

If (pk[i], C, σ) ∈ Q′ then bad← true ; Ret M

sk ′←$ DS.Ext(1λ, pp, xtd ,pk[i], C, σ) ; pk ′ ← F.Ev(1λ, fp, sk ′)

If (pk ′ 6= pk[i]) then bad← true

Ret M

Figure 15: Games used in the proof of part (2) of Theorem 6.1. Game G0 includes the boxed code
and game G1 does not.

Let q(·) be a polynomial such that the number of Retrieve queries of A in game HA(λ) is q(λ) for all
λ ∈ N. We provide PT adversaries A1, A2, D and a negligible function ν(·) such that

Pr[HA(λ)] ≤ Advsim
DS,F,A1

(λ) + Advkdm
PKE,D,Φ(λ) + ν(λ) + q(λ) ·Advext

DS,F,A2
(λ)

for all λ ∈ N, from which part (2) of the theorem follows.

The proof uses the games in Figure 15. We build A1, A2, D and ν such that for all λ ∈ N we have

Pr[HA(λ)]− Pr[GA
0 (λ)] ≤ Advsim

DS,F,A1
(λ) (15)

Pr[GA
1 (λ) ∧ bad] ≤ Advkdm

PKE,D,Φ(λ) (16)

Pr[GA
2 (λ) sets bad] ≤ ν(λ) + q(λ) ·Advext

DS,F,A2
(λ) . (17)

The notation in Equation (16) means that we are considering the event that the game returns true and
also bad is not set. Now games G0,G1 are identical until bad so a variant of the Fundamental Lemma of
Game-Playing [18] says that Pr[GA

0 (λ)∧bad] = Pr[GA
1 (λ)∧bad]. We also observe that Pr[GA

0 (λ) sets bad] ≤
Pr[GA

2 (λ) sets bad]. (In both games, decryption in Retrieve is always done correctly.) Combining this
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with the above, for all λ ∈ N we have:

Advsuf
ST,A′,Φ(λ) ≤ Pr[HA(λ)]

= Pr[HA(λ)]− Pr[GA
0 (λ)] + Pr[GA

0 (λ)]

≤ Pr[HA(λ)]− Pr[GA
0 (λ)] + Pr[GA

0 (λ) ∧ bad] + Pr[GA
0 (λ) sets bad]

≤ Pr[HA(λ)]− Pr[GA
0 (λ)] + Pr[GA

1 (λ) ∧ bad] + Pr[GA
0 (λ) sets bad]

≤ Pr[HA(λ)]− Pr[GA
0 (λ)] + Pr[GA

1 (λ) ∧ bad] + Pr[GA
2 (λ) sets bad]

≤ Advsim
DS,F,A1

(λ) + Advkdm
PKE,D(λ) + ν(λ) + q(λ) ·Advext

DS,F,A2
(λ)

as desired. We proceed to the constructions of A1, A2, D and ν.

Adversary A1 behaves as follows:

ASign
1 (1λ, pp)

Q← ∅
⊥←$AMkKeySim,StoreSim,RetrieveSim(1λ, pp)
If win then b′ ← 1 else b′ ← 0
Ret b′

MkKeySim(1n)

For i = 1, . . . , n do
(sk[i],pk[i])←$ DS.Kg(1λ, pp)

Ret pk

StoreSim(φ, i)

If not (1 ≤ i ≤ n) then Ret ⊥
M ← Φ(1λ, φ, sk)
C←$ PKE.Enc(1λ, fp,pk[i],M)
σ←$ Sign(sk[i], C) ; Q← Q ∪ {((C, σ), i)}
Ret (C, σ)

RetrieveSim((C, σ), i)

If not (1 ≤ i ≤ n) then Ret ⊥
If ((C, σ), i) ∈ Q then Ret ⊥
If DS.Ver(1λ, pp,pk[i], C, σ) then win← true ;
Else Ret ⊥
M ← PKE.Dec(1λ, fp, sk[i], C)
Ret M

When the challenge bit b in game SIM is 1, adversary A1 simulates H, and when b = 0 it simulates G0.
Note that in the latter, decryptions done by Retrieve are always correct, so A1 does not need to invoke
the extractor. (Indeed, it could not, since it does not have an extraction trapdoor.) This establishes
Equation (15).

Adversary D behaves as follows:

DMkKey,Enc(1λ, fp)

Q← ∅ ; sk∗ ← ⊥ ; j ← ⊥
(ap, std , xtd)←$ DS.SimPg(1λ)
pp ← (fp, ap)
⊥←$AMkKey,StoreSim,RetrieveSim(1λ, pp)
If (sk∗, j) = (⊥,⊥) then Ret 0
M1 ← 1λ ; C∗←$ Enc(〈M1〉, j)
M ← PKE.Dec(1λ, fp, sk∗, C∗)
If (M = M1) then b′ ← 1 else b′ ← 0
Ret b′

StoreSim(φ, i)

If not (1 ≤ i ≤ n) then Ret ⊥
C←$ Enc(φ, i)
σ←$ DS.SimSig(1λ, pp, std ,pk[i], C)
Q← Q ∪ {((C, σ), i)}
Ret (C, σ)

RetrieveSim((C, σ), i)

If not (1 ≤ i ≤ n) then Ret ⊥
If ((C, σ), i) ∈ Q then Ret ⊥
If (not DS.Ver(1λ, pp,pk[i], C, σ)) then Ret ⊥
sk ′←$ DS.Ext(1λ, pp, xtd ,pk[i], C, σ)
If (F.Ev(1λ, fp, sk ′) = pk[i]) then (sk∗, j)← (sk ′, i)
M ← PKE.Dec(1λ, fp, sk ′, C)
Ret M
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Recall that 〈M1〉 denotes the constant function that always returns M1. If win is set in G1 then we are
assured that there is at least one Retrieve query which leads to extraction being performed. If additionally
bad is not set then this extraction succeeds, which means decryption under sk∗ will be correct. That in
turn means that M is the correct decryption of C∗ and hence D succeeds if win ∧ bad. This establishes
Equation (16).

Now we would like to show that G0 (equivalently, G1) sets bad with negligible probability. Intuitively,
this should follow from extractability, since bad is set when extraction fails. A difficulty is that extraction
is not required to succeed when (pk [i], C, σ) ∈ Q′. So first we show that the latter event is unlikely, and
then, assuming it does not happen, that failure of extraction is unlikely. This is formalized via G2, which
breaks the setting of bad from G0 into two parts corresponding to the two events of interest. To establish
Equation (17), let E1 be the event that bad is set by the line 5 “If” statement, and E2 the event that bad
is set by the line 7 “If” statement. We show the existence of a negligible ν(·) such that Pr[E1] ≤ ν(λ) as
in the proof of part (1) above, first arguing that Pr[E1] is at most the probability of a collision in public
keys, and then arguing that this is negligible by the assumed security of PKE. To establish Equation (17),
we now build A2 so that Pr[E2 ∧ E1] ≤ q(λ) ·Advext

DS,F,A2
(λ):

ASign
2 (1λ, pp)

Q← ∅ ; j ← 0
⊥←$AMkKeySim,StoreSim,RetrieveSim(1λ, pp)
`←$ {1, . . . , j}
Ret (pk `, C`, σ`)

MkKeySim(1n)

For i = 1, . . . , n do
(sk[i],pk[i])←$ DS.Kg(1λ, pp)

Ret pk

StoreSim(φ, i)

If not (1 ≤ i ≤ n) then Ret ⊥
M ← Φ(1λ, φ, sk)
C←$ PKE.Enc(1λ, fp,pk[i],M)
σ←$ Sign(sk[i], C) ; Q← Q ∪ {((C, σ), i)}
Ret (C, σ)

RetrieveSim((C, σ), i)

If not (1 ≤ i ≤ n) then Ret ⊥
If ((C, σ), i) ∈ Q then Ret ⊥
If (not DS.Ver(1λ, pp,pk[i], C, σ)) then Ret ⊥
M ← PKE.Dec(1λ, fp, sk[i], C)
j ← j + 1 ; pk j ← pk[i] ; Cj ← C ; σj ← σ

Ret M

Adversary A2 always performs correct decryptions in responding to Retrieve queries, following G2. If
bad is set at line 7 but not at line 5, then there is some tuple on which the extractor would succeed. Since
a tuple is guessed at random we have Pr[E2 ∧ E1] ≤ q(λ) ·Advext

DS,F,A2
(λ) as desired. The importance of

bad not being set at line 5 is that otherwise extraction is not required to succeed according to game EXT.
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