
Hiding the Input-Size in Secure Two-Party Computation∗ †

Yehuda Lindell‡ Kobbi Nissim§ Claudio Orlandi¶

Abstract
In the setting of secure multiparty computation, a set of parties wish to compute a joint

function of their inputs, while preserving properties like privacy, correctness, and independence
of inputs. One security property that has typically not been considered in the past relates to
the length or size of the parties inputs. This is despite the fact that in many cases the size of a
party’s input can be confidential. The reason for this omission seems to have been the folklore
belief that, as with encryption, it is impossible to carry out non-trivial secure computation while
hiding the size of parties’ inputs. However some recent results (e.g., Ishai and Paskin at TCC
2007, Ateniese, De Cristofaro and Tsudik at PKC 2011) showed that it is possible to hide the
input size of one of the parties for some limited class of functions, including secure two-party
set intersection. This suggests that the folklore belief may not be fully accurate.

In this work, we initiate a theoretical study of input-size hiding secure computation, and
focus on the two-party case. We present definitions for this task, and deal with the subtleties
that arise in the setting where there is no a priori polynomial bound on the parties’ input sizes.
Our definitional study yields a multitude of classes of input-size hiding computation, depending
on whether a single party’s input size remains hidden or both parties’ input sizes remain hidden,
and depending on who receives output and if the output size is hidden from a party in the case
that it does not receive output. We prove feasibility and impossibility results for input-size
hiding secure two-party computation. Some of the highlights are as follows:

• Under the assumption that fully homomorphic encryption (FHE) exists, there exist non-
trivial functions (e.g., the millionaire’s problem) that can be securely computed while
hiding the input size of both parties.

• Under the assumption that FHE exists, every function can be securely computed while
hiding the input size of one party, when both parties receive output (or when the party
not receiving output does learn the size of the output). In the case of functions with fixed
output length, this implies that every function can be securely computed while hiding one
party’s input size.

• There exist functions that cannot be securely computed while hiding both parties’ input
sizes. This is the first formal proof that, in general, some information about the size of
the parties’ inputs must be revealed.

Our results are in the semi-honest model. The problem of input-size hiding is already challenging
in this scenario. We discuss the additional difficulties that arise in the malicious setting and
leave this extension for future work.

Keywords: Secure two-party computation; input-size hiding
∗Previous versions of this paper had an error in the statement of Theorem 5.7, as shown in [HW15]. We fix this

error in this version.
†This research was supported by the ERC project LAST.
‡Bar-Ilan University, Israel. email: lindell@biu.ac.il.
§Ben-Gurion University, Israel. kobbi@cs.bgu.ac.il. This work was carried out while at Bar-Ilan University.
¶Aarhus University, Denmark. email: orlandi@cs.au.dk. This work was carried out while at Bar-Ilan University.

Contents

1 Introduction 1

2 Technical Overview 4

3 Definitions – Size-Hiding Secure Two-Party Computation 6
3.1 Revisiting the Standard Definition – No Size Hiding 7
3.2 Classes of Size Hiding . 8
3.3 The Ideal Models . 10
3.4 The Real Model . 11
3.5 Defining Security . 12

4 Feasibility Results 13
4.1 General Constructions for Class 1.a/c/e Input-Size Hiding Protocols 13
4.2 More Feasibility Results for Class 1 . 15

4.2.1 Securely computing classes 1.a and 1.e. 15
4.2.2 Constructions for Classes 1.b/1.d with Output-Length Bounded Functions . . 16

4.3 Feasibility for Some Functions in Class 2 . 17
4.3.1 Class 2.c . 17
4.3.2 Class 2.a and 2.b . 20
4.3.3 Applications – Secure Computation in Classes 2.a/b/c 20
4.3.4 An Input-Size Hiding Protocol For The Millionaires’ Problem 21

5 Negative Results And Separations Between Classes 23
5.1 Not All Functions can be Securely Computed in Class 2 23
5.2 A Separation Between Classes 2.a/c and 2.b . 25
5.3 Not All Functions can be Securely Computed in Class 1.b and 1.d 27
5.4 Separation Between Classes 1.b and 1.d . 29
5.5 Separations between Classes 1 and 2 . 30

6 Summary 31

References 32

A Tools – Threshold Fully-Homomorphic Encryption 34

Figure Illustrating Different Input-Size Hiding Classes 35

1 Introduction
Background. Protocols for secure two-party computation enable a pair of parties P1 and P2 with
private inputs x and y, respectively, to compute a function f of their inputs while preserving a
number of security properties. The most central of these properties are privacy (meaning that the
parties learn the output f(x, y) but nothing else), correctness (meaning that the output received is
indeed f(x, y) and not something else), and independence of inputs (meaning that neither party can
choose its input as a function of the other party’s input). The standard way of formalizing these
security properties is to compare the output of a real protocol execution to an “ideal execution” in
which the parties send their inputs to an incorruptible trusted party who computes the output for the
parties. Informally speaking, a protocol is then secure if no real adversary attacking the real protocol
can do more harm than an ideal adversary (or simulator) who interacts in the ideal model [GMW87,
GL90, MR91, Bea91, Can00]. In the 1980s, it was shown that any two-party functionality can be
securely computed in the presence of semi-honest and malicious adversaries [Yao86]. Thus, this
stringent definition of security can actually be achieved.

Privacy and size hiding. Clearly, the security obtained in the ideal model is the most that one
can hope for. However, when looking closer at the formalization of this notion, it is apparent that
the statement of privacy that “nothing but the output is learned” is somewhat of an overstatement.
This is due to the fact that the size of the parties’ inputs (and thus also the size of the output)
is assumed to be known (see Section 3.1 for a discussion on how this is actually formalized in the
current definitions). However, this information itself may be confidential. Consider the case of
set intersection and companies who wish to see if they have common clients. Needless to say, the
number of clients that a company has is itself highly confidential. Thus, the question that arises
is whether or not it is possible to achieve secure computation while hiding the size of the parties’
inputs. We stress that the fact that input sizes are revealed is not a mere artifact of the definition,
and all standard protocols for secure computation indeed assume that the input sizes are publicly
known to the parties.

The fact that the input size is always assumed to be revealed is due to the folklore belief that,
as with encryption, the length of the parties’ inputs cannot be hidden in a secure computation
protocol. In particular, the definition in [Gol04, Sec. 7.2.1.1] uses the convention that both inputs
are of the same size, and states “Observe that making no restriction on the relationship among the
lengths of the two inputs disallows the existence of secure protocols for computing any non-degenerate
functionality. The reason is that the program of each party (in a protocol for computing the desired
functionality) must either depend only on the length of the party’s input or obtain information on the
counterpart’s input length. In case information of the latter type is not implied by the output value,
a secure protocol cannot afford to give it away”. In the same way in [HL10, Sec. 2.3] it is stated
that “We remark that some restriction on the input lengths is unavoidable because, as in the case of
encryption, to some extent such information is always leaked.”. It is not difficult to see that there
exist functions for which hiding the size of both inputs is impossible (although this has not been
formally proven prior to this paper). However, this does not necessarily mean that “non-degenerate”
or “interesting” functions cannot be securely computed without revealing the size of one or both
parties’ inputs.

State of the art. The first work to explicitly refer to hiding input size is that of zero-knowledge
sets [MRK03], in which a prover commits to a set S and later proves statements of the form x ∈ S
or x /∈ S to a verifier, without revealing anything about the cardinality of S. Zero-knowledge sets

1

are an interesting instance of size-hiding reactive functionality, while in this work we only focus on
non-reactive computation (i.e., secure function evaluation).

Ishai and Paskin [IP07] also explicitly refer to the problem of hiding input size, and construct
a homomorphic encryption scheme that allows a party to evaluate a branching program on an
encrypted input, so that the length of the branching program (i.e., the longest path from the initial
node to any terminal node) is revealed but nothing else about its size. This enables partial input-size
hiding two-party computation by having one party encode its input into the branching program. In
particular this implies a secure two-party private set intersection protocol where the size of of the
set of one of the two parties is hidden.

Ateniese et al. [ACT11] constructed the first (explicit) protocol for private set-intersection that
hides the size of one of the two input sets. The focus of their work is on efficiency and their protocol
achieves high efficiency, in the random oracle model. The construction in their paper is secure for
semi-honest adversaries, and for a weaker notion of one-sided simulatability when the adversary
may be malicious (this notion guarantees privacy, but not correctness, for example). In addition,
their construction relies on a random oracle.

Those works demonstrate that interesting, non-degenerate functions can be computed while
at least hiding the input size of one of the parties, and this raises a number of fascinating and
fundamental questions:

Can input-size hiding be formalized in general, and is it possible to securely compute
many (or even all) functions while hiding the input size of one of the parties?

Are there any interesting functions that can be securely computed while hiding both par-
ties’ inputs sizes?

Before proceeding, we remark that in many cases it is possible to hide the input sizes by using
padding. However, this requires an a priori upper bound on the sizes of the inputs. In addition, it
means that the complexity of the protocol is related to the maximum possible lengths and is thus
inherently inefficient. Thus, this question is of interest from both a theoretical point of view (is it
possible to hide input size when no a priori upper bound on the inputs is known and so its complexity
depends only on each party’s own input and output), and from a practical point of view. In this
paper we focus on theoretical feasibility, and therefore we do not consider side-channel attacks that
might be used to learn additional information about a party’s input size e.g., by measuring the
response time of that party in the protocol, but we hope that our results will stimulate future work
on more efficient and practical protocols.

Our results. In this paper, we initiate the theoretical study of the problem of input-size hiding
two-party computation. Our main contributions are as follows:

• Definition and classification: Even though some input-size hiding protocols have been pre-
sented in the literature, no formal definition of input-size hiding generic secure computation
has ever been presented. We provide such a definition and deal with technical subtleties that
relate to the fact that no a priori bound on the parties’ input sizes is given (e.g., this raises
an issue as to how to even define polynomial-time for a party running such a protocol). In
addition, we observe that feasibility and infeasibility depend very much on which party re-
ceives output, whether or not the output-size is revealed to a party not receiving output,
and whether one party’s input size is hidden or both. We therefore define a set of classes of
input-size hiding variants, and a unified definition of security. We also revisit the standard

2

definition where both parties’ input sizes are revealed and observe that the treatment of this
case is much more subtle than has been previously observed. (For example, the standard
protocols for secure computation are not secure under a definition of secure computation for
which both parties receive output if their input sizes are equal, and otherwise both parties
receive ⊥. We show how this can be easily fixed.)

• One-party input-size hiding: We prove that in the case that one party’s input size is hidden
and the other party’s input size is revealed, then every function can be securely computed in
the presence of semi-honest adversaries, when both parties receive either the output or learn
the output size (or when the output size can be upper bounded as a function of one party’s
input size). This includes the problem of set intersection and thus we show that the result
of [ACT11] can be achieved without random oracles and under the full ideal/real simulation
definition of security. Our protocols use fully homomorphic encryption [Gen09] (we remark
that although this is a very powerful tool, there are subtleties that arise in attempting to use
it in our setting). This is the first general feasibility result for input-size hiding.

We also prove that there exist functionalities (e.g., unbounded input-length oblivious transfer)
that cannot be securely computed in the presence of semi-honest adversaries while hiding one
party’s input size, if one of the parties is not supposed to learn the output size. This is also
the first formal impossibility result for input-size hiding, and it also demonstrates that the
size of the output is of crucial consideration in our setting. (In the standard definition where
input sizes are revealed, a fixed polynomial upper-bound on the output size is always known
and can be used.)

• Two-party input-size hiding: We prove that there exist functions of interest that can be
securely computed in the presence of semi-honest adversaries while hiding the input size of
both parties. In particular, we show that the greater-than function (a.k.a., the millionaires’
problem) can be securely computed while hiding the input size of both parties. In addition, we
show that the equality, mean, median, variance and minimum functions can all be computed
while hiding the size of both parties’ inputs (our positive result holds for any function that can
be efficiently computed with polylogarithmic communication complexity). To the best of our
knowledge, these are the first examples of non trivial secure computation that hides the size
of both parties’ inputs, and thus demonstrate that non-degenerate and interesting functions
can be securely computed in contradiction to the accepted folklore. We also prove a general
impossibility result that it is impossible to hide both parties’ input sizes for any function
(with fixed output size) with randomized communication complexity Ω(nε) for some ε > 0.
Combined with our positive result, this is an almost complete characterization of feasibility.

• Separations between size-hiding variants: We prove separations between different variants of
size-hiding secure computation, as described above. This study shows that the issue of size-
hiding in secure computation is very delicate, and the question of who receives output and so
on has a significant effect on feasibility.

Our results provide a broad picture of feasibility and infeasibility, and demonstrate a rich structure
between the different variants of input-size hiding. We believe that our results send a clear message
that input-size hiding is possible, and we hope that this will encourage future research to further
understand feasibility and infeasibility, and to achieve input-size hiding with practical efficiency,
especially in applications where the size of the input is confidential.

3

Malicious adversaries – future work. In this initial foundational study of the question of
size-hiding in secure computation, we mainly focus on the model of semi-honest adversaries. As
we will show, many subtleties and difficulties arise already in this setting. In the case of malicious
adversaries, it is even more problematic. One specific difficulty that arises in this setting is due to
the fact that the simulator must run in time that is polynomial in the adversary. This is a problem
since any input-size hiding protocol must have communication complexity that is independent of
the parties’ inputs sizes. Thus, the simulator must extract the corrupted party’s input (in order to
send it to the trusted party) even if it is very long, and in particular even if its length is not a priori
polynomially bounded in the communication complexity. In order to ensure that the simulator is
polynomial in the adversary, it is therefore necessary that the simulator somehow knows how long
the adversary would run for. This is a type of “proof of work” for which rigorous solutions do not
exist. We remark that we do provide definitions for the case of malicious adversaries. However, the
problem of constructing input-size hiding protocols for the case of malicious adversaries is left for
future work.

In a concurrent work Chase and Visconti [CV12] gave the first protocol that implements zero-
knowledge sets with simulation based security against malicious adversaries under standard as-
sumption. Their main tool is an enhanced version of universal arguments with a stronger proof-
of-knowledge property. Is is not clear whether this tool can be adapted and used for general
functionalities.

2 Technical Overview

In this section we provide a brief overview of the results and the techniques used through the paper
together with pointers to the contents of this document.

Definitions. In Section 3 we formalize the notion of input-size hiding in secure two-party compu-
tation, following the ideal/real paradigm. As opposed to the standard ideal model, we define the
sizes of the input and output values as explicit additional input/outputs of the ideal functionality
and, by considering all the combinations of possible output patterns we give a complete classifica-
tion of ideal functionalities. The different classes can be found in Figure 2 on the last page of this
document. We consider three main classes (class 0,1 and 2) depending on how many input sizes
are kept hidden (that is, in class 2 the size of both parties input is kept hidden, in class 1 the size
on party’s input is kept hidden, and in class 0 neither parties inputs are hidden). Even for class 0,
where both input sizes are allowed to leak, we argue that our definition of the ideal world is more
natural and general than the standard one (see Section 3.1). This is due to the fact that in stan-
dard definitions, it is assumed that the parties have agreed on the input sizes in some “out of band”
method. As we show, this actually leads to surprising problems regarding the definition of security
and known protocols. Each of the classes is then divided into subclasses, depending on what kind
of information about the output each party receives (each party can learn the output value, the
output size or no information about the output). As we will see, the information about the output
that is leaked, and to which party, has significant ramifications on feasibility and infeasibility.

The next step on the way to providing a formal definition is to redefine the notion of a protocol
that runs in polynomial time (see Definition 3.1). In order to see why this is necessary, observe that
there may not exist any single polynomial that bounds the length of the output received by a party,
as a function of its input. This is because the length of the output may depend on the length of the
other party’s input, which can vary. We provide definitions for the semi-honest and the malicious

4

cases in Definition 3.2 and 3.3.

Class 1 – positive and negative results. In Section 4.1 we show how every function can be
computed while hiding the input size of one party, if both parties are allowed to learn the size of the
output (or its actual value). The idea behind our protocol is very simple, and uses fully homomorphic
encryption (FHE) with circuit privacy (see Appendix A): One party encrypts her input x under
her public key and sends it to the other party, who then uses the homomorphic properties in order
to compute an encryption of the output f(x, y) and sends the encrypted result back. Due to circuit
privacy, this does not reveal any information about the length of |y| and therefore size-hiding is
achieved. Despite its conceptual simplicity, we observe that one subtle issue arises. Specifically, the
second party needs to know the length of the output (or an upper bound on this length) since it
needs to construct a circuit computing f on the encrypted x and on y. Of course, given |x| and |y|
it is possible to compute such an upper bound, and the ciphertext containing the output can be of
this size. Since P2 knows |x| and y it can clearly compute this bound, but when P1 receives the
encrypted output it would learn the bound which could reveal information about |y|. We solve this
problem by having the parties first compute the exact size of the output, using FHE. Then, given
this exact size, they proceed as described above.

Note that in our protocol P2 learns the length of the output |f(x, y)|. We show that in some
cases this is unavoidable: In Section 5.3 we show that there is a natural function (oblivious transfer
with unbounded message length, with P1 acting as the receiver and P2 acting as the sender) that
cannot be securely computed while hiding |y| from P1 and |f(x, y)| from P2. The intuition is that
the size of the transcript of a size-hiding protocol must be independent of the size of one of the
inputs (or it will reveal information about it). But, as the length of the output grows with the size
of the input, we reach a contradiction with incompressibility of random data.

We also show that against “determistic semi-honest” adversaries (i.e., adversaries that follow
the protocol but use adversarially chosen random tapes), there is a natural function (oblivious
multi-point pseudorandom-function evaluation) for which it is impossible to protect the size of the
input of the party who is allowed to learn the output, if the other party is not allowed to learn
the output size. Also in this case the intuition is that the size of the transcript of a size-hiding
protocol must be independent of the size of one of the inputs and therefore must be “short”. But
then the existence of a simulator contradicts incompressibility of pseudorandom data. Surprisingly,
Hubácek and Wichs [HW15] showed that the same function can be securely evaluated with low
communication complexity against classic semi-honest adversaries (i.e., who follow the protocol
honestly and use uniformly random coins) using indistinguishability obfuscation.

Class 2 – positive and negative results. In this class, both of the parties’ input sizes must
remain hidden; as such, this is a much more difficult setting and the protocol described above for
class 1 cannot be used. Nevertheless, we present positive results for this class and show that every
function that can be computed insecurely using a protocol with low communication complexity can
be compiled into a size-hiding secure two party protocol. The exact requirements for the underlying
(insecure) protocol are given in Definition 4.5 and the compilation uses FHE and techniques sim-
ilar to the one discussed for class 1 above. Interesting examples of functions that can be securely
computed while hiding the size of both parties input using our technique include statistical com-
putations on data such as computing the mean, variance and median. With some tweaks, known
protocols with low communication complexity for equality or the greater-than function can also be
turned into protocols satisfying our requirements (see Section 4.3.4).

As opposed to class 1, we do not have any general positive result for class 2. Indeed, in Theo-

5

rem 5.1 we show that there exist functions that cannot be securely computed while hiding the input
size of both parties. Intuitively, in a size-hiding protocol the communication complexity must be
independent of the input sizes and therefore we reach a contradiction with lower-bounds in commu-
nication complexity. Examples of interesting functions that cannot be computed in class 2 include
the inner product, hamming distance and set intersection functions.

Separations between classes. In Section 5.2 we show that even in class 2, the output size plays
an important role. Specifically, we show that there exist functions that can be computed in class
2 only if both parties are allowed to learn the output size. Finally, in Section 5.4 and 5.5, more
separations between classes and subclasses are showed. We highlight that, perhaps surprisingly,
class 2 is not a subset of class 1. That is, there exist functions that cannot be computed in some
subclasses of class 1 that can be securely computed in class 2. These results demonstrate that the
input-size hiding landscape is rich, as summarized in Table 1 in Section 6.

3 Definitions – Size-Hiding Secure Two-Party Computation

In this section, we formalize the notion of input-size hiding in secure two-party computation. Our
formalization follows the ideal/real paradigm for defining security due to [Can00, Gol04]. Thus, we
specify the security goals (what is learned by the parties and what is not) by describing appropriate
ideal models where the parties send their inputs to an incorruptible trusted party who sends each
party exactly what information it is supposed to learn. The information sent to a party can include
the function output (if it is supposed to receive output), the other party’s input-length (if it is
supposed to learn this), and/or the length of the function output (this can make a difference in
the case that a party does not learn the actual output). We will define multiple ideal models,
covering the different possibilities regarding which party receives which information. As we will
see, what is learned and by whom makes a big difference to feasibility. In addition, in different
applications it may be important to hide different information (in some client/server “secure set
intersection” applications it may be important to hide the size of both input sets, only the size of
one the input sets, or it may not be important to hide either). Our definitions are all for the case
of static adversaries, and so we consider only the setting where one party is honest and the other is
corrupted; the identity of the corrupted party is fixed before the protocol execution begins.

The function and the ideal model: We distinguish between the function f that the parties
wish to compute, and the ideal model that describes how the parties and the adversary interact and
what information is revealed and how. The ideal model type expresses the security properties that
we require from our cryptographic protocol, including which party should learn which output, what
information is leaked to the adversary, which party is allowed to learn the output first and so on.
In our presentation, we focus on the two-party case only; the extension to the multiparty setting is
straightforward.

3.1 Revisiting the Standard Definition – No Size Hiding

In this section we review the standard way that input sizes are dealt with and observe that there
are important subtleties here which are typically ignored.

We begin by reviewing how previous definitions dealt with the fact that the lengths of both
parties’ inputs is revealed by known secure protocols. Beyond motivating some of our definitional

6

choices, we will argue that previous definitions can and should be strengthened, even when the input
sizes are revealed.

The definition of security [Gol04, Def. 7.2.2] deals with the fact that input lengths are revealed
by only guaranteeing security when the inputs are of the same length. Clearly this is a simplifying
convention. However, it has the artifact that no security at all is required when |x| 6= |y|. Thus, a
protocol that instructs a party to send its input in the clear to the other if it turns out they have
different input lengths is actually secure by this definition (which is clearly not the intention of the
definition).

An alternative approach that is also proposed by [Gol04] (see the paragraph on “partial func-
tionalities” in Section 7.2.1.1) is to securely compute a function of the form

f ′(x, y) =

(
f(x, y), f(x, y)

)
if |x| = |y|

(⊥,⊥) if |x| 6= |y| .

This solves the aforementioned problem since the parties learn nothing if their inputs are of different
lengths. The use of this functionality requires that the parties have a priori information about each
other’s input length (unless it suffices for them to receive ⊥ when this is not the case). This is
usually justified saying that the parties need anyway to agree on a set of common parameters (e.g.,
the security parameter) before starting the computation. However, when considering malicious
parties (that can replace their inputs in the ideal model), defining the functionality in this way
introduces an input length independence problem. Specifically, a malicious party can choose its
input based on the length of the other party’s input. An example of where this can be problematic
is in Yao’s classic millionaires’ problem. Consider a party who wishes (for whatever reason) to have
the output being that its salary is greater if the honest party’s salary is greater than $1,000,000, and
otherwise it wishes the output to be that its salary is smaller. This can be carried out by first seeing
if the honest party’s input x is of length 20 bits or less, and then choosing its input y to be 0|x| if
|x| < 20, and choosing its input y to be 1|x| if |x| ≥ 20. Arguably, such behavior is undesirable. Of
course, it is possible to solve this problem by padding the input lengths to some maximum bound.
However, this is only a partial solution, and may be unsatisfactory (depending on the application)
for two reasons. First, there may not exist a reasonable upper bound on the input length of the
parties, and the process of coming up with such an upper bound may also reveal information that
enables the adversary to achieve partial input length dependence. Second, padding to a maximum
introduces an inherent inefficency in the computation.

We therefore advocate an alternative way of defining security when both parties inputs sizes are
revealed, as follows:

f ′′(x, y) =
(

(1|y|, f(x, y)), (1|x|, f(x, y))
)
.

Observe that security is obtained for all input lengths, and the input length of the other parties’
input is revealed only after each party has provided its own input. (In our actual formulation, the
trusted party will receive x and y from each party, and will send the appropriate input lengths
together with the function output.)

Observe that the security guaranteed by computing f ′′(x, y) is incomparable to the security
guaranteed by computing f ′(x, y). This is due to the fact that, on the one hand, f ′′(x, y) does
not suffer from the input-length dependence problem of f ′(x, y), as described. However, on the
other hand, f ′(x, y) does not reveal the parties’ input lengths if they are not the same. In addition,
f ′(x, y) ensures that a party uses an input of a prescribed length, and not an input that is shorter
or longer. This can be important in some settings (e.g., in a private set-intersection protocol over a

7

small domain, a cheating party could input a database containing every possible element and thus
completely learn the honest party’s input set).1 Thus, depending on the application, one may prefer
the f ′ or the f ′′ formulations.

We stress that the standard protocols for secure computation in the presence of semi-honest
adversaries (e.g., Yao [Yao86] and GMW [GMW87]) are not secure under the f ′ formulation since
they reveal the input size in the case that these sizes are different. In order to solve this problem, the
parties need to first run a secure comparison protocol on the input sizes (encoding the sizes in binary
and padding with zeroes to a string that is superlogarithmic in length in order to hide the size).
Then, if the inputs are the same length they proceed, and if not then they halt without learning
anything except for this fact. Regarding the f ′′ formulation, although it is true that the standard
protocols are secure for semi-honest adversaries, this is not the case for security in the presence
of malicious adversaries (e.g., in GMW [GMW87]). This is because a malicious adversary can
choose its input after seeing the first message from the honest party, which reveals its input length.
Nevertheless, it is possible to modify the GMW protocol (which starts by each party committing to
its input using a perfectly-binding commitment) by having the parties first commit to their inputs
using a statistically-hiding, length-hiding commitment, and proving knowledge of the committed
value. The parties then commit to their inputs using a perfectly-binding (thus length revealing)
commitment, and provide zero-knowledge proofs that the committed values are the same. They
then proceed to run the original GMW protocol. This achieves the required notion since the input
lengths are not revealed before the parties are committed to their input values. (The unmodified
protocols of Yao and GMW, when compiled via GMW to be secure in the presence of malicious
adversaries do securely compute a weaker formulation in which both parties receive f(x, y) in case
the inputs are of the same length, and receive the inputs lengths in case they are not.)

3.2 Classes of Size Hiding

We define three classes of size hiding, differentiated by whether neither party’s input size is hidden,
one party’s input size is hidden or both parties input sizes are hidden (note that the class number
describes how many input sizes are kept hidden: 0, 1 or 2):

1. Class 0: In this class, the input size of both parties is revealed (See Section 3.1);

2. Class 1: In this class, the input size of one party is hidden and the other is revealed. There are
a number of variants in this class, depending on whether one or both parties receive output,
and in the case that one party receives output depending on whose input size is hidden and
whether or not the output size is hidden from the party not receiving output.

3. Class 2: In this class, the input size of both parties’ inputs are hidden. As in Class 1 there are
a number of variants depending on who receives output and if the output size is kept hidden
to a party not receiving output.

We now turn to describe the different variants/subclasses to each class. Due to the large number of
different subclasses, we only consider the more limited case that when both parties receive output,
then they both receive the same output f(x, y). When general feasibility results can be achieved,

1It is actually possible to ensure that a party uses a prescribed input length also using the f ′′ formulation. This
can be achieved by redefining the function f so that each party inputs the allowed input-length of the other party,
and setting the output to be ⊥ in case mismatching input lengths are used.

8

meaning that any function can be securely computed, then this is without loss of generality [Gol04,
Prop. 7.2.11]. However, as we will see, not all classes of input-size hiding yield general feasibility;
the study of what happens in such classes when the parties may receive different outputs is left for
future work.

Subclass definitions:

0. Class 0: We formalize both the f ′ and f ′′ formulations from Section 3.1. In both formulations,
we consider only the case that both parties receive the function output f(x, y). There is no
need to consider the case that only one party receives f(x, y) separately here, since general
feasibility results hold and so there is a general reduction from the case that both receive
output and only one receives output. In addition, we add a strictly weaker formulation where
both parties receive f(x, y) if |x| = |y|, and otherwise receive only the input lengths. We
include this since the standard protocols for secure computation are actually secure under this
formulation. The subclasses are:

(a) Class 0.a: if |x| = |y| then both parties receive f(x, y), and if |x| 6= |y| then both parties
receive ⊥

(b) Class 0.b: if |x| = |y| then both parties receive f(x, y), and if |x| 6= |y| then P1 receives
1|y| and P2 receives 1|x|

(c) Class 0.c: P1 receives (1|y|, f(x, y)) and P2 receives (1|x|, f(x, y))

In Section 3.1 it is shown that every functionality can be securely computed in classes 0.a, 0.b
and 0.c.

1. Class 1: We consider five different subclasses here. In all subclasses, the input-size 1|x| of P1

is revealed to P2, but the input-size of P2 is hidden from P1. The different subclasses are:

(a) Class 1.a: both parties receive f(x, y), and P2 learns 1|x| as well

(b) Class 1.b: only P1 receives f(x, y), and P2 only learns 1|x|

(c) Class 1.c: only P1 receives f(x, y), and P2 learns 1|x| and the output length 1|f(x,y)|

(d) Class 1.d: P1 learns nothing at all, and P2 receives 1|x| and f(x, y)

(e) Class 1.e: P1 learns 1|f(x,y)| only, and P2 receives 1|x| and f(x, y)

2. Class 2: We consider three different subclasses here. In all subclasses, no input-sizes are
revealed. The different subclasses are:

(a) Class 2.a: both parties receive f(x, y), and nothing else

(b) Class 2.b: only P1 receives f(x, y), and P2 learns nothing

(c) Class 2.c: only P1 receives f(x, y), and P2 learns the length of the output 1|f(x,y)|

See Figure 2 (at the last page of this document) for a graphic description of the above (we recommend
referring back to the figure throughout). We stress that the question of whether or not the output
length 1|f(x,y)| is revealed to a party not receiving f(x, y) is of importance since, unlike in standard
secure computation, a party not receiving f(x, y) or the other party’s input size cannot compute
a bound on 1|f(x,y)|. Thus, this can make a difference to feasibility. Indeed, as we will see, when
1|f(x,y)| is not revealed, it is sometimes impossible to achieve input size-hiding.

9

When considering symmetric functions (where f(x, y) = f(y, x) for all x, y), the above set of
subclasses covers all possible variants for classes 1 and 2 regarding which parties receive output
or output length. This is due to the fact that when the function is symmetric, it is possible to
reverse the roles of the parties (e.g., if P2’s input-length is to be revealed to P1, then by symmetry
the parties can just exchange roles in class 1). We focus on symmetric functions in this paper (as
described in Footnote 3 the non-symmetric case is not so different with respect to feasibility; we
leave the additional complexity of non-symmetric functions for future work.)

We remark that P1’s input-length and the output-length are given in unary, when revealed; this
is needed to give the simulator enough time to work in the case that one party’s input is much
shorter than the other party’s input and/or the output length.

3.3 The Ideal Models

We are now ready to define the ideal model. In fact, we actually define a different ideal model
for each class, representing what information is revealed in each class. We denote by idealA.b the
ideal model corresponding to Class A.b (e.g., ideal2.a denotes the ideal model in which both parties
receive f(x, y) and nothing else). We only consider security with abort here, and so the difference
between classes that give outputs to both parties or just one is not due to the question of fairness,
but about the amount of information that the computation reveals. We stress that in the setting of
input-size hiding, even if we only consider semi-honest corruptions, the case that one party receives
f(x, y) and the other learns nothing, is not equivalent to the case that both parties receive f(x, y).

Denote the participating parties by P1 and P2 and let i ∈ {1, 2} denote the index of the corrupted
party, controlled by an ideal-model adversary S. An ideal execution for a (single-output) function
f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ proceeds as follows:

Inputs: Let x denote the input of party P1, and let y denote the input of party P2. The adversary
S also has an auxiliary input denoted by z.

Send inputs to trusted party: The honest party sends its received input to the trusted party.
The corrupted party controlled by S may either send its received input, or send another input
of any length to the trusted party. Denote the pair of inputs sent to the trusted party by
(x′, y′) (note that since an honest party does not change its input, it holds that if i = 2 then
x′ = x, and if i = 1 then y′ = y).

Trusted party sends output to adversary: The trusted party computes f(x′, y′) and sends the
corrupted party its prescribed output; this output can include f(x′, y′) or 1|f(x

′,y′)|, and the
input-length of the honest party, depending on the class.

Adversary instructs trusted party to continue or halt: S sends either continue or abort to
the trusted party. If it sends continue, the trusted party sends the honest party its prescribed
output, depending on the class. Otherwise, if S sends abort, the trusted party sends abort to
the honest party.

Outputs: The honest party outputs whatever it received from the trusted party. The corrupted
party outputs nothing, and S outputs any function of its view.

Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a (possibly randomized) polynomial-time computable
functionality, let S be an ideal adversary, and let i ∈ {1, 2} be the index of the corrupted party.

10

Then, the ideal execution of f in class A.b on inputs (x, y), auxiliary input z to S and security
parameter κ, denoted by idealA.bf,S(z),i(x, y, κ), is defined as the output pair of the honest party and
the adversary S from the above ideal execution.

3.4 The Real Model

In the real model with a protocol π (specifying instructions for the parties P1 and P2) and real-
model malicious adversary A, the honest party runs the specified protocol and outputs whatever
it is instructed to output by the protocol. The adversary controls the corrupted party and can
send any messages that it wishes, irrespective of the protocol specification, and then outputs any
arbitrary function of its view. Without loss of generality, one can assume that the adversary outputs
its view only. We denote by realπ,A(z),i(x, y, κ) the output pair of the adversary A controlling Pi
and the honest party from a real execution of π, where A has auxiliary input z, the parties have
inputs x and y, and the security parameter is κ.

The above is the standard description of the real model for secure computation, and this is
unchanged in the setting of input size-hiding computation. However, since the parties may have
inputs of arbitrary length (that are not a priori bounded by any given polynomial), we have to
redefine the notion of a protocol that runs in polynomial time. In order to see why this is a
problem, observe that there may not exist any single polynomial that bounds the length of the
output received by a party, as a function of its input. This is because the length of the output may
depend on the length of the other party’s input, which can vary. This issue becomes more severe
in the case of malicious adversaries, since the adversary may choose the length of the input that it
uses and is not limited to the length of the input written on the corrupted party’s input tape. Due
to this, we say that a protocol is polynomial time if:

1. When both parties follow the protocol specification, each party’s running-time is polynomial
in the lengths of its input and output, and the security parameter (note that a party’s running
time does not depend on the other party’s input length, if this is hidden).

2. When one party is maliciously corrupted, then the running time of the honest party is poly-
nomial in the lengths of its input and the security parameter, and the running-time of the
corrupted party. Observe that in this case, there is no single polynomial that bounds the run-
ning time of an honest party in every execution. However, for each polynomial-time adversary,
there is a polynomial that bounds the running-time of the honest party in any execution with
this adversary.

We stress that a party’s input and output actually depends on the class that we consider. This is
due to the fact that if the protocol reveals the length of P1’s input to P2, then P2 must be able to
run at least this long. As such, for i ∈ {1, 2}, we denote by outputA.bi (x, y) the prescribed output
of party Pi in class A.b as specified in Section 3.2; e.g., in class 1.a we have that output1.a

2 (x, y) =
(1|x|, f(x, y)). Furthermore, denote by timeπPi(x, y, κ) the running time of Pi in π when both parties
follow the protocol specification, with respective inputs (x, y) and security parameter κ (we consider
separate input and security parameter tapes, and assume that all honest parties and adversaries
have the same value κ on their security parameter tape). Finally, denote by timeA(z, κ) the running
time of A on auxiliary input z and security parameter κ, and by timeAPi(x, y, z, κ) the running-time
of the honest party Pi running π and interacting with adversary A.

We are now ready to formally define what it means for a protocol to be polynomial-time for a
class:

11

Definition 3.1 (Polynomial-Time Protocol) Let π be a two-party protocol. We say that π is
polynomial-time for class A.b if:

1. Honest executions: There exists a polynomial p(·) such that for every κ ∈ N and every pair of
inputs x, y ∈ {0, 1}∗:

timeπP1
(x, y, κ) ≤ p

(
|x|+ |outputA.b1 (x, y)|+ κ

)
, and

timeπP2
(x, y, κ) ≤ p

(
|y|+ |outputA.b2 (x, y)|+ κ

)
,

2. Dishonest executions: There exists a polynomial q(·) such that for every polynomial-time ad-
versary A, every κ ∈ N and all inputs x, y, z ∈ {0, 1}∗:

timeAP1
(x, y, κ) ≤ q

(
|x|+ κ+ timeA(z, κ)

)
, and

timeAP2
(x, y, κ) ≤ q

(
|y|+ κ+ timeA(z, κ)

)
.

We remark that the latter requirement regarding dishonest executions is needed in order to
prevent a polynomial-time adversary from making an honest party run in super-polynomial time
(through some malicious activity).

3.5 Defining Security

Semi-honest adversaries. Security is defined in the semi-honest setting by requiring the existence
of simulators S1 and S2 that can generate the view of the parties P1 and P2, respectively, given
their input and output. The actual requirement is that the joint view of the simulator’s output and
the function output is computationally indistinguishable from the corrupted party’s view and the
honest party’s output in a protocol execution. We define computational indistinguishability in the
usual way, and denote it by

c≡.
Let outputπ(x, y, κ) denote the joint output of both parties from an execution of π, and let

viewπ
i (x, y, κ) denote the view of party Pi in the execution. When we write the view and output in

the same ensemble, then this refers to the view of the party and the outputs in the same execution.
Likewise, when we write outputA.b1 (x, y) and outputA.b2 (x, y) in the same ensemble, this refers to
the same computation of f(x, y). This is of importance when f is probabilistic and so f(x, y) is not
determined by x, y alone. See [Gol04] for discussion.

Definition 3.2 (Security for Class A.b – Semi-Honest) Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗
be a functionality, and let π be a polynomial time protocol for class A.b. We say that π securely
computes f in class A.b in the presence of semi-honest adversaries if there exist probabilistic polynomial
time-algorithms S1,S2 such that for every pair of polynomials q1(·) and q2(·),{(
S1
(
x,outputA.b1 (x, y)

)
,outputA.b(x, y)

)}
κ,x,y

c≡ {(viewπ
1 (x, y, κ),outputπ(x, y, κ))}κ,x,y{(

S2
(
y,outputA.b2 (x, y)

)
,outputA.b(x, y)

)}
κ,x,y

c≡ {(viewπ
2 (x, y, κ),outputπ(x, y, κ))}κ,x,y

where κ ∈ N, x ∈ {0, 1}q1(κ) and y ∈ {0, 1}q2(κ).

We stress that the distinguisher and simulators run in time that is polynomial in their input
length (as revealed by the class) and 1κ. By convention, we do not write 1κ as part of a machine’s
input, as it is on a separate security parameter tape.

12

Malicious adversaries. Security in the case of malicious adversaries is defined via the ideal and
real models described above. Loosely speaking, the definition asserts that a secure party protocol
(in the real model) emulates the ideal model (in which a trusted party exists). This is formulated by
saying that adversaries in the ideal model are able to simulate executions of the real-model protocol.
In the definition, we refer to polynomial-time machines (adversaries and distinguisher). As above,
the distinguisher and adversaries run in time that is polynomial in their input plus the security
parameter κ (i.e., A is polynomial-time if there exists a polynomial p(·) such that A always halts
within time p(|z|+ κ), where z is its auxiliary input).

Definition 3.3 (Security for Class A.b – Malicious) Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a
functionality, and let π be a polynomial time protocol for class A.b. We say that π securely computes
f in class A.b in the presence of malicious adversaries if for every non-uniform probabilistic polynomial-
time real-model malicious adversary A there exists a non-uniform probabilistic polynomial-time ideal-
model malicious adversary S such that for all polynomials q1(·), q2(·) and q3(·),{

idealA.bf,S(z),i(x, y, κ)
}
k,x,y,z

c≡
{
realπ,A(z),i(x, y, κ)

}
k,x,y,z

where κ ∈ N, x ∈ {0, 1}q1(κ), y ∈ {0, 1}q2(κ), and z ∈ {0, 1}q3(κ).

It is important to note that the simulator in the case of malicious adversaries may actually not
have enough time to read the input and output of the corrupted party. This is because its running
time is polynomial in |z| + κ, and this may be much shorter than the input/output in the class.
Regarding reading the corrupted party’s input, we can assume that z is at least as long as the
corrupted party’s input and so the adversary (and simulator) always has time to read this input.
However, we cannot make a similar assumption regarding the output. This is because the length
of the output f(x, y) depends on the inputs of the honest and corrupted party. Thus, there is no
a priori length that we can refer to. Due to this, we cannot give the adversary the length of the
output of the class and ensure that it runs polynomial in this. We therefore have the adversary run
in time polynomial in |z|+ κ and must prove security when it has and does not have time to read
the output (i.e., for all polynomial-time adversaries).

4 Feasibility Results
4.1 General Constructions for Class 1.a/c/e Input-Size Hiding Protocols

In this section, we prove a general feasibility result that any function f can be securely computed
in classes 1.a, 1.c and 1.e (recall that in class 1, the size of P2’s input is hidden from P1, but the size
of P1’s input is revealed to P2). In Section 5, we will see that such a result cannot be achieved for
classes 1.b and 1.d, and so we limit ourselves to classes 1.a/c/e. We begin by proving the result for
class 1.c, where P1 obtains the output f(x, y), and P2 obtains P1’s input length 1|x| and the output
length 1|f(x,y)|, and then show how a general protocol for class 1.c can be used to construct general
protocols for classes 1.a and 1.e.

The idea behind our protocol is very simple, and uses fully homomorphic encryption (FHE)
with circuit privacy; see Appendix A for the definition. Party P1 begins by choosing a key-pair for
an FHE scheme, encrypts its input under the public key, and sends the public key and encrypted
input to P2. This ciphertext reveals the input length of P1, but this is allowed in class 1.c. Next,
P2 computes the function on the encrypted input and its own input, and obtain an encryption of

13

f(x, y). Finally, P2 sends the result to P1, who decrypts and obtains the output. Observe that this
also reveals the output length to P2, but again this is allowed in class 1.c.

Despite its conceptual simplicity, we observe that one subtle issue arises. Specifically, party P2

needs to know the length of the output f(x, y), or an upper bound on this length, since it needs
to construct a circuit computing f on the encrypted x and on y. Of course, given |x| and |y| it is
possible to compute such an upper bound, and the ciphertext containing the output can be of this
size (the actual output length may be shorter, and this can be handled by having the output of
the circuit include the actual output length). Since P2 knows |x| and y it can clearly compute this
bound. However, somewhat surprisingly, having P2 compute the upper bound may actually reveal
information about P2’s input size to P1. In order to see this, consider the set union functionality.
Clearly, the output length is upper bounded by the sum of the length of P1’s input and P2’s input,
but if P2 were to use this upper bound then P1 would be able to learn the length of P2’s input
which is not allowed. We solve this problem by having the parties first compute the exact size of
the output, using FHE. Then, given this exact size, they proceed as described above. The protocol
is presented in Figure 4.1, and uses an FHE scheme (Gen,Enc,Dec,Eval). We denote by n the length
|x| of P1’s input, and by m the length |y| of P2’s input. In addition, we denote x = x1, . . . , xn and
y = y1, . . . , ym.

PROTOCOL 4.1 (Class 1.c Size-Hiding for Any Functionality – Semi-Honest)

• Inputs: P1 has x, and P2 has y. Both parties have security parameter 1κ.

• The protocol:

1. P1 chooses (pk, sk) ← Gen(1κ), computes c1 = Encpk(x1), . . . , cn = Encpk(xn) and
sends (pk, c1, . . . , cn) to P2.

2. P2 receives c1, . . . , cn, and constructs a circuit Csize,y(·) that computes the output
length of f(·, y) in binary (i.e., Csize,y(x) = |f(x, y)|), padded with zeroes up to length
log2 κ. Then, P2 computes csize = Evalpk(Csize,y, 〈c1, . . . , cn〉), and sends csize to P1.

3. P1 receives csize and decrypts it using sk; let ` be the result. Party P1 sends ` to P2.

4. P2 receives ` from P1 and constructs another circuit Cf,y(·) that computes f(x, y)
(i.e., Cf,y(x) = f(x, y)), and has ` output wires. Then, P2 computes cf =
Evalpk(Cf,y, 〈c1, . . . , cn〉), and sends cf to P1.

5. P1 receives cf and decrypts it using sk to obtain a string z.

• Outputs: P1 outputs the string z obtained in the previous step; P2 outputs nothing.

Theorem 4.2 Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. If
(Gen,Enc,Dec,Eval) constitutes a fully homomorphic encryption with circuit privacy, then Proto-
col 4.1 securely computes f in class 1.c, in the presence of a static semi-honest adversary.

Proof: Recall that in order to prove security in the presence of semi-honest adversaries, it suffices
to present simulators S1 and S2 that receive the input/output of parties P1 and P2, respectively,
and generate their view in the protocol. The requirement is that the joint distribution of the view
generated by the simulator and the honest party’s output be indistinguishable from the view of the
corrupted party and the honest party’s output.

We begin with the case that P1 is corrupted. Simulator S1 receives (x, f(x, y)) and prepares a
uniformly distributed random tape for P1. Then, S1 uses that random tape to sample (pk, sk) ←

14

Gen(1κ). Then, S1 computes csize = Encpk(|f(x, y)|) padded with zeroes up to length log2 κ, and
cf = Encpk(f(x, y)). Finally, S1 outputs the input x, the random tape chosen above, and the
incoming messages csize and cf . The only difference between the view generated by S1 and that
of P1 in a real execution is that csize and cf are generated by directly encrypting |f(x, y)| and
f(x, y), rather than by running Eval. However, the circuit privacy requirement guarantees that the
distributions over these ciphertexts are statistically close.

Next, consider a corrupted P2. Simulator S2 receives (y, (1|x|, 1|f(x,y)|)), and generates (pk, sk)←
Gen(1κ) and c1 = Encpk(0), . . . , c|x| = Encpk(0). Then, S2 outputs y, a uniform random tape, and
incoming messages (pk, c1, . . . , c|x|, |f(x, y)|) as P2’s view. The indistinguishability of the simu-
lated view from a real view follows immediately from the regular encryption security of the fully
homomorphic encryption scheme.

4.2 More Feasibility Results for Class 1

It is not difficult to see that given protocols for class 1.c, it is possible to obtain protocols for
classes 1.a and 1.e (for class 1.a just have P1 send the output to P2, and the compute in class 1.e by
computing a function in class 1.a that masks the output from P1 so that only P2 can actually obtain
it). In addition, we show that with the function has a bounded output length (meaning that it is
some fixed polynomial in the length of P1’s input), then any function can be securely computed in
classes 1.b and 1.e as well. An important application of this is the private set intersection problem
(observe that the size of the output is upper bounded by the size of P1’s input). We therefore obtain
an analogue to the result of [ACT11] without relying on random oracles. In this section we present
these extensions.

4.2.1 Securely computing classes 1.a and 1.e.

Recall that in class 1.c, party P1 learns f(x, y) and party P2 learns 1|f(x,y)| and 1|x|. In class 1.a the
only difference is that both P1 and P2 obtain f(x, y). Thus, a protocol for class 1.a can be obtained
from Protocol 4.1 by having P1 send z = f(x, y) to P2 after decrypting it in the last step.

In contrast, in class 1.e, the difference is that P1 obtains only 1|f(x,y)| and P2 obtains the
actual output f(x, y) (as well as 1|x|). In order to achieve this, define the function f ′(x, (y, r)) =
f(x, y) ⊕ G(r) where r ∈ {0, 1}κ and G is a pseudorandom generator that stretches κ bits to
|f(x, y)| bits (which is also polynomial; see Definition 3.2). Then, the parties use the class 1.a
protocol described above to compute f ′, where P2 chooses the r part of its input uniformly at
random. Finally, P2 XORs its output with G(r) in order to obtain f(x, y) and outputs it. Clearly,
P1 learns only 1|f(x,y)| since the output is masked (a simulator can just replace the value seen by
P1 by a random string and this will be indistinguishable by the pseudorandom property of the
generator). Thus, this protocol securely computes f in class 1.e.

Corollary 4.3 Let f : {0, 1}∗×{0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. If fully
homomorphic encryption with circuit privacy exists, then there exist protocols for securely computing
f in classes 1.a, 1.c, and 1.e, in the presence of static semi-honest adversaries.

4.2.2 Constructions for Classes 1.b/1.d with Output-Length Bounded Functions

In many natural examples, the security offered by class 1.a/c/e might not be sufficient. Consider a
scenario where a client and a server wish to compute the intersection of their sets, and the client is

15

supposed to learn the output without the server learning anything (neither the size of the client’s
set nor the size of the output). In such a case, the client must play P2 (in order to hide the size of
its input) and the server plays P1. However, in classes 1.a, 1.c and 1.e, party P1 always learns either
the output itself or the output size. We would therefore like to be able to compute this function in
class 1.d (and in other settings class 1.b may be of interest).

In this section, we show that when the output size of f can be bounded as a function of P1’s
input size only, then Protocol 4.1 can be used to securely compute f in any subclass of class 1. This
includes the important class of functions with fixed output size (e.g., functions that output a single
bit). Formally,

Corollary 4.4 Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function, such
that there exists a polynomial p1(·) so that for every x it holds that |f(x, y)| ≤ p1(|x|). If fully
homomorphic encryption with circuit privacy exists, then there exist protocols for securely computing
f in all of class 1 (including 1.b and 1.d) in the presence of static semi-honest adversaries.

Proof: The feasibility of computing in classes 1.a, 1.c and 1.e has already been shown in Corol-
lary 4.3. In order to prove the result for class 1.b (where P1 receives f(x, y) only, and P2 receives
1|x| only), define the function f ′(x, y) = f(x, y)‖0p1(|x|)−|f(x,y)|, where ‖ denotes string concatena-
tion. The parties then compute f ′ using Protocol 4.1 for class 1.c. Observe that P1 learns f(x, y)
only from this protocol, and P2 learns 1|x| and 1|f

′(x,y)|. However, |f ′(x, y)| = p1(|x|) which can be
computed from 1|x|. Thus, P2’s view can be simulated given only 1|x|, as required in class 1.b.

In order to prove the result for class 1.d (where P1 learns nothing at all, and P2 learns f(x, y)
and 1|x|), the parties securely compute f ′ using a protocol for class 1.e. Thus, P1’s output from the
protocol is 1|f

′(x,y)|, and P2’s output is (1|x|, f(x, y)). Observing again that |f ′(x, y)| = p1(|x|) we
have that P1’s view can be computed given its input x only. Likewise, since P2 receives 1|x| it can
compute p1(|x|) by itself. Thus, we have that this protocol securely computes f in class 1.d.

Application – private set intersection. In [ACT11], a protocol that securely computes the
private set intersection function in class 1.d was presented (i.e., in their protocol the server learns
nothing while the client learns the server’s input size and the output). Their construction is efficient,
but it relies on the random oracle model, and is only secure for “one-sided simulation”. (That is,
the case of a corrupted client can be simulated, but in the case of a corrupted server only privacy
is guaranteed. This means that a malicious server could break the properties of correctness and
independence of inputs.)

Our focus in this paper is not efficiency, and we do not construct efficient protocols. Rather,
we wish to prove that input-size hiding is feasible, and in particular that it is possible to securely
compute the private set intersection function while hiding the input size of the client, in the standard
model. We obtain this corollary by observing that with set intersection it is possible to upper bound
the size of the output knowing the size of one input. This is because |X ∩ Y | ≤ |X|. Likewise, set
difference can be computed because |X \Y | ≤ |X| (although it is not a symmetric function). Thus,
set intersection and difference can be securely computed in classes 1.b and 1.c.

4.3 Feasibility for Some Functions in Class 2

In this section we prove that some non-trivial functions can be securely computed in class 2. This
is of interest since class 2 protocols reveal nothing about either party’s input size, beyond what is
revealed by the output size. In addition, in class 2.b, nothing at all is revealed to party P2. We

16

start by presenting protocols for class 2.c and then discuss how these can be extended to class 2.a,
and in what cases they can be extended to class 2.b.

There are functionalities that are impossible to securely compute in any subclass of class 2; see
Section 5. Thus, the aim here is just to show that some functions can be securely computed; as we
will see, there is actually quite a large class of such functions. We leave the question of characterizing
exactly what functions can and cannot be computed for future work.

4.3.1 Class 2.c

We begin by considering class 2.c, where party P1 receives the output f(x, y) and P2 receives
1|f(x,y)|, but nothing else is revealed. Intuitively this is possible for functions that can be computed
efficiently by two parties (by an insecure protocol), with communication that can be upper bounded
by some fixed polynomial in the security parameter. In such cases, it is possible to construct size-
hiding secure protocols by having the parties run the insecure protocol inside fully homomorphic
encryption. We formalize what we require from the insecure protocol, as follows.

Definition 4.5 (size-independent protocols) Let f : {0, 1}∗ ×{0, 1}∗ → {0, 1}∗, and let π be a
probabilistic protocol. We say that π is size independent if it satisfies the following properties:

• Correctness: For every pair of polynomials q1(·), q2(·) there exists a negligible function µ such
that for every κ ∈ N, and all x ∈ {0, 1}q1(κ), y ∈ {0, 1}q2(κ): Pr[π(x, y) 6= f(x, y)] ≤ µ(κ).

• Computation efficiency: There exist polynomial-time interactive probabilistic Turing Machines
π1, π2 such that for every pair of polynomials q1(·), q2(·), all sufficiently large κ ∈ N, and every
x ∈ {0, 1}q1(κ), y ∈ {0, 1}q2(κ), it holds that (π1(1

κ, x), π2(1
κ, y)) implements π(x, y).

• Communication efficiency: There exists a polynomial p(·) such that for every pair of polyno-
mials q1(·), q2(·), all sufficiently large κ ∈ N, and every x ∈ {0, 1}q1(κ), y ∈ {0, 1}q2(κ), the
number of rounds and length of every message sent in π(x, y) is upper bounded by p(κ).

Observe that by computation and communication efficiency, given x, κ and a random tape r,
it is possible to efficiently compute a series of circuits C1P1,κ,x,r

, . . . , Cp(κ)−1P1,κ,x,r
that compute the next

message function of π1(1κ, x; r) (i.e., the input to the circuit CiP1,κ,x,r
is a vector of i − 1 incoming

messages of length p(κ) each, and the output is the response of P1 with input x, security parameter
κ, random coins r, and the incoming messages given in the input). Likewise, given y, κ and
s, it is possible to efficiently compute analogous C1P2,κ,y,s

, . . . , Cp(κ)P2,κ,y,s
. We stress that since the

length of each message in π is bounded by p(κ), the circuits can be defined with input length as
described above. For simplicity, we assume that in each round of the protocol the parties exchange
messages that are dependent only on messages received in the previous rounds (this is without loss
of generality).

In addition, it is possible to generate a circuit CoutputP1,κ,x,r
for computing the output of P1 given its

input and all incoming messages. As in Protocol 4.1, in order to generate CoutputP1,κ,x,r
we need to know

the exact output size (recall that using an upper bound may reveal information). Therefore, we
also use a circuit CsizeP1,κ,x,r

that computes the exact output length given all incoming messages; this
circuit has output length log2 κ (and so any polynomial output length can be encoded in binary in
this number of bits) and can also be efficiently generated.

17

We start with class 2.c and show that if a function has a size-independent protocol, then we
can securely compute the function in class 2.c. In more detail, a size-independent protocol has
communication complexity that can be bound by a fixed polynomial p(κ), for inputs of any length
(actually, of length at most κlog κ and so for any a priori unbounded polynomial-length inputs)2.
Then, we can run this protocol inside fully homomorphic encryption; by padding all messages to
their upper bound (and likewise the number of messages), we have that nothing is revealed by the
size of the ciphertexts sent. We note, however, that unlike in the protocols for class 1, in this case
neither party is allowed to know the secret key of the fully homomorphic encryption scheme (since
both parties must exchange ciphertexts, as in the communication complexity protocol). This is
achieved by using threshold key generation and decryption, which can be obtained using standard
secure computation techniques (observe that no size hiding issues arise regarding this).

PROTOCOL 4.6 (Size-Hiding Protocol for Class 2.c)

• Inputs: P1 has x, and P2 has y. Both parties have security parameter 1κ.

• Auxiliary input: A size independent protocol π for f and the polynomial p(·) bounding
the communication efficiency as in Definition 4.5.

• The protocol:

1. P1 and P2 invoke a secure (class 0) protocol computing the functionality ThrGen for
threshold FHE with inputs 1κ, 1κ (see Appendix A) and obtain a public key pk and
shares of the secret key sk1,sk2, respectively.

2. P1 and P2 run an encrypted execution of π: P1 and P2 choose random coins r and s,
respectively, of the appropriate length for π. Then, for i = 1 to p(κ):

(a) P1 generates the circuit CiP1,κ,x,r
, computes ci1 = Evalpk(CiP1,κ,x,r

, 〈c12, . . . , ci−12 〉),
and sends ci1 to P2.

(b) P2 generates the circuit CiP2,κ,y,s
, computes ci2 = Evalpk(CiP2,κ,y,s

, 〈c11, . . . , ci−11 〉),
and sends ci2 to P1.

3. P1 and P2 compute the exact output length:

(a) P1 generates the circuit CsizeP1,κ,x,r
for computing the exact output size. Then, it

computes csize = Evalpk(CoutputP1,κ,x,r
, 〈c12, . . . , c

p(κ)
2 〉), and sends csize to P2.

(b) P1 and P2 invoke a secure (class 0) protocol computing the functionality ThrDec,
on respective inputs (csize, sk1) and (csize, sk2). P1 receives the decrypted value,
and P2 receives nothing. Let t be the integer encoded in binary that is output.

4. P1 and P2 compute the output:

(a) P1 generates the circuit CoutputP1,κ,x,r
with t output wires. Then, P1 computes cf =

Evalpk(CoutputP1,κ,x,r
, 〈c12, . . . , c

p(κ)
2 〉), and sends cf to P2.

(b) P1 and P2 invoke a secure (class 0) protocol computing the functionality ThrDec,
on respective inputs (cf , sk1) and (cf , sk2). P1 receives the decrypted value z,
and P2 receives nothing.

• Outputs: P1 outputs z and P2 outputs nothing.

2Note that upper bounding the input sizes to κlog κ is not a real restriction: if the adversary has enough time to
read an input of this size, then it has time to break the underlying computational assumption and no secure protocol
exists.

18

Theorem 4.7 Let f : {0, 1}∗×{0, 1}∗ → {0, 1}∗ be a function. If π is a size-independent protocol for
computing f , and (Gen,Enc,Dec,Eval) is a fully homomorphic encryption scheme, then Protocol 4.6
securely computes f in class 2.c in the presence of static semi-honest adversaries.

Proof: We begin with the case that P1 is corrupted. Simulator S1 receives (x, f(x, y)) and prepares
a uniformly distributed random tape for P1. Then, S1 chooses (pk, sk) ← Gen(1κ) and simulates
an execution of ThrGen with input 1κ and output pk, sk1, where sk1 is just a random string of the
appropriate length. Next, S1 generates p(κ) encryptions of zeroes c12 = Encpk

(
0p(κ)

)
, . . . , c

p(κ)
2 =

Encpk
(
0p(κ)

)
. Then, S1 computes csize = Evalpk

(
CsizeP1,κ,x,r

, 〈c12, . . . , c
p(κ)
2 〉

)
and simulates an execution

of ThrDec with input csize and output t = |f(x, y)| (encoded in binary, and padded to length log2 κ).
Finally, S1 computes cf = Evalpk

(
CoutputP1,κ,x,r

, 〈c12, . . . , c
p(κ)
2 〉

)
and simulates an execution of ThrDec

with input cf and output z = f(x, y). Simulator S1 sets the view of P1 to be the concatenation
of all of the above. In order to prove that the view generated by S1 is indistinguishable from the
view generated in a real execution, we first consider a hybrid simulator S ′1 who is given y and works
exactly like S1 except that the p(κ) ciphertexts c11, . . . , c

p(κ)
1 are computed to be encryptions of the

messages sent by P2 in π, upon input y. Indistinguishability is derived from the CPA security of
the fully homomorphic encryption scheme (observe that S1 and S ′ never use sk so they can work
when given pk as input; thus this reduction can go through). Now, observe that the difference
between the view generated by S ′ and the view of P1 in a real protocol execution is just that S ′
simulates the executions of ThrGen and ThrDec, whereas real executions are used in the protocol.
Indistinguishability thus follows directly from the security of ThrGen and ThrDec.

Next, consider a corrupted P2. Simulator S2 receives (y, 1|f(x,y)|) and prepares a uniformly
distributed random tape for P1. Then, S2 chooses (pk, sk) ← Gen(1κ) and simulates an execution
of ThrGen with input 1κ and output pk, sk2, where sk2 is just a random string of the appropriate
length. Next, S2 generates p(κ) encryptions c11 = Encpk

(
0p(κ)

)
, . . . , c

p(κ)
1 = Encpk

(
0p(κ)

)
. Then,

S2 computes csize = Encpk

(
0log

2 κ
)
and simulates an execution of ThrDec with input csize and no

output for P2. Then, S2 simulates P1 sending P2 the value t = |f(x, y)| (encoded in binary, and
padded to length log2 κ). Finally, S2 computes cf = Encpk(0

t) and simulates an execution of ThrDec
with input cf and no output for P2. Simulator S2 sets the view of P2 to be the concatenation of
all of the above. Indistinguishability here follows from similar arguments to the case that P1 is
corrupted.

4.3.2 Class 2.a and 2.b

In order to obtain a class 2.a protocol from a class 2.c protocol, all that is needed is for party P1

to send the output to party P2. In contrast, we cannot obtain class 2.b protocols using the above
protocol for class 2.a since the output length is not allowed to be revealed in class 2.b. Nevertheless,
if the output length is fixed (as in binary functions, for example), then the output length is already
known and so this issue does not arise. We therefore have the following corollary.

Corollary 4.8 Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a function. If there exists a size-independent
protocol for computing f , and fully homomorphic encryption schemes exist, then f can be securely
computed in classes 2.a and 2.c in the presence of static semi-honest adversaries. Furthermore, if
in addition to the above the output-size of f is fixed for all inputs, then f can be securely computed
in class 2.b in the presence of static semi-honest adversaries.

19

4.3.3 Applications – Secure Computation in Classes 2.a/b/c

The millionaires’ problem, formally defined by GT(x, y) = 1 if x > y and 0 otherwise (where x, y ∈ N
encoding in binary), can be computed insecurely with communication complexity that is logarithmic
in the lengths of (the binary encoding of) the inputs x and y.3 A protocol for this can be derived
from the communication complexity protocol for GT by Nisan and Safra [Nis93, Theorem 1a]. This
protocol carries out a binary search in order to find the first κ-bit block where x and y differ, and
then just exchange that block. The only difference required is that the binary search carried out
by [Nis93] uses an equality check on arbitrary-size blocks with error, whereas we can check equality
using collision-resistant hashing. Due to its importance, and non-triviality, we describe this protocol
in Section 4.3.4.

We remark that low communication protocols exist for a large variety of tasks, notably including
statistical computations on data. For example, consider the case that two parties hold private
databases of salaries, and wish to compute the mean, variance and median of their salaries. This
is easily carried out: (a) the mean can be locally computed by each and then combined given the
overall number of employees; (b) the variance can be locally computed and combined once given
the mean; (c) the median can be computed with logarithmic communication complexity [KN97].
Finally, note that equality can also be computed with a size-independent protocol by simply having
the parties exchange a hash of their inputs, using a collision-resistant hash function with output
length κ.

All of the above functions have fixed output length. Therefore by Corollary 4.8:

Corollary 4.9 Assuming the existence of fully homomorphic encryption, the greater-than, equality,
mean, variance and median functions can be securely computed in classes 2.a, 2.b and 2.c, in the
presence of static semi-honest adversaries.

In order to compute the minimum function min(x, y) for x, y ∈ N, we first compute the length
of min(x, y); i.e., we first compute min(|x|, |y|). This can be carried out by first computing GT(x, y)
and then having the party with the smaller (or equal) value send its input length. By defining the
output length to be a binary encoding padded with zeroes up to length log2 κ, we have that the
output of the “min-length” function is fixed size. Thus, it can be computed in class 2.a according
to Corollary 4.8. Now, given the output length t, party P1 can encrypt the first t bits of its input
using fully homomorphic encryption, and then P2 can use Eval to compute the actual minimum
that P1 can decrypt. This securely computes min(x, y) in class 2.c, and class 2.a follows trivially by
having P1 send the output to P2. (This is not secure for class 2.b since P2 learns the output size.)
Therefore:

Corollary 4.10 Assuming the existence of fully homomorphic encryption, the min function can be
securely computed in classes 2.a and 2.c, in the presence of static semi-honest adversaries.

3Observe that the greater-than function is not symmetric (recall that a function f is symmetric if f(x, y) = f(y, x)
for all x, y), and in this paper we focus on symmetric functions. Nevertheless, it can be made symmetric by defining
f((x, b1), (y, b2)) to equal GT(x, y) if b1 = 0 and b2 = 1, and to equal GT(y, x) if b1 = 1 and b2 = 0, and to equal
(⊥, b1) if b1 = b2. Since b1 and b2 are always revealed, it is possible for the parties to simply exchange these bits, and
then to run the protocol for GT in the “appropriate direction”, revealing the output as determined by the class.

20

4.3.4 An Input-Size Hiding Protocol For The Millionaires’ Problem

In this section, we show how the millionaires’ problem can be securely computed in class 2. Our
protocol works by applying Protocol 4.6 to an insecure protocol for computing the greater-than
function, with communication complexity that depends only on the security parameter and is inde-
pendent of the actual input length. The fact that this suffices has been proven in Corollary 4.8. It
therefore remains to show how it is possible to compute the greater-than function in this way. We
demonstrate this by describing a variant of the communication complexity protocol of [Nis93]. We
stress that our setting is different since we require negligible error (and not constant error as in the
communication complexity setting), and we can also rely on computational assumptions.

Our protocol uses a collision-resistant hash function h : {0, 1}κ × {0, 1}κ → {0, 1}κ with the
property that h(0κ, 0κ) = 0κ. This can be constructed from any collision-resistant hash function h′

by letting h(x, y) = h′(x, y)⊕h′(0κ, 0κ). It is easy to see that if h′ is collision-resistant, then so is h.

Background. Define Tree : {0, 1}κ2` → κ to be the function that takes as input a string x of
length κ2`, builds a hash tree of depth ` from it and outputs the value at the root. More in detail,
we assign a name and value to each node in the tree. Let λ be the name of the root of the tree.
Then, for any node with name u, let the name of its children be u0 and u1 (thus the children of
the root are named 0, 1, their children are named 00, 01, 10, 11, and so on). The hash tree is of
depth ` and therefore there are 2` leaves in the tree. The values of the nodes are then computed in
a bottom up fashion. Specifically, the input string x of length κ · 2` is broken up into 2` blocks of
length κ each; denote x = (x0, . . . , x2`−1). Then, the leaf with label u (of length `) is assigned the
value vu = xu. Finally, the value of the nodes are defined recursively by setting vu = h(vu0, vu1).
In words, a node’s value is obtained by hashing the values of its children. The value vλ of the root
is the output of Tree.

For every string x of (unknown) polynomial length, we can bound its length by κlog κ, for all
large enough κ. Let ` be the smallest integer such that κ2` > κlog κ and let x′ = 0κ2

`−|x|x; that is,
x′ is the string of length κ2` that is obtained by padding x to the left with enough zeroes. A naive
computation of Tree(x′) would take time κ2` > κlog κ which is too long. We show now that Tree(x′)
can actually be computed in time that is proportional to |x| and not |x′|. The main property that
enables us to do this is due to the fact that h(0κ, 0κ) = 0κ. Thus, all the values of all of the nodes
that are ancestors of padded blocks are just 0κ. Let τ be the smallest integer such that κ2τ ≥ |x|,
and pad x to the left with zeroes so that it is of size κ2τ (which is less than twice the size of x).
Then, compute Tree(x), where x here refers to the padded version. This computation takes time
that is linear in 2τ < |x|. Finally, in order to compute Tree(x′) it suffices to compute the values of
the ancestors of the root of the subtree with x′ in the leaves. The value of the parent of Tree(x)
is just h(0k,Tree(x)) since the entire subtree to the left is zeroes. Thus, we just need to compute
v1 = h(0k,Tree(x)), v2 = (h(0k, v1), v3 = (h(0k, v2) and so on, up unto the root of Tree(x′); this
requires just `− τ hash computations. We conclude that Tree(x′) can be computed in time that is
polynomial in the length of x.

The protocol. Intuitively, the protocol proceeds as follow: P1 and P2 perform a binary search
over their inputs to identify the first block of size κ where their inputs differ. Once they find this
block, they can just exchange the values in these blocks, since they are of fixed size κ. In order
to carry out this binary search, P1 and P2 start by conceptually padding their inputs to the left
with zeroes up to size κ2`. Then, they compute Tree on the left half of their padded inputs, and
compare the result. If the values are different, then this implies that there input strings differ in the

21

left half and they throw out the right half; otherwise, they differ in the right half and so throw out
the left half. They then proceed recursively until they reach the level of the leaves (this requires `
iterations where ` is upper bounded by log2 κ). At this point, they have found the most significant
block where their inputs differ, and can exchange the block to see whose input is larger.

This protocol is size independent, as in Definition 4.5: correctness follows from the collision
resistance of the hash function, computation efficiency follows from the fact that Tree can be com-
puted on the padded input in time that is polynomial in the original input, and communication
efficiency is immediate by taking the upper bound on the length of each message to be κ (this also
bounds the number of rounds which is log2 κ).

We conclude:

Theorem 4.11 There exists a size-independent protocol for the greater-than function. Thus, as-
suming the existence of collision-resistant hash functions and fully homomorphic encryption, there
exists protocols for securely computing the greater-than function in classes 2.a, 2.b and 2.c, in the
presence of static semi-honest and malicious adversaries.

5 Negative Results And Separations Between Classes

In this section, we deepen our understanding of the feasibility of achieving input-size hiding by
proving impossibility results for all classes where general secure computation cannot be achieved
(i.e., for classes 1.b, 1.d, 2.a, 2.b and 2.c). In addition, we show that the set of functions computable
in class 2.b is a strict subset of the set of functions computable in 2.a and 2.b, and that classes
1.b and 1.d are incomparable (they are not equal and neither is a subset of the other). Finally, we
consider the relations between subclasses of class 1 and class 2, and show that class 2.b is a strict
subset of class 1.b, but class 2.c is not (and so sometimes hiding both parties’ inputs is easier than
hiding only one party’s input).

5.1 Not All Functions can be Securely Computed in Class 2

In this section we show that there exist functions for which it is impossible to achieve input-size
hiding in any subclass of class 2 (where neither parties’ input sizes are revealed). In order to
strengthen the result, we demonstrate this on a function which has fixed output size. Thus, the
limitation is not due to issues related to revealing the output size (as in class 2.b), but is inherent
to the problem of hiding the size of the input from both parties.

The following theorem is based on the communication complexity of a function. Typically,
communication complexity is defined for functions of equal sized input. We therefore generalize this
definition, and measure the communication complexity of a function, as a function of the smaller
of the two inputs. That is, a function f has randomized communication complexity Ω(g(n)) if any
probabilistic protocol for computing f(x, y) with negligible error requires the parties to exchange
Ω(g(n)) bits, where n = min{|x|, |y|}.4

4Even more formally, we say that a probabilistic protocol π computes f if there exists a negligible function µ such
that for every x, y ∈ {0, 1}∗ the probability that the output of π(x, y) does not equal f(x, y) is at most µ(n), where
n = min{|x|, |y|}. Next, we say that f has communication complexity Ω(g(n)) if for every protocol for computing f
(as defined above) there exists a constant c and an integer N ∈ N such that for every n > N , the number of bits sent
by the parties is at least c · g(n).

22

Theorem 5.1 Let R be a range of constant size, and let f : {0, 1}∗ × {0, 1}∗ → R be a function.
If there exists a constant ε > 0 such that the randomized communication complexity of f is Ω(nε),
then f cannot be securely computed in class 2.a, 2.b or 2.c, in the presence of static semi-honest
adversaries.

Proof: The idea behind the proof of the theorem is as follows. On the one hand, if a function has
Ω(nε) communication complexity, then the length of the transcript cannot be independent of the
input lengths, and must grow as the inputs grow. On the other hand, in class 2 the input lengths
are never revealed and since the output range is constant, the output says almost nothing about the
input lengths. Thus, we can show that the length of the transcript must actually be independent of
the input lengths, in contradiction to the assumed communication complexity of the function. We
now prove this formally.

Let f be a family of functions as in the theorem statement, and assume by contradiction that
there exists a protocol π that securely computes f in class 2.a. (We show impossibility for class 2.a
since any protocol for class 2.b or 2.c can be converted into a protocol for class 2.a by simply having
P1 send P2 the output at the end. Thus, impossibility for class 2.a implies impossibility for classes
2.b and 2.c as well.)

We claim that there exists a polynomial p(·) such that the communication complexity of π is at
most p(κ). Intuitively, this is due to the fact that the transcript cannot reveal anything about the
input size and so must be bound by a fixed polynomial. Proving this formally is a little bit more
tricky, and we proceed to do this now. Let α ∈ R be an output value, and let Iα ⊆ {0, 1}∗×{0, 1}∗
be the set of all string pairs such that for every (x, y) ∈ Iα it holds that f(x, y) = α. Now, by
the definition of class 2.a, there exist simulators S1 and S2 that generate P1 and P2’s views from
(x, f(x, y)) and (y, f(x, y)), respectively. Thus, for every (x, y) ∈ Iα, the simulators S1 and S2 must
simulate given only (x, α) and (y, α), respectively.

Let x be the smallest string for which there exists a y so that (x, y) ∈ Iα, and let p′(·) be
the polynomial that bounds the running-time of S1. Define pα(κ) = p′(|x| + |α| + κ); note that
this is a polynomial in κ since |x| and |α| are constants. We claim that the polynomial pα(·) is
an upper bound on the length of the transcript for every (x, y) ∈ Iα. This follows immediately
from the fact that S1 runs in time that is polynomial in its input plus the security parameter.
Thus, it cannot write a transcript longer than this when given input (x, α). If the transcript upon
input (x, y) ∈ Iα is longer than pα(κ) with non-negligible probability, then this yields a trivial
distinguisher, in contradiction to the assumed security with simulator S1.

Repeating the above for every α ∈ R, we have that there exists a set P = {pα(κ)}α∈R of
polynomials so that any function upper bounding these polynomials is an upper bound on the
transcript length for all inputs (x, y) ∈ {0, 1}∗. Since R is of constant size, we have that there
exists a single polynomial p(κ) that upper bounds all the polynomials in P , for every κ.5 We
conclude that there exists a polynomial p(κ) that upper bounds the size of the transcript, for all
(x, y) ∈ {0, 1}∗.

Now, let c be a constant such that p(κ) < κc, for all large enough κ. We construct a protocol π′

for f as follows. On input (x, y) ∈ {0, 1}∗ × {0, 1}∗, execute π with security parameter κ = nε/2c,
where n = min{|x|, |y|}. By the correctness of π, we have that the output of π(x, y) equals f(x, y)
except with negligible probability. This implies that the output of π′(x, y) also equals f(x, y) except

5This argument is not true if R is not of a constant size. This is because it is then possible that the set of
polynomials bounding the transcript sizes is P = {ni}i∈N. Clearly each member of P is a polynomial; yet there is no
polynomial that upper bounds all of P .

23

with negligible probability (the only difference is that we need to consider larger inputs (x, y), but
in any case correctness only needs to hold for all large enough inputs). Thus, π′ computes f ; see
Footnote 4. The proof is finished by observing that the communication complexity of protocol π′

is upper bounded by p(κ) < (nε/2c)c = nε/2, in contradiction to the assumed lower bound of Ω(nε)
on the communication complexity of f .

Impossibility. From results on communication complexity [KN97], we have that:

• The inner product function IP(x, y) =
∑min(|x|,|y|)

i=1 xi ·yi mod 2 has communication complexity
Ω(n).

• The set disjointness function defined by DISJ(X,Y) = 1 if X ∩ Y = ∅, and equals 0 otherwise
has communication complexity Ω(n).6 This implies that INTERSECT(X,Y) = X ∩Y also has
communication complexity Ω(n).

• The Hamming distance function HAM(x, y) =
∑min(|x|,|y|)

i=1 (xi − yi)2 has communication com-
plexity Ω(n).

Thus:

Corollary 5.2 The inner product, set disjointness, set intersection and Hamming distance func-
tions cannot be securely computed in classes 2.a, 2.b or 2.c, in the presence of static semi-honest
adversaries.

Thus our protocol for set intersection in Section 4.2.2 that hides only one party’s input size is
“optimal” in that it is impossible to hide both parties’ input sizes.

We conclude by observing that by combining Corollary 4.8 and Theorem 5.1, we obtain an almost
complete characterization of the functions with constant output size that can be securely computed
in class 2. This is because any function with fixed output length that can be efficiently computed
with polylogarithmic communication complexity has a size-independent protocol by Definition 4.5,
and so can be securely computed in all of class 2. We therefore conclude:

Corollary 5.3 Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a function. If f can be efficiently computed
with polylogarithmic communication complexity, then it can be securely computed in all of class 2
in the presence of static semi-honest and malicious adversaries, assuming the existence of collision-
resistant hash functions and fully homomorphic encryption schemes. In contrast, if there exists an
ε > 0 such that the communication complexity of f is Ω(nε) then f cannot be securely computed in
any subclass of class 2.

The above corollary is not completely tight since f may have communication complexity that
is neither polylogarithmic, nor Ω(nε). In addition, our lower and upper bounds do not hold for
functions that can be inefficiently computed with polylogarithmic communication complexity.

6The disjointness function is not symmetric. However, it can be made symmetric using the method described in
Footnote 3.

24

5.2 A Separation Between Classes 2.a/c and 2.b

It is clear that any function that can be securely computed in class 2.b (where party P1 receives
f(x, y), and party P2 receives nothing at all) can be securely computed in class 2.a (where both
parties receive f(x, y)). This is because class 2.a can be achieved by simply having the parties run
a protocol for class 2.b, and then have P1 send the output to P2 at the end. Likewise, any function
that can be securely computed in class 2.b can be securely computed in class 2.c.

In this section, we study the converse and show that there exist functions that can be securely
computed in classes 2.a and 2.c but cannot be securely computed in class 2.b. Thus, we have the
set of functions that can be securely computed in classes 2.a and 2.c is strictly larger than the set
of functions that can be securely computed in class 2.b.

Let vecxor : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be the function that takes two vectors of bits ~x =
〈x1, . . . , xn〉 and ~y = 〈y1, . . . , ym〉 and outputs the vector of length min(n,m) with the ith element
being xi ⊕ yi. That is, vecxor(~x, ~y) = 〈x1 ⊕ y1, . . . , xt ⊕ yt〉, where t = min(n,m). We stress that
there is no a priori bound on the length of the vectors

In the theorem below, we will show that vecxor can be securely computed in classes 2.a/c but
not in class 2.b. The fact that it can be computed in classes 2.a/c follows from the fact that the
min function can be securely computed in classes 2.a/c, as we have already shown in Corollary 4.10,
and once t is known it is not hard to securely compute 〈x1 ⊕ y1, . . . , xt ⊕ yt〉. In order to prove
that vecxor cannot be securely computed in class 2.c, we first show that the length of the transcript
in vecxor must be bounded by a fixed polynomial. Intuitively, this is due to the fact that only
party P1 receives output and so cannot tell whether P2 has a vector of the same length or longer.
In addition, P2 receives no information and so cannot know anything about the length of P1’s
vector. Combining these together we obtain that the transcript length must be independent of the
parties’ input lengths, and in particular bound by a fixed polynomial. Next, we show that vecxor
can actually be used to transmit an arbitrary string of arbitrary length from P2 to P1. This works
by setting P1’s input to be the string of all zeroes and P2’s input to be the string that it wishes to
transmit. By the definition of vecxor, the output is just P2’s input string. Combining the above, we
have that vecxor can be used to transmit an arbitrarily long string using a fixed polynomial number
of bits, which is impossible.

Theorem 5.4 The function vecxor defined above cannot be securely computed in class 2.b in the
presence of static semi-honest adversaries, but assuming the existence of fully homomorphic encryp-
tion with circuit privacy it can be securely computed in classes 2.a and 2.c in the presence of static
semi-honest adversaries.

Proof: In Section 4.3.3 we showed that the function min can be securely computed in classes 2.a
and 2.c. We now show that vecxor can also be securely computed in class 2.a, in the presence of
static semi-honest adversaries. First, P1 and P2 use a class 2.a protocol to compute t = min(n,m);
recall that both parties learn t. Then, given t, parties P1 and P2 can send each other the vector
〈x1, . . . , xt〉 and 〈y1, . . . , yt〉, respectively, and then each can locally compute 〈x1 ⊕ y1, . . . , xt ⊕ yt〉
and output it. It is clear that both parties learn nothing more than the output. In order to compute
vecxor in class 2.c, the protocol is the same except that only P2 sends P1 the vector 〈y1, . . . , yt〉, and
only P1 obtains output. Observe that in class 2.c, party P2 receives 1|f(x,y)| which is exactly 1t, and
so having P2 receive t from the computation of min(n,m) is not a problem.

We now show that it is impossible to securely compute vecxor in class 2.b. Assume, by contra-
diction, that there exists a protocol π that securely computes vecxor in Class 2.b. Let T (κ, ~x, ~y) be

25

the random variable representing the number of bits exchanged by honest P1 and P2 when running
π with respective inputs ~x and ~y, and security parameter κ (where the probability is taken over the
random tapes of P1 and P2).

Let ~v∅ denote the empty vector of length 0, and let c be a constant such that T (κ,~v∅, ~v∅) ≤ κc

for all large enough κ (such a constant exists since the protocol runs in polynomial time). Now, for
every vector ~y it holds that vecmin(~v∅, ~v∅) = vecmin(~v∅, ~y) = ~v∅. This implies that for every vector
~y it must hold that T (κ,~v∅, ~y) ≤ κc for all large enough κ. Otherwise, a distinguisher in the case
of a corrupted P1 with input ~v∅ can distinguish the case that P2 has ~v∅ or ~y just by looking at the
number of bits exchanged. (Recall that P1 receives the output only, which in this case is just ~v∅.)

Now let ~y∗ = 〈y1, . . . , yt〉 be a vector of t random bits, where t = ω(κc). Furthermore, let
~x∗ = 〈0, . . . , 0〉 of length t as well (i.e., ~x is the all-zero vector of length-t). As we have just argued,
T (κ,~v∅, ~y

∗) ≤ κc for all large enough κ. In addition, since P2 receives no output in any case, it must
also hold that T (κ, ~x∗, ~y∗) ≤ κc for infinitely many κ; otherwise, a distinguisher in the case that P2

is corrupted can distinguish between the case that P1 had input ~v∅ and the case that it had input
~x∗.

The proof is concluded by observing that the output of P1 from an execution of vecxor(~x∗, ~y∗) is
~y∗, and therefore the protocol π can be used to have P2 send a random t-bit string to P1. However,
t = ω(κc) whereas the number of bits exchanged in vecxor(~x∗, ~y∗) is less than κc, in contradiction to
the fact that it is impossible to compress a random string of length ω(κc) to a string of length κc.

We conclude that:

Corollary 5.5 Assuming the existence of fully homomorphic encryption with circuit privacy, the
set of functions that can be securely computed in class 2.b is a strict subset of the set of functions
that can be securely computed in both class 2.a and class 2.c.

5.3 Not All Functions can be Securely Computed in Class 1.b and 1.d

In classes 1.a/c/e, even if a party does not learn the output it still learns the size of the output. This
enables us to use fully homomorphic encryption in order to securely compute any function in these
classes. The fact that both parties learn the output size seems inherent in this method since one
party evaluates the circuit inside the encryption (and so sees an encryption of the output, revealing
its size) and the other receives the actual output. In this section, we show that it is indeed inherent.
Specifically, we show that it is impossible to obtain an analogous feasibility result for classes 1.b
and 1.d; recall that in these classes the party that does not learn the output also does not learn the
output size.

The impossibility result for class 1.b resembles the result for class 2.b in the previous section
and is based on the impossibility of compressing random strings. In contrast, the impossibility
for class 1.d is very different and only holds against in a slightly stronger security model, namely
in the presence of deterministic semi-honest adversaries. In order to see why, observe that in class
1.d party P2 learns both f(x, y) and 1|x|. Thus, without taking security into account, party P1 can
just send its input to party P2 who can compute f(x, y) and be finished. We therefore cannot use
information-theoretic communication complexity and incompressibility arguments. We will still use
an incompressibility based argument, but one that is based on computational entropy.

Impossibility for class 1.b (where P1 receives f(x, y) and P2 receives 1|x|). We prove
impossibility here for a size-hiding version of oblivious transfer, where P1 is the receiver in the

26

oblivious transfer and has input a bit x ∈ {0, 1}, and P2 has two strings (y0, y1) of arbitrary length.
The output is the string yx.7 Recall that in class 1.b, party P1 receives the output and party P2 only
receives the length of P1’s input, which in this case is known (because it is a single bit). Formally,
define OT(x, (y0, y1)) = yx.

Intuitively, OT can be used to have P2 communicate many bits to P1. Furthermore, since P2 can-
not learn the output length, the length of the transcript must be independent of the output length,
which is the number of bits transmitted. Thus, as in the proof of Theorem 5.4, this contradicts the
fact that it is impossible to transmit arbitrary long strings using fewer bits.

Theorem 5.6 The unbounded oblivious transfer function OT cannot be securely computed in class
1.b, in the presence of static semi-honest adversaries.

Proof: Assume by contradiction that there exists a protocol π that securely computes OT in class
1.b. Let T (κ, x, Y) be the random variable representing the number of bits exchanged by honest P1

and P2 when running π with respective inputs x and (y1, y2) and security parameter κ (where the
probabilities is taken over the random tapes of P1 and P2). Let x∗ = 0 and y∗0 = y∗1 = 0 (i.e., all
inputs are single bits). Let c be the integer such that T (κ, x∗, (y∗0, y

∗
1)) ≤ κc, for all large enough κ

(this follows from the fact that the protocol is polynomial time).
Next, let y′1 be a random string of length m = ω(κc). Note that OT(x∗, (y∗0, y

′
1)) =

OT(x∗, (y∗0, y
∗
1)) = 0, since x∗ = 0 and y∗0 = 0. Therefore, it must also hold that T (κ, x∗, (y∗0, y

′
1)) ≤

κc for all large enough κ, or a corrupted P1 could distinguish the case that P2 has input (y∗0, y
′
1)

or input (y∗0, y
∗
1) by the length of the transcript. Thus, increasing the size of P2’s input cannot

increase the size of the transcript. Now, let x′ = 1. By the function definition, OT(x′, (y∗0, y
′
1)) = y′1.

However, as before, it must hold that T (κ, x′, (y∗0, y
′
1)) ≤ κc for all large enough κ, or a corrupted

P2 could distinguish the case that P1 has x1 or x2 (note that P2 receives the length of P1’s input
but this is just a single bit in both cases).

By the fact that OT(x′, (y∗0, y
′
1)) = y′1 and T (κ, x′, (y∗0, y

′
1)) = O(κc), we have that the protocol

π can be used to have P2 send a random string y′1 of length m = ω(κc) to P1, while communicating
only O(κc) bits, in contradiction to the incompressibility of random strings.

Impossibility for class 1.d (where P1 receives nothing and P2 receives (1|x|, f(x, y))). As
we have mentioned above, when proving impossibility for class 1.d, we cannot use information-
theoretic lower bounds in communication complexity and arguments related to incompressibility of
random strings. Rather, the argument here will be more “cryptographic” in style.

Let F = {F κ} be a pseudorandom function family, where for every κ ∈ N we have F κ :
{0, 1}κ × {0, 1}κ → {0, 1}κ. In addition, let omprf be the oblivious multi-point PRF-evaluation
function that takes a string x ∈ {0, 1}κ from P1 and a set of m strings Y = {yi ∈ {0, 1}κ}mi=1 from
P2, and outputs the set Z = {zi = F κx (yi)}mi=1. That is, the function evaluates the pseudorandom
function with key x on all the points yi. Recall that in class 1.d, party P2 receives the output, and
P1 must receive nothing.8

Intuitively, omprf cannot be securely computed in class 1.d because the output of P2 has high
computational entropy (indeed, P2 cannot distinguish the values in its output from truly random).

7The OT function is not symmetric, but can be made symmetric using the method described in Footnote 3. Note
that for proving impossibility, it suffices to consider the asymmetric case, or in the notation of Footnote 3 it suffices
to prove impossibility when b1 = 0 and b2 = 1.

8As with the OT function, omprf is not symmetric but this suffices; see Footnote 7.

27

Furthermore, P2 can compute its output from its view alone. Now, if the transcript of the execution
is independent of the output size (as we will show it must be since P1 cannot learn the P2’s input
size or the output size), then this means that P2 can compute a large set of pseudorandom strings
from a short view (although P2’s input is not short, it can be fixed and this makes no difference).
By the pseudorandomness property, this means that P2 can compute a large set of random strings
from a short view, and this is impossible by an incompressibility argument.

Theorem 5.7 Assuming the existence of one-way functions, the function omprf defined above can-
not be securely computed in class 1.d, in the presence of static deterministic semi-honest adversaries.

Proof: Assume by contradiction that there exists a protocol π for securely computing omprf in
class 1.d, and let T (κ, x, Y) be the random variable representing the number of bits exchanged in an
execution, as in previous proofs. Let c ∈ N be a constant such that T (κ, x, ∅) ≤ κc; such a constant
exists since π is a polynomial-time protocol (and x is always of size κ here). Then, for any Y of size
ω(κc) it must also hold that T (κ, x, Y) < κc; otherwise a distinguisher in the case of a corrupted
P1 can distinguish the case that P1 has input ∅ and input Y .

By the assumption that π is secure in the presence of semi-honest adversaries, there exists a
simulator S2 that on input Y , 1κ and Z = {F κx (y)}y∈Y produces the view of P2 in a protocol
interaction with P1, upon inputs x and Y . In particular, this means that given Y , the simulated
random tape and the simulated received messages, it is possible to efficiently compute the output
set Z. Using a standard argument, this should also work if P2’s random tape is pseudorandom, and
not truly random one (i.e., if P2 generates its random tape using a pseudorandom generator and a
seed of length κ).

We now use S2 to distinguish between a pseudorandom function family F = {F κ} and a truly
random function family R = {Rκ}. The distinguisher D with access to a function f (that is either
F κ or Rκ) gives S2 the tuple (Y, 1κ, Z) where Z = {f(y)}y∈Y and obtains back the view of P2 in
a protocol execution. Then, D uses the view generated by S2 in order to recompute Z using P2’s
instructions in the protocol (since P2 must output Z in a protocol execution, it can compute this
from its view). Finally, D outputs 1 if and only if Z = {f(y)}y∈Y .

If f = F κ is a pseudorandom function, then D outputs 1 except with negligible probability.
Otherwise the output of S2 can be easily distinguished from the view of P2 in a real execution
(where P2 outputs the correct Z except with negligible probability). In contrast, if f = Rκ is a
truly random function, then due to incompressibility of random data, it is impossible to efficiently
compute Z = {Rκ(y)}y∈Y from the view output by S2 since this view is of length κc and Z is of
length ω(κc). This contradicts the pseudorandomness of F , which follows from the existence of
one-way functions.

5.4 Separation Between Classes 1.b and 1.d

We show that classes 1.b and 1.d are incomparable. We begin by showing that the OT function of
Section 5.3 that cannot be securely computed in class 1.b can be securely computed in class 1.d.
This is actually a triviality since in class 1.d, we have that P2 receives the output yx and not P1.
Thus, if y0 6= y1 then P2 learns P1’s actual input bit (by just looking at which string was output)
and so P1 could actually just send x to P2. The only problem is therefore if y0 = y1, in which case
P2 should learn nothing. We solve this problem by just having P1 and P2 run a regular oblivious
transfer protocol with all inputs being bits. P1 plays the sender in the oblivious transfer and inputs

28

the pair (0, x), and P2 plays the receiver and inputs 0 if y0 = y1, and inputs 1 otherwise. (Thus, if
y0 = y1 then P2 just obtains 0 and has learned nothing, and if y0 6= y1 then P2 learns the actual
value of x.) Finally, if y0 = y1 then party P2 just outputs y0 (it makes no difference), and if y0 6= y1
then P2 obtained x and so can output yx. Clearly, P1 learns nothing in this protocol, while P2

learns the output only; a simulator for this protocol can be constructed easily. We conclude that
OT can be securely computed in class 1.d (assuming regular oblivious transfer, which also follows
from the existence of FHE).9

Next, we show that the function omprf of Section 5.3 that cannot be securely computed in class
1.d can be securely computed in class 1.b. This can be achieved by having P1 sample a key-pair
(pk, sk) from a fully homomorphic encryption scheme with circuit privacy, and having P1 send
Encpk(x) to P2. Party P2 then uses Eval to compute Encpk(F

κ
x (yi)) for every yi ∈ Y , and sends the

results back to P1, who can then decrypt and obtain the output. Clearly P2 learns nothing more
than 1|x| and P1 learns nothing more than f(x, y).10

We have proven that classes 1.b and 1.d are incomparable. However, observing that both the
OT and omprf functions are not output-length bounded (in the sense of Section 4.2.2 meaning that
the output is bounded by a fixed polynomial in P1’s input size), we have also proven that there exist
functions with unbounded output length that can be securely computed in both of these classes.
Observe that this is in contrast to the result of Section 4.2.2 which proved feasibility for these classes
for all output-length bounded functions. We therefore conclude:

Corollary 5.8 Assuming the existence of fully homomorphic encryption with circuit privacy, there
exist functions that can be securely computed in class 1.b but cannot be securely computed in class
1.d, and there exist functions that can be securely computed in class 1.d but cannot be securely
computed in class 1.b, in the presence of static semi-honest adversaries. In addition, there exist
functions with unbounded output-length that can be securely computed in each of classes 1.b and 1.d.

5.5 Separations between Classes 1 and 2

Class 2.b is a strict subset of classes 1.b. It is straightforward to see that the function vecxor
defined in Section 5.2 can be securely computed in class 1.b. This is due to the fact that in class 1.b,
party P2 may learn the length of P1’s input. Thus, P1 can send its input length n to P2. Then,
P2 computes t = min(n,m) and sends P1 the vector 〈y1, . . . , yt〉 who outputs 〈x1 ⊕ y1, . . . , xt ⊕ yt〉.
However, by Theorem 5.4, vecxor cannot be securely computed in class 2.b. Combining this with the
trivial fact that any function that can be securely computed in class 2.b can be securely computed
in class 1.b, we have the following corollary:

9Recall that we focus on symmetric functions in this paper. Thus, in order to be consistent we need to show how
to securely computed the symmetric version OT as described in Footnotes 3 and 7. Specifically, we need to show that
it is also possible to securely compute OT in class 1.d, where party P1 holds a pair of unbounded strings (x0, x1) and
party P2 holds a choice bit y ∈ {0, 1}. However, this is easy since P2 can choose an FHE key-pair and send Encpk(y)
to P1, who can use Eval to compute Encpk(xy), padded to the length that is the maximum of |x0| and |x1|. This
ciphertext is then sent back to P2 who can decrypt and obtain the output. Since P2 anyway receives the size of P1’s
input in class 1.d, we are allowed to have P1 send P2 the padded output.

10The symmetric version of omprf can also be computed in class 1.b by just having P1 send c1 = Encpk(x1), . . . , cn =
Encpk(xn) to P2 where X = {x1, . . . , xn}, who then uses Eval to compute Encpk(Fκy (xi)) for every i and then send
the results back to P1 to decrypt. Since P2 can learn the size of P1’s input in class 1.b, this is secure.

29

Corollary 5.9 Assuming the existence of fully homomorphic encryption with circuit privacy, the
set of functions that can be securely computed in class 2.b is a strict subset of the set of functions
that can be securely computed in class 1.b.

Class 2.c is not a subset of classes 1.b/d. By Corollary 5.2, the inner-product function cannot
be securely computed in any class 2. However, since this is a function with bounded output length
(a single bit), by Corollary 4.4 it can be securely computed in classes 1.b and 1.d. Thus, class 2.c
does not include all of classes 1.b and 1.d.

In addition, both the OT and omprf functions from Section 5.3 that cannot be securely computed
in classes 1.b and 1.d, respectively, can be securely computed in class 2.c. This can be shown using
techniques similar to Protocol 4.6. It is also possible to show that omprf can be securely computed
in class 2.b (because it can be computed in class 1.b and the input of P1 in omprf is of known size).
We therefore conclude:

Corollary 5.10 Assume that fully homomorphic encryption with circuit privacy exists. Then, there
exist functions that cannot be securely computed in classes 1.b and 1.d in the presence of static semi-
honest adversaries, but can be securely computed in class 2.c. In addition, there exist functions that
cannot be securely computed in class 1.d but can be securely computed in class 2.b.

This corollary is somewhat surprising since it means that it is sometimes possible to compute
while hiding both parties’ inputs but not while hiding one party’s input (of course, depending on
who receives the output and output length).

6 Summary

Our work provides quite a complete picture of feasibility, at least on the level of in which classes
can all functions be securely computed and in which not. In addition, we show separations between
many of the subclasses, demonstrating that the input-size hiding landscape is rich. In Table 1
we provide a summary of what functions can and cannot be computed in each class. The result
marked with a ∗ only holds against honest-but-determistic adversaries. This is in no terms a full
characterization, but rather some examples that demonstrate the feasibility and infeasibility in the
classes.

All f All f (even GT
vecxor Intersection OT omprf(bounded output) unbounded output) (x > y)

2.a × × X X × X X
2.b × × X × × × X
2.c × × X X × X X
1.a X X X X X X X
1.b X × X X X × X
1.c X X X X X X X
1.d X × X X X X ×∗
1.e X X X X X X X

Figure 1: Summary of feasibility.

30

References

[ACT11] Giuseppe Ateniese, Emiliano De Cristofaro, and Gene Tsudik. (if) size matters: Size-
hiding private set intersection. In Public Key Cryptography, pages 156–173, 2011.

[Bea91] Donald Beaver. Foundations of secure interactive computing. In CRYPTO, pages 377–
391, 1991.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. FOCS, 2011.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. J. Cryp-
tology, 13(1):143–202, 2000.

[CV12] Melissa Chase and Ivan Visconti. Secure database commitments and universal arguments
of quasi knowledge. In CRYPTO, pages 236–254, 2012.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–
178, 2009.

[GL90] Shafi Goldwasser and Leonid A. Levin. Fair computation of general functions in presence
of immoral majority. In CRYPTO, pages 77–93, 1990.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
a completeness theorem for protocols with honest majority. In STOC, pages 218–229,
1987.

[Gol04] Oded Goldreich. Foundations of Cryptography Volume 2, Basic Applications. Cambridge
University Press, 2004.

[HL10] Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Protocols: Techniques
and Constructions. Springer-Verlag, 2010.

[HW15] Pavel Hubácek and Daniel Wichs. On the communication complexity of secure function
evaluation with long output. In Proceedings of the 2015 Conference on Innovations in
Theoretical Computer Science, ITCS 2015, Rehovot, Israel, January 11-13, 2015, pages
163–172, 2015.

[IP07] Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted data. In
TCC, pages 575–594, 2007.

[KN97] Eyal Kushilevitz and Naom Nisan. Communication Complexity. Cambridge University
Press, 1997.

[MR91] Silvio Micali and Phillip Rogaway. Secure computation (abstract). In CRYPTO, pages
392–404, 1991.

[MRK03] Silvio Micali, Michael O. Rabin, and Joe Kilian. Zero-knowledge sets. In FOCS, pages
80–91. IEEE Computer Society, 2003.

[Nis93] Naom Nisan. The communication complexity of threshold gates. Combinatorics, Paul
Erdos is Eighty, 1:301–315, 1993.

31

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
FOCS, pages 162–167, 1986.

32

A Tools – Threshold Fully-Homomorphic Encryption

Let (Gen,Enc,Dec,Eval) be a tuple of efficient, possibly randomized algorithms, where

• (pk, sk)← Gen(1κ) is a randomized key generation algorithm, that outputs a public key and
a secret key;

• c ← Encpk(m) is a randomized encryption algorithm (both the plaintext and the ciphertext
space are defined by the public key pk). We write c ← Encpk(m; r) when we want to make
the randomness used during the encryption explicit;

• m′ ← Decsk(c) outputs a message from the plaintext space or a special symbol ⊥;

• c ← Evalpk(C, 〈c1, . . . , cn〉) takes as input a circuit C defined for n inputs and a tuple of n
ciphertexts 〈c1, . . . , cn〉, and outputs a new ciphertext c.

We need circuit privacy in our application; since this implies compactness we do not include
compactness in the definition.

Definition A.1 (Fully-Homomorphic Scheme) We say that (Gen,Enc,Dec,Eval) is a fully-
homomorphic encryption scheme with circuit privacy if (Gen,Enc,Dec) is a public-key encryption
scheme that is secure in the presence of chosen-plaintext attacks, and the following holds:

• Correctness: For all polynomial-size circuits C and messages m1, . . . ,mn with n = poly(κ):

Pr
[
Decsk(Evalpk(C, 〈Encpk(m1), . . . ,Encpk(mn)〉)) 6= C(m1, . . . ,mn)

]
≤ negl(κ)

where the probability is taken over the random coins of all the algorithms (Gen,Enc,Dec,Eval).

• Circuit Privacy: For every circuit C, every (pk, sk) in the range of Gen(1κ) and every tuple
of n ciphertexts 〈c1 = Encpk(m1), . . . , cn = Encpk(mn)〉, the following distributions (over the
random coins of Eval and of Enc encrypting C(m1, . . . ,mn)) are statistically close{

Evalpk(C, 〈c1, . . . , cn〉)
}

and
{
Encpk(C(m1, . . . ,mn))

}
.

In some of the constructions we will need to use a threshold version of FHE. We will use two
functionalities for shared key generation and shared decryption:

• Let ((sk1, pk), (sk2, pk)) ← ThrGen(1κ, 1κ) be the randomized functionality that takes input
1κ from P1 and P2 and computes (pk, sk) ← Gen(1κ). The functionality then chooses a
random r ∈ {0, 1}κ and defines the shares of sk by sk1 = r and sk2 = sk⊕ r. Finally, it gives
the outputs (sk1, pk) to P1 and (sk2, pk) to P2.

• Let (m,λ) ← ThrDec((CA, sk1), (CB, sk2)) be the functionality that computes and outputs
m = Decsk1⊕sk2(CA) if CA = CB, and ⊥ otherwise.

We remark that when using threshold decryption, computational circuit privacy is implied from the
regular CPA security of the fully homomorphic encryption scheme. Thus, circuit privacy (which as
we have defined it is statistical), does not to be required as well.

State of the art: The first construction of fully homomorphic encryption was given by Gen-
try in [Gen09]. Right after this seminal work, many optimization of Gentry’s protocol have been

33

proposed. Perhaps most interestingly, Brakerski and Vaikuntanathan [BV11] showed that fully ho-
momorphic encryption can be instantiated based solely on standard assumptions (i.e., LWE). When
considering the threshold version of FHE, we are not aware of any FHE scheme that “naturally” sup-
ports threshold key generation and threshold decryption. However, since FHE implies semi-honest
oblivious transfer and one-way functions, it is possible to use the protocols of [GMW87, Yao86] to
securely implement Class 0 protocols for ThrGen,ThrDec.

34

Class 2.a Class 2.b

Class 2.c

Class 1.a Class 1.b

Class 1.c Class 1.d

Class 1.e

Class 0.a Class 0.b

Class 0.c

� -

- �

� -

- �

� -

- �

� -

- �

� -

- �

� -

- �

� -

- �

� -

- �

� -

- �

� -

- �

� -

- �

(|x| = |y|)

(|x| 6= |y|)

(|x| = |y|)

(|x| 6= |y|)

x

f(x, y)

y

f(x, y)

⊥ ⊥

x

f(x, y)

y

f(x, y)

1|y| 1|x|

x

1|y|, f(x, y)

y

1|x|, f(x, y)

x

1|f(x,y)|

y

1|x|, f(x, y)

x

f(x, y)

y

1|x|, 1|f(x,y)|

x

λ

y

1|x|, f(x, y)

x

f(x, y)

y

1|x|, f(x, y)

x

f(x, y)

y

1|x|

x

f(x, y)

y

1|f(x,y)|

x

f(x, y)

y

f(x, y)

x

f(x, y)

y

λ

Figure 2: Classification of Input-Size Hiding Ideal Models

35

