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Abstract

We propose a protocol to transfer a one-time-pad (in a probabilistic
manner) from Alice to Bob, over a public channel. The proposed
protocol is unique because Bob merely acts as the receiver of the pad
(secret key), i.e. Bob does not need to send any message back to Alice
unless he detects eavesdropping. Such a secure transfer of one-time-
pad, over public channel, is not possible in classical cryptography and
in quantum cryptography all previous protocols require Bob to send
almost as many messages back to Alice as she does to Bob, to establish
a key.

1 Introduction

Quantum key agreement protocols provide perfect security using laws of
quantum physics [10]. This is of great advantage when all the classical key
agreement techniques over public channels have been based on unproven
mathematical assumptions [7]. A quantum key agreement protocol was first
proposed by Bennett and Brassard [2] (BB84). In BB84, Alice generates a
random string of bits and sends each bit to Bob as a photon in a randomly
chosen basis (rectilinear or diagonal). Bob, not knowing which of the two

1



bases each photon is in, measures them randomly in rectilinear or diagonal
basis. After measuring all the photons, Bob discloses his choice of bases of
measurement to Alice and she tells Bob which of their bases agree. The final
key is made up of bits that were received by Bob in the matching bases. A
subset of these bits are used to check if there was any eavesdropping. Here
disclosure of bases is done over a classical communication channel.

Eavesdropping is detected in BB84 because Eve not knowing the original
bases of the photons, like Bob, measures them in random bases. This will
make 75% of the photons collapse randomly at Bob’s end. However, Bob
expects 50% of this random bases to agree with Alice’s and hence see only
50% of the photons collapse randomly. After all the measurements are done,
Alice and Bob randomly select a subset of the bits received by Bob in the
correctly aligned bases and check for errors. If Eve has made measurements,
they would expect to see disagreements in some of the bit values.

Ekert [4] proposed the use of entangled photons measured randomly in
three coplanar axes. While Ekert’s protocol used Bell’s inequality to demon-
strate its security against eavesdropping, Bennett, Brassard and Mermin [3]
proposed a protocol that used entangled pairs and did not depend on Bell’s
inequality for detection of eavesdropping. Bennett [1] in another scheme
showed that any two non-orthogonal states suffice for key agreement. A pro-
tocol by Kartalopoulus [6] used two quantum channels for key agreement
in conjunction with a classical channel. In his protocol, Alice sends same
information on both the quantum channels and Bob measures the photons
on these channels, randomly, in complementary bases (rectilinear on one and
diagonal on other). They compare their chosen bases publicly and Bob re-
trieves the key.

Almost all quantum key distribution protocols have a similar concept
behind them in which photons are first measured in random bases and then
the chosen bases are compared publicly. Consequently, the final key to be
used cannot be decided in advance and depends on Bob’s measurements as
well. Further, all the protocols require Bob to actively send messages back
to Alice in a back and forth communication.

A somewhat different three-stage quantum key agreement protocol based
on the idea of commuting transformations was proposed in [5], similar to
classical commutative cryptography [9]. However, it requires Bob to choose
rotation basis of his own and thus a two-way exchange of messages for the key
agreement process. A protocol that uses repeated transmission and measure-
ment of photons in both directions is proposed in [11]. In contrast, although
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the protocol proposed here uses repeated transmission of photons, we only
send messages in one direction, making it at least twice as efficient as that
proposed in [11].

Therefore, the contributions of the proposed protocol is as follows:

1. It enables Alice to transfer a secretly chosen one-time-pad to Bob over
a public channel. The key is entirely chosen by Alice.

2. Probabilistic nature of transfer: the one-time-pad is transferred to Bob
correctly with a very high probability (a parameter chosen by the par-
ticipants).

3. Bob sends a message back to Alice only if he detects eavesdropping
and does not need to disclose his bases of measurement. Consequently,
unlike previous protocols, there is no two-way exchange of messages to
establish a key.

4. Unlike other protocols, where only Alice can detect eavesdropping be-
cause only she knows the original values of the bits she sent, in the
proposed protocol Bob is able to detect eavesdropping.

5. The probability of detection of eavesdropper is higher than that in
BB84.

Further, we assume that Alice and Bob have agreed on bases of mea-
surements and encoding of photons long before Alice decides to transmit a
one-time-pad to Bob. Such arrangements can be a part of global standards
that communicating parties follow. Also, assume that Alice has quantum sys-
tems capable of producing single photons in desired polarization and there
is no loss of photons during transmission or elsewhere.

2 The Proposed Protocol

Assume that Alice wishes to send Bob, over a public channel, a random
bit string of length n to be used as a one-time-pad. We assume that Alice
and Bob have, long before the start of the protocol agreed to use polarized
photons for communication and two bases for measurements. For example,
photons in states |0 > and |1 > are implemented using photons polarized at
0 degrees (→) and 90 degrees (↑), respectively, and are said to represent 0
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and 1 in rectilinear basis (+). Similarly, photons in states |0>+|1>√
2

and |0>−|1>√
2

are implemented using photons polarized at 45 degrees (↗) and 135 degrees
(↖), respectively, and are said to represent 0 and 1 in diagonal basis (×).
Further, a photon that is in diagonal basis, when measured by a detector
aligned in rectilinear basis randomly collapses to 0 or 1 with a probability of
one-half, and vice versa [8].

The protocol proceeds as follows:

1. Alice chooses a random sequence of polarization basis (rectilinear or
diagonal) and sends Bob a stream of photons representing one bit of
the key in the basis chosen for that bit position.

2. Bob upon receiving the stream of photons, randomly and independently
measures each photon in rectilinear or diagonal basis.

3. Alice re-encodes her key as a stream of photons in the same sequence
of bases as before and sends it to Bob again.

4. Bob measures the stream of photons in the same sequence of bases that
he chose in the previous iteration.

5. Alice and Bob repeat steps 3 and 4, k − 1 number of times.

6. Alice sends one final copy of the key as a stream of photons to Bob.

At this point Alice has sent k + 1 copies of the key as polarized photons
to Bob.

• For the first k iterations, Bob keeps his sequence of bases constant and
notes all the measurements for all the iterations in a table.

• If for photon i the measured value changes at least once over k itera-
tions, then Bob concludes that his measurement basis for that photon
is not the same as that of Alice’s and changes his basis of measurement
for that photon to the complementary basis.

• Bob receives the (k + 1)th transmission in the realigned bases.

• Alice then sends to Bob all the original sequence of bases for her pho-
tons.

• Bob checks for eavesdropping:
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- If eavesdropping is detected - Bob sends an abort signal to Alice.

- Else Alice sends the encrypted message to Bob.

Figure 1. Illustration of the flow of the proposed protocol.

Bob keeps track of all measurements he makes and notes them as shown
in the tables. When Bob’s basis of measurement matches with Alice’s chosen
basis for a photon, Bob retrieves the same exact result for that bit in all the
k iterations. However, if Bob’s basis differs from that of Alice’s, Bob will
lose all information about that bit (photon will randomly collapse to 0 or 1
with probability one-half).

Since both Alice and Bob are choosing their measurement bases randomly
and independently, Bob expects to see 50% of his bases agree with Alice’s.
Consequently, Bob will see the other 50% of the photons collapse to a random
value. This is shown in table 2.

After k iterations Bob will have determined with a very high probability
which of his bases align with Alice’s and which don’t align. For the bases
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that don’t align with Alice’s he changes them to the complementary bases.
When Alice sends the (k + 1)th transmission of photons, Bob measures it in
his newly aligned basis to determine the secret key.

3 The Value of k

Bob’s aim is to determine which of his basis align with Alice’s. If, for a
given photon, Bob’s basis is not aligned with Alice’s basis then Bob will see
a random collapse of the photon. The probability that Bob’s basis is wrongly
aligned and yet he sees that photon collapse to the exact same value over k
iterations is 1

2k−1 . If k = 12, Bob is more than 99.9% confident of his basis for
a photon for which his measured value remained constant over k iterations.

Table 1. Sample execution of the proposed protocol.

4 Probabilistic Nature of Key Transfer

It is clear from the above description that the key transfer is probabilistic
in the sense that Bob has a residual probability of error for the final key.
This is because Alice discloses her bases only after Bob has made all the
measurements. Therefore, bits that did not change their value in k iterations
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Table 2. Bob’s observations over 13 iterations for the example shown in table
1.

have a probability of 1
2k−1 of being measured in the wrong basis and hence

Bob does not gain any information about them.
When Alice sends Bob her original bases of encoding, Bob can check if

any of his basis were wrongly aligned. For a large k, the addition of a one bit
error correcting checksum to the end of the transmitted key would suffice.

5 Eavesdropping

We assume that an eavesdropper has same capabilities as that in BB84 [2], in
which case the probability of detection of eavesdropper is greater than that
in BB84. Here the eavesdropper, Eve, can only make measurements on the
photons that are being sent to Bob. Consequently, not knowing the bases of
the photons, Eve will make measurements in random bases before sending
the photons to Bob and hence introduce errors in Bob’s measurements. The
difference from previous protocols is that Bob himself will be able to detect
these errors as compared to sending a subset (or a function of the subset) of
the bits to Alice for verification.

Irrespective of whether Eve eavesdrops on all the k iterations or just one
iteration (or any number in between), Eve measurements will force 75% of
the photons to collapse randomly (at Bob’s end), whereas Bob is expecting to
see only 50% of the photons to collapse randomly. In other words, since Alice
later sends Bob the correct bases of the photons, he can go back and check
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his table for the bits whose values were supposed to stay constant through
all the k iterations. Eve’s interference will make half of the photons that
were supposed to remain constant (through k iterations) collapse randomly,
i.e. 12.5% of all photons.

We say that probability of detection of eavesdropper is higher than BB84
because instead of just using a subset of bits received in the correct bases,
Bob is able to check all the bits (expected n

2
) that he received in correct

bases. Consequently, the probability that an Eavesdropper escapes detection
is much lower (1

2
)
n
8 , where a typical n = 1024.

6 Conclusions

In this article we have presented a protocol, based on quantum mechanics,
that can be used to transfer a one-time-pad over a public channel. The
proposed protocol is not intended to replace the existing quantum key dis-
tribution protocols, but to demonstrate phenomenon that is not possible in
classical communication and has not been discussed previously in quantum
cryptography. For example, unlike previous protocols, Bob’s communication
back to Alice is minimum (only an abort signal upon detection of eavesdrop-
ping). Also, in the proposed protocol Bob is able to detect eavesdropping
whereas in all previous protocols, Alice detected eavesdropping as she is the
one who knows the original bit values that were sent. The security of the
protocol remains the same as that of BB84 and the transfer is probabilistic
in nature. Bob’s confidence in the final key can be made arbitrarily high.
Also, Alice chooses the entire key that is to be used.

With a small modification of the protocol one can eliminate the require-
ment of Alice’s classical communication (to Bob) thus making the protocol an
all quantum protocol where no bases need to be disclosed. The proposed pro-
tocol, like other key exchange protocols, is vulnerable to man-in-the-middle
attack and required authenticated channels for communication.
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